WO2005085610A1 - 電動機付過給機の制御装置 - Google Patents

電動機付過給機の制御装置 Download PDF

Info

Publication number
WO2005085610A1
WO2005085610A1 PCT/JP2005/004023 JP2005004023W WO2005085610A1 WO 2005085610 A1 WO2005085610 A1 WO 2005085610A1 JP 2005004023 W JP2005004023 W JP 2005004023W WO 2005085610 A1 WO2005085610 A1 WO 2005085610A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbocharger
atmospheric pressure
electric motor
supercharger
motor
Prior art date
Application number
PCT/JP2005/004023
Other languages
English (en)
French (fr)
Inventor
Koichi Akita
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112005000486.4T priority Critical patent/DE112005000486B4/de
Priority to US10/586,441 priority patent/US7530229B2/en
Publication of WO2005085610A1 publication Critical patent/WO2005085610A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for a supercharger with a motor for controlling a supercharger with a motor disposed on an intake passage of an internal combustion engine mounted on a vehicle.
  • the internal combustion engine draws air from the atmosphere and uses it for combustion. If the intake air volume decreases, the output will decrease. For example, when the atmospheric pressure decreases, the mass of air per unit volume decreases, so the output decreases. Normally, the intake air volume is increased by increasing the throttle opening to prevent the air mass from decreasing. However, if the turbocharger has some variable control mechanism, this mechanism is used to increase the boost pressure and compensate the output. As an example of such a mechanism, a variable nozzle mechanism such as that included in the turbocharger described in the above-mentioned publication can be mentioned.
  • the parallel nozzle mechanism arranges a plurality of vanes at the exhaust inflow section to the turbine wheel, and changes the amount of clearance (variable nozzle opening) between the vanes to reduce the exhaust flow velocity.
  • the turbine output is optimized by variably controlling the variable nozzle opening.
  • the variable nozzle mechanism When the internal combustion engine is in a low load range, the variable nozzle mechanism has already been set to the minimum opening, and in most cases there is no room to improve the boost pressure when the atmospheric pressure drops. Also, if the nozzle opening is too narrow, the turbocharging efficiency of the turbocharger will decrease (back pressure will increase) and fuel consumption will increase. Worsens. Therefore, output compensation in such a case has been demanded. Accordingly, an object of the present invention is to provide a control device for a supercharger with a motor capable of effectively compensating the output even when the atmospheric pressure decreases.
  • a control device for a supercharger with a motor controls a supercharger that is disposed on an intake passage of an internal combustion engine mounted on a vehicle and driven by the motor, and controls the motor. It is provided with control means for controlling the supercharging pressure and pressure detection means for detecting the atmospheric pressure state, and when the atmospheric pressure detected by the pressure detection means falls below a predetermined value. It is characterized in that the control means increases the driving force of the electric motor as compared to when the value is equal to or greater than a predetermined value.
  • an intake air amount detecting means for detecting an intake air amount
  • the control means is configured to perform the operation based on the intake air amount detected by the intake air amount detecting means and the operating state of the internal combustion engine. It is preferable to determine the increase in the driving force of the motor based on the deviation from the target intake air amount determined by the above.
  • the turbocharger further includes a turbocharger that performs supercharging using an exhaust flow of the internal combustion engine, and a variable nozzle mechanism that variably controls a supercharging state of the turbocharger.
  • a turbocharger that performs supercharging using an exhaust flow of the internal combustion engine
  • a variable nozzle mechanism that variably controls a supercharging state of the turbocharger.
  • the electric motor is built in the turbocharger, and the turbocharger and the turbocharger are integrated.
  • FIG. 1 is a configuration diagram showing a configuration of an internal combustion engine (engine) having one embodiment of the control device of the present invention.
  • FIG. 2 is a flowchart of supercharging control according to an embodiment of the control device of the present invention.
  • FIG. 3 is a map used when determining whether an area is an EGR execution area.
  • FIG. 4 is a map used when determining the target value VN0 of the barrier pull nozzle opening.
  • Fig. 5 is a map used to determine the target value A F t of the fresh air volume.
  • FIG. 6 is a configuration diagram showing a configuration of an internal combustion engine (engine) having another embodiment of the control device of the present invention.
  • FIG. 1 shows an engine 1 having the control device of the present embodiment.
  • the supercharging pressure control when performing supercharging pressure control based on the output of a pressure sensor that detects the intake pipe internal pressure, if this pressure sensor is a sensor that detects a differential pressure with respect to the atmospheric pressure, the supercharging pressure control will It is easy to control based on the supercharging pressure as a difference. If the pressure sensor is a sensor that detects the absolute pressure, the supercharging pressure control is controlled based on the intake pressure as the absolute pressure. It is easy to be done.
  • the engine 1 described in the present embodiment is a multi-cylinder engine. Here, only one cylinder is shown in FIG. 1 as a cross-sectional view.
  • fuel is injected into the intake port by the injector 2 and mixed with the intake air sucked through the intake passage 5 to generate an air-fuel mixture.
  • the generated mixture is introduced into the cylinder 3 and ignited and burned by the ignition plug 7.
  • a supercharger 20 having an electric motor 20a to be described later and a turbocharger 11
  • the interior of the cylinder 3 and the intake passage 5 are opened and closed by an intake valve 8.
  • the exhaust gas after combustion is exhausted to the exhaust passage 6.
  • Exhaust valve between cylinder 3 and exhaust passage 6 Opened and closed by Lube 9.
  • An air cleaner 10, an air flow meter 27, a supercharger 20, a turbocharger 11, an intercooler 12, a throttle valve 13, and the like are arranged on the intake passage 5 from the upstream side.
  • the air cleaner 10 is a filter that removes dust and the like in the intake air.
  • the air flow meter (intake air amount detection means) 27 of this embodiment is a hot wire type, and detects the intake air amount as a mass flow rate.
  • the supercharger 20 is electrically driven by a built-in motor (electric motor) 20a.
  • the compressor wheel is directly connected to the output shaft of the motor 20a.
  • the motor 20 a of the supercharger 20 is connected to the battery 22 via the controller (control means) 21.
  • the controller 2 1 controls the power supplied to the motor 2 0 a controls the drive of the motor 2 0 a.
  • the rotation speed of the motor 20a ie, the rotation speed of the compressor wheel
  • a bypass 24 is provided to bypass the upstream side and the downstream side of the supercharger 20.
  • a valve 25 that regulates the amount of intake air passing through the bypass passage 24 is provided on the bypass passage 24.
  • the valve 25 is electrically driven to arbitrarily regulate the air flow rate through the bypass 24.
  • the turbocharger 20 acts as intake resistance, so the valve 25 opens the bypass passage 24 and the turbocharger 20 becomes intake resistance. Avoid messing around.
  • the intake air supercharged by the supercharger 20 is prevented from flowing back through the bypass passage 24 by the valve 25 to prevent the intake air from flowing back. Cut off 4
  • the turbocharger 11 is disposed between the intake passage 5 and the exhaust passage 6 to perform supercharging.
  • the turbocharger 11, which is well known, has a variable nozzle mechanism 11a as a barrier pull geometry mechanism.
  • the variable nozzle mechanism 11a is controlled by an ECU (control means) 16 described later.
  • the turbocharger 20 and the turbocharger 1 The supercharging can be performed by 1. Downstream of the turbocharger 11, an air-cooled intercooler 12 that lowers the temperature of the intake air whose temperature has risen due to an increase in pressure due to supercharging of the turbocharger 20 and the turbocharger 11 is arranged.
  • the intercooler reduces the temperature of the intake air and improves the charging efficiency.
  • a throttle valve 13 for adjusting the intake air amount is provided downstream of the intercooler 12, a throttle valve 13 for adjusting the intake air amount is provided.
  • the throttle valve 13 of the present embodiment is a so-called electronically-controlled throttle valve.
  • the amount of operation of the accelerator pedal 14 is detected by the accelerator positioning sensor 15, and the ECU detects the amount of operation based on this detection result and other information amounts.
  • 16 determines the opening of the throttle valve 13.
  • the slot knob 13 is opened and closed by a throttle motor 17 provided in association with the slot knob.
