WO2005085491A2 - Dispositif et procede d'implantation ionique d'une piece en alliage d'aluminium - Google Patents
Dispositif et procede d'implantation ionique d'une piece en alliage d'aluminium Download PDFInfo
- Publication number
- WO2005085491A2 WO2005085491A2 PCT/FR2005/000224 FR2005000224W WO2005085491A2 WO 2005085491 A2 WO2005085491 A2 WO 2005085491A2 FR 2005000224 W FR2005000224 W FR 2005000224W WO 2005085491 A2 WO2005085491 A2 WO 2005085491A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ions
- source
- implantation
- energy
- ion
- Prior art date
Links
- 238000002513 implantation Methods 0.000 title claims abstract description 43
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims description 36
- 238000005121 nitriding Methods 0.000 title description 8
- 150000002500 ions Chemical class 0.000 claims abstract description 92
- 238000000605 extraction Methods 0.000 claims abstract description 18
- 238000010884 ion-beam technique Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 19
- 238000005468 ion implantation Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 abstract 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 34
- 229910052757 nitrogen Inorganic materials 0.000 description 23
- 235000019589 hardness Nutrition 0.000 description 21
- -1 nitrogen ions Chemical class 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 239000004033 plastic Substances 0.000 description 9
- 229920003023 plastic Polymers 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000001311 chemical methods and process Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 239000013081 microcrystal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical group [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 101150002826 inf2 gene Proteins 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
Definitions
- the subject of the invention is a device for nitriding by ion implantation of an aluminum alloy part from a beam of nitrogen ions emitted by an ion source.
- the invention also relates to a process for nitriding an aluminum alloy part using such a device.
- the invention finds applications for example in the field of plastics processing where it is necessary to treat the parts made of aluminum alloy which are used as mass production molds for plastic parts.
- the aluminum alloy has the advantage of having excellent machinability, that is to say of allowing machining at high speed.
- the aluminum alloy also has a high heat exchange capacity, which results in faster cooling of the plastic part, as well as great lightness, therefore easier handling.
- the aluminum alloy has, at equal volume, a cost substantially comparable to that of steel.
- a general problem to be solved in the field resides in the fact that the aluminum alloy molds have a mechanical resistance limited in time, hence a low production capacity compared to those made of steel.
- the number of plastic parts produced in an aluminum alloy mold is typically of the order of 1000 units.
- a particular problem to be solved in the field of aluminum alloy molds lies in the fact that the phenomena of erosion of the molding surface, matting of the joint surface or of corrosion appear more quickly than on the molds. in steel.
- Manufacturers of aluminum alloy injection molds seek to solve these problems by improving the surface mechanical strength of these molds. For this, they seek to increase the resistance to wear by increasing the surface hardness and lubrication (reduction of the coefficient of friction) and by reinforcing the resistance to corrosion, essentially due to chlorine attacks.
- Different processes, chemical or physicochemical, are known to improve the mechanical strength of aluminum alloy molds. Among the chemical processes, there is known that which consists of anodization of the aluminum alloy mold.
- Anodization is an electrolytic process allowing the natural layer of alumina (Al 2 0 3 ) to be thickened to thicknesses of the order of 20 microns.
- This layer of alumina is hard but very brittle (a tenacity substantially identical to that of In addition, it offers a high coefficient of thermal expansion and exhibits sensitivity to chlorine attack, resulting in great fragility with regard to thermal fatigue and corrosion.
- Another chemical process is hard chromium plating. This process is an electrolytic treatment of aluminum alloy molds which allows them to harden. However, this method poses problems of uniformity of thickness on the edges of the molds.
- spotting creation of micro roughness of hooked from 7 to 8 microns
- Another chemical process is nickel plating. This process consists of a uniform deposit of a layer of nickel impregnated with Teflon to lubricate the surface.
- Teflon requires maintaining the mold for several hours at a temperature of 250 ° C, fatal to the mechanical properties of aluminum alloys. Without Teflon, therefore without lubrication, the nickel layer in turn presents risks of delamination.
- Another chemical process is the vapor deposition of chromium nitride.
- thermal nitriding This consists of cementing a metal part with nitrogen to obtain high surface hardness. Generally, this nitriding is carried out thermally, that is to say that the metal part to be treated is heated to a temperature above 500 ° C. in a stream of ammonia gas. At this temperature, the ammonia gas dissolves and diffuses into the alloy, forming nitrides.
- nitriding aluminum parts intended for use in the electronic field.
- the aim sought by these methods is to carry out a surface treatment of the aluminum surface to deposit a thin layer of nitride or aluminum oxide which has advantageous characteristics from an electronic point of view, and in particular characteristics good acoustic insulation and good thermal conductor, in order to preserve the electronic properties of the aluminum part.
- EP 1 288 329 CCR GmbH Be Anlagenungs-techno
- US 4 698233 Iwaki Masaya et al
- an RCE source has two main characteristics: - a magnetic field which confines the ions in a defined volume located inside the source, and called the plasma chamber, and - a high frequency wave released at the inside the source and intended to heat the electrons which can then be ionized.
