WO2005083283A1 - 等速ジョイント - Google Patents

等速ジョイント Download PDF

Info

Publication number
WO2005083283A1
WO2005083283A1 PCT/JP2005/003389 JP2005003389W WO2005083283A1 WO 2005083283 A1 WO2005083283 A1 WO 2005083283A1 JP 2005003389 W JP2005003389 W JP 2005003389W WO 2005083283 A1 WO2005083283 A1 WO 2005083283A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant velocity
velocity joint
roller member
trunnion
roller
Prior art date
Application number
PCT/JP2005/003389
Other languages
English (en)
French (fr)
Inventor
Tsutomu Kawakatsu
Takahiro Ogura
Naoto Shibata
Shouichi Nakao
Tomonori Aoyama
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004057137A external-priority patent/JP2005248998A/ja
Priority claimed from JP2004192501A external-priority patent/JP4478519B2/ja
Priority claimed from JP2004192491A external-priority patent/JP2006017136A/ja
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to US10/589,896 priority Critical patent/US7641558B2/en
Priority to EP05719706A priority patent/EP1726839A4/en
Publication of WO2005083283A1 publication Critical patent/WO2005083283A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints

Definitions

  • the present invention relates to, for example, a constant velocity joint that connects one transmission shaft and another transmission shaft in a driving force transmission unit of an automobile.
  • FIG. 20 shows a partial cross section of a constant velocity joint 2 of this type according to the related art (see Japanese Patent Application Laid-Open No. 10-184717).
  • the constant velocity joint 2 includes a tubular auta member 4 connected to one transmission shaft, and an inner member 6 inserted into the auta member 4 and connected to the other transmission shaft. .
  • Three guide grooves 8 extending along the axial direction are formed on the inner peripheral surface of the outer member 4.
  • the inner member 6 has three traverses 10 bulging toward each guide groove 8, and each traverse 10 has a roller member 14 via a plurality of dollar bearings 12. Be attached.
  • the roller member 14 is rotatably engaged with the guide groove 8 of the outer member 4.
  • the needle bearing 12 When mounting the -dollar bearing 12 in the groove 16, for example, after arranging the needle bearing 12 in an annular shape along the groove 16 while leaving one needle bearing 12, the remaining one is used by using the keystone effect. Press-fit. In this case, in order to hold the plurality of -dollar bearings 12 in the groove portion 16 in a suitable state, the needle bearing 12 should be adjusted so that the tolerance between the groove portion 16 and the -dollar bearing 12 becomes as small as possible. And it is necessary to machine the groove 16 with extremely high precision.
  • an enlarged diameter portion 19 is formed at the base end of the traverse 10 formed on the inner member 6, while the traverse 10 is formed on the inner peripheral portion of the roller member 14.
  • the flange portion 17a is formed only on the end side in the bulging direction.
  • Fig. 22 shows a conventional constant velocity joint of this type (see Japanese Patent Application Laid-Open No. 2001-208090).
  • the constant velocity joint has a locking ring 24 mounted on one end side of the cylindrical inner peripheral surface 22 of the roller 21 in the axial direction through a circumferential groove 23. Further, there is disclosed a roller mechanism 26 in which a locking flange 25 formed integrally with the roller 21 is formed at the other end of the cylindrical inner peripheral surface 22 in the axial direction.
  • a plurality of -dollar rollers 27 are mounted on the inner circumferential surface 22 of the cylinder, and the -dollar rollers 27 are held by a support ring 29 that is fitted around the outer peripheral surface of the leg shaft 28.
  • a locking ring 24 is disposed on the distal end portion 28a side of the leg shaft 28, and a base end portion 28b of the leg shaft 28 is provided.
  • a configuration in which a locking flange 25 is provided on the side is adopted. Disclosure of the invention
  • the processing shape of the enlarged diameter portion 19 is greatly restricted so that stress does not concentrate between the cylindrical portion of the trunnion 10 and the step portion 20 of the enlarged diameter portion 19.
  • the constant velocity joint 2 shown in FIG. 20 is configured such that the inclination angle ⁇ of the axis T2 of the shaft (inner member 6) with respect to the axis T1 of the outer member 4 changes,
  • the roller member 14 is displaced in the direction of arrow E.
  • the amount of displacement of the roller member 14 increases as the inclination angle ⁇ of the inner member 6 increases, so unless the traverse 10 is set long enough, the roller member 14 will Interference with the end 10a limits the tilt angle ⁇ .
  • the traverse 10 is lengthened, the diameter of the outer member 4 also increases, and the constant velocity joint 2 increases in size.
  • roller mechanism 26 shown in FIG. 22, for example, when the locking ring 24 comes off the circumferential groove 23 for some reason, the roller mechanism 26 is loaded between the cylindrical inner peripheral surface 22 of the roller 21 and the support ring 29.
  • the internal force of the roller 21 also jumps out due to the centrifugal force generated by the rotational movement of the constant velocity joint, and the rotational driving force transmission function of the constant velocity joint may be hindered.
  • a general object of the present invention is to make it possible to easily and accurately process an inner member, as well as to assemble easily, to improve productivity and to reduce manufacturing costs. It is to provide a constant velocity joint.
  • a main object of the present invention is to provide a constant velocity joint capable of securing a desired inclination angle of a transmission shaft and optimizing the length of a traverse to achieve downsizing.
  • Another object of the present invention is to provide a constant velocity joint capable of preventing the rotation driving force transmission function from being hindered even if the holding member also comes off the roller member. I will provide it.
  • the annular The member is mounted, and then a roller member having a plurality of rolling elements mounted on the inner periphery is inserted into the trunnion.
  • the rolling element is held between the flange portion of the roller member and the annular member.
  • the annular member that holds the rolling element is formed separately from the tra- on, the degree of freedom of the additional shape of the tra- on is improved.
  • the thickness of the annular member the amount of movement of the rolling element relative to the trunnion can be easily and accurately adjusted.
  • the annular member is stably mounted on the trunnion by chamfering a portion that comes into contact with the base end of the trunnion. Durability can be improved.
  • the ratio of the radius of curvature of the outer peripheral surface to the base end of the cylindrical portion of the traun on which the roller member is fitted to the diameter of the cylindrical portion is 0.05 or more and 0.35 or less.
  • the inner peripheral portion of the roller member on which the rolling elements are mounted can be processed extremely easily and with high precision. Further, it is possible to easily manufacture an inner member having sufficient strength, which has a high degree of freedom in designing the shape of the base end portion of the traverse. Further, after the rolling element is mounted on the inner peripheral portion of the roller member, the inner member can be easily assembled simply by inserting the roller member into the trunnion to which the annular member is mounted. Therefore, the productivity of the constant velocity joint can be improved, and the manufacturing cost can be reduced.
  • the gap H between the base end of the trunnion and the rolling element or the roller member is defined by a moving amount ⁇ of the roller member with respect to the base end.
  • the gap H that can secure the desired maximum tilt angle ⁇ max is set to the travel distance.
  • the traverse can be set to an appropriate length, and downsizing of the constant velocity joint can be achieved.
  • the rolling element mounted on the inner peripheral portion of the roller member is held between the flange portion of the roller member formed on the bulging end of the trunnion and the base end of the traion. Accordingly, the gap can be set as the distance between the end of the rolling element and the base end.
  • the gap ⁇ is formed between the end portion of the roller member and the base end portion. It can be set as distance.
  • a step is formed at the base end of the trunnion, and the step forms the base end of the rolling element.
  • the gap ⁇ is set as the distance between the rolling element and the step.
  • the stepped portion is brought into contact with the rolling element. A contact surface can prevent excessive inclination of the transmission shaft.
  • the ratio of the radius of curvature of the outer peripheral surface to the base end of the cylindrical portion of the traverse on which the roller member is fitted to the diameter of the cylindrical portion is 0.05 or more and 0.35 or less.
  • the distance ⁇ between the end of the trunnion in the bulging direction and the end of the rolling element is defined by the distance ⁇ of the rolling element with respect to the bulging direction end.
  • the rolling element can be stably held by the trunnion within the range of the allowable inclination angle.
  • a desired inclination angle of the transmission shaft can be ensured, and the constant velocity joint can be downsized by setting the traverse to an appropriate length.
  • a flange portion is formed at one end along the axial direction of the inner diameter portion of the roller member so as to protrude radially inward, and the other end is provided with an annular groove.
  • a holding member for holding the rolling element is attached, and the holding member is moved in the axial direction of the trunnion. It may be arranged on the base end side along.
  • the holding member by disposing the holding member on the base end side along the axial direction of the traverse, if the holding member loses its annular groove force for some reason, however, since the holding member is not mounted on the tip side of the traverse, the rolling element loaded in the inner diameter portion of the roller member has a flange of the roller member due to centrifugal force generated by the rotational motion of the constant velocity joint. And the roller member is prevented from jumping out of the inner diameter portion of the roller member. As a result, it is possible to prevent the rotational driving force transmission function of the constant velocity joint from being hindered.
  • FIG. 1 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to a first embodiment of the present invention.
  • FIG. 2 is a partially sectional perspective view of an annular member constituting the constant velocity joint according to the first embodiment.
  • FIG. 3 is a partial cross-sectional perspective view of an annular member that is another component of the constant velocity joint according to the first embodiment.
  • FIG. 4 shows an assembled state of a traverse, a needle bearing, and a roller member constituting the constant velocity joint according to the first embodiment, and is a cross-sectional view taken along a line IV-IV in FIG. FIG.