  • a throttle position sensor 18 for detecting the opening of the throttle valve 13 is also attached to the throttle valve 13.
  • a pressure sensor 19 for detecting the pressure (supercharging pressure / intake pressure) in the intake passage 5 is also provided downstream of the throttle valve 13.
  • the sensor for detecting the boost pressure may be attached to the intake manifold.
  • These sensors 15, 18, 19, 27 are connected to the ECU 16, and the detection results are sent to the ECU 16.
  • the ECU 16 is also connected to an atmospheric pressure sensor (air pressure detecting means) 30 for detecting the atmospheric pressure.
  • the ECU 16 is an electronic control unit including a CPU, a ROM, a RAM, and the like.
  • the ECU 16 contains the injector 2, spark plug 7, valve 25, air flow meter 27, controller 21
  • an exhaust purification catalyst 23 for purifying exhaust gas is mounted downstream of the turbocharger 11.
  • a crank positioning sensor 26 that detects the rotational position of the crankshaft is mounted near the crankshaft of the engine 1.
  • Crank positioning sensor 2 6 can also detect the engine speed from the position of the crank position.
  • an EGR (Exhaust Gas Recirculation) passage 28 for recirculating exhaust gas from the exhaust passage 6 (upstream of the turbocharger 11) to the intake passage 5 (surge tank) is provided with a rooster S. Is established.
  • An EGR valve 29 for adjusting an exhaust gas recirculation amount (EGR amount) is mounted on the EGR passage 28.
  • £ 01 degree (DUTY ratio) of the valve 2 9 control is also performed by the ECU 16 described above. Not shown, but £.
  • An EGR cooler that cools the EGR gas using the cooling water of the engine 1 is provided between the rev 29 and the surge tank in the intake passage 5.
  • FIG. 1 shows a flowchart of the supercharging control.
  • the engine speed Ne and the engine load are read (step 200).
  • the engine speed is detected by a crank positioning sensor 26.
  • the engine load is calculated based on the intake air amount detected by the air flow meter 27 and the throttle opening detected by the throttle positioning sensor 18.
  • it is determined whether or not the engine is in the region where the EGR control is to be performed, based on the detected engine speed Ne ⁇ engine load (step 205).
  • FIG. 3 shows an example of a map used at this time.
  • the map in Fig. 3 shows the engine speed Ne on the horizontal axis and the engine load on the vertical axis.EGR control is performed in the hatched area A in the map, and exhaust gas recirculates to the intake side. Sa It is. As is evident from the map in Fig. 3, exhaust gas is not recirculated in the high rotation range or high load range. If step 205 is denied, normal control is performed by feedback control based on the intake pressure detected by the pressure sensor 19 (step 210).
  • step 205 if step 205 is affirmative and the EGR control is performed, the target variable nozzle opening VN0. Is calculated, and the target variable nozzle opening V calculated for the variable nozzle mechanism 11a is calculated. NO is output (step 215). The opening degree of the variable nozzle mechanism 11a is changed based on this signal.
  • the target variable nozzle opening VNO is calculated using a map as shown in FIG. In the map of Fig. 4, the horizontal axis indicates the engine speed Ne and the vertical axis indicates the engine load, and the numerical value of the target variable nozzle opening VNO is assigned to each area in the map. The lower the rotation speed and the higher the load, the smaller the target barrier pull nozzle opening VN0, and the higher the rotation speed and the low the load, the larger the target barrier pull nozzle opening VN0.
  • step 215 After the control of the variable nozzle mechanism 11a is started so as to attain the target vari-pull nozzle opening degree VNO, a new air amount AF which is a newly sucked-in air amount is read. (Step 220).
  • the fresh air amount AF is detected by the air flow meter 27.
  • the fresh air sucked from the atmosphere and the recirculated exhaust gas are mixed, and then the fuel is injected into the air-fuel mixture to be introduced into the cylinder 3.
  • the target value AFt of the fresh air amount is calculated (step 225).
  • the map shown in Fig. 5 is used to calculate the new air flow target value AFt.
  • the map in Fig. 5 is used to calculate the new air flow target value AFt.
  • One AF is calculated (step 230).
  • the atmospheric pressure P0 is also detected by the pressure sensor 19 (step 235). Then, it is determined whether or not the detected atmospheric pressure P0 is lower than a predetermined pressure (here, 90 kPa) (step 240). If the atmospheric pressure P0 is lower than the predetermined pressure, it can be determined that the intake air density has decreased.In this case, the driving force of the motor 20a is increased to increase the intake air volume and secure the intake air mass.
  • the command value (drive current value, etc.) i for the motor 20a is calculated based on the function ⁇ (AFe) of the deviation AFe described above.
  • the calculated command value i is output to the motor 20a (step 245).
  • the motor 20a is driven based on the command value i.
  • the command value i is set so that the driving force is larger than when the atmospheric pressure is equal to or higher than a predetermined pressure.
  • the function f (AFe) described above is defined as such.
  • the control of the motor 20 a is a combination of the intake pressure feedback control by the pressure sensor 19 and the intake air amount feedback control by the air flow meter 27.
  • step 240 If the result of step 240 is affirmative and the atmospheric pressure P0 is lower than the predetermined pressure, the control of the variable nozzle mechanism 11a is performed by using the above-described map control using the target barrier nozzle opening VN0 and the pressure sensor 1a.
  • the control is a combination of the intake pressure feedback control by Nin. That is, at this time, it is prohibited to consider the intake air amount when determining the variable nozzle opening. This is because, when the atmospheric pressure P0 is lower than the predetermined pressure, reducing the variable nozzle opening to compensate for the output prevents the back pressure from increasing and the fuel efficiency from deteriorating due to the lower efficiency of the turbocharger 11. To do that.
  • the command value i to the motor 20a that is, the driving force increase of the motor 20a is determined based on the above-mentioned deviation AFe. By doing so, it is possible to reliably secure a fresh air amount that does not generate smoke without reducing the EGR amount.
  • the EGR amount range feedback control is performed so that the EGR rate becomes the target value. Therefore, the reduction of NO x emission by the combustion temperature is reduced. By securing fresh air in this way, the EGR rate can be maintained and exhaust gas purification can be performed reliably.
  • step 240 the correction amount V Nc of the variable nozzle mechanism 11a is calculated based on the function g (AF e) of the deviation AF e described above. (Step 250).
  • the opening calculated by the above-described target opening V N0 + correction amount V Nc is output as a command value.
  • the function g determines the correction amount VNc on the side that opens or narrows the variable nozzle opening so as to reduce the deviation as the above-mentioned deviation A Fe increases. If step 240 is denied, the control of the motor 20a is only the intake pressure feedback control by the pressure sensor 19, and the intake air amount feedpack control by the air flow meter 27 is not performed.
  • the atmospheric pressure detecting means is the atmospheric pressure sensor (pressure sensor) 30.
  • the atmospheric pressure detecting means may be a car navigation system or the like.
  • the land height difference may be obtained from the navigation system, and the atmospheric pressure may be detected (estimated) based on this.
  • the navigation system may have a communication function, and the atmospheric pressure may be detected based on weather information (including the atmospheric pressure) and position information obtained through the communication function. .
  • a turbocharger 20 with a motor 20a is provided upstream of the turbocharger 11 separately from the turbocharger 11.
  • Akira is applicable to a turbocharger with a motor (motor).
  • the turbocharger 11 has a built-in motor (motor) lib inside the turbocharger. Applicable.
  • the embodiment shown in FIG. 6 has almost the same configuration as that shown in FIG. 1 except for the arrangement of 1 lb of keta (and no supercharger 20). The same reference numerals are given to the portions, and the detailed description is omitted.
  • the motor 11b is built in such that the rotation shaft of the turbine Z compressor wheel of the turbocharger 11 becomes the output shaft.
  • the supercharging pressure can be variably controlled by the supercharger with a motor, and an optimal supercharging effect can be obtained. Further, the state of the atmospheric pressure is detected by the atmospheric pressure detecting means, and when the atmospheric pressure is lower than a predetermined value, the driving force of the electric motor is increased as compared with the case where the atmospheric pressure is higher than the predetermined value. It is possible to effectively prevent a decrease in output due to a decrease in atmospheric pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

