WO2005078088A1 - Dnaなどの分離精製機構 - Google Patents

Dnaなどの分離精製機構 Download PDF

Info

Publication number
WO2005078088A1
WO2005078088A1 PCT/JP2004/001465 JP2004001465W WO2005078088A1 WO 2005078088 A1 WO2005078088 A1 WO 2005078088A1 JP 2004001465 W JP2004001465 W JP 2004001465W WO 2005078088 A1 WO2005078088 A1 WO 2005078088A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
buffer
purification
monolith
nucleic acid
Prior art date
Application number
PCT/JP2004/001465
Other languages
English (en)
French (fr)
Inventor
Abudogupur Abudokirim
Masayoshi Ohira
Kensuke Okusa
Nobuo Seto
Masahiro Furuno
Original Assignee
Gl Sciences Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gl Sciences Incorporated filed Critical Gl Sciences Incorporated
Priority to EP04710506A priority Critical patent/EP1719816B1/en
Priority to JP2005517842A priority patent/JP4597870B2/ja
Priority to US10/597,954 priority patent/US8586350B2/en
Priority to PCT/JP2004/001465 priority patent/WO2005078088A1/ja
Publication of WO2005078088A1 publication Critical patent/WO2005078088A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers

Definitions

  • the present invention relates to a mechanism for separating and purifying DNA and the like.
  • nucleic acid-containing substances include biological fluids such as cultured cells, tissues, blood, serum, urine, and feces, bacteria such as bacteria and Mycobacterium tuberculosis, and HIV ⁇ biological materials such as viruses such as hepatitis B and C. It is mainly a substance, and plasmid DNA, genomic DNA, chromosomal DNA, RNA, mitochondrial DNA, fragment DNA, etc. can be separated and purified.
  • the purification efficiency can be considered to be equal to the efficiency of contact between the carrier surface and the biological sample.
  • the carrier to be adsorbed is held in a container (cartridge, chip, etc.), the biological sample is passed through the container, and the nucleic acid is adsorbed on the carrier with an adsorption buffer solution. It is common to use a washing solution to drive out contaminants other than nucleic acid components out of the cartridge, and then pass the eluate to remove nucleic acid components together with the solution.
  • the beads are made smaller and the amount is increased in order to increase the contact efficiency between the surface and the nucleic acid.
  • the pressure at the time of passing the liquid increases, and the operability is remarkably reduced.
  • the space between beads is reduced, and the nucleic acid molecule has a large molecular weight.
  • the pressure is increased and the amount of the eluted solvent is also increased, and the concentration efficiency is reduced.
  • beads or wool is used, a small amount of the particles or particles enter the eluate, which is a problem for later applications.
  • the filling method when filling the container is uncertain, the separation time and the pattern will change, so that there is a problem that the stability of the separation is poor.
  • the method of using a membrane or a filter as a carrier is easy to use;!: The merit that can be obtained has a certain force S, it is difficult to control the pores suitable for separation, and it is not practical.
  • the method of using a polymer requires a specific reaction with nucleic acid depending on the nature of the polymer, and the separation system becomes complicated due to the presence of a portion that has an effect other than the portion. The spirit of simple protocols Production is impossible.
  • a nucleic acid mixture is prepared from an aqueous solution containing a high concentration of salt (ionic strength) and containing an organic acid such as aliphatic alcohol or polyethylene daricol, or a porous or non-porous inorganic substrate such as gel or glass.
  • a method for obtaining a nucleic acid by adsorbing on the top, washing, and then eluting with a solution containing a lower concentration of salt (ionic strength) has been proposed in Japanese Patent Application Laid-Open No. 8-501131.
  • a nucleic acid mixture is adsorbed on an inorganic substance from an aqueous solution containing a high concentration of salt, and nucleic acids are eluted with a solution containing a low concentration of salt, for example, DNA.
  • a solution containing a low concentration of salt for example, DNA.