  • FIG. 5 is an enlarged longitudinal sectional view of a main part of the constant velocity joint according to the first embodiment.
  • FIG. 6 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to a second embodiment.
  • FIG. 7 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to a third embodiment.
  • FIG. 8 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to a fourth embodiment.
  • FIG. 9 is a schematic side view of the constant velocity joint according to the first embodiment.
  • FIG. 10 is a schematic front view of the constant velocity joint according to the first embodiment.
  • FIG. 11 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to a fifth embodiment of the present invention.
  • FIG. 12 is an enlarged longitudinal sectional view of a main part of a constant velocity joint according to the fifth embodiment.
  • FIG. 13 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to a sixth embodiment.
  • FIG. 14 is an enlarged longitudinal sectional view of a main part of the constant velocity joint according to the sixth embodiment.
  • FIG. 15 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to a seventh embodiment.
  • FIG. 16 is a longitudinal sectional view of a principal part in a direction orthogonal to an axis of a constant velocity joint according to an eighth embodiment of the present invention.
  • FIG. 17 is an enlarged longitudinal sectional view of a main part of a roller member constituting the constant velocity joint according to the eighth embodiment.
  • FIG. 18 is a partial cross-sectional perspective view of a constant velocity joint according to a first comparative example.
  • FIG. 19 is an enlarged longitudinal sectional view of a main part of a roller member constituting a constant velocity joint according to a second comparative example.
  • FIG. 20 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a conventional technique.
  • FIG. 21 is an enlarged longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint according to the related art.
  • FIG. 22 is an enlarged longitudinal sectional view partially omitted in a direction orthogonal to an axis of a constant velocity joint according to the related art.
  • FIG. 1 is a longitudinal sectional view of a main part in a direction orthogonal to an axis of a constant velocity joint 30 according to a first embodiment of the present invention.
  • the constant velocity joint 30 is formed of a cylindrical auta member 32 having an opening integrally connected to one end of one transmission shaft (not shown) and an other transmission shaft 33. It is basically composed of an inner member 34 connected to one end and inserted into the inner space of the outer member 32.
  • the guide groove 36 is composed of a ceiling portion 38 having a gentle curved cross section, and sliding portions 40a and 40b formed on both sides of the ceiling portion 38 so as to face each other and have an arc-shaped cross section. .
  • a ring-shaped spider 42 constituting the inner member 34 is fitted to the transmission shaft 33.
  • three traverses 44 swelling toward the guide grooves 36 are integrally formed.
  • the cylindrical portion 45 of the traverse 44 and the outer peripheral surface of the spider 42 are smoothly connected by a base end 47.
  • the cylindrical member 45 of the tra-on 44 has an inner diameter dl slightly larger than the diameter D of the cylindrical part 45, and an annular member 50 having an outer diameter d2. Be attached.
  • an annular member 54 having a chamfered portion 52 formed at a position in contact with the base end portion 47 of the traverse 44 may be attached. When the annular member 54 is mounted, the chamfered portion 52 comes into contact with the base end 47 of the traverse 44, so that the annular member 54 is stably held by the traverse 44.
  • a ring-shaped roller member 48 is fitted on the cylindrical portion 45 of the traverse 44 via a plurality of -1 dollar bearings (rolling elements) 46. As shown in FIG. 4, the needle bearing 46 is held between the outer peripheral portion of the cylindrical portion 45 and the inner peripheral portion of the roller member 48 via grease or wax.
  • the outer peripheral surface of the roller member 48 has an arc-shaped surface portion 56 formed corresponding to the cross-sectional shape of the sliding portions 40a and 40b, and the guide groove 36 formed from the arc-shaped surface portion 56. It is composed of a first annular inclined surface portion 58a continuous to the ceiling portion 38 side and a second annular inclined surface portion 58b continuous from the arc-shaped surface portion 56 to the spider 42 side.
  • a flange portion 60 is formed on an end face of the guide groove 36 on the ceiling portion 38 side, and is formed to protrude in a radially inward direction. No flange is provided on the end face of the inner peripheral portion of the roller member 48 on the side of the snider 42. Accordingly, the inner peripheral portion of the roller member 48 can be easily and highly accurately inserted by inserting a processing tool (not shown). Also processing It is also very easy to discharge cutting chips generated with the above.
  • the inner diameter of the roller member 48 is set to be slightly larger than the outer diameter d2 of the annular member 50 or the annular member 54 mounted on the traverse 44.
  • a peripheral groove 62 which functions as a grease or wax oil reservoir while forming a sliding resistance against the needle bearing 46 is formed at the base end of the flange portion 60. be able to.
  • the gap between the flange portion 60 of the roller member 48 and one end face of the dollar bearing 46 is A
  • the other end face force of the needle bearing 46 is the annular member 50 or the annular member.
  • the gap X and the gap Y are set so that the movement amount of the traverse 44 is regulated.
  • the constant velocity joint 30 of the first embodiment of the present invention is basically configured as described above. Next, an assembling method and an operation effect thereof will be described.
  • the annular member 50 When assembling the constant velocity joint 30, the annular member 50 is attached to each column 45 of the traverse 44.
  • the inner diameter dl of the annular member 50 is set slightly larger than the diameter D of the cylindrical portion 45, and is held at the base end 47 of the cylindrical portion 45 as shown in FIG.
  • a plurality of -1 dollar bearings 46 are attached to the inner peripheral portion of the roller member 48 via grease or wax.
  • the flange portion 60 is formed only on one side in the inner peripheral portion of the roller member 48, the operation of inserting the needle bearing 46 with the end face force of the roller member 48 toward the flange portion 60 side is also performed. It can be mounted on the roller member 48 very easily.
  • the roller member 48 on which the needle bearing 46 is mounted is mounted on each column portion 45 of the traverse 44, and the inner member 34 is completed.
  • the needle bearing 46 is held between the flange portion 60 of the roller member 48 and the annular member 50 attached to the cylindrical portion 45 of the traverse 44.
  • the inner member 34 configured as described above is inserted into the inner space of the outer member 32, and by engaging each mouth member 48 with the guide groove 36, the constant velocity joint shown in FIG. 30 assembly is completed.
  • the roller member 48 exerts either force of the gap X or the gap Y. vj, displaces in the direction along the axis of the traverse 44 with the amount of movement restricted by the side.
  • the annular member 50 is formed separately from the traverse 44, for example, by selecting the thickness of the annular member 50, the gap X that regulates the movement amount of the roller member 48 is selected. Can be adjusted arbitrarily. Further, since the annular member 50 can be configured such that the surface on the end face side of the needle bearing 46 is a flat surface, the radius of curvature rl of the base end portion 47 of the traverse 44 is set to a desired radius, and The gap B between the needle bearing 46 and the needle bearing 46 can be set with high accuracy while ensuring the strength of the needle bearing 46.
  • annular member 54 having a chamfered portion 52 is attached to the proximal end 47 of the traverse 44 so that the proximal end 47 is provided.
  • the annular member 54 can be stably held by bringing the chamfered portion 52 of the annular member 54 into contact with the curved surface.
  • the end face of the roller member 48 is The amount of movement of the roller member 48 can also be regulated by the gap Z between the roller member 48 and the annular member 64.
  • annular member 66 having an outer diameter d2 larger than the diameter of the inner peripheral portion of the roller member 48 and having a chamfered portion 65 formed on the base end portion 47 side is formed. Attached to the traverse 44, the gap Z between the end surface of the mouthpiece member 48 and the annular member 66 regulates the amount of movement of the roller member 48.
  • FIG. 9 is a schematic side view showing a state in which the inner member 34 is inclined by an inclination angle ⁇ ⁇ ⁇ about one axis of the traverse 44
  • FIG. 10 is a schematic front view in this state.
  • roller member 48 that has moved along the guide groove 36 is
  • the desired inclination angle ⁇ can be ensured, the axial length of the traverse 44 is optimized, and the inner member 34 is minimized.
  • the size of the constant velocity joint 30 can be reduced.
  • the amount by which the roller member 48 moves outward along the axial direction of the traverse 44 is such that the position of the two roller members 48 is fixed, and the remaining one roller member 48 is fixed to the outer member 32.
  • the roller member 48 slides along the guide groove 36 of the Can be obtained as the amount of movement in the outward direction along.
  • the distance M (see FIG. 12) from the end of the needle bearing 46 to the end of the traverse 44 in the bulging direction is determined by
  • the ratio rlZD of the radius of curvature rl of the curved surface from the cylindrical portion 45 to the base end 47 (see FIG. 5) and the diameter D of the cylindrical portion 45 is adjusted, and the layout of the inner member 34 and the roller member 48 is adjusted.
  • Table 1 shows the results of testing the strength of the tra-on 44 in relation to the above. In this case, by setting 0.05 ⁇ rlZD, preferably 0.08 ⁇ rlZD, good strength of the traverseon 44 can be secured. On the other hand, if it is set to 0.35 rlZD, the thickness of the inner member 34 increases, which is a problem in layout.
  • FIG. 11 shows a constant velocity joint 130 according to the fifth embodiment of the present invention.
  • the same components as those of the constant velocity joint 30 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • three traverses 44 that protrude toward the guide grooves 36 are formed physically. Is done.
  • the cylindrical portion 45 of the traverse 44 and the outer peripheral surface of the spider 42 are smoothly connected by the base end 47.
  • a ring-shaped roller member 48 is externally fitted to the cylindrical portion 45 of the traverse 44 via a plurality of -1 dollar bearings (rolling elements) 46.
  • the -dollar bearing 46 and the roller member 48 are configured to be displaceable in the direction of arrow E along the axial direction of the cylindrical portion 45 of the traverse 44.