- the source chamber contains a hot plasma, consisting of a mixture of magnetically confined ions and electrons.
- the ions can be extracted from the chamber through an orifice and then be accelerated.
- gaseous ions oxygen, nitrogen, neon etc.
- the gas chosen is introduced into the source in an amount sufficient to reach the intensity of the ion beam required.
- the object of the invention is to remedy the drawbacks and problems of the techniques described above. It is in particular targeted by the present invention to provide an ion implantation device, in particular of nitrogen ions, in an aluminum alloy part to improve the mechanical strength of the latter. It is also the object of the present invention to provide such a device which allows in-depth treatment of the aluminum alloy, typically over a thickness of the order of 0 to 3 ⁇ m, and the implementation of which does not cause an alteration of the mechanical characteristics of the part to be treated, authorizing its use after treatment without taking up the part. It is also the object of the present invention to provide such a device allowing treatment of specific areas of the aluminum alloy part. It is also the object of the present invention to provide such a device which does not require long processing times.
- the inventive step of the present invention consisted in proposing to carry out at low temperature, more precisely at a temperature below 120 ° C., the treatment of an aluminum alloy part by simultaneous implantation of multi-energy ions.
- the latter are obtained by extracting with the same single extraction voltage mono- and multi-charged ions created in the plasma chamber from an ion source with electronic cyclotron resonance (RCE source).
- RCE source electronic cyclotron resonance
- Each ion produced by said source has an energy which is proportional to its state of charge. It follows that the ions with the highest state of charge, and therefore of the highest energy, are implanted in the alloy part at greater depths.
- the device for implanting ions in an aluminum alloy part comprises a source delivering ions accelerated by an extraction voltage and first means for adjusting an initial beam of ions emitted by said source into a beam implantation.
- such a device is mainly recognizable in that said source is an electron cyclotron resonance source producing multi-energy ions which are implanted in the room at a temperature below 120 ° C., the implantation of the ions of the implantation beam being performed simultaneously at a depth controlled by the source extraction voltage.
- the method of the invention proposes to use multi-energy nitrogen ions produced by the RCE ion source inside which nitrogen has been previously introduced and to implant the produced ions simultaneously in the aluminum alloy part, which generates microcrystals of aluminum nitride inducing in turn an increase in hardness.
- the simultaneous implantation of these nitrogen ions can be done at variable depths, depending on the needs and the shape of the part.
- the successive implantation by state of charge of increasing order gives a profile of wide thickness but of low concentration.
- the successive implantation by state of charge in decreasing order gives a profile of narrow thickness but of high concentration.
- Simultaneous implantation is a compromise between the two previous types of implantation, a profile of average thickness and average concentration is obtained. It is costly in terms of time to implant ions successively in ascending and descending order.
- the method of the invention recommends the simultaneous implantation of multi-energy ions with a multi-energy beam and is therefore both technically advantageous and optimal in terms of the physical compromise obtained (balanced concentration profile).
- the increase in the hardness of aluminum is linked to the concentration of implanted nitrogen ions. For example, for 10% of implanted ions, the hardness of the part is locally increased by a ratio of 200%. In the case of aluminum, a hardness increased by 200% corresponds approximately to a hardness intermediate between that of titanium and that of steel.
- the hardness of the part increases by a ratio of 300%.
- a hardness increased by 300% corresponds to a hardness equal to or even greater than that of steel.
- the method of the invention has a very advantageous advantage compared to the implantation carried out with a beam of single-energy nitrogen ions: for the same concentration of implanted ions, in fact, it is observed with an ion beam multi-energy nitrogen increased additional hardness.
- We measured for an implanted ion concentration of 25% an increase in hardness of 60% in favor of implantation with a multi-energy beam compared to an implantation with a mono-energy beam.
- Multi-energy beams are particularly suitable for mechanical applications while single-energy beams are more specifically adapted to electronic applications for which the creation of faults by cascades and collisions tends to degrade the electrical properties of aluminum nitride (in particular its very high electrical resistance).
- the process of the invention makes it possible to obtain molds having a surface hardness close to that of steel, while retaining the massive mechanical properties of the alloy. aluminum.
- the process of the invention also makes it possible to improve the anti-corrosion characteristic of these aluminum alloy molds.
- the production capacity of an aluminum alloy mold, treated with the nitriding process by simultaneous implantation of ions of the invention is very greatly increased compared to a conventional aluminum alloy mold.
- the device of the present invention also advantageously comprises second means for adjusting the relative position of the part and of the ion source. It will be understood that a relative displacement between the ion source and the part is implemented in order to be able to treat the latter zone by zone.
- the second adjustment means advantageously comprise a workpiece holder which is movable to move the part during its treatment.
- the ion source which is displaced relative to the part to be treated; this latter embodiment can be implemented when the part to be treated is very large.