  • the sample is contained in a large piece of agarose, it must be processed using multiple columns, the eluted fragment DNA is pooled, and the resulting fragment DNA contains salts and organic solvents. And desalting and other operation steps are required, and the purified DNA may be lost during ethanol precipitation. Disclosure of the invention
  • the above-mentioned points of the prior art are improved, and adsorption and elution and separation can be performed extremely easily and easily, and elution with a high concentration of salt is not performed.
  • it aims to propose a highly reproducible method in which the separation and purification of fragment DNA and the like is remarkably efficient. It is an integrated Molinos structure that has a continuous through hole from one end to the other end, and a through hole corresponding to a nucleic acid size of 35 bp (mer) and lOOK bp (mer).
  • the monolith structure is characterized in that the solution containing the nucleic acid to be separated is passed so that the nucleic acid corresponding to each of the through holes can be retained, and the monolith structure is made of an inorganic material such as glass, silica, or the like. It is a hybrid body containing organic matter in the machine, characterized by using a porous body having a macropore passing through from the upper surface to the lower surface.
  • the porous body of the monolithic structure is a macro body. It is characterized by having micropores inside the pores, and the porous body of the monolithic structure has macropores of 1 to 100 ⁇ m and micropores of 0 to 100 nm.
  • the monolithic solid-phase column is formed by detachably mounting a base composed of a monolithic structure on a cylindrical body that is open up and down. Is used.
  • nucleic acid adsorption and separation can be performed without using sensitive reaction conditions, so that dissolution and adsorption with a high concentration of salt are not required, and concentration and desalting operations are not required.
  • it can be dissolved in a salt-free solution or sterile water, and a highly purified fragment DNA or the like can be easily obtained.
  • FIG. 1 is a comparison diagram of the first embodiment of the present invention with the conventional method
  • FIG. 2 is a comparison diagram of the first embodiment of the present invention with the conventional method
  • FIG. 3 is a diagram of the first embodiment of the present invention.
  • FIG. 4 is an evaluation chart by HP LC.
  • FIG. 5 is a DNA fragment purification separation diagram
  • FIG. 5 is a DNA fragment purification separation diagram of Example 4 according to the present invention
  • FIG. 6 is a DNA fragment purification separation diagram of Example 5 according to the present invention
  • FIG. FIG. 8 is a separation diagram of a single-stranded PCR amplification product of Example 6 according to the present invention
  • FIG. 8 is a comparison diagram of purification with sodium and potassium of Example 7 according to the present invention
  • FIG. 10 is a slant diagram for disk explanation as above
  • Fig. 11 is a slant diagram for collection tube same as above
  • Fig. 12 is a slope for monolith solid phase column as above.
  • the present inventors have found that, when an efficient monolith structure is used for nucleic acid purification and buffer conditions are adjusted, it is not necessary to use a buffer having a high salt concentration, which has been widely accepted. I found it.
  • Tris-HCl EDTA which is added for storing nucleic acids
  • only water dissolves and dissolves from the adsorbed carrier.
  • chloride is used as a solvent to supply ions that are thought to react with isopropanol and silanol groups, which act as a separation solvent
  • guanidine hydrochloride a chaotropic salt for dissolving agarose gel, is used as the adsorption solvent. .
  • an alkali metal salt which is likely to become a cation, easily causes a dehydrogenation reaction, whereby the cation causes a cationic cross-linking reaction with the phosphate moiety of the nucleic acid, and is considered to adsorb the nucleic acid.
  • the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium.
  • potassium salts which have low electronegativity, easily become cations, and undergo a cationic cross-linking reaction, are liable to react. It is useful because it does not. It should be noted that sodium salts will interfere with subsequent applications. Therefore, it cannot be used without desalting operation and is not very useful.
  • this apparatus and method does not require desalting or alcohol precipitation, and allows the obtained purified solution to be directly used in subsequent operations (PCR, cloning, sequencing, enzymatic operations). become. Simplification of the operating procedure is very important to prevent nucleic acid damage.
  • An object of the present invention is to use a monolithic structure having a high purification efficiency or a glass and use a simpler buffer so as not to affect the subsequent operation of various applications such as clawing, and to remove nucleic acids. It is to provide a method that can be purified.