  • a gap H from the inner member 34 side end of the needle bearing 46 to the base end 47 of the inner member 34, that is, the needle bearing 46 The maximum distance between the inner member 34 and the outer member 32 is ⁇ max, and the distance between the center of the roller member 48 and the axis of the transmission shaft 33 (the center axis of the outer member 32) is ⁇ max. Assuming that the turning radius is R,
  • the roller member 48 When the gap Y (see FIG. 12) from the end of the roller member 48 on the inner member 34 side to the snider 42 of the inner member 34 is Y ⁇ H, the roller member 48 is provided before the needle bearing 46. Is in contact with the inner member 34, the gap Y is
  • the constant velocity joint 130 according to the fifth embodiment of the present invention is basically configured as described above. Next, an assembling method and operational effects will be described.
  • a plurality of -1 dollar bearings 46 are attached to the inner peripheral portion of the roller member 48 via grease or wax.
  • the needle bearing 46 can be very easily mounted on the roller member 48 by inserting the needle bearing 46 toward the flange portion 60 with the end face force of the roller member 48 facing.
  • the roller member 48 on which the needle bearing 46 is mounted is mounted on each column portion 45 of the traverse 44 to complete the inner member 34.
  • the needle bearing 46 is held between the flange portion 60 of the roller member 48 and the base end 47 of the traverse 44.
  • the inner member 34 configured as described above is inserted into the inner space of the outer member 32, and by engaging each mouth member 48 with the guide groove 36, the constant velocity joint shown in FIG. 130 assembly is completed.
  • FIG. 9 is a schematic side view showing a state in which the inner member 34 is inclined at an inclination angle ⁇ ⁇ ⁇ about one axis of the traverse 44
  • FIG. 10 is a schematic front view in this state.
  • the gap ⁇ between the end of the needle bearing 46 and the base end 47 of the traverse 44 is defined as ⁇ max, where the maximum inclination angle of the inner member 34 is ⁇ max.
  • the desired inclination angle ⁇ can be secured, the length of the traverse 44 is optimized, and the inner member 34 is set to the minimum necessary size, etc.
  • the speed joint 130 can be made compact.
  • the amount by which the roller member 48 moves outward along the axial direction of the traverse 44 is such that the position of the two roller members 48 is fixed, and the remaining one roller member 48 is fixed to the outer member 32.
  • the guide roller 36 is slid along the guide groove 36, and this one roller member 48 can be determined as the amount of movement of the traverse 44 outward in the axial direction. This displacement ⁇ is
  • the distance M (see FIG. 12) from the end of the needle bearing 46 to the end of the traverse 44 in the bulging direction is determined by
  • FIG. 13 shows a constant velocity joint 170 according to the sixth embodiment.
  • This constant velocity joint 170 has a step 74 formed at the base 72 of the traverse 44 so that the movement of the dollar bearing 46 toward the base 72 can be restricted by the step 74. It was made.
  • the required gap H between the needle bearing 46 and the base end 72 is set as the distance between the end of the needle bearing 46 and the step 74.
  • the radius of curvature of the curved surface from the cylindrical portion 45 of the traverse 44 to the step 74 is r2, and the radius of curvature of the peripheral edge of the end portion of the needle bearing 46 on the step 74 side is 3 (
  • r2 ⁇ r3 By setting the relationship of r2 ⁇ r3, the gap H between the end of the needle bearing 46 and the step 74 is set accurately, and the step 74 is used as the inner surface of the needle bearing 46 as a contact surface. Excessive inclination of the member 34 can be prevented.
  • FIG. 15 shows a constant velocity joint 180 according to the seventh embodiment.
  • This constant velocity joint 180 has a first flange portion 84a and a second flange portion 84b formed at both ends of the inner periphery of the roller member 82, and a -1 dollar bearing is formed between the first flange portion 84a and the second flange portion 84b. It is configured to hold a ring 46.
  • the gap H is formed between the second flange portion 84 b of the roller member 82. It is set as the distance between the traunion 44 and the base end 47.
  • FIG. 1 a tripod-type constant velocity joint 210 according to an eighth embodiment of the present invention is shown in FIG.
  • a ring-shaped roller member 230 is provided on the outer periphery of the traverse 44 constituting the constant velocity joint 210 according to the eighth embodiment via a plurality of -dollar bearings 46 functioning as rolling elements. Is fitted outside.
  • the -dollar bearing 46 is replaced with a rolling bearing including rollers, for example.
  • an inner diameter portion 240 having a constant diameter and functioning as a rolling surface of the dollar bearing 46 is formed on the inner circumference of the roller member 230.
  • a protruding annular flange portion 242 is provided physically.
  • a circlip (holding member) 246 is attached to the lower part of the inner diameter part 240 opposite to the flange part 242 and near the base end 47 of the traverse 44 via an annular groove 244. . Accordingly, the dollar bearing 46 mounted in the inner diameter portion 240 of the roller member 230 is also held in the vertical direction by the flange portion 242 and the circlip 246.
  • a washer press-fit into the annular concave portion of the roller member 230 may be used.
  • the holding member is not limited to the circlip 246 or the washer.
  • a clip (not shown), a press-fitting member, a spring lock washer, a spring washer, a washer, a retaining ring, a retaining ring, , Spring washers, grip retaining rings, rings and the like.
  • the relative sliding operation means that the traverse 44 slides along the roller member 230 along its axial direction, or the roller member 230 moves relative to the tra It slides along.
  • a plurality of -dollar bearings 46 are arranged substantially in parallel along the circumferential direction on the inner diameter portion 240 of the roller member 230, and the -dollar bearings 46 are provided at both ends of the inner diameter portion 240.
  • the flange portion 242 and the circlip 246 are provided so that the flange portion 242 and the circlip 246 are not separated from the inner diameter portion 240 so as not to fall off. It is assumed that the plurality of -dollar bearings 46 loaded along the inner diameter portion 240 of the roller member 230 have substantially the same diameter and are formed in substantially the same shape.
  • the traverse 44 has a cylindrical portion 45 having a constant outer diameter.
  • the side provided with the circlip 246 for preventing the needle bearing 46 from dropping is compared with the side provided with the flange portion 242 by an axial dimension ⁇ A for supporting the circlip 246. It is set to be thick. Accordingly, the flange portion 242 side and the circlip 246 side are formed to have different thicknesses along the axial direction with reference to the center line C along the radial direction of the roller member 230.
  • the thick side on which the circlip 246 is mounted is positioned on the side close to the base end 47 of the traverse 44 with reference to the center line C along the radial direction of the roller member 230.
  • the roller member 230 is disposed so as to be slidable along the guide groove 36 of the outer member 32.
  • the circlip 246 even if the circlip 246 also loses the force of the annular groove 244 for some reason, the circlip 246 remains on the tip 41 side of the traverse 44. And a plurality of idle bearings 46 loaded in the inner diameter portion 240 of the roller member 230, the roller bearings are driven by centrifugal force generated by the rotational motion of the constant velocity joint 210.
  • the roller member 230 is held by the flange portion 242 of the member 230, and is prevented from protruding from the inner diameter portion 240 of the roller member 230, so that the rotational driving force transmission function of the constant velocity joint 210 can be prevented from being hindered.
  • the circlip 246 is located on the distal end 41 side of the tra-on 44 and the flange 242 is located on the proximal end 47 side of the tra-on 44.
  • the roller member 230 and the ceiling portion of the guide groove 36 are provided in the first comparative example in which the roller member 230 is mounted so that the flange portion 242 and the circlip 246 are arranged upside down with respect to the tra-on 44.
  • the roller member 230 and the ceiling portion of the guide groove 36 are provided.
  • the working angle formed by the angle at which one of the transmission shafts (axis) (not shown) intersects the other transmission shaft (axis) 33 becomes smaller.
  • the center line C along the radial direction of the roller member 230 is As a reference, the flange portion 242 side is formed to be thin, and a sufficient separation distance between the first surface 234 of the upper portion of the roller member 230 and the ceiling portion 38 of the guide groove 36 can be taken.
  • the operating angle can be set large.
  • the center line C also has the first surface 334, which is the upper surface of the roller member 330, and the lower surface.
  • the length N in the axial direction up to the second surface 338 is the same, and the length of the center line C to the one end and the other end in the axial direction of the dollar bearing 260 is also different (P1 In the second comparative example set as ⁇ P 2), the center line C of the roller member 330 that bisects the arc-shaped surface portion 56 and the center that bisects the axial length of the needle bearing 260 are equal to each other.
  • the load torque is transmitted from the outer member 32 to the traverse 44 via the roller member 330 and the dollar bearing 260, then the load torque in the axial direction of the dollar bearing 260 Length is not evenly distributed with respect to center line C of roller member 330 Tiger - one 44 - one US dollar unbalanced load between the bearings 260 occurs, the Tiger - durability of O emissions 44 may be adversely affected.
  • the center of the axial length of the needle bearing 260 is reduced by shortening the axial length of the needle bearing 260 and the center of the roller member 330 is divided into two equal parts.
  • the contact surface pressure increases by reducing the contact length of the dollar bearing 260 with the outer peripheral surface of the traverse 44.
  • an excessive load is applied to the base end portion 47 of the traverse 44, which may deteriorate the durability of the traverse 44.
  • the thickness of the roller member 230 is different between the flange portion 242 side and the circlip 246 side based on the center line C along the radial direction of the roller member 230.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 トラニオン44の円柱部45に環状部材50を装着し、ニードルベアリング46を内周部に保持させたローラ部材48を円柱部45に装着する。ニードルベアリング46は、ローラ部材48の一端部に形成されたフランジ部60と、トラニオン44に装着された環状部材50との間に所定の間隙を有した状態で保持される。さらに、ニードルベアリング46と環状部材50との間の間隙Xを、   X>R/2・(1/cosθmax−1)     R:アウタ部材32の中心軸に対するローラ部材48の中心の回転半径     θmax:インナ部材34の最大傾斜角度 の関係で設定する。                                                                                   