本発明の目的は、大気圧低下時にも出力を効果的に補償することが可能な電動機付過給機の制御装置を提供することにある。本発明の電動機付過給機の制御装置は、車両に搭載された内燃機関1の吸気通路5上に配設されて電動機20aによって駆動される過給機20と、電動機20aを制御して過給圧を制御する制御手段16,21と、大気圧状態を検出する気圧検出手段30とを備えており、気圧検出手段30によって検出された大気圧が所定値未満となった場合には、大気圧が所定値以上であるときに比べて、制御手段16,21が電動機20aの駆動力を大きくすることを特徴としている。

Description

明糸田書
電動機付過給機の制御装置 '
技術分野
【0 0 0 1】 本発明は、 車両に搭載された内燃機関の吸気通路上に配設された 電動機付過給機を制御する電動機付過給機の制御装置に関する。
背景技術
【0 0 0 2】 エンジンの吸気通路上にターボチャージャを配設し、 このターボ チャージャによる過給によって高出力 (あるいは、 低燃費) を得る内燃機関はよ く知られている。 日本国特開平 1 1一 1 3 2 0 4 9号公報にもターボチャージャ を備えた内燃機関が開示されている。
発明の開示
【0 0 0 3】 内燃機関は大気から空気を吸入して燃焼に使用している。 吸入空 気量が減れば出力が減ってしまう。 例えば、 大気圧が低下すると、 単位体積あた りの空気質量が低下するので出力が低下してしまう。 通常は、 スロ ッ トル開度を 大きくするなどして吸気体積を増やして空気質量が減らないようにする。 ただし、 ターボチャージャに何らかの可変制御機構を備えているものでは、 この機構を用 いて過給圧を増加させて出力を捕償することが行われる。 このような機構の一例 としては、 上述した公報に記載のターボチャージャが有しているようなバリアブ ルノズル機構を挙げることができる。
【0 0 0 4】 パリアプルノズル機構は、 タービンホイールへの排気流入部に複 数のベーンを配置し、 各べーン間の隙間量 (バリアブルノズノレ開度) を変えて排 気流速を可変制御するものである。 バリアブルノズル開度を可変制御することで タービン出力を最適化する。 し力、し、 内燃機関が低負荷域にあるときはバリアブ ルノズル機構はすでに最小開度とされており、 大気圧低下時に過給圧を向上させ る余裕がない場合がほとんどである。 また、 ノズル開度をあまりにも絞りすぎる と、 ターボチャージャとしての過給効率の低下 (背圧の上昇) につながり、 燃費 を悪化させてしまう。 このため、 このような場合の出力補償が要望されていた。 従って、 本発明の目的は、 大気圧低下時にも出力を効果的に補償することが可能 な電動機付過給機の制御装置を提供することにある。
【0 0 0 5】 本発明の電動機付過給機の制御装置は、 車両に搭載された内燃機 関の吸気通路上に配設されて電動機によって駆動される過給機と、 電動機を制御 して過給圧を制御する制御手段と、 大気圧状態を検出する気圧検出手段とを備え ており、 気圧検出手段によつて検出された大気圧が所定値未満となつた場合には. 大気圧が所定値以上であるときに比べて、 制御手段が電動機の駆動力を大きくす ることを特徴としている。
【0 0 0 6】 ここで、 吸入空気量を検出する吸入空気量検出手段をさらに備え ており、 制御手段が、 吸入空気量検出手段によって検出された吸入空気量と内燃 機関の運転状態に基づいて決定される目標吸入空気量との偏差に基づいて、 電動 機の駆動力増加分を決定することが好ましい。
【0 0 0 7】 あるいは、 ここで、 内燃機関の排気流を利用して過給を行うター ボチャージャと、 ターボチャージャによる過給状態を可変制御するバリアブルノ ズル機構とをさらに備えており、 気圧検出手段によつて検出された大気圧が所定 値未満となった場合には、 バリァブルノズル機構の制御量の決定に際して吸入空 気量を参酌することが禁止されることが好ましい。
【0 0 0 8】 さらにここで、 電動機がターボチャージャに内蔵されており、 過 給機とターボチャージャとが一体化されていることが好ましい。
図面の簡単な説明
【0 0 0 9】 図 1は、 本発明の制御装置の一実施形態を有する内燃機関 (ェン ジン) の構成を示す構成図である。
図 2は、 本発明の制御装置の一実施形態による過給制御のフローチャートであ る。
図 3は、 E G R実行領域か否かの判定時に利用するマップである。 図 4は、 バリアプルノズル開度の目標値 VN0を決定する際に利用するマップ である。
図 5は、 新気量の目標値 A F tを決定する際に利用するマップである。
図 6は、 本発明の制御装置の他の実施形態を有する内燃機関 (エンジン) の構 成を示す構成図である。
発明を実施するための最良の形態
【0 0 1 0】 本発明の制御装置の一実施形態について以下に説明する。 本実施 形態の制御装置を有するエンジン 1を図 1に示す。
【0 0 1 1】 なお、 「過給圧」 の語は大気圧に対しての差圧を示すものを指す 語として用いられる場合がある。 一方で、 「過給圧」 の語は吸気管内の絶対圧力 を指す語として用いられる場合もある。 以下、 両者を明確に分けて説明する必要 がある場合は、 その指すところが明確となるような説明を行う。 例えば、 吸気管 内圧力を検出する圧力センサの出力に基づいて過給圧制御を行う場合、 この圧力 センサが大気圧に対する差圧を検出するセンサであれば過給圧制御は 「大気圧に 対する差としての過給圧」 に基づいて制御されることが容易であるし、 圧力セン サが絶対圧力を検出するセンサであれば過給圧制御は 「絶対圧力としての吸気 圧」 に基づいて制御されるのが容易である。
【0 0 1 2】 本実施形態で説明するエンジン 1は、 多気筒エンジンであるが、 ここではそのうちの一気筒のみが断面図として図 1に示されている。 エンジン 1 では、 インジェクタ 2によってインテークポートに燃料を噴射して吸気通路 5を 介して吸入した吸入空気と混合して混合気を生成する。 生成された混合気はシリ ンダ 3内に導入され、 点火ブラグ 7で点火 ·燃焼される。 後述する電動機 2 0 a を有する過給機 2 0とターボチャージャ 1 1とによってより多くの吸入空気を過 給して、 高出力化だけでなく低燃費化をも実現し得るものである。 シリンダ 3の 内部と吸気通路 5との間は、 吸気バルブ 8によって開閉される。 燃焼後の排気ガ スは排気通路 6に排気される。 シリンダ 3の内部と排気通路 6との間は、 排気バ ルブ 9によって開閉される。 吸気通路 5上には、 上流側からエアクリーナ 1 0、 ェアフロメータ 2 7、 過給機 2 0、 ターボチャージャ 1 1、 ィンタークーラー 1 2、 スロッ トルバルブ 1 3などが配置されている。
【0 0 1 3】 エアクリーナ 1 0は、 吸入空気中のゴミゃ塵などを取り除くフィ ルタである。 本実施形態のェアフロメータ (吸入空気量検出手段) 2 7は、 ホッ トワイヤ式のものであり、 吸入空気量を質量流量として検出するものである。 過 給機 2 0は、 内蔵されたモータ (電動機) 2 0 aによって電気的に駆動されるも のである。 モータ 2 0 aの出力軸にコンプレッサホイールが直結されている。 過 給機 2 0のモータ 2 0 aは、 コントローラ (制御手段) 2 1を介してバッテリ 2 2と接続されている。 コントローラ 2 1は、 モータ 2 0 aへの供給電力を制御し てモータ 2 0 aの駆動を制御する。 モータ 2 0 aの回転数 (即ち、 コンプレッサ ホイールの回転数) はコントローラ 2 1によって検出し得る。