  • the monolith structure refers to an integrated porous body having an open macropore that communicates from the upper end to the lower end, and many macropores with macropores are synthesized. .
  • the monolith structure can be mainly produced by a sol-gel method. That is, the metal alkoxide is partially hydrolyzed to form a reactive monomer, and the monomer is polycondensed to form a colloidal oligomer (formation of a sol), which is further hydrolyzed to promote polymerization and crosslinking, It is synthesized by creating a three-dimensional structure (generating a gel).
  • an organic / inorganic hybrid monolith can be easily prepared. Therefore, chemical characteristics can be added depending on the type of the organic monomer to be added. For example, by adding an organic monomer having a hydrophilic group, the water absorption of the aqueous sample component can be improved. In addition, by adding an organic monomer having a functional group that exhibits selective chemical action, it can be used for adsorption of characteristic components that become impurities in purification, and the impurities can be left in the solid phase to improve nucleic acid purification efficiency. You will be able to upgrade. In addition, by introducing a polymer with a high modulus of elasticity into the sol-gel process, the monolith structure can be made elastic. Can also be. Basically, by mixing organic and inorganic materials, it becomes possible to increase the chemical stability of the monolith structure.
  • the organic / inorganic hybrid monolith structure produced by the sol-gel method can be used to construct a chemical surface according to the purpose with the type of organic monomer added, or to improve the chemical stability.
  • the monolithic properties that are effective in DNA pretreatment can be freely improved according to the purpose.
  • the monolith prepared by the sol-gel method is suitable as the solid phase for DNA of the present invention because of its low metal content.
  • General silica gel is made from sodium silicate, etc., leaving a large amount of metal.
  • some are made from purified sodium silicate and some are high-purity siligels from the sol-gel method, but they are expensive and are not suitable for disposable, which is the usual mode of use .
  • it is a batch synthesis at the time of particle preparation and there is a high possibility that metal concentration will occur from the synthesis atmosphere.
  • silica gel has been devised by washing with hydrochloric acid, nitric acid, or the like, and addition of EDTA or the like to reduce the influence of metal has not been required in the solid phase of the present invention.
  • a monolithic solid phase can be created by glass phase separation. Basically, it has the same effectiveness as the synthesis of the monolith structure from the sol-gel method, but since the macropore can be made larger than the sol-gel monolith, the secondary micropores are formed on the inner surface. It is effective when making it. Furthermore, there is an advantage that glass phase separation has higher alkali resistance than its composition and can be regenerated by alkali washing.
  • fragment DNA is For purification from DNA gels, single-stranded DNAs and RNAs, etc., in the presence of chaotropic salts, it is adsorbed on glass or silica for purification from DNA gels, PCR products, restriction enzyme-treated DNA, RNA, etc.
  • a monolith structure formed by the above that is, an integrated porous body having an open structure in which pores communicate from the upper end to the lower end is used and adsorbed on the monolithic structure.
  • the present invention has a part in common with the prior art in that a substance adsorbed on glass or silica gel particles is extracted from an agarose gel or a PCR reaction solution in the presence of a chaotropic salt.
  • This conventional technique quantitatively causes adsorption in the presence of a high concentration of a kato-mouth pick salt, and elution of the adsorbed nucleic acid is performed at a lower salt concentration.
  • the method disclosed in Japanese Patent Application Laid-Open No. 8-501131 is a method in which nucleic acids to be separated are subjected to nucleic acid fractionation in one operation step without a preliminary purification step.
  • This requires extreme reaction conditions with a high concentration of salt buffer, and narrows the applicable molecular weight range of nucleic acids.
  • purified DNA is extremely dilute and contains salts and organic solvents, so it is necessary to further precipitate or concentrate ethanol.
  • the present invention improves on these drawbacks and does not adsorb or elute at high concentrations of salt but elutes with water. This results in very high concentrations and further A sample that does not require purification is obtained.
  • An object of the present invention is to purify a DNA fragment from an agarose gel, a PCR amplification reaction DNA solution, a fragment DNA from an enzyme reaction solution, and the like.