Description

明 細 書
等速ジョイント
技術分野
[0001] 本発明は、例えば、自動車の駆動力伝達部において、一方の伝達軸と他方の伝達 軸とを連結する等速ジョイントに関する。
背景技術
[0002] 従来より、自動車の駆動力伝達部では、一方の伝達軸と他方の伝達軸とを連結し 回転力を各車軸へと伝達する等速ジョイントが用いられて 、る。
[0003] 図 20は、この種の従来技術に係る等速ジョイント 2の一部断面を示す (特開平 10— 184717号公報参照)。
[0004] この等速ジョイント 2は、一方の伝達軸に連結される筒状のァウタ部材 4と、ァウタ部 材 4に挿入されて他方の伝達軸に連結されるインナ部材 6とから構成される。ァウタ部 材 4の内周面には、軸線方向に沿って延在する 3本の案内溝 8が形成される。一方、 インナ部材 6は、各案内溝 8に向かって膨出する 3本のトラ-オン 10を有し、各トラ- オン 10には、複数の-一ドルベアリング 12を介してローラ部材 14が装着される。ロー ラ部材 14は、ァウタ部材 4の案内溝 8に転動自在に係合する。
[0005] この従来技術では、ニードルベアリング 12をローラ部材 14に対して脱落しないよう に保持させるため、ローラ部材 14の内周部に周回する溝部 16を形成し、この溝部 1 6にニードルベアリング 12を圧入して!/、る。
[0006] 溝部 16に-一ドルベアリング 12を装着する際、例えば、ニードルベアリング 12を 1 本残した状態で溝部 16に沿って環状に配列した後、残りの 1本をキーストン効果を利 用して圧入する。この場合、複数の-一ドルベアリング 12を好適な状態で溝部 16に 保持させるためには、溝部 16の寸法と-一ドルベアリング 12の寸法との公差ができ るだけ小さくなるよう、ニードルベアリング 12及び溝部 16を極めて高精度に加工する 必要がある。
[0007] また、ローラ部材 14の内周部に溝部 16を形成する際、溝部 16の両側にフランジ部 17a, 17bがあることから、加工工具を溝部 16に挿入して切削を行うとともに、加工に よって生じた切削屑を外部に確実に排出させるため、極めて困難な作業が強いられ る。
[0008] なお、前記特開平 10— 184717号公報には、ローラ部材 14の内周部に溝部 16を 形成する代わりに、フランジ部 17a、 17bのない丸孔を形成した後、 2枚のヮッシャを 内周部に係合させてフランジ部 17a、 17bに代替させる技術も開示されている。この 場合、丸孔自体の加工は容易となる力 ヮッシャをローラ部材 14の内周部に係合さ せなければならず、そのための係合溝の加工処理が必要である。また、ヮッシャを係 合溝に係合させる作業も必要となる。
[0009] 本出願人は、これらの問題を解決すベぐ図 21に示す構造力もなる等速ジョイント 1 8を提案して 、る (特開平 11-210776号公報参照)。
[0010] この等速ジョイント 18では、インナ部材 6に形成されたトラ-オン 10の基端部に拡径 部 19を形成する一方、ローラ部材 14の内周部には、トラ-オン 10の膨出方向端部 側にのみフランジ部 17aを形成している。
[0011] この場合、ローラ部材 14の内周部の加工処理及びカ卩ェ時における切削屑の排出 処理は、極めて容易になる。また、トラ-オン 10とローラ部材 14との間に装着された ニードルベアリング 12は、ローラ部材 14のフランジ部 17aとインナ部材 6の拡径部 19 に形成された段部 20との間で保持される。
[0012] さらに、この種の従来技術に係る等速ジョイントを図 22に示す (特開 2001— 20809 0号公報参照)。
[0013] この等速ジョイントは、図 22に示されるように、ローラ 21の円筒内周面 22の軸線方 向の一方の端部側に円周溝 23を介して係止リング 24が装着され、前記円筒内周面 22の軸線方向の他方の端部に前記ローラ 21と一体的に形成された係止鍔 25が形 成されたローラ機構 26が開示されている。
[0014] 前記円筒内周面 22には複数の-一ドルローラ 27が装着され、前記-一ドルローラ 27は、脚軸 28の外周面に外嵌される支持リング 29によって保持される。
[0015] この場合、特開 2001— 208090号公報に開示されたローラ機構 26では、前記脚軸 28の先端部 28a側に係止リング 24が配設され、前記脚軸 28の基端部 28b側に係止 鍔 25が配設される構成が採用されている。 発明の開示
発明が解決しょうとする課題
[0016] ところで、図 21に示す等速ジョイント 18では、トラ-オン 10の基端部に拡径部 19を 設ける必要がある。拡径部 19は、ニードルベアリング 12のトラ-オン 10に沿った移動 量を適切に規制する必要があることから、高い寸法精度が要求される。また、トラニォ ン 10の円柱部と拡径部 19の段部 20との間に応力が集中することのないよう、拡径部 19の加工形状も大きく制約を受けることになる。
[0017] また、図 20に示す等速ジョイント 2は、ァウタ部材 4の軸線 T1に対するシャフト (イン ナ部材 6)の軸線 T2の傾斜角度 Θが変動するのに伴い、トラニオン 10に装着された 各ローラ部材 14が矢印 E方向に変位する。この場合、インナ部材 6の傾斜角度 Θの 増大に従ってローラ部材 14の変位量が大きくなるため、トラ-オン 10を十分に長く設 定しておかないと、ローラ部材 14がトラ-オン 10の基端部 10aに干渉して傾斜角度 Θが制約されてしまう。一方、トラ-オン 10を長くすると、ァウタ部材 4の直径も大きく なり、等速ジョイント 2が大型化する。
[0018] さらに、図 22に示すローラ機構 26では、例えば、何らかの原因によって係止リング 24が円周溝 23から外れた場合、ローラ 21の円筒内周面 22と支持リング 29との間に 装填された-一ドルローラ 27が等速ジョイントの回転運動によって発生する遠心力に よりローラ 21の内部力も飛び出してしまい、前記等速ジョイントの回転駆動力伝達機 能が阻害されるおそれがある。
[0019] 本発明の一般的な目的は、インナ部材を容易且つ高精度に加工することができる とともに、組立作業が容易であり、生産性を向上させて製造コストを低減することが可 能な等速ジョイントを提供することにある。
[0020] 本発明の主たる目的は、伝達軸の所望の傾斜角度を確保するとともに、トラ-オン の長さを最適化して小型化を図ることができる等速ジョイントを提供することにある。
[0021] 本発明の他の目的は、仮に、保持部材がローラ部材カも外れた場合であっても、回 転駆動力伝達機能が阻害されることを防止することが可能な等速ジョイントを提供す ることにめる。
[0022] 本発明によれば、トラ-オンにローラ部材を組み付ける際、先ず、トラ-オンに環状 部材を装着し、次いで、内周部に複数の転動体を装着したローラ部材をトラニオンに 挿入する。この場合、転動体は、ローラ部材のフランジ部と環状部材との間に保持さ れる。なお、転動体を、グリース又はワックス等を用いてローラ部材の内周部に事前 に保持させることにより、ローラ部材をトラ-オンに組み付ける際の作業性を向上させ ることがでさる。
[0023] 転動体を保持する環状部材は、トラ-オンと別体に構成されるため、トラ-オンの加 ェ形状の自由度が向上する。また、環状部材の厚みを選択することにより、転動体の トラニオンに対する移動量を容易且つ高精度に調整することができる。
[0024] 環状部材は、トラニオンの基端部に当接する部位を面取り加工することにより、環状 部材をトラ-オンに対して安定した状態で装着させ、これによつて環状部材及びトラ 二オンの耐久性を向上させることができる。
[0025] また、ローラ部材が外嵌するトラ-オンの円柱部力 基端部に至る外周面の曲率半 径と前記円柱部の直径との比を、 0. 05以上、 0. 35以下の範囲に設定することによ り、良好なレイアウトを確保した状態で、基端部に集中する応力を小さくし、トラ-オン の耐久性を向上させることができる。
[0026] 本発明によれば、転動体が装着されるローラ部材の内周部を極めて容易且つ高精 度に加工することができる。また、トラ-オンの基端部の形状の設計自由度が高ぐ十 分な強度を有するインナ部材を容易に製造することができる。さらに、転動体をローラ 部材の内周部に装着した後、環状部材を装着したトラニオンにローラ部材を挿入す るだけで、インナ部材の組立作業を容易に行うことができる。従って、等速ジョイントの 生産性を向上させ、製造コストを低減させることができる。
[0027] また、本発明では、前記トラニオンの基端部と前記転動体又は前記ローラ部材との 間の間隙 Hを、前記基端部に対する前記ローラ部材の移動量 δに対して、
Η > δ =R/2 - (1/cos Θ max— 1)
R:前記ァウタ部材の中心軸に対する前記ローラ部材の中心の回転半径 Θ max:前記一方の伝達軸に対する前記他方の伝達軸の最大傾斜角度 の関係で設定されるとよい。
[0028] この場合、所望の最大傾斜角度 Θ maxを確保することのできる間隙 Hを、トラ-ォ ンの基端部方向に対するローラ部材の移動量 δに基づいて設定し、トラ-オンを適 切な長さとして等速ジョイントの小型化を達成することができる。
[0029] なお、ローラ部材の内周部に装着される転動体を、トラニオンの膨出方向端部側に 形成されたローラ部材のフランジ部と、トラ-オンの基端部との間で保持することによ り、前記間隙 Ηを転動体の端部と前記基端部との距離として設定することができる。ま た、ローラ部材の両端部に形成された第 1フランジ部及び第 2フランジ部間に転動体 を装着させる構成とした場合、前記間隙 Ηは、ローラ部材の端部と前記基端部との距 離として設定することができる。
[0030] ローラ部材がトラ-オンの膨出方向端部側にのみフランジ部を有している場合、トラ 二オンの基端部に段部を形成し、この段部によって転動体の基端部側への移動を規 制するよう〖こしてもよい。この場合、間隙 Ηは、転動体と段部との間の距離として設定 される。なお、トラ-オンの円柱部力も段部に至る外周面の曲率半径を、前記基端部 側の転動体の端部の曲率半径よりも小さく設定することにより、前記段部を転動体の 当接面とし、伝達軸の過剰な傾斜を阻止することができる。
[0031] また、ローラ部材が外嵌するトラ-オンの円柱部力 基端部に至る外周面の曲率半 径と前記円柱部の直径との比を、 0. 05以上、 0. 35以下の範囲に設定することによ り、良好なレイアウトを確保した状態で、基端部に集中する応力を小さくし、トラ-オン の耐久性を向上させることができる。
[0032] さらに、トラニオンの膨出方向端部と転動体の端部との間の距離 Μを、前記膨出方 向端部に対する前記転動体の移動量 εに対して、