【0 0 1 4】 過給機 2 0の上流側と下流側とをバイパスするように、 バイパス 路 2 4が設けられている。 このパイパス路 2 4上には、 バイパス路 2 4を経由す る吸入空気量を調節するバルブ 2 5が配設されている。 バルブ 2 5は電気的に駆 動され、 バイパス路 2 4を通る空気流量を任意に調節する。 過給機 2 0が作動し ていないときは、 過給機 2 0は吸気抵抗として作用してしまうので、 バルブ 2 5 によってバイパス路 2 4を開放して過給機 2 0が吸気抵抗となってしまうのを回 避する。 反対に、 過給機 2 0の作動時には、 過給機 2 0によって過給された吸入 空気がバイパス路 2 4を介して逆流するのを防止するために、 バルブ 2 5によつ てバイパス路 2 4を遮断する。
【0 0 1 5】 ターボチャージャ 1 1は、 吸気通路 5と排気通路 6との間に配さ れて過給を行うものである。 ターボチャージャ 1 1は、 公知のものであるが、 バ リアプルジオメトリ機構としてバリアブルノズル機構 1 1 aを有している。 バリ ァブルノズル機構 1 1 aは後述する E C U (制御手段) 1 6によつて制御される。 本実施形態のエンジン 1では、 直列に配された過給機 2 0とターボチャージャ 1 1とによって過給を行うことができる。 ターボチャージャ 1 1の下流側には、 過 給機 20やターボチャージャ 1 1の過給による圧力増加で温度が上昇した吸入空 気の温度を下げる空冷式インタークーラー 1 2が配されている。 インタークーラ 一 1 2によって吸入空気の温度を下げ、 充填効率を向上させる。
【001 6】 インタークーラー 1 2の下流側には、 吸入空気量を調節するスロ ットルバルブ 1 3が配されている。 本実施形態のスロットルバルブ 1 3は、 いわ ゆる電子制御式スロットルバルブであり、 ァクセノレペダル 1 4の操作量をァクセ ルポジショニングセンサ 1 5で検出し、 この検出結果と他の情報量とに基づいて ECU 1 6がスロットルバルブ 1 3の開度を決定するものである。 スロットノレノ ルブ 1 3は、 これに付随して配設されたスロットルモータ 1 7によって開閉され る。 また、 スロットルバルブ 1 3に付随して、 その開度を検出するスロットルポ ジショユングセンサ 1 8も配設されている。
【00 1 7】 スロットルバルブ 1 3の下流側には、 吸気通路 5内の圧力 (過給 圧 ·吸気圧) を検出する圧力センサ 1 9も配設されている。 過給圧を,検出するセ ンサは、 インテークマ二ホールド部に取り付けられても良い。 これらのセンサ 1 5, 1 8, 1 9, 2 7は ECU 1 6に接続されており、 その検出結果を ECU 1 6に送出している。 また、 ECU 1 6には、 大気圧を検出する大気圧センサ (気 圧検出手段) 3 0も接続されている。 ECU 1 6は、 C PU, ROM, RAM等 からなる電子制御ュニットである。 ECU 1 6には、 上述したインジェクタ 2、 点火プラグ 7、 バルブ 2 5、 ェアフロメータ 2 7、 コントローラ 2 1ゃバッテリ
22等が接続されており、 これらは E CU 1 6からの信号によって制御されてい たり、 その状態 (バッテリ 2 2であれば充電状態) が監視されている。
【00 1 8】 一方、 排気通路 6上には、 ターボチャージャ 1 1の下流側に排気 ガスを浄化する排気浄化触媒 2 3が取り付けられている。 また、 エンジン 1のク ランクシャフト近傍には、 クランクシャフトの回転位置を検出するクランクポジ ショエングセンサ 26が取り付けられている。 クランクポジショニングセンサ 2 6は、 クランクポジションの位置からエンジン回転数を検出することもできる。 【001 9】 また、 排気通路 6 (ターボチャージャ 1 1の上流側) から吸気通 路 5 (サージタンク部) にかけて排気ガスを還流させるための EGR (Ex h a u s t Ga s R e c i r c u l a t i o n) 通路 28が酉 S設されている。 E GR通路 28上には、 排気ガス還流量 (EGR量) を調節する E G Rバルブ 29 が取り付けられている。 £01 バルブ29の開度 (DUTY比) 制御も上述した ECU 16によって行われる。 なお、 図示していないが、 £。11バ《レブ29と吸 気通路 5のサージタンクとの間に、 エンジン 1の冷却水を利用して EGRガスを 冷却する EGRクーラーが設けられている。
【0020】 次に、 本実施形態のエンジン 1における過給制御について説明す る。 本実施形態では、 大気圧が低下したとき (所定値未満となったとき) には、 出力低下を防止するためにモータ 20 aの駆動量を大気圧が低下していないとき に比べて増やして過給機 20による過給効果を増強する。 また、 ターボチャージ ャ 1 1がバリアプルノズル機構 11 aを備えているため、 これとも協調制御され る。 さらに、 エンジン 1が EGR機構を備えているので、 EGRシステムとの協 調も行われる。
【0021】 図 1に過給制御のフローチャートを示す。 まず、 エンジン回転数 N e ·エンジン負荷を読み込む (ステップ 200) 。 エンジン回転数はクランク ポジショニングセンサ 26によって検出される。 エンジン負荷は、 エアフロメ一 タ 27によって検出される吸入空気量やスロッ トルポジショニングセンサ 1 8に よって検出されるスロッ トル開度に基づいて算出される。 次に、 検出したェンジ ン回転数 Ne ■エンジン負荷に基づいて、 EGR制御を行う領域であるか否かが 判定される (ステップ 205) 。
【0022】 このとき用いられるマップの例を図 3に示す。 図 3のマップは、 横軸にエンジン回転数 Ne、 縦軸にエンジン負荷を取ったもので、 マップ中のハ ツチングを示した領域 Aでは E GR制御が実行され、 排気ガスが吸気側に還流さ れる。 図 3のマップから明らかなように、 高回転域あるいは高負荷域では、 排気 ガスの還流は行われない。 ステップ 205が否定される場合は、 圧力センサ 19 で検出した吸気圧に基づくフィードバック制御による通常制御が実施される (ス テツプ 210) 。
【0023】 一方、 ステップ 205が肯定され、 EGR制御が実施される場合 は、 目標バリァブルノズル開度 VN0.が算出され、 バリアブズレノズル機構 1 1 a に対して算出された目標バリアブルノズル開度 V NOが出力される (ステップ 2 15) 。 バリアブルノズル機構 1 1 aは、 この信号に基づいてその開度が変更さ れる。 このとき、 目標バリアブルノズル開度 V NOの算出には、 図 4に示される ようなマップが用いられる。 図 4のマップは、 横軸にエンジン回転数 Ne、 縦軸 にエンジン負荷を取り、 マップ中の各領域毎に目標バリァブルノズル開度 V NO の数値が割り当てられている。 低回転 ·高負荷であるほど目標バリアプルノズル 開度 VN0は小さく、 高回転 ·低負荷であるほど目標バリアプルノズル開度 VN 0は大きくなる。