  • the present invention relates to DNAs of 3513 1) to 1001 ⁇ 31) from a standard agarose gel or a low-boiling agarose gel prepared with a Tris acetate (TAE) buffer or a Tr.is borate (TBE) buffer. Extraction and purification of the fragments are possible, and a recovery of 60 to 80% can be obtained.
  • the PCR product of 35 bp ⁇ : LOOKbp can also be directly purified from the PCR amplification reaction solution, and a recovery of 80 to 95% can be obtained. Since the obtained fragment DNA does not contain salts or organic solvents, there is no need for ethanol precipitation, desalting or concentration.
  • the product is a monolith-based system with a maximum DNA binding capacity of 5-8 ⁇ g, and can recover isolated fragment DNA in as little as 5 minutes.
  • a buffer (dissolution, adsorption buffer)
  • A1 buffer for PCR reaction solution (guanidine hydrochloride 1-8 M, potassium acetate 0.1-: less than LM, 2-propanol 1-70%)
  • A2 buffer for agarose gel (1-8 M guanosine thiocyanate, less than 0.1-1 M potassium acetate, 2-propanol 1-70%)
  • B buffer 0.1-1 M less potassium acetate
  • Ethanore 1 ⁇ 80%
  • guanidine hydrochloride is preferably guanidine thiocyanate, more preferably 1 to 8M. More than 40% of 2-propanol is efficient.
  • the elution buffer solution C can be eluted with water, but RNase-free water treated with an ultrafiltration membrane or treated with diethylpyrocarbonate to prevent contamination by various bacteria It is recommended to use When storing the purified DNA, water to which EDTA buffer has been added in advance may be used as elution buffer solution C in order to prevent bacterial contamination. From the viewpoint of the separation mechanism, the purification efficiency does not change depending on the presence or absence of the EDTA buffer.
  • the reaction between the phosphoric acid group of the nucleic acid and the silanol group can be efficiently advanced by using the monolith structure for the substrate.
  • the sample is purified while silica particles adhere to an inevitable sample, thereby preventing a problem of silica carryover that may hinder a so-called application reaction.
  • the pressure at the time of separation can be kept low, and unlike using filler, sealing It has advantages such as no need for a stopper.
  • This monolithic structure can be produced by, for example, a so-called sol-gel method in which an inorganic porous material such as silica gel is purified from a polymerizable low-molecular compound sol to finally obtain an aggregate or polymer gel. I can do it.
  • This method generally has a central pore diameter of 1 to 100; um, but several nm can be achieved due to subsequent technological advances.
  • a monolith structure in which pores are present in a silicic skeleton having two types of pores can be created by utilizing spinor-dal decomposition in the sol-gel process.
  • a porous body having a structure in which a porous body having micropores having an open structure is filled inside macropores penetrating from the upper surface to the lower surface can be produced.
  • this porous body has a macropore diameter of 1 to 100 m and a micropore of 0 to LOOnm.
  • the through-holes of the porous body can be formed as desired by the manufacturing method. Therefore, the through-holes are appropriately selected and formed, but a thickness of about 1 to 100 m is easy to use. However, this choice is determined by the raw materials used, eg, agarose gel-PCR reaction, buffer, and for its purpose.
  • a cylindrical column tube 1 is formed, and a sealable lid 3 is detachably provided at an upper end open portion 2.
  • An outlet 4 having a small diameter is formed at the lower end, and a step 5 is provided at an upper portion of the outlet 4 to form a medium diameter portion 6.
  • a disc 7 as a substrate formed of a monolithic structure can be placed or fitted on the step 5.
  • the disk 7 has substantially the same shape as the medium-diameter portion 6 and has a desired thickness, for example, a disk shape of about 0.1 to 1 Omm or a conical shape if desired. Good.
  • the column tube 1 and the disk 7 constitute a monolithic solid phase column 9.
  • Reference numeral 8 denotes a collection tube having a diameter that allows passage of the column tube 1 and an upper end edge of the column tube 1 that can be locked at an upper portion.