- the workpiece holder is preferably equipped with cooling means to dissipate the heat produced in the room during the implantation of the multi-energy ions.
- the first means of adjusting the ion beam incidentally include a mass spectrometer for sorting the ions produced by the source according to their charge and their mass.
- the first means for adjusting the initial ion beam further comprise optical focusing means, a profiler, an intensity transformer and a shutter.
- the device is advantageously confined in an enclosure equipped with a vacuum pump.
- the second means for adjusting the relative position of the 1 piece and of the ion source advantageously comprise means for calculating this position from information relating to the nature of the ion beam, to the geometry of the piece.
- this process is mainly recognizable in that the multi-energy ion beam moves relatively relative to the workpiece at a constant speed.
- this process is mainly recognizable in that the multi-energy ion beam is displaced relatively by relative to the part at a variable speed taking into account the angle of incidence of the multi-energy ion beam relative to the surface of the part.
- the relative speed of movement between these two elements can be constant or variable depending on the angle of incidence of the beam relative to the surface, at least during the treatment time of the part area.
- the speed management can be different for each area to be treated in the room. The speed depends on the beam flow, the concentration profile of the implanted ions and the number of passes. The speed can vary depending on the angle of incidence of the beam relative to the surface, to compensate for the weakness of the implantation depth by an increase in the number of implanted ions.
- the multi-energy ion beam is emitted with a flow rate and emission energies which are either constant or variable and controlled by the ion source.
- the method of the invention makes it possible to act on the penetration depths of the multi-energy ions in the room.
- These penetration depths which are staggered in the thickness treated, vary according to the different entry energies of the ions at the surface of the part.
- the ion source delivers ions with varying emission energies; in this case, the ion source is controlled so as to vary the energies of the incident ions by varying the extraction voltage during each treatment.
- the implantation of nitrogen ions in the crystal structure of the part to be treated has the effect of creating microcrystals of aluminum nitride (of cubic structure faces centered for low concentrations of nitrogen to compact hexagonal for high concentrations of nitrogen) extremely hard which block the planes of sliding of the dislocations at the origin of the deformations of the material.
- the fact of implanting nitrogen ions in the part to be treated makes it possible to increase the surface hardness of the part and thus to make it very resistant to wear.
- the nitrogen present in the aluminum has the effect, since it is a base, of reducing the acidity existing in the pits initiated by the ions. chlorides from molded plastics.
- the method of the invention makes it possible, by the surface spraying phenomenon induced by the passage of incident ions, to erase the microroughness of the part, thereby reducing the appearance of pits which generally form in favor of the crevices of the area. It follows from these provisions that the method of the invention makes it possible to effectively treat areas of the part whose geometry is complex, without however increasing either the duration of the treatment or the risks of overheating of the part.
- FIG. 1 represents a functional diagram of the device of the invention.
- FIG. 2 represents examples of layout distribution, in an aluminum part, by an electron cyclotron resonance source producing N +, N2 + and N3 + ions with the same extraction voltage of 200 KV.
- FIG. 3 represents the implantation profile obtained with a beam of N + (3.3mA), N2 + (3.3mA), N3 + (3.3mA), an extraction voltage of 200 KV, concentrated on a surface of 1 cm 2 for 10 seconds. This profile represents on the ordinate the concentration (%) of nitrogen ions implanted as a function of the implantation depth expressed in Angstrom.
- FIG. 3 represents the implantation profile obtained with a beam of N + (3.3mA), N2 + (3.3mA), N3 + (3.3mA), an extraction voltage of 200 KV, concentrated on a surface of 1 cm 2 for 10 seconds. This profile represents on the ordinate the concentration (%) of nitrogen ions implanted as a function of the implantation depth expressed in Angstrom.
- FIG. 1 represents
- a device according to the present invention is placed in an enclosure 3 placed under vacuum by means of a vacuum pump 2.
- the purpose of this vacuum is to prevent the interception of the beam by residual gases and to avoid contamination of the workpiece surface by these same gases during implantation.
- This device comprises an ion source 6 with electronic cyclotron resonance, known as the RCE source.
- This RCE 6 source delivers an initial beam f1 ′ of multi-energy nitrogen ions for a total current of approximately 10 mA (all loads combined N +, N2 +, etc.), under an extraction voltage which may vary from 20 KV to 200 KV.
- the RCE source 6 emits the ion beam f1 'in the direction of first adjustment means 7-11 which focus and adjust the initial beam fl' emitted by the RCE source 6 into an ion implantation beam f1 which strikes a part to be treated 5.
- These first adjustment means 7-11 comprise, from the RCE source 6 towards the part 5, the following elements: - a mass spectrometer 7 able to filter the ions according to their charge and of their mass. This element is optional; indeed, in the case where a pure nitrogen gas (N2) is injected, it is possible to recover all of the mono and multi-charged nitrogen ions produced by the source in order to obtain an ion beam multi-energy nitrogen.