【0024】 ステップ 21 5に続いて、 目標バリアプルノズル開度 VNOとな るようにバリァブルノズル機構 1 1 aの制御が開始された後に新たに吸入した吸 入空気量である新気量 A Fを読み込む (ステップ 220) 。 新気量 AFは、 エア フロメータ 27によって検出される。 ここでは、 大気から吸入した新気と還流さ れた排気ガスとが混合され、 その後、 燃料が噴射されて混合気となつてからシリ ンダ 3内に導入される。 次いで、 新気量の目標値 AFtを算出する (ステップ 2 25) 。 このとき、 新気量目標値 AFtの算出には、 図 5に示されるようなマツ プが用いられる。 図 5のマップは、 横軸にエンジン回転数 Ne、 縦軸にエンジン 負荷を取り、 マツプ中の各領域毎に新気量目標値 A F tの数値が割り当てられて いる。 低回転 ·.低負荷であるほど新気量目標値 AFtは少なく、 高回転'高負荷 であるほど新気量目標値 A Ftは多くなる。
【0025】 ステップ 225に続いて、 目標値と実際値との偏差 AFe = AFt 一 AFを算出する (ステップ 230) 。 さらに、 圧力センサ 1 9によって、 大気 圧 P0も検出する (ステップ 23 5) 。 そして、 検出された大気圧 P0が所定圧 力 (ここでは 90 k P a) 未満であるか否かを判定する (ステップ 240) 。 大 気圧 P0が所定圧力未満である場合は、 吸気密度が低下していると判断でき、 こ の場合はモータ 20 aの駆動力を增強して吸気体積を增加させて吸気質量を確保 すべく、 上述した偏差 AFeの関数 ί (AFe) に基づいてモータ 20 aへの指 令値 (駆動電流値など) iを算出する。 算出された指令値 iはモータ 20 aに対 して出力される (ステップ 245) 。 モータ 20 aは、 この指令値 iに基づいて 駆動される。 この指令値 iは大気圧が所定圧力以上であるときに比べて駆動力が ' 大きくなるように設定される。 換言すれば、 上述した関数 f (AFe) はそのよ うに定められている。 モータ 20 aの制御は、 圧力センサ 1 9による吸気圧フィ ードバック制御とェアフロメータ 27による吸入空気量フィードバック制御とを 組み合わせたものとなる。
【0026】 なお、 ステップ 240が肯定され、 大気圧 P0が所定圧力未満で ある場合は、 バリアブルノズノレ機構 1 1 aの制御に関しては、 上述した目標バリ アプルノズル開度 VN0によるマップ制御と圧力センサ 1 9による吸気圧フィー ドバック制御とを組み合わせた制御となる。 即ち、 このときは、 バリアブルノズ ル開度を決定する際に吸入空気量を参酌することが禁止される。 これは、 大気圧 P0が所定圧力未満である場合は、 出力を補償するためにバリアブルノズル開度 を絞ると背圧が上昇してターボチャージャ 1 1の効率悪化によって燃費が悪化す るのを防止するためである。
【0027】 また、 ここでは、 上述した偏差 AFeに基づいてモータ 20 aへ の指令値 i、 即ち、 モータ 20 aの駆動力増強分が決定されている。 このように することで、 EGR量を減少させなくてもスモークを発生させないだけの新気量 を確実に確保することができる。 ここでは詳しく述べていないが、 EGR量域で は、 EGR率が目標値となるようにフィードバック制御が行われており、 これに よって燃焼温度低下による N O x排出量低減を図っている。 このように新気量を 確保することで E G R率を維持し、 排ガス浄化も確実に行うことができる。
【0 0 2 8】 大気圧低下時にモータ 2 0 aによって新気量を確保することがで きない場合は、 高地などに行って大気圧低下に伴う吸入空気量の現象が生じると、 スモークを排出しないように大気圧低下に応じて E G R量を減じるしかない。 し かし、 本実施形態によれば、 新気量を確保しつつ E G R量も確保し、 走行性能と 排ガス浄化性能とを大気圧が低下しないときと同等の水準に維持することができ る。
【0 0 2 9】 一方、 ステップ 2 4 0が否定される場合は、 上述した偏差 A F e の関数 g (A F e) に基づいてバリアブルノズル機構 1 1 aの捕正量 V Ncが算 出される (ステップ 2 5 0 ) 。 バリアブルノズル機構 1 1 aに対しては、 上述し た目標開度 V N0 +補正量 V Ncで算出される開度が指令値として出力される。 関数 gは、 上述した偏差 A F eが大きいほど、 その偏差を小さくするようにバリ ァブルノズル開度を開くあるいは絞る側に補正量 VNcを決定するものである。 . なお、 ステップ 2 4 0が否定される場合、 モータ 2 0 aの制御は、 圧力センサ 1 9による吸気圧フィードバック制御のみであり、 ェアフロメータ 2 7による吸入 空気量フィ一ドパック制御は行われない。
【0 0 3 0】 なお、 本発明は上述した実施形態に限定されるものではない。 例 えば、 上述した実施形態においては、 気圧検出手段が大気圧センサ (圧力セン サ) 3 0であった。 しかし、 気圧検出手段は、 カーナビゲーシヨンシステムなど であっても良い。 ナビゲーシヨンシステムから、 土地高低差を取得し、 これに基 づいて大気圧を検出 (推定) しても良い。 また、 ナビゲーシヨンシステムが通信 機能を有し、 通信機能を介して取得した気象情報 (大気圧を含む) と位置情報と に基づいて大気圧を検出しても良い。 .
【0 0 3 1】 また、 図 1に示される実施形態では、 ターボチャージャ 1 1とは 別に、 その上流側にモータ 2 0 a付きの過給機 2 0が設けられた。 しかし、 本発 明は電動機 (モータ) 付過給機に対して適用し得るものであり、 図 6に示される ように、 ターボチャージャ 1 1の内部に電動機 (モータ) l i bを内蔵させたも のに対しても適用し得る。 図 6に記載の実施形態は、 キータ 1 l bの配設 (及び 過給機 2 0が配設されていないこと) 以外は図 1に記載のものとほぼ同様の構成 であるため、 同一の構成部分には同一の符号を付してその詳しい説明は省略する。 図 6に記載の実施形態では、 ターボチャージャ 1 1のタービン Zコンプレッサホ ィールの回転軸が出力軸となるようにモータ 1 1 bが内蔵されている。
【0 0 3 2】 このようにすれば、 ユニット数を減らすことができ、 エンジンコ ンパートメント内のスペース効率を向上させることができる。 また、 エンジン 1 の組み立ても容易となる。 モータ 2 0 aへの印加電力と過給効果との関係などは 変わるため各種制御マップは図 1のものと異なることとなるが、 基本的に図 2の フローチャートで示される制御は同様に実行することができ、 同様の効果を得る ことができる。
産業上の利用可能性
【0 0 3 3】 本発明の電動機付過給機の制御装置によれば、 電動機付過給機に よって過給圧を可変制御し、 最適な過給効果を得ることができる。 また、 大気圧 の状態を気圧検出手段で検出し、 大気圧が所定値未満となった場合には、 大気圧 が所定値以上であるときに比べて電動機の駆動力を大きくすることで、 大気圧低 下による出力低下を効果的に防止することができる。