Μ > ε = 3R/2 - (1/cos Θ max— 1)
の関係で設定することにより、許容される傾斜角度の範囲内において、転動体をトラ 二オンにより安定して保持することができる。
[0033] 本発明によれば、伝達軸の所望の傾斜角度を確保することができるとともに、トラ- オンを適切な長さに設定して等速ジョイントの小型化を図ることができる。
[0034] さらに、本発明では、前記ローラ部材の内径部の軸線方向に沿った一方の端部に 半径内方向に向力つて突出するフランジ部を形成し、他方の端部に環状溝を介して 前記転動体を保持する保持部材を装着し、前記保持部材がトラニオンの軸線方向に 沿った基端部側に配設されるとよい。
[0035] この場合、前記ローラ部材の径方向に沿った中心線 Cを基準として、保持部材が装 着されたローラ部材の軸線方向の厚さ(L+ ΔΑ)を、フランジ部が形成されたローラ 部材の軸線方向の厚さ(L)よりも大きく設定すると共に、前記中心線 Cを、転動体の 軸線方向の長さを二等分する中心と一致する(Bl = B2)ように設定するとよ!/、。なお 、前記保持部材には、少なくとも、サークリップが含まれるとよい。
[0036] 本発明によれば、トラ-オンの軸線方向に沿った基端部側に保持部材を配設する ことにより、仮に、何らかの原因で前記保持部材が環状溝力も外れた場合であっても 、前記保持部材がトラ-オンの先端部側に装着されていないため、ローラ部材の内 径部内に装填された転動体は、等速ジョイントの回転運動によって発生する遠心力 によりローラ部材のフランジ部に保持されて該ローラ部材の内径部からの飛び出しが 阻止される。この結果、等速ジョイントの回転駆動力伝達機能が阻害されることを防 止することができる。
図面の簡単な説明
[0037] [図 1]本発明の第 1の実施形態に係る等速ジョイントの軸線と直交する方向の要部縦 断面図である。
[図 2]前記第 1の実施形態に係る等速ジョイントを構成する環状部材の一部断面斜視 図である。
[図 3]前記第 1の実施形態に係る等速ジョイントの他の構成力 なる環状部材の一部 断面斜視図である。
[図 4]前記第 1の実施形態に係る等速ジョイントを構成するトラ-オン、ニードルベアリ ング及びローラ部材の組み付け状態を示したものであり、図 1の IV— IV線に沿った横 断面図である。
[図 5]前記第 1の実施形態に係る等速ジョイントの要部拡大縦断面図である。
[図 6]第 2の実施形態に係る等速ジョイントの軸線と直交する方向の要部縦断面図で ある。
[図 7]第 3の実施形態に係る等速ジョイントの軸線と直交する方向の要部縦断面図で ある。 [図 8]第 4の実施形態に係る等速ジョイントの軸線と直交する方向の要部縦断面図で ある。
[図 9]前記第 1の実施形態に係る等速ジョイントの側面模式図である。
[図 10]前記第 1の実施形態に係る等速ジョイントの正面模式図である。
[図 11]本発明の第 5の実施形態に係る等速ジョイントの軸線と直交する方向の要部 縦断面図である。
[図 12]前記第 5の実施形態に係る等速ジョイントの要部拡大縦断面図である。
[図 13]第 6の実施形態に係る等速ジョイントの軸線と直交する方向の要部縦断面図 である。
[図 14]前記第 6の実施形態に係る等速ジョイントの要部拡大縦断面図である。
[図 15]第 7の実施形態に係る等速ジョイントの軸線と直交する方向の要部縦断面図 である。
[図 16]本発明の第 8の実施形態に係る等速ジョイントの軸線と直交する方向の要部 縦断面図である。
[図 17]前記第 8の実施形態に係る等速ジョイントを構成するローラ部材の要部拡大縦 断面図である。
[図 18]第 1比較例に係る等速ジョイントの一部断面斜視図である。
[図 19]第 2比較例に係る等速ジョイントを構成するローラ部材の要部拡大縦断面図で ある。
[図 20]従来技術に係る等速ジョイントの軸線方向に沿った縦断面図である。
[図 21]従来技術に係る等速ジョイントの軸線と直交する方向の要部拡大縦断面図で ある。
[図 22]従来技術に係る等速ジョイントの軸線と直交する方向の一部省略拡大縦断面 図である。
発明を実施するための最良の形態
図 1は、本発明の第 1の実施形態に係る等速ジョイント 30の軸線と直交する方向の 要部縦断面図を示す。この等速ジョイント 30は、図示しない一方の伝達軸の一端部 に一体的に連結されて開口部を有する筒状のァウタ部材 32と、他方の伝達軸 33の 一端部に連結されてァウタ部材 32の内空部に挿入されるインナ部材 34とから基本 的に構成される。
[0039] ァウタ部材 32の内空部には、軸線方向に沿って延在し、軸心の回りにそれぞれ 12 0度の間隔をおいて 3本の案内溝 36が形成される。案内溝 36は、断面が緩やかな曲 線状に形成された天井部 38と、天井部 38の両側に相互に対向し断面円弧状に形 成された摺動部 40a、 40bとから構成される。
[0040] 伝達軸 33には、インナ部材 34を構成するリング状のスパイダ 42が外嵌する。スパ イダ 42の外周面には、それぞれ案内溝 36に向力つて膨出する 3本のトラ-オン 44が 一体的に形成される。トラ-オン 44の円柱部 45とスパイダ 42の外周面とは、基端部 47により滑らかに接続される。
[0041] トラ-オン 44の円柱部 45には、図 2の断面図に示すように、内径 dlが円柱部 45の 直径 Dよりも僅かに大きく設定され、外径 d2からなる環状部材 50が装着される。なお 、環状部材 50に代えて、図 3に示すように、トラ-オン 44の基端部 47に当接する部 位に面取部 52を形成した環状部材 54を装着してもよ 、。この環状部材 54を装着し た場合、面取部 52がトラ-オン 44の基端部 47に当接するため、環状部材 54が安定 した状態でトラ-オン 44に保持される。
[0042] トラ-オン 44の円柱部 45には、複数本の-一ドルベアリング(転動体) 46を介してリ ング状のローラ部材 48が外嵌する。図 4に示すように、ニードルベアリング 46は、円 柱部 45の外周部とローラ部材 48の内周部との間にグリース又はワックスを介して保 持される。
[0043] ローラ部材 48の外周面は、図 1に示されるように、摺動部 40a、 40bの断面形状に 対応して形成された円弧状面部 56と、円弧状面部 56から案内溝 36の天井部 38側 に連続する第 1環状傾斜面部 58aと、前記円弧状面部 56からスパイダ 42側に連続 する第 2環状傾斜面部 58bとから構成される。
[0044] ローラ部材 48の内周部には、案内溝 36の天井部 38側の端面に、半径内方向に突 出して形成されたフランジ部 60が設けられる。ローラ部材 48の内周部のスノイダ 42 側の端面には、フランジ部が設けられていない。従って、ローラ部材 48の内周部は、 図示しない加工工具を挿入して容易且つ高精度にカ卩ェすることができる。また、加工 に伴って発生する切削屑の排出も極めて容易である。
[0045] ローラ部材 48の内径は、トラ-オン 44に装着された環状部材 50又は環状部材 54 の外径 d2よりも若干大きく設定される。なお、ローラ部材 48の内周部のうち、フランジ 部 60の基端部には、ニードルベアリング 46に対する摺動抵抗を低減させるとともに、 グリース又はワックスの油溜まり部として機能する周溝 62を形成することができる。
[0046] なお、図 5に示すように、ローラ部材 48のフランジ部 60から-一ドルベアリング 46の 一方の端面までの間隙を A、ニードルベアリング 46の他方の端面力 環状部材 50又 は環状部材 54までの間隙を B、ローラ部材 48のスパイダ 42側の端面からスパイダ 4 2までの間隙を Yとして、間隙 X(=A+B)、又は間隙 Yのうち、いずれか小さい方が ローラ部材 48のトラ-オン 44に対する移動量の規制範囲となるように、前記間隙 X、 間隙 Yが設定される。
[0047] 本発明の第 1の実施形態の等速ジョイント 30は、基本的には以上のように構成され るものであり、次に、その組み付け方法及び作用効果について説明する。
[0048] 等速ジョイント 30の組み付けを行う際、トラ-オン 44の各円柱部 45に対して、環状 部材 50を装着する。環状部材 50は、内径 dlが円柱部 45の直径 Dよりも僅かに大き く設定されており、図 5に示すように、円柱部 45の基端部 47に保持される。
[0049] 一方、ローラ部材 48の内周部に、グリース又はワックスを介して複数の-一ドルべ ァリング 46を装着する。この場合、ローラ部材 48の内周部には、一方にのみフランジ 部 60が形成されているため、ニードルベアリング 46をローラ部材 48の端面力もフラン ジ部 60側に向力つて挿入する作業により、極めて容易にローラ部材 48に装着するこ とがでさる。
[0050] 次に、ニードルベアリング 46の装着されたローラ部材 48をトラ-オン 44の各円柱部 45に装着し、インナ部材 34が完成する。この場合、ニードルベアリング 46は、ローラ 部材 48のフランジ部 60と、トラ-オン 44の円柱部 45に装着された環状部材 50との 間に保持される。
[0051] 以上のように構成されたインナ部材 34は、ァウタ部材 32の内空部に挿入され、各口 一ラ部材 48を案内溝 36に係合させることにより、図 1に示す等速ジョイント 30の組み 付けが完了する。 [0052] ここで、図 5に示すように、ニードルベアリング 46の一端面とローラ部材 48のフラン ジ部 60との間、及び、ニードルベアリング 46の他端面と環状部材 50との間には、所 定の間隙 A及び B (間隙 X=A+B)が確保され、また、ローラ部材 48のフランジ部 60 が形成されていない側の端面とインナ部材 34のスパイダ 42との間には、所定の間隙 Yが確保されている。
[0053] 従って、インナ部材 34の伝達軸 33がァウタ部材 32の図示しない伝達軸に対して 所定の角度を保持した状態で回転する際、ローラ部材 48は、間隙 X又は間隙 Yのい ずれ力 vj、さい方によって移動量が規制された状態でトラ-オン 44の軸線に沿った方 向に変位する。
[0054] また、環状部材 50は、トラ-オン 44と別体に構成されて 、るため、例えば、環状部 材 50の厚みを選択することにより、ローラ部材 48の移動量を規制する間隙 Xを任意 に調整することができる。さらに、環状部材 50は、ニードルベアリング 46の端面側の 面を平面として構成することができるため、トラ-オン 44の基端部 47の曲率半径 rlを 所望の半径に設定してトラ-オン 44の強度を確保する一方、ニードルベアリング 46と の間隙 Bを高精度に設定することができる。