- the mass spectrometer being a very expensive element, the cost of the device is greatly reduced by using a beam of multi-energy nitrogen ions obtained from pure nitrogen gas delivered in a bottle.
- - Lenses 8 whose role is to give the initial beam fl 'of ions a chosen shape, for example cylindrical, with a chosen radius.
- a profiler 9 whose role is to analyze the intensity of the beam in a perpendicular cutting plane. This analysis instrument becomes optional as soon as the lenses 8 are definitively adjusted during the first implantation.
- an intensity transformer 10 which continuously measures the intensity of the initial beam f1 'without intercepting it.
- the main function of this instrument is to detect any interruption in the initial beam f1 'and to allow the recording of variations in the intensity of the beam f 1 during processing.
- a shutter 11 which can be a Faraday cage, whose role is to interrupt the trajectory of the ions at certain times, for example during a displacement without treatment of the part.
- the workpiece 5 is movable relative to the RCE source 6.
- the workpiece 5 is mounted on a movable workpiece holder 12 whose movement is controlled by a numerically controlled machine 4, itself controlled by a postprocessor calculated by a CAD / CAM system (computer-aided design and manufacturing) 1.
- the movement of the part 5 takes into account the radius of the beam f1, the external and internal contours of the zones to be treated. the part 5, a constant speed of movement, or variable as a function of the angle of the beam f1 relative to the surface and a number of passes previously made.
- Control information (infl) is transmitted from the RCE source
- This control information relates to the state of the beam.
- the RCE source 6 informs the machine 4 when the ion beam f1 is ready to be sent.
- Other control information (inf2) is transmitted by the machine 4 to the shutter 11, to the RCE source 6 and, possibly, to one or more machines external to the device.
- This control information can be the values of the radius of the ion beam, its flow rate and all other values known to the machine 4.
- the workpiece holder 12 is equipped with a cooling circuit 13 for removing the heat produced in the workpiece 5 during the implantation of multi-energy ions.
- the operation of the device of the invention is as follows: - the workpiece 5 is clamped on the workpiece holder 12, - the enclosure 3 housing the device is closed, - the cooling circuit 13 of the workpiece carrier 12, - the vacuum pump 2 is started up so as to obtain a high vacuum in the enclosure 3, - as soon as the vacuum conditions are reached, the beam is produced and adjusted f1 ' ion through adjustment means 7-11, - when the beam is adjusted, the shutter is lifted 11 and the numerically controlled machine 4 is launched which then performs the movement in position and speed of the part 5 in front of the beam in one or more passes, - when the required number of passes is reached, the shutter 11 is lowered to cut the beam fl, the production of the beam fl 'is stopped, the vacuum is broken by opening the enclosure 3 to 1 ambient air, the cooling circuit may be stopped 13 and the treated part 5 is taken out of the enclosure 3.
- FIG. 2 represents an example of distribution of nitrogen ions N implanted in an aluminum piece.
- the ion source delivers N +, N2 + and N3 + ions which are all extracted with a single extraction voltage, for example, of 200 KV.
- N + ions emitted by the ion source have an energy of 200 KeV
- the N2 + ions have an energy of 400 KeV
- the N3 + ions have an energy of 600 KeV.
- N + ions reach a depth of 0.37 ⁇ m +/- 0.075 ⁇ m.
- the N2 + ions reach a depth of approximately 0.68 ⁇ m +/- 0.1 ⁇ m and the N3 + ions a depth of approximately 0.91 ⁇ m +/- 0.15 ⁇ m.
- the maximum distance reached by ions in this example is 1.15 ⁇ m.
- the specificity of an RCE 6 ion source lies in the fact that it delivers mono- and multi-charged ions, which makes it possible to simultaneously implant multi-energy ions with the same extraction voltage.
- an implantation profile more or less well distributed. For example, if we consider an RCE source delivering a total current of 10 mA (3.3 mA for N +, 3.3mA for N2 +, 3.3mA for N3 +) with an extraction voltage of 200 KV, for a piece of aluminum of 1 cm 2 , for approximately 10 seconds, the implantation profile is approximately that shown in FIG. 3.
- This profile reveals a concentration of: - 20% of N between 0.30 and 0.5 ⁇ m, which corresponds to an increase in the hardness of 300%, - 8% of N between 0.5 and 0.85 ⁇ m, which corresponds to an increase in hardness of 200%, and - 2% of N between 0.85 and 1.1 ⁇ m, which corresponds to an increase of hardness of 35 %.
- An optimal distribution is obtained for the layout profile by adjusting the frequencies of source 6 so as to have a distribution equal distribution of the states of charge of the ions of the source (same number of ions N +, N2 +, N3 + per cm 2 and per second).
- the implantation profile shown in FIG. 4 fluctuates between 6 and 14% over a thickness of between 0.25 ⁇ m 1.1 ⁇ m.