Claims

言青求の範囲
1 . 車両に搭載された内燃機関の吸気通路上に配設されて電動機に よつて駆動される過給機と、 前記電動機を制御して過給圧を制御する制御手段と、 大気圧状態を検出する気圧検出手段とを備えており、
前記気圧検出手段によって検出された大気圧が所定値未満となった場合には、 大気圧が所定値以上であるときに比べて、 前記制御手段が前記電動機の駆動力を 大きくすることを特徴とする電動機付過給機の制御装置。
2 . 吸入空気量を検出する吸入空気量検出手段をさらに備えており、 前記電動機制御手段が、 前記吸入空気量検出手段によって検出された吸入空気 量と前記内燃機関の運転状態に基づいて決定される目標吸入空気量との偏差に基 づいて、 前記電動機の駆動力増加分を決定することを特徴とするクレーム 1に記 載の電動機付過給機の制御装置。
3 . 前記内燃機関の排気流を利用して過給を行うターボチャージ ャと、 前記ターボチャージャによる過給状態を可変制御するバリアブルノズル機 構とをさらに備えており、
前記気圧検出手段によって検出された大気圧が所定値未満となった場合には、 前記バリァブルノズル機構の制御量の決定に際して吸入空気量を参酌することが 禁止されることを特徴とするクレーム 1又は 2に記載の電動機付過給機の制御装 置。
4 . 前記電動機が前記ターボチャージャに内蔵されており、 前記 過給機と前記ターボチャージャとが一体化されていることを特徴とするクレーム 3に記載の電動機付過給機の制御装置。
PCT/JP2005/004023 2004-03-04 2005-03-02 電動機付過給機の制御装置 WO2005085610A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112005000486.4T DE112005000486B4 (de) 2004-03-04 2005-03-02 Steuervorrichtung für Ladevorrichtung mit Elektromotor
US10/586,441 US7530229B2 (en) 2004-03-04 2005-03-02 Control device for supercharger with electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-061236 2004-03-04
JP2004061236A JP4124143B2 (ja) 2004-03-04 2004-03-04 電動機付過給機の制御装置

Publications (1)

Publication Number Publication Date
WO2005085610A1 true WO2005085610A1 (ja) 2005-09-15

Family

ID=34918050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004023 WO2005085610A1 (ja) 2004-03-04 2005-03-02 電動機付過給機の制御装置

Country Status (5)

Country Link
US (1) US7530229B2 (ja)
JP (1) JP4124143B2 (ja)
CN (1) CN1926316A (ja)
DE (1) DE112005000486B4 (ja)
WO (1) WO2005085610A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006495B2 (en) * 2005-09-15 2011-08-30 Toyota Jidosha Kabushiki Kaisha Supercharging system for internal combustion engine