[0055] なお、環状部材 50に代えて、図 6に示すように、面取部 52を有した環状部材 54をト ラ-オン 44の基端部 47に装着することにより、基端部 47の曲面に環状部材 54の面 取部 52を当接させて環状部材 54を安定して保持することができる。
[0056] また、図 7に示すように、ローラ部材 48の内周部の直径よりも大きな外径 d2を有す る環状部材 64をトラ-オン 44に装着することにより、ローラ部材 48の端面と環状部材 64との間隙 Zによってローラ部材 48の移動量を規制することもできる。
[0057] 同様に、図 8に示すように、ローラ部材 48の内周部の直径よりも大きな外径 d2を有 し、基端部 47側に面取部 65が形成された環状部材 66をトラ-オン 44に装着し、口 一ラ部材 48の端面と環状部材 66との間隙 Zによってローラ部材 48の移動量を規制 することちでさる。
[0058] なお、上述した各実施形態において、ニードルベアリング 46と環状部材 50、 54と の間の間隙、又は、ローラ部材 48と環状部材 64、 66との間の間隙は、次のようにし て設定することができる。 [0059] 図 9は、トラ-オン 44の 1つの軸線を中心として、インナ部材 34を傾斜角度 Θだけ 傾斜させた状態の側面模式図、図 10は、この状態の正面模式図である。
[0060] ァウタ部材 32の中心軸に対するローラ部材 48の中心の回転半径を Rとすると、傾 斜角度 Θの回転中心であるトラニオン 44の軸線とァウタ部材 32の中心軸とを含む平 面から、ァウタ部材 32の案内溝 36に沿って移動した各ローラ部材 48の中心までの 距離 aは、
a=R' cos30°
である。回転中心であるトラ-オン 44の軸線から、ァウタ部材 32の案内溝 36に沿つ て移動したローラ部材 48の中心までの距離 cは、距離 aを用いて、
c = a/ cos θ
となる。この場合、案内溝 36に沿って移動したローラ部材 48は、トラ-オン 44の外方 向に対して、
D = C— a
となる移動量 bだけ移動する。従って、傾斜角度 Θの回転中心であるトラ-オン 44に 装着されたローラ部材 48は、トラ-オン 44の内方向に対して、
δ =b #tan30
=R/2 - (l/cos 0 -l)
となる移動量 δだけ移動する。
[0061] この結果から、ニードルベアリング 46と環状部材 50、 54との間の間隙 Κ (間隙 Xに 対応する)、又は、ローラ部材 48と環状部材 64、 66との間の間隙 Κ (間隙 Ζに対応す る)を、インナ部材 34の最大傾斜角度を Θ maxとして、
Κ> δ =R/2 - (1/cos Θ max— 1)
の関係を満足する最小の間隙 Kとなるように設計することにより、所望の傾斜角度 Θ を確保できるとともに、トラ-オン 44の軸方向の長さを最適化し、インナ部材 34を必 要最小限のサイズとして等速ジョイント 30を小型に構成することができる。
[0062] なお、ローラ部材 48がトラ-オン 44の軸線方向に沿った外方向へ移動する移動量 は、 2つのローラ部材 48の位置を固定し、残りの 1つのローラ部材 48をァウタ部材 32 の案内溝 36に沿って摺動させ、この 1つのローラ部材 48がトラ-オン 44の軸線方向 に沿った外方向への前記移動量として求めることができる。この移動量 εは、 ε = 3R/2- (l/cos 0 -l)
となる。従って、ローラ部材 48をトラ-オン 44に安定して保持させるため、ニードルべ ァリング 46の端部からトラ-オン 44の膨出方向端部までの距離 M (図 12参照)を、
Μ> ε = 3R/2- (1/cos Θ max— 1)
の関係を満足するように設計すると好適である。
[0063] また、円柱部 45から基端部 47に至る曲面の曲率半径 rl (図 5参照)と、円柱部 45 の直径 Dとの比 rlZDを調整し、インナ部材 34及びローラ部材 48のレイアウトとの関 係でトラ-オン 44の強度をテストした結果を表 1に示す。この場合、 0. 05≤rlZD、 好ましくは、 0. 08≤rlZDに設定することで、トラ-オン 44の良好な強度を確保する ことができる。一方、 0. 35く rlZDに設定すると、インナ部材 34の肉付きが多くなり 、レイアウトの点、で問題となる。従って、 0. 05≤rl/D≤0. 35、好ましくは、 0. 08≤ rl/D≤0. 25となるように設定することにより、良好なレイアウトを確保するとともに、 基端部 47に対する応力集中を低減してトラ-オン 44の強度を十分に確保することが できる。
[0064] [表 1]
表 1
Figure imgf000014_0001
o:良好
Δ :ほぼ良好
X:不良 次に、本発明の第 5の実施形態に係る等速ジョイント 130を図 11に示す。なお、以 下に示す実施形態において、前記第 1の実施形態に係る等速ジョイント 30と同一の 構成要素には同一の参照符号を付し、その詳細な説明を省略する。 [0066] この第 5の実施形態に係る等速ジョイント 130を構成するスノイダ 42の外周面には 、それぞれ案内溝 36に向力 て膨出する 3本のトラ-オン 44がー体的に形成される 。トラ-オン 44の円柱部 45とスパイダ 42の外周面とは、基端部 47により滑らかに接 続される。
[0067] トラ-オン 44の円柱部 45には、複数本の-一ドルベアリング(転動体) 46を介してリ ング状のローラ部材 48が外嵌する。前記-一ドルベアリング 46及びローラ部材 48は 、トラ-オン 44の円柱部 45の軸線方向に沿って矢印 E方向に変位自在に構成され る。
[0068] この場合、図 11及び図 12に示されるように、ニードルベアリング 46のインナ部材 34 側端部からインナ部材 34の基端部 47までの間隙 H、すなわち、ニードルベアリング 4 6が基端部 47に当接するまでの距離は、インナ部材 34のァウタ部材 32に対する最 大傾斜角度を Θ max,インナ部材 34の伝達軸 33の軸線 (ァウタ部材 32の中心軸) に対するローラ部材 48の中心の回転半径を Rとして、
H >R/2 - (1/cos Θ max— 1)
となるように設定される。
[0069] なお、ローラ部材 48のインナ部材 34側端部からインナ部材 34のスノイダ 42までの 間隙 Y (図 12参照)が Y< Hの場合には、ニードルベアリング 46よりも先にローラ部材 48がインナ部材 34に当接するため、間隙 Yが、
Y>R/2 - (1/cos Θ max— 1)
となるように設定される。
[0070] また、トラ-オン 44の円柱部 45の膨出方向端部と-一ドルベアリング 46の端部との 間の距離 M (図 12参照)は、
M > 3R/2 - (1/cos Θ max— 1)
となるように設定される。
[0071] 本発明の第 5の実施形態の等速ジョイント 130は、基本的には以上のように構成さ れるものであり、次に、その組み付け方法及び作用効果について説明する。
[0072] 先ず、ローラ部材 48の内周部に、グリース又はワックスを介して複数の-一ドルべ ァリング 46を装着する。この場合、ローラ部材 48の内周部には、一方にのみフランジ 部 60が形成されているため、ニードルベアリング 46をローラ部材 48の端面力もフラン ジ部 60側に向力つて挿入する作業により、極めて容易にローラ部材 48に装着するこ とがでさる。
[0073] 次に、ニードルベアリング 46の装着されたローラ部材 48をトラ-オン 44の各円柱部 45に装着し、インナ部材 34が完成する。この場合、ニードルベアリング 46は、ローラ 部材 48のフランジ部 60と、トラ-オン 44の基端部 47との間に保持される。
[0074] 以上のように構成されたインナ部材 34は、ァウタ部材 32の内空部に挿入され、各口 一ラ部材 48を案内溝 36に係合させることにより、図 11に示す等速ジョイント 130の組 み付けが完了する。
[0075] 次に、等速ジョイント 130の動作について説明する。
[0076] 一方の伝達軸 33が回転すると、インナ部材 34のトラ-オン 44を介して-一ドルべ ァリング 46及びローラ部材 48が回転し、その回転が案内溝 36を介してァウタ部材 3 2に伝達され、図示しない他方の伝達軸が回転する。
[0077] この場合、インナ部材 34側の伝達軸 33の軸線がァウタ部材 32側の図示しない軸 線に対して、図 20に示すように、傾斜角度 Θだけ傾斜しているとき、トラ-オン 44に 装着されている各ローラ部材 48は、ァウタ部材 32の案内溝 36に沿って移動するとと もに、トラ-オン 44の軸線方向(矢印 E方向)に傾斜角度 Θに応じた変位量 (移動量 δ )だけ移動する。
[0078] そこで、図 9及び図 10に示す模式図に従い、インナ部材 34のァウタ部材 32に対す る傾斜角度 Θと、ローラ部材 48のトラ-オン 44に対する移動量 δとの関係について 説明する。
[0079] 図 9は、トラ-オン 44の 1つの軸線を中心として、インナ部材 34を傾斜角度 Θだけ 傾斜させた状態の側面模式図、図 10は、この状態の正面模式図である。
[0080] ァウタ部材 32の中心軸に対するローラ部材 48の中心の回転半径を Rとすると、傾 斜角度 Θの回転中心であるトラニオン 44の軸線とァウタ部材 32の中心軸とを含む平 面から、ァウタ部材 32の案内溝 36に沿って移動した各ローラ部材 48の中心までの 距離 aは、
a=Re cos30° である。回転中心であるトラ-オン 44の軸線から、ァウタ部材 32の案内溝 36に沿つ て移動したローラ部材 48の中心までの距離 cは、距離 aを用いて、 となる。この場合、案内溝 36に沿って移動したローラ部材 48は、トラ-オン 44の外方 向に対して、
D = C— a
となる移動量 bだけ移動する。従って、傾斜角度 Θの回転中心であるトラ-オン 44に 装着されたローラ部材 48は、トラ-オン 44の内方向に対して、
δ =b 'tan 50
=R/2 - (l/cos 0 -l)
となる移動量 δだけ移動する。
[0081] この結果から、図 12において、ニードルベアリング 46の端部とトラ-オン 44の基端 部 47との間の間隙 Ηを、インナ部材 34の最大傾斜角度を Θ maxとして、
Η > δ =R/2 - (1/cos Θ max— 1)
の関係を満足する最小の間隙 Hとなるように設計することにより、所望の傾斜角度 Θ を確保できるとともに、トラ-オン 44の長さを最適化し、インナ部材 34を必要最小限 のサイズとして等速ジョイント 130を小型に構成することができる。
[0082] なお、ローラ部材 48がトラ-オン 44の軸線方向に沿った外方向へ移動する移動量 は、 2つのローラ部材 48の位置を固定し、残りの 1つのローラ部材 48をァウタ部材 32 の案内溝 36に沿って摺動させ、この 1つのローラ部材 48がトラ-オン 44の軸線方向 に沿った外方向への前記移動量として求めることができる。この移動量 εは、