- the physical effect in terms of hardness obtained by simultaneous implantation of multi-energy ions is greater than that obtained by implantation of single-energy ions.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Electron Sources, Ion Sources (AREA)
- Particle Accelerators (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/587,465 US20090212238A1 (en) | 2004-02-04 | 2005-02-02 | Apparatus for ion nitriding an aluminum alloy part and process employing such apparatus |
BRPI0507447-9A BRPI0507447A (pt) | 2004-02-04 | 2005-02-02 | dispositivo de implantação de ìons em uma peça de liga de alumìnio e processo de tratamento de uma liga de alumìnio |
CA002554921A CA2554921A1 (fr) | 2004-02-04 | 2005-02-02 | Dispositif de nitruration par implantation ionique d'une piece en alliage d'aluminium et procede mettant en oeuvre un tel dispositif |
AU2005219596A AU2005219596B2 (en) | 2004-02-04 | 2005-02-02 | Device and method for nitriding by ionic implantation of an aluminium alloy part |
EP05717536A EP1725694A2 (fr) | 2004-02-04 | 2005-02-02 | Dispositif et procede d' implantation ionique d'une piece en alliage d'aluminium |
NZ549587A NZ549587A (en) | 2004-02-04 | 2005-02-02 | Device for nitriding by ionic implantation of an aluminium alloy part, and corresponding method |
JP2006551878A JP2007524760A (ja) | 2004-02-04 | 2005-02-02 | アルミニウム合金製の部品をイオン注入によって窒化処理する装置および、そのような装置を利用する方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0401047A FR2876390A1 (fr) | 2004-02-04 | 2004-02-04 | Procede de nitruration par implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede |
FR0401047 | 2004-02-04 | ||
FR0401749A FR2876391B1 (fr) | 2004-02-04 | 2004-02-21 | Procede de nitruration pour implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede |
FR0401749 | 2004-02-21 | ||
FR0500963A FR2879625B1 (fr) | 2004-02-04 | 2005-01-31 | Dispositif de nitruration par implantation ionique d'une piece en alliage d'aluminium et procede mettant en oeuvre un tel dispositif |
FR0500963 | 2005-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005085491A2 true WO2005085491A2 (fr) | 2005-09-15 |
WO2005085491A3 WO2005085491A3 (fr) | 2007-09-13 |
Family
ID=34922951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2005/000224 WO2005085491A2 (fr) | 2004-02-04 | 2005-02-02 | Dispositif et procede d'implantation ionique d'une piece en alliage d'aluminium |
Country Status (10)
Country | Link |
---|---|
US (1) | US20090212238A1 (fr) |
EP (1) | EP1725694A2 (fr) |
JP (1) | JP2007524760A (fr) |
KR (1) | KR20070029139A (fr) |
AU (1) | AU2005219596B2 (fr) |
BR (1) | BRPI0507447A (fr) |
CA (1) | CA2554921A1 (fr) |
FR (1) | FR2879625B1 (fr) |
NZ (1) | NZ549587A (fr) |
WO (1) | WO2005085491A2 (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2899242A1 (fr) * | 2007-04-05 | 2007-10-05 | Quertech Ingenierie Sarl | Procede de durcissement par implantation d'ions d'helium dans une piece metallique |
FR2906261A1 (fr) * | 2006-09-26 | 2008-03-28 | Quertech Ingenierie Sarl | Dispositif de nitruration par implantation ionique d'une piece en alliage d'or et procede mettant en oeuvre un tel dispositif |
WO2008043964A2 (fr) * | 2006-10-11 | 2008-04-17 | Quertech Ingenierie | Couche de cuivre comprenant des atomes d' azote inseres, procede d' implantation associe |
WO2008047049A2 (fr) * | 2006-10-18 | 2008-04-24 | Quertech Ingenierie | Couche de titane comprenant des atomes d ' azote inseres, procede d ' implantation associe |
FR2907797A1 (fr) * | 2006-10-26 | 2008-05-02 | Quertech Ingenierie Sarl | Dispositif de nitruration par implantation ionique d'une piece en alliage a memoire de forme en nickel titane et procede mettant en oeuvre un tel dispositif. |
FR2920785A1 (fr) * | 2007-09-11 | 2009-03-13 | Quertech Ingenierie Sa | Traitement de la porosite des metaux par bombardement ionique |
FR2939150A1 (fr) * | 2008-12-01 | 2010-06-04 | Quertech Ingenierie | Procede de traitement d'une partie metallique par un faisceau d'ions |
WO2011020964A1 (fr) | 2009-08-19 | 2011-02-24 | Aircelle | Procede d'implantation ionique pour la realisation d'une surface anti-glace |
WO2012001330A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide. |
WO2012001321A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface elastomere d'un dispositif de distribution de produit fluide. |
WO2012001328A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide |
WO2012001326A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide |
WO2012001325A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide. |