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087014A1 (en) * 2005-02-16 2006-08-24 Honeywell International, Inc. Turbocharging device and control method for controlling the turbocharging device
US7541687B2 (en) * 2006-03-10 2009-06-02 Deere & Company Method and system for managing an electrical output of a turbogenerator
US8051661B2 (en) * 2006-12-19 2011-11-08 Toyota Jidosha Kabushiki Kaisha Supercharging control system of an internal combustion engine
JP4270283B2 (ja) * 2007-01-29 2009-05-27 トヨタ自動車株式会社 内燃機関の二次空気供給装置
JP2008196323A (ja) * 2007-02-08 2008-08-28 Ihi Corp 電動アシスト式過給機用回転電動機の駆動ユニット用制御装置
JP2009022098A (ja) * 2007-07-11 2009-01-29 Toyota Motor Corp 車両搭載用モータ制御装置
US8371120B2 (en) * 2008-01-15 2013-02-12 Southwest Research Institute HCCI combustion timing control with decoupled control of in-cylinder air/EGR mass and oxygen concentration
US20090183499A1 (en) * 2008-01-17 2009-07-23 Basf Catalysts Llc Apparatus and control method for avoiding shock in diesel filters
US20090205331A1 (en) * 2008-02-19 2009-08-20 Marsh J Kendall Piston based double compounding engine
CN102369343A (zh) * 2009-04-01 2012-03-07 丰田自动车株式会社 车辆的控制装置
JP4916554B2 (ja) * 2010-01-15 2012-04-11 三菱電機株式会社 電動過給機の電源制御装置
JP2011163201A (ja) * 2010-02-09 2011-08-25 Komatsu Ltd エンジン
KR101262506B1 (ko) * 2011-05-11 2013-05-08 현대자동차주식회사 터보차저 기반 엔진시스템 및 이를 이용한 연비개선방법
US8783030B2 (en) * 2011-09-25 2014-07-22 Cummins Inc. System for controlling an air handling system including an electric pump-assisted turbocharger compressor
WO2013049439A2 (en) 2011-09-30 2013-04-04 Eaton Corporation Supercharger assembly with two rotor sets
US9534531B2 (en) 2011-09-30 2017-01-03 Eaton Corporation Supercharger assembly for regeneration of throttling losses and method of control
WO2013049438A2 (en) 2011-09-30 2013-04-04 Eaton Corporation Supercharger assembly with independent superchargers and motor/generator
KR101326972B1 (ko) * 2011-12-07 2013-11-13 현대자동차주식회사 밀러 사이클엔진 시스템 및 제어방법
US8925316B2 (en) * 2012-01-09 2015-01-06 GM Global Technology Operations LLC Control systems and methods for super turbo-charged engines
RU2014143461A (ru) 2012-03-29 2016-05-20 Итон Корпорейшн Нагнетательный гибридный электрический агрегат с переменной скоростью вращения и способ управления транспортным средством с подобным агрегатом
JP5243637B1 (ja) * 2012-03-29 2013-07-24 三菱電機株式会社 内燃機関システム
CN103912368A (zh) * 2013-01-09 2014-07-09 广西玉柴机器股份有限公司 发动机复合增压系统
KR101427968B1 (ko) * 2013-02-06 2014-08-08 현대자동차 주식회사 엔진의 제어방법
EP2971640B1 (en) 2013-03-12 2020-05-06 Eaton Corporation Adaptive state of charge regulation and control of variable speed hybrid electric supercharger assembly for efficient vehicle operation
KR101646384B1 (ko) * 2014-11-21 2016-08-05 현대자동차주식회사 터보차저 제어 듀티 편차 보상 방법
US9540989B2 (en) * 2015-02-11 2017-01-10 Ford Global Technologies, Llc Methods and systems for boost control
CN104763520B (zh) * 2015-02-12 2017-06-16 河北华北柴油机有限责任公司 发动机增压方法
EP3280878A1 (en) 2015-04-07 2018-02-14 Achates Power, Inc. Air handling system constructions with externally-assisted boosting for turbocharged opposed-piston engines
JP6287979B2 (ja) * 2015-07-01 2018-03-07 トヨタ自動車株式会社 内燃機関の制御装置
FR3042222B1 (fr) * 2015-09-21 2019-08-30 Valeo Systemes De Controle Moteur Systeme de moteur avec compresseur electrique pilote
US10208693B2 (en) * 2015-10-28 2019-02-19 Ford Global Technologies, Llc Method and system to mitigate throttle degradation
US10132233B2 (en) * 2015-10-29 2018-11-20 Superturbo Technologies, Inc. Compressor map based driven turbocharger control system
EP3406878B1 (en) * 2016-03-07 2020-06-03 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Supercharging system, control device for supercharging system, control method for supercharging system, and program
US10024226B2 (en) 2016-05-20 2018-07-17 Ford Global Technologies, Llc Method and system for boost pressure control
US10024227B2 (en) * 2016-05-20 2018-07-17 Ford Global Technologies, Llc Method and system for boost pressure control
US9890697B2 (en) 2016-05-20 2018-02-13 Ford Global Technologies, Llc Method and system for boost pressure control
US10570834B2 (en) * 2016-10-27 2020-02-25 Cummins Inc. Supercharging for improved engine braking and transient performance
US10508590B2 (en) * 2017-02-07 2019-12-17 Kohler Co. Forced induction engine with electric motor for compressor