ε = 3R/2 - (1/cos θ -1)
となる。従って、ローラ部材 48をトラ-オン 44に安定して保持させるため、ニードルべ ァリング 46の端部からトラ-オン 44の膨出方向端部までの距離 M (図 12参照)を、
Μ > ε = 3R/2 - (1/cos Θ max— 1)
の関係を満足するように設計すると好適である。
[0083] また、円柱部 45から基端部 47に至る曲面の曲率半径 rl (図 12参照)と、円柱部 45 の直径 Dとの比 rlZDを調整して、表 1に示されるように、インナ部材 34及びローラ 部材 48のレイアウトとの関係でトラ-オン 44の良好な強度を確保することができる点 は、前記第 1の実施形態に係る等速ジョイント 30と同一である。
[0084] 次に、第 6の実施形態に係る等速ジョイント 170を図 13に示す。この等速ジョイント 1 70は、トラ-オン 44の基端部 72に段部 74を形成したもので、この段部 74によって- 一ドルベアリング 46の基端部 72側への移動を規制するようにしたものである。この場 合、ニードルベアリング 46と基端部 72との間の必要な間隙 Hは、ニードルベアリング 46の端部と段部 74との間の距離として設定される。
[0085] なお、トラ-オン 44の円柱部 45から段部 74に至る間の曲面の曲率半径を r2、ニー ドルベアリング 46の段部 74側の端部周縁部の曲率半径 3とした場合(図 14参照) 、 r2<r3の関係に設定することにより、ニードルベアリング 46の端部と段部 74との間 隙 Hを精度良く設定し、段部 74をニードルベアリング 46の当接面としてインナ部材 3 4の過剰な傾斜を阻止することができる。
[0086] 次に、第 7の実施形態に係る等速ジョイント 180を図 15に示す。この等速ジョイント 1 80は、ローラ部材 82の内周両端部に第 1フランジ部 84a及び第 2フランジ部 84bを 形成し、これらの第 1フランジ部 84a及び第 2フランジ部 84b間において-一ドルベア リング 46を保持するように構成したものである。
[0087] このように構成される等速ジョイント 180では、ローラ部材 82がトラ-オン 44の基端 部 47に当接することになるため、間隙 Hは、ローラ部材 82の第 2フランジ部 84bとトラ ユオン 44の基端部 47との間の距離として設定される。
[0088] 次に、本発明の第 8の実施形態に係るトリポート型の等速ジョイント 210を図 16に示 す。
[0089] 前記第 8の実施形態に係る等速ジョイント 210を構成するトラ-オン 44の外周部に は、転動体として機能する複数本の-一ドルベアリング 46を介してリング状のローラ 部材 230が外嵌される。なお、前記-一ドルベアリング 46は、例えば、ころ等を含む 転がり軸受けに代替される。
[0090] 前記ローラ部材 230の内周には、図 17に示されるように、一定の直径からなり、二 一ドルベアリング 46の転動面として機能する内径部 240が形成され、前記内径部 24 0の上部でトラ-オン 44の先端部 41に近接する部位には、半径内方向に所定長だ け突出した環状のフランジ部 242がー体的に設けられる。
[0091] 前記フランジ部 242と反対側の内径部 240の下部でトラ-オン 44の基端部 47に近 接する部位には、環状溝 244を介してサークリップ (保持部材) 246が装着される。従 つて、ローラ部材 230の内径部 240内に装着された-一ドルベアリング 46は、前記フ ランジ部 242とサークリップ 246とによって上下方向力も保持される。
[0092] なお、前記サークリップ 246に代替して、ローラ部材 230の環状凹部内に圧入され る図示しないヮッシャを用いてもよい。この場合、前記保持部材としては、前記サーク リップ 246又は前記ヮッシャに限定されるものではなぐ例えば、図示しないクリップ、 圧入部材、スプリングロックヮッシャ、スプリングヮッシャ、ヮッシャ、止め輪、リテーニン グリング、ばね座金、グリップ止め輪、リング等が含まれる。
[0093] 例えば、トリポート型の等速ジョイント 210では、トラ-オン 44とローラ部材 230との 間で、該トラ-オン 44の軸線方向に沿って相対的なスライド動作が発生するため、該 ローラ部材 230の内径部 240の両端部に、ニードルベアリング 46の軸線方向に沿つ た変位を規制する、例えば、サークリップ 246等の保持部材を設ける必要があるから である。
[0094] なお、前記相対的なスライド動作とは、ローラ部材 230に対してトラ-オン 44がその 軸線方向に沿ってスライド動作し、又はトラ-オン 44に対してローラ部材 230がその 軸線方向に沿ってスライド動作することを 、う。
[0095] 前記ローラ部材 230の内径部 240には、複数本の-一ドルベアリング 46が周方向 に沿って略平行に並設され、前記-一ドルベアリング 46は、内径部 240の両端部に 設けられたフランジ部 242とサークリップ 246とによって該内径部 240から分離 '脱落 しないように保持される。なお、ローラ部材 230の内径部 240に沿って装填される複 数の-一ドルベアリング 46は、それぞれ略同一の直径を有し、略同一形状に形成さ れているものとする。トラ-オン 44は、外径が一定の円柱部 45を有する。
[0096] 図 17に示されるように、ァウタ部材 32の案内溝 36に接触する円弧状面部 56を上 下に二等分するローラ部材 230の径方向に沿った中心線 Cを引いた場合、前記中心 線 C力 上部の第 1面 234までの長さ(厚さ)は Lとなり、前記中心線 Cから下部の第 2 面 238までの長さ(厚さ)は、(L+ ΔΑ)となり、前記ローラ部材 230の軸線方向に沿 つた全体の厚さ寸法は、(2L+ AA)となる。
[0097] すなわち、ニードルベアリング 46の脱落防止用のサークリップ 246を設けた側は、 フランジ部 242を設けた側と比較して、前記サークリップ 246を支持するために軸線 方向の寸法 Δ Aだけ厚くなるように設定されている。従って、ローラ部材 230の径方 向に沿った中心線 Cを基準として、フランジ部 242側とサークリップ 246側とが軸線方 向に沿って異なる厚さに形成されて ヽる。
[0098] また、前記ローラ部材 230の径方向に沿った中心線 Cは、ニードルベアリング 46の 軸線方向に沿った全長を二等分するものであり(B1 = B2)、軸線方向の長さを二等 分する-一ドルベアリング 46の中心とローラ部材 230の中心線 Cとが一致するように 設定されている。
[0099] 第 8の実施形態では、ローラ部材 230の径方向に沿った中心線 Cを基準としてサー クリップ 246が装着された厚肉側をトラ-オン 44の基端部 47に近接した側に配設し、 前記ローラ部材 230がァウタ部材 32の案内溝 36に沿って摺動自在に組み付けられ る。
[0100] 従って、第 8の実施形態では、仮に、何らかの原因でサークリップ 246が環状溝 24 4力も外れた場合であっても、前記サークリップ 246がトラ-オン 44の先端部 41側で はなく基端部 47側に装着されているため、ローラ部材 230の内径部 240内に装填さ れた複数の-一ドルベアリング 46は、等速ジョイント 210の回転運動によって発生す る遠心力によりローラ部材 230のフランジ部 242に保持されて該ローラ部材 230の内 径部 240からの飛び出しが阻止され、前記等速ジョイント 210の回転駆動力伝達機 能が阻害されることを防止することができる。
[0101] また、図 18に示されるように、トラ-オン 44の先端部 41側にサークリップ 246が位 置しトラ-オン 44の基端部 47側にフランジ部 242が位置するように、トラ-オン 44に 対してフランジ部 242とサークリップ 246との配置を前記と天地を逆転するようにロー ラ部材 230が組み付けられた第 1比較例では、ローラ部材 230と案内溝 36の天井部 38とが接触して一方の図示しない伝達軸 (軸線)と他方の伝達軸 (軸線) 33とが交差 する角度によって形成される作動角が小さくなる。
[0102] これに対して、第 8の実施形態では、ローラ部材 230の径方向に沿った中心線 Cを 基準としてフランジ部 242側が薄肉に形成され、ローラ部材 230の上部の第 1面 234 と案内溝 36の天井部 38との離間距離を十分にとることができるため、前記第 1比較 例と比較して作動角を大きく設定することができる。
[0103] さらに、図 19に示されるように、ローラ部材 330の径方向に沿った中心線 Cを基準と して前記中心線 C力もローラ部材 330の上面である第 1面 334と下面である第 2面 33 8までの軸線方向の長さ Nをそれぞれ同一とし、且つ、前記中心線 C力も-一ドルべ ァリング 260の軸線方向の一端部及び他端部までの長さがそれぞれ異なる(P1≠P 2)ように設定された第 2比較例では、円弧状面部 56を二等分するローラ部材 330の 中心線 Cと、ニードルベアリング 260の軸線方向の長さを二等分する中心とがー致し ておらず、例えば、負荷トルクがァウタ部材 32からローラ部材 330及び-一ドルベア リング 260を介してトラ-オン 44に対して伝達される場合、前記-一ドルベアリング 2 60の軸線方向の長さがローラ部材 330の中心線 Cに対して均等に振り分けられてい ないとトラ-オン 44と-一ドルベアリング 260との間で偏荷重が発生し、前記トラ-ォ ン 44の耐久性に悪影響を及ぼすおそれがある。
[0104] また、第 2比較例において、例えば、ニードルベアリング 260の軸線方向の長さを短 縮して該ニードルベアリング 260の軸線方向の長さを二等分する中心をローラ部材 3 30の中心線 Cと一致させた場合、トラ-オン 44の外周面に対する-一ドルベアリング 260の接触長さが低減することにより接触面圧が増大する。この結果、トラ-オン 44 の基端部 47に対して過大な負荷がかかり、前記トラ-オン 44の耐久性を劣化させる おそれがある。
[0105] これに対し、第 8の実施形態では、ローラ部材 230の径方向に沿った中心線 Cを基 準としてフランジ部 242側とサークリップ 246側とでローラ部材 230の厚さが異なる上 下非対称の形状に形成されているが、前記ローラ部材 230の中心線 Cと-一ドルべ ァリング 46の軸線方向の長さを二等分 (Bl = B2)する中心とがー致するように設定 されているため、トラ-オン 44の外周面と接触する-一ドルベアリング 46の十分な軸 線方向の長さが確保され、トラ-オン 44の耐久性が劣化することを阻止することがで きる。