US20130112553A1 (en) * | 2010-07-08 | 2013-05-09 | Quertech Ingenierie | Method for treating a surface of a polymeric part by multi-energy ions |
EP3425085A1 (fr) * | 2017-07-07 | 2019-01-09 | The Swatch Group Research and Development Ltd | Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2942801B1 (fr) * | 2009-03-05 | 2012-03-23 | Quertech Ingenierie | Procede de traitement d'une piece en elastomere par des ions multi-energies he+ et he2+ pour diminuer le frottement |
FR2947378A1 (fr) | 2009-06-29 | 2010-12-31 | Quertech Ingenierie | Systeme magnetique formant des surfaces iso modules fermees a partir de structures magnetiques de type "cusp" et sources d'ions de type rce mettant en oeuvre un tel systeme |
WO2012153412A1 (fr) * | 2011-05-12 | 2012-11-15 | トヨタ自動車 株式会社 | Procédé pour modifier la surface d'un alliage d'aluminium et composant coulissant |
DE102011106044A1 (de) * | 2011-06-27 | 2012-12-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur gezielten Einstellung einer Tropfenkondensation auf einer Oberfläche eines Substrats mittels Ionenimplantation |
CN104488118B (zh) * | 2012-09-27 | 2016-12-14 | 东洋铝株式会社 | 导电构件、电极、二次电池、电容器以及导电构件和电极的制造方法 |
FR3004465B1 (fr) * | 2013-04-11 | 2015-05-08 | Ion Beam Services | Machine d'implantation ionique presentant une productivite accrue |
CA2949923A1 (fr) * | 2014-05-23 | 2015-11-26 | Quertech | Procede de traitement par faisceau d'ions a une seule charge ou a plusieurs charges permettant la production d'un materiau en saphir antireflet |
FR3046799B1 (fr) * | 2016-01-20 | 2018-03-02 | Quertech | Procede de traitement par un faisceau d'ions d'un gaz mono et multicharges pour produire des metaux colores |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4597808A (en) * | 1984-04-05 | 1986-07-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Process for ion nitriding aluminum or aluminum alloys |
US4698233A (en) * | 1985-06-24 | 1987-10-06 | Nippon Light Metal Company Limited | Production of aluminum material having an aluminum nitride layer |
US5625195A (en) * | 1994-04-06 | 1997-04-29 | France Telecom | High-energy implantation process using an ion implanter of the low-or medium-current type and corresponding devices |
US5925886A (en) * | 1996-06-20 | 1999-07-20 | Hitachi, Ltd. | Ion source and an ion implanting apparatus using it |
WO2000026431A1 (fr) * | 1998-11-03 | 2000-05-11 | Epion Corporation | Faisceaux ioniques d'amas gazeux pour formation de films de nitrure |
EP1288329A1 (fr) * | 2001-09-03 | 2003-03-05 | C C R GmbH Beschichtungstechnologie | Procédé de fabrication de couches minces de nitrures ou oxydes |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2593011B2 (ja) * | 1991-08-20 | 1997-03-19 | 株式会社ライムズ | 硬質膜被覆金属部材の製造方法 |
JPH0636734A (ja) * | 1992-07-16 | 1994-02-10 | Japan Steel Works Ltd:The | イオン注入法による基板製造方法 |
JP3157943B2 (ja) * | 1993-03-01 | 2001-04-23 | 株式会社リコー | 基体表面の改質処理方法およびその改質処理装置 |
US5811823A (en) * | 1996-02-16 | 1998-09-22 | Eaton Corporation | Control mechanisms for dosimetry control in ion implantation systems |
JPH1064462A (ja) * | 1996-08-23 | 1998-03-06 | Nec Yamagata Ltd | イオン注入装置 |
GB2382717B (en) * | 1998-07-21 | 2003-09-03 | Applied Materials Inc | Ion Implantation Beam Monitor |
JP4252237B2 (ja) * | 2000-12-06 | 2009-04-08 | 株式会社アルバック | イオン注入装置およびイオン注入方法 |
US6936551B2 (en) * | 2002-05-08 | 2005-08-30 | Applied Materials Inc. | Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices |
ATE368849T1 (de) * | 2002-10-25 | 2007-08-15 | Ct De Rech Public Gabriel Lipp | VERFAHREN UND VORRICHTUNG ZUR ßIN-SITU- DEPONIERUNGß VON NEUTRALEM CS UNTER ULTRAHOCHVAKUUM ZU ANALYTISCHEN ZWECKEN. |
-
2005
- 2005-01-31 FR FR0500963A patent/FR2879625B1/fr not_active Expired - Fee Related
- 2005-02-02 BR BRPI0507447-9A patent/BRPI0507447A/pt not_active Application Discontinuation
- 2005-02-02 EP EP05717536A patent/EP1725694A2/fr not_active Withdrawn
- 2005-02-02 AU AU2005219596A patent/AU2005219596B2/en not_active Ceased
- 2005-02-02 NZ NZ549587A patent/NZ549587A/en not_active IP Right Cessation
- 2005-02-02 CA CA002554921A patent/CA2554921A1/fr not_active Abandoned
- 2005-02-02 KR KR1020067018009A patent/KR20070029139A/ko not_active Application Discontinuation
- 2005-02-02 US US10/587,465 patent/US20090212238A1/en not_active Abandoned
- 2005-02-02 JP JP2006551878A patent/JP2007524760A/ja active Pending
- 2005-02-02 WO PCT/FR2005/000224 patent/WO2005085491A2/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4597808A (en) * | 1984-04-05 | 1986-07-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Process for ion nitriding aluminum or aluminum alloys |