DE102017210962B4 (de) * 2017-06-28 2019-01-24 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP7106949B2 (ja) * 2018-04-04 2022-07-27 コベルコ建機株式会社 建設機械のエンジンシステム
US20200200074A1 (en) * 2018-12-21 2020-06-25 GM Global Technology Operations LLC Multiple stage turbo-charged engine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288246A (ja) * 1993-03-31 1994-10-11 Isuzu Motors Ltd 回転電機付ターボチャージャ制御装置
JP2001336433A (ja) * 2000-05-25 2001-12-07 Nissan Motor Co Ltd 圧縮着火機関
JP2002115553A (ja) * 2000-10-05 2002-04-19 Nissan Motor Co Ltd 過給機の制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808460A (en) * 1997-09-29 1998-09-15 Texas Instruments Incorporated Rapid power enabling circuit
US6029452A (en) * 1995-11-15 2000-02-29 Turbodyne Systems, Inc. Charge air systems for four-cycle internal combustion engines
US6079211A (en) * 1997-08-14 2000-06-27 Turbodyne Systems, Inc. Two-stage supercharging systems for internal combustion engines
JP3493981B2 (ja) 1997-10-24 2004-02-03 日産自動車株式会社 Egr制御装置付内燃機関の過給圧制御装置
DE60121457T2 (de) 2000-10-05 2007-02-08 Nissan Motor Co., Ltd., Yokohama Regelung eines turboladers
DE10061847A1 (de) * 2000-12-12 2002-06-13 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb eines Abgasturboladers
DE10062377B4 (de) * 2000-12-14 2005-10-20 Siemens Ag Vorrichtung und Verfahren zum Beheizen eines Abgaskatalysators für eine aufgeladene Brennkraftmaschine
DE10124543A1 (de) * 2001-05-19 2002-11-21 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines elektrisch betriebenen Laders
DE10136977A1 (de) * 2001-07-28 2003-02-06 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben eines elektrischen Laders
JP3912131B2 (ja) * 2002-02-18 2007-05-09 トヨタ自動車株式会社 過給圧制御装置
DE10221014A1 (de) * 2002-05-11 2003-11-27 Daimler Chrysler Ag Variabler Abgasturbolader einer Brennkraftmaschine
US6637205B1 (en) * 2002-07-30 2003-10-28 Honeywell International Inc. Electric assist and variable geometry turbocharger
US6938420B2 (en) * 2002-08-20 2005-09-06 Nissan Motor Co., Ltd. Supercharger for internal combustion engine
JP3952974B2 (ja) * 2003-03-17 2007-08-01 トヨタ自動車株式会社 内燃機関の制御装置
JP3951951B2 (ja) * 2003-04-03 2007-08-01 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288246A (ja) * 1993-03-31 1994-10-11 Isuzu Motors Ltd 回転電機付ターボチャージャ制御装置
JP2001336433A (ja) * 2000-05-25 2001-12-07 Nissan Motor Co Ltd 圧縮着火機関
JP2002115553A (ja) * 2000-10-05 2002-04-19 Nissan Motor Co Ltd 過給機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006495B2 (en) * 2005-09-15 2011-08-30 Toyota Jidosha Kabushiki Kaisha Supercharging system for internal combustion engine

Also Published As

Publication number Publication date
CN1926316A (zh) 2007-03-07
DE112005000486T5 (de) 2007-01-11
US7530229B2 (en) 2009-05-12
US20080148730A1 (en) 2008-06-26
JP2005248860A (ja) 2005-09-15
JP4124143B2 (ja) 2008-07-23
DE112005000486B4 (de) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2005085610A1 (ja) 電動機付過給機の制御装置
US8453446B2 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
JP4215069B2 (ja) 内燃機関の排気還流装置
JP4583038B2 (ja) 過給機付き内燃機関の過給圧推定装置
JP4492406B2 (ja) ディーゼルエンジンの吸排気装置
EP1808591A2 (en) Exhaust gas recirculation control apparatus for internal combustion engine and control method of the same
US9494076B2 (en) Engine system
US11008985B2 (en) Control device for internal combustion engine
GB2482323A (en) A method and system for controlling an engine based on determination of rotational speed of a compressor
WO2008068574A1 (en) Egr system for internal combustion engine and method for controlling the same
CN108026840B (zh) 内燃机的控制装置以及内燃机的控制方法
JP3966243B2 (ja) 内燃機関
KR102144759B1 (ko) 내연 기관의 제어 방법 및 제어 장치
JP2005214153A (ja) 内燃機関の吸入空気量制御装置及び制御方法
JP4048828B2 (ja) 内燃機関の制御装置
JP4911432B2 (ja) 内燃機関の制御装置
JP6005543B2 (ja) 過給機付きエンジンの制御装置
JP4013816B2 (ja) 電動機付過給機の制御装置
EP2189647B1 (en) Boost pressure controller for internal combustion engine
JP2008038811A (ja) 過給機付き内燃機関
JP2001193573A (ja) 内燃機関の制御装置
KR101887954B1 (ko) 터보차저 서지 제어장치 및 그 제어방법
JP2008075545A (ja) エンジンの過給装置
JP2005299570A (ja) 圧縮着火内燃機関の予混合燃焼制御システム
CN111417772A (zh) 车辆用内燃机的控制方法以及控制装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10586441

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050004864

Country of ref document: DE

Ref document number: 200580006892.5

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112005000486

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005000486

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607