Claims

請求の範囲
[1] 所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一 方の伝達軸に連結される筒状のァウタ部材と、前記ァウタ部材の開口する内空部に 挿入されて他方の伝達軸に連結されるインナ部材とを有する等速ジョイントにおいて 前記インナ部材 (34)は、
前記案内溝 (36)に向力つて膨出する複数のトラニオン (44)と、
前記案内溝 (36)に接触し、前記トラニオン (44)に外嵌されるリング状のローラ部材 (48)と、
前記トラニオン (44)と前記ローラ部材 (48)との間に転動自在に介装される複数の 転動体 (46)と、
を備え、
前記ローラ部材 (48)の内周部には、前記トラニオン (44)の膨出方向端部側に形 成されて半径内方向に突出し、前記内周部に沿って周回するフランジ部(60)が形 成され、
前記トラニオン (44)の基端部 (47)側には、環状部材 (50)が装着され、 前記転動体 (46)を前記フランジ部(60)と前記環状部材 (50)との間で保持するこ とを特徴とする等速ジョイント。
[2] 請求項 1記載の等速ジョイントにおいて、
前記環状部材 (54)は、前記トラニオン (44)の基端部 (47)に当接する部位が面取 り加工された面取部(52)を有することを特徴とする等速ジョイント。
[3] 請求項 1記載の等速ジョイントにおいて、
前記環状部材(50)と前記転動体 (46)との間には、前記トラニオン (44)の軸線方 向に沿った前記ローラ部材 (48)の所定の移動量( δ )を確保する間隙 (X)が設定さ れることを特徴とする等速ジョイント。
[4] 請求項 1記載の等速ジョイントにおいて、
前記環状部材 (64)は、前記フランジ部(60)から離間する前記ローラ部材 (48)の 端面に近接して配設され、前記環状部材 (64)と前記端面と間には、前記トラニオン( 44)の軸線方向に沿った前記ローラ部材 (48)の所定の移動量( δ )を確保する間隙 (Ζ)が設定されることを特徴とする等速ジョイント。
[5] 請求項 1記載の等速ジョイントにおいて、
前記ローラ部材 (48)が外嵌される前記トラニオン (44)の円柱部 (45)から前記基 端部 (47)に至る外周面の曲率半径 (r 1)と、前記円柱部 (45)の直径 (D)との比 (r 1 ZD)は、 0. 05以上、 0. 35以下の範囲に設定されることを特徴とする等速ジョイント
[6] 請求項 1記載の等速ジョイントにおいて、
前記転動体 (46)と前記環状部材 (50、 54)との間の間隙 K、又は前記ローラ部材( 48)と前記環状部材 (64、 66)との間の間隙 Κを、前記トラニオン (44)の軸線方向に 沿った前記ローラ部材 (48)の移動量 δに対して、
Κ> δ =R/2- (1/cos Θ max— 1)
R:前記ァウタ部材( 32)の中心軸に対する前記ローラ部材 (48)の中心の回 転半径
0 max:前記一方の伝達軸に対する前記他方の伝達軸(33)の最大傾斜角 度
の関係で設定することを特徴とする等速ジョイント。
[7] 所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一 方の伝達軸に連結される筒状のァウタ部材と、前記ァウタ部材の開口する内空部に 挿入されて他方の伝達軸に連結されるインナ部材とを有する等速ジョイントにおいて 前記インナ部材 (34)は、
前記案内溝 (36)に向力つて膨出する複数のトラニオン (44)と、
前記案内溝 (36)に接触し、前記トラニオン (44)に外嵌されるリング状のローラ部材 (48)と、
前記トラニオン (44)と前記ローラ部材 (48)との間に転動自在に介装される複数の 転動体 (46)と、
を備え、 前記トラニオン (44)の基端部 (47)と前記転動体 (46)又は前記ローラ部材 (48)と の間の間隙 Hを、前記基端部 (47)に対する前記ローラ部材 (48)の移動量 δに対し て、
Η> δ =R/2- (1/cos Θ max— 1)
R:前記ァウタ部材( 32)の中心軸に対する前記ローラ部材 (48)の中心の回 転半径
0 max:前記一方の伝達軸に対する前記他方の伝達軸(33)の最大傾斜角 度
の関係で設定することを特徴とする等速ジョイント。
[8] 請求項 7記載の等速ジョイントにお 、て、
前記ローラ部材 (48)の内周部には、前記トラニオン (44)の膨出方向端部側に形 成されて半径内方向に突出し、前記内周部に沿って周回するフランジ部(60)が形 成され、
前記転動体 (46)は、前記フランジ部(60)と前記トラニオン (44)の基端部 (47)と の間で保持されることを特徴とする等速ジョイント。
[9] 請求項 8記載の等速ジョイントにお 、て、
前記トラニオン (44)の基端部(72)には、段部(74)が形成され、
前記転動体 (46)は、前記フランジ部(60)と前記段部(74)との間で保持されること を特徴とする等速ジョイント。
[10] 請求項 9記載の等速ジョイントにおいて、
前記トラニオン (44)の円柱部 (45)から前記段部(74)に至る外周面の曲率半径 (r 2)は、前記段部(74)側の前記転動体 (46)の端部の曲率半径 (r3)よりも小さく設定 される (r2<r3)ことを特徴とする等速ジョイント。
[11] 請求項 7記載の等速ジョイントにおいて、
前記トラニオン (44)の円柱部 (45)から前記基端部 (47)に至る外周面の曲率半径 (rl)と、前記円柱部 (45)の直径 (D)との比 (rlZD)は、 0. 05以上、 0. 35以下の 範囲に設定されることを特徴とする等速ジョイント。
[12] 請求項 7記載の等速ジョイントにおいて、 前記ローラ部材 (82)の内周部には、前記トラニオン (44)の膨出方向端部側に形 成されて半径内方向に突出し、前記内周部に沿って周回する第 1フランジ部(84a) と、前記トラニオン (44)の基端部 (47)側に形成されて半径内方向に突出し、前記内 周部に沿って周回する第 2フランジ部(84b)とが形成され、
前記転動体 (46)は、前記第 1フランジ部(84a)と前記第 2フランジ部(84b)との間 で保持されることを特徴とする等速ジョイント。
[13] 請求項 7記載の等速ジョイントにおいて、
前記トラニオン (44)の膨出方向端部と前記転動体 (46)の端部との間の距離 Mを、 前記膨出方向端部に対する前記転動体 (46)の移動量 εに対して、
Μ > ε = 3R/2 - (1/cos Θ max— 1)
の関係で設定することを特徴とする等速ジョイント。
[14] 所定間隔離間し軸線方向に沿って延在する複数の案内溝が内周面に設けられ一 方の伝達軸に連結される筒状のァウタ部材と、前記ァウタ部材の開口する内空部内 に挿入されて他方の伝達軸に連結されるインナ部材とを有するトリポート型の等速ジ ョイントにおいて、
前記インナ部材 (34)は、
前記案内溝 (36)に向力つて膨出する複数のトラニオン (44)と、
前記案内溝 (36)に接触し、前記トラニオン (44)に外嵌されるリング状のローラ部材 (230)と、
前記トラニオン (44)と前記ローラ部材 (230)との間に転動自在に介装される複数 の転動体 (46)と、
を備え、
前記ローラ部材(230)の内径部(240)の軸線方向に沿った一方の端部には、半 径内方向に向力つて突出するフランジ部(242)が形成され、他方の端部には、環状 溝 (244)を介して前記転動体 (46)を保持する保持部材 (246)が装着され、 前記保持部材 (246)は、前記トラニオン (44)の軸線方向に沿った基端部 (47)側 に配設されることを特徴とする等速ジョイント。
[15] 請求項 14記載の等速ジョイントにおいて、 前記ローラ部材 (230)の径方向に沿った中心線 Cを基準として、前記保持部材 (2 46)が装着された前記ローラ部材(230)の軸線方向の厚さ(L+ ΔΑ)は、前記フラ ンジ部(242)が形成された前記ローラ部材 (230)の軸線方向の厚さ(L)よりも大きく 設定されると共に、前記中心線 Cは前記転動体 (46)の軸線方向の長さを二等分す る中心と一致する(Bl = B2)ように設定されることを特徴とする等速ジョイント。
請求項 14記載の等速ジョイントにおいて、
前記保持部材には、少なくとも、サークリップ(246)が含まれることを特徴とする等 速ジョイント。
PCT/JP2005/003389 2004-03-02 2005-03-01 等速ジョイント WO2005083283A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/589,896 US7641558B2 (en) 2004-03-02 2005-03-01 Constant velocity joint
EP05719706A EP1726839A4 (en) 2004-03-02 2005-03-01 ARTICULATION AT CONSTANT SPEED

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-057137 2004-03-02
JP2004057137A JP2005248998A (ja) 2004-03-02 2004-03-02 等速ジョイント
JP2004-192501 2004-06-30
JP2004192501A JP4478519B2 (ja) 2004-06-30 2004-06-30 等速ジョイント
JP2004-192491 2004-06-30
JP2004192491A JP2006017136A (ja) 2004-06-30 2004-06-30 等速ジョイント

Publications (1)

Publication Number Publication Date
WO2005083283A1 true WO2005083283A1 (ja) 2005-09-09

Family

ID=34916092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003389 WO2005083283A1 (ja) 2004-03-02 2005-03-01 等速ジョイント

Country Status (3)

Country Link
US (1) US7641558B2 (ja)
EP (1) EP1726839A4 (ja)
WO (1) WO2005083283A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545489B2 (ja) * 2015-03-13 2019-07-17 Ntn株式会社 トリポード型等速自在継手
DE102016221707A1 (de) 2016-11-07 2018-05-09 Schaeffler Technologies AG & Co. KG Tripoderolle und Tripodegelenk

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768930U (ja) * 1980-10-14 1982-04-24
JPS5935730U (ja) * 1982-08-30 1984-03-06 三菱自動車工業株式会社 等速ジヨイント
JPH07151158A (ja) * 1993-08-12 1995-06-13 Gkn Automot Ag 三脚型の等速自在継手
JPH08338439A (ja) * 1995-06-12 1996-12-24 Honda Motor Co Ltd 等速ジョイント
JPH09151952A (ja) * 1995-11-30 1997-06-10 Ntn Corp トリポード型等速自在継手のトラニオン部材
JPH1096430A (ja) * 1996-09-20 1998-04-14 Ntn Corp トリポード型等速自在継手
JPH10184717A (ja) 1996-12-26 1998-07-14 Ntn Corp トリポード型等速自在継手及びその製造方法
JPH11210776A (ja) 1998-01-26 1999-08-03 Honda Motor Co Ltd 等速ジョイントおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008311A (en) * 1960-04-29 1961-11-14 Dana Corp Universal joint
FR2486180A1 (fr) * 1980-07-07 1982-01-08 Glaenzer Spicer Sa Joint de transmission articule a galets
JPS5768930A (en) 1980-10-17 1982-04-27 Fujitsu Ltd Digital-analog converter
JPS5935730A (ja) 1983-07-21 1984-02-27 Matsushita Electric Ind Co Ltd 高周波加熱調理器
EP0836023B1 (en) 1996-02-05 2005-05-04 Ntn Corporation Tri-pod constant velocity universal joint
FR2785342B1 (fr) * 1998-11-02 2002-05-10 Ntn Toyo Bearing Co Ltd Joint homocinetique universel
JP3949865B2 (ja) 2000-01-21 2007-07-25 Ntn株式会社 等速自在継手
JP2002054649A (ja) 2000-08-11 2002-02-20 Ntn Corp トリポード型等速自在継手
EP1612438A4 (en) * 2003-04-08 2007-08-29 Honda Motor Co Ltd HOMOKINETIC COUPLING AND MANUFACTURING METHOD THEREFOR

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768930U (ja) * 1980-10-14 1982-04-24
JPS5935730U (ja) * 1982-08-30 1984-03-06 三菱自動車工業株式会社 等速ジヨイント
JPH07151158A (ja) * 1993-08-12 1995-06-13 Gkn Automot Ag 三脚型の等速自在継手
JPH08338439A (ja) * 1995-06-12 1996-12-24 Honda Motor Co Ltd 等速ジョイント
JPH09151952A (ja) * 1995-11-30 1997-06-10 Ntn Corp トリポード型等速自在継手のトラニオン部材
JPH1096430A (ja) * 1996-09-20 1998-04-14 Ntn Corp トリポード型等速自在継手
JPH10184717A (ja) 1996-12-26 1998-07-14 Ntn Corp トリポード型等速自在継手及びその製造方法
JPH11210776A (ja) 1998-01-26 1999-08-03 Honda Motor Co Ltd 等速ジョイントおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1726839A4 *

Also Published As

Publication number Publication date
US7641558B2 (en) 2010-01-05
EP1726839A4 (en) 2009-09-30
EP1726839A1 (en) 2006-11-29
US20070167243A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP5201272B2 (ja) 無段変速機
WO2021054479A1 (ja) 逆入力遮断クラッチ
EP1328736A2 (en) Constant velocity joint of tripod type
KR20040036572A (ko) 트리포드형 등속 조인트
CN107466341B (zh) 三球销型等速万向联轴器
CN100526666C (zh) 等速万向节
US7435181B2 (en) Tripot ball with two point contact
US20020055389A1 (en) Constant velocity joint of tripod type
JP2006207815A (ja) 自動二輪車トランスミッション用の合成シフトレバーカム
WO2005083283A1 (ja) 等速ジョイント
EP2141375A1 (en) Trunnion, toripod-type constant-velocity universal joint using the trunnion and method of producing the same
US7371179B2 (en) Tripod constant-velocity universal joint
JPWO2016158106A1 (ja) 摩擦ローラ式減速機
JP2006112495A (ja) 等速ジョイント
US7140968B2 (en) Universal joint with a securing element
JP6265061B2 (ja) 遊星ローラ式トラクションドライブ装置
JP2009024725A (ja) 摺動式トリポード形等速ジョイント
JP2004257418A (ja) トリポード型等速自在継手
JP2006017136A (ja) 等速ジョイント
JP4478519B2 (ja) 等速ジョイント
US20120252589A1 (en) Constant velocity joint
WO2006035650A1 (ja) 等速自在継手及びその製造方法
JP2008064252A (ja) トリポード型等速自在継手
JP4624892B2 (ja) 等速自在継手
JP2010014198A (ja) 摺動式トリポード型等速ジョイント

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007167243

Country of ref document: US

Ref document number: 10589896

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4985/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580006915.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005719706

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005719706

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10589896

Country of ref document: US