US4698233A (en) * | 1985-06-24 | 1987-10-06 | Nippon Light Metal Company Limited | Production of aluminum material having an aluminum nitride layer |
US5625195A (en) * | 1994-04-06 | 1997-04-29 | France Telecom | High-energy implantation process using an ion implanter of the low-or medium-current type and corresponding devices |
US5925886A (en) * | 1996-06-20 | 1999-07-20 | Hitachi, Ltd. | Ion source and an ion implanting apparatus using it |
WO2000026431A1 (fr) * | 1998-11-03 | 2000-05-11 | Epion Corporation | Faisceaux ioniques d'amas gazeux pour formation de films de nitrure |
EP1288329A1 (fr) * | 2001-09-03 | 2003-03-05 | C C R GmbH Beschichtungstechnologie | Procédé de fabrication de couches minces de nitrures ou oxydes |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008037927A3 (fr) * | 2006-09-26 | 2008-07-24 | Quertech Ingenierie | Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé |
FR2906261A1 (fr) * | 2006-09-26 | 2008-03-28 | Quertech Ingenierie Sarl | Dispositif de nitruration par implantation ionique d'une piece en alliage d'or et procede mettant en oeuvre un tel dispositif |
WO2008037927A2 (fr) * | 2006-09-26 | 2008-04-03 | Quertech Ingenierie | Couche d'alliage d'or comprenant des atomes d'azote inseres, procédé de traitement associé |
WO2008043964A3 (fr) * | 2006-10-11 | 2008-07-03 | Quertech Ingenierie | Couche de cuivre comprenant des atomes d' azote inseres, procede d' implantation associe |
FR2907130A1 (fr) * | 2006-10-11 | 2008-04-18 | Quertech Ingenierie Sarl | Dispositif de nitruration par implantation ionique d'une piece en cuivre ou en alliage de cuivre et procede mettant en oeuvre un tel dispositif |
WO2008043964A2 (fr) * | 2006-10-11 | 2008-04-17 | Quertech Ingenierie | Couche de cuivre comprenant des atomes d' azote inseres, procede d' implantation associe |
WO2008047049A2 (fr) * | 2006-10-18 | 2008-04-24 | Quertech Ingenierie | Couche de titane comprenant des atomes d ' azote inseres, procede d ' implantation associe |
FR2907469A1 (fr) * | 2006-10-18 | 2008-04-25 | Quertech Ingenierie Sarl | Dispositif de nitruration par implantation ionique d'une piece en alliage de titane et procede mettant en oeuvre un tel dispositif. |
WO2008047049A3 (fr) * | 2006-10-18 | 2008-07-03 | Quertech Ingenierie | Couche de titane comprenant des atomes d ' azote inseres, procede d ' implantation associe |
FR2907797A1 (fr) * | 2006-10-26 | 2008-05-02 | Quertech Ingenierie Sarl | Dispositif de nitruration par implantation ionique d'une piece en alliage a memoire de forme en nickel titane et procede mettant en oeuvre un tel dispositif. |
WO2008050071A2 (fr) * | 2006-10-26 | 2008-05-02 | Quertech Ingenierie | Couche d ' alliage de nickel-titane comprenant des atomes d ' azote inseres, procede d ' implantation |
WO2008050071A3 (fr) * | 2006-10-26 | 2008-08-07 | Quertech Ingenierie | Couche d ' alliage de nickel-titane comprenant des atomes d ' azote inseres, procede d ' implantation |
FR2899242A1 (fr) * | 2007-04-05 | 2007-10-05 | Quertech Ingenierie Sarl | Procede de durcissement par implantation d'ions d'helium dans une piece metallique |
WO2009044083A2 (fr) * | 2007-09-11 | 2009-04-09 | Quertech Ingenierie | Procede de reduction de la porosite d'un depot metallique par bombardement ionique |
FR2920785A1 (fr) * | 2007-09-11 | 2009-03-13 | Quertech Ingenierie Sa | Traitement de la porosite des metaux par bombardement ionique |
WO2009044083A3 (fr) * | 2007-09-11 | 2009-07-16 | Quertech Ingenierie | Procede de reduction de la porosite d'un depot metallique par bombardement ionique |
FR2939150A1 (fr) * | 2008-12-01 | 2010-06-04 | Quertech Ingenierie | Procede de traitement d'une partie metallique par un faisceau d'ions |
WO2010063928A1 (fr) * | 2008-12-01 | 2010-06-10 | Quertech Ingenierie | Procede de traitement d'une partie metallique par un faisceau d'ions |
WO2011020964A1 (fr) | 2009-08-19 | 2011-02-24 | Aircelle | Procede d'implantation ionique pour la realisation d'une surface anti-glace |
WO2012001321A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface elastomere d'un dispositif de distribution de produit fluide. |
WO2012001330A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide. |
WO2012001328A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide |
WO2012001326A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide |
WO2012001325A2 (fr) | 2010-07-02 | 2012-01-05 | Valois Sas | Procede de traitement de surface d'un dispositif de distribution de produit fluide. |
US20130112553A1 (en) * | 2010-07-08 | 2013-05-09 | Quertech Ingenierie | Method for treating a surface of a polymeric part by multi-energy ions |
EP3425085A1 (fr) * | 2017-07-07 | 2019-01-09 | The Swatch Group Research and Development Ltd | Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede |
WO2019007699A1 (fr) * | 2017-07-07 | 2019-01-10 | The Swatch Group Research And Development Ltd | Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede |
US11685989B2 (en) | 2017-07-07 | 2023-06-27 | The Swatch Group Research And Development Ltd | Metal powder particles |
Also Published As
Publication number | Publication date |
---|---|
AU2005219596A1 (en) | 2005-09-15 |
WO2005085491A3 (fr) | 2007-09-13 |
CA2554921A1 (fr) | 2005-09-15 |
AU2005219596B2 (en) | 2010-05-13 |
FR2879625A1 (fr) | 2006-06-23 |
JP2007524760A (ja) | 2007-08-30 |
BRPI0507447A (pt) | 2007-07-10 |
US20090212238A1 (en) | 2009-08-27 |
KR20070029139A (ko) | 2007-03-13 |
NZ549587A (en) | 2010-08-27 |
FR2879625B1 (fr) | 2007-04-27 |
EP1725694A2 (fr) | 2006-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005085491A2 (fr) | Dispositif et procede d'implantation ionique d'une piece en alliage d'aluminium | |
FR2899242A1 (fr) | Procede de durcissement par implantation d'ions d'helium dans une piece metallique | |
EP0239432B1 (fr) | Procédé et dispositif de traitement d'un matériau par effet thermo-ionique en vue d'en modifier ses propriétés physicochimiques | |
FR2907797A1 (fr) | Dispositif de nitruration par implantation ionique d'une piece en alliage a memoire de forme en nickel titane et procede mettant en oeuvre un tel dispositif. | |
FR2595572A1 (fr) | Procede de fabrication d'implants chirurgicaux au moins partiellement revetus d'une couche en un compose metallique, et implants realises conformement audit procede | |
EP2721190B1 (fr) | Traitement de surface d'une piece metallique | |
FR2906261A1 (fr) | Dispositif de nitruration par implantation ionique d'une piece en alliage d'or et procede mettant en oeuvre un tel dispositif | |
FR2896515A1 (fr) | Procede de nitruration par implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede | |
EP2076617B1 (fr) | Couche de cuivre comprenant des atomes d'azote inseres, procede d'implantation associe | |
EP0734805B1 (fr) | Procédé et dispositif pour la fabrication de fil électrode pour étincelage érosif | |
FR2907469A1 (fr) | Dispositif de nitruration par implantation ionique d'une piece en alliage de titane et procede mettant en oeuvre un tel dispositif. | |
EP3583241B1 (fr) | Procédé de traitement par un faisceau d'ions pour produire un saphir antireflet a haute transmittance résistant a la rayure | |
FR2876390A1 (fr) | Procede de nitruration par implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede | |
EP1743952B1 (fr) | Procédé de traitement d'une pièce en titane ou alliage de titane et pièce obtenue. | |
FR2876391A1 (fr) | Procede de nitruration pour implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede | |
WO2010037914A1 (fr) | Procede de traitement d'une piece metallique par des ions multi-energies he+ et he2+ | |
EP1448805B1 (fr) | Procede perfectionne de revetement d un support par un mater iau | |
RU2428521C2 (ru) | Способ обработки режущего инструмента в стационарном комбинированном разряде низкотемпературной плазмы пониженного давления | |
EP1186683B1 (fr) | Procédé de durcissement de la surface d'un substrat | |
FR2962136A1 (fr) | Procede de traitement de surface d'un dispositif de distribution de produit fluide. | |
WO2019007699A1 (fr) | Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede | |
EP4323562A1 (fr) | Procede de depot de chrome dense sur un substrat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2554921 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006551878 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005717536 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4955/DELNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 549587 Country of ref document: NZ Ref document number: 2005219596 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067018009 Country of ref document: KR Ref document number: 2006131577 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2005219596 Country of ref document: AU Date of ref document: 20050202 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005219596 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10587465 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580010702.7 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2005717536 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067018009 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0507447 Country of ref document: BR |