  • Polypropylene is used for the column tube 1 and the collection tube 8, but organic polymers that do not affect nucleic acids, such as polyethylene, polyethylene terephthalate, polystyrene, and inorganic compounds such as glass and silica are used. Can be used if it has good strength.
  • the disk 7 is mentioned as a base of the monolith structure, the present invention is not limited to this, and it can be used in a dish-shaped or cylindrical-shaped mold through which a solution can freely pass.
  • the molecular size of DNA is said to be about 3.4 nm per 10 base pairs.
  • macropores of ⁇ 10 / m, 30 Kbp3O ⁇ Kbp DNA It is thought that a DNA molecule with a pore size of about 100 / im can pass through DNA molecules without damaging or soiling the DNA molecules.
  • micropores are added. Based on experience in various tests and experiments, if the micropore is around 10 nm, there is an interaction with a compound with a molecular weight of 100,000, and if the micropore is around 10 nm, there is an interaction with a compound with a molecular weight of hundreds to tens of thousands. It has been confirmed that, for a compound having a higher molecular weight, a state in which micropores, which promote the destruction of the molecule, are infinite, that is, 0 nm is preferable.
  • a monolith structure having a macropore of 1 to 100 ⁇ m, preferably about 20 ⁇ m and a micropore of 0 to 100 nm, preferably about 10 nm is used. Purification of a wide range of DNAs from 35 bp (mer) to LOOK bp (mer), as in Examples, is sufficiently possible.
  • This protocol is designed for the purpose of purifying double-stranded DNA fragments from a PCR reaction solution. If one monolithic solid-phase column and a purification buffer are used, centrifugation can be performed to obtain 35 bp to: LOOK bp. Fragments can be separated from primers, nucleotides, polymerases, salts and the like.
  • buffer A1 adsorption buffer
  • wash buffer B with about 300 ⁇ l (wash buffer).
  • the monolithic solid phase column can be operated with a suction manifold including a general luer adapter. This protocol has been designed to purify double-stranded DNA fragments from PCR reactions. If one monolithic solid phase column and a purification buffer are used, the fragmentation of 35 bp to: LOOK bp can be separated from primers, nucleotides, polymerases, salts, and the like by a sample processing operation using a suction device.
  • buffer A1 adsorption buffer
  • wash buffer B with about 300 ⁇ l (wash buffer).
  • the sample solution to the monolithic solid phase column 9 without leaving it.
  • the maximum volume to be added is 8001 and the sample volume is 800 ⁇ l. If the amount is large, add in several portions.
  • Centrifugation is required to completely remove the residual ethanol from the buffer. (Suction and dry until the liquid has passed through the monolithic solid phase column. This is a necessary means to completely remove the washing buffer remaining in the monolithic solid phase column 9.)
  • the elution efficiency is maximum when ⁇ 8 is between 8 and 8.5. When using a sterile water system for elution, it is advisable to confirm that ⁇ ⁇ ⁇ is within this range.
  • This protocol is designed for the purification of D ⁇ fragments from standard or low-melting agarose gels ( ⁇ or ⁇ ⁇ ⁇ buffer), and using a single monolith column and purification buffer.
  • 3 5 b! To 10 OK bp fragments can be separated from primers, nucleotides, polymerases, salts and the like.
  • a single monolith column can process up to 100 mg of agarose. Add 10 ⁇ l of Buffer ⁇ (dissolution, adsorption buffer) to 1 mg of agarose gel. Wash buffer B with about 5001 (wash buffer).
  • the monolith column can be operated by a suction manifold including a luer adapter. This protocol was designed to purify DNA fragments from standard or low-melting agarose gels (using TE or TBE buffer). If one monolithic column and a purification buffer are used, a fragment of 35 bp to 10 OK bp can be separated from primers, nucleotides, polymerases, salts, etc. by a sample processing operation using a suction device.
  • Elution is performed by centrifugation at ⁇ 10,000 rpm in a tabletop microphone-mouth centrifuge.
  • the following methods can be used to purify the enzyme reaction mixture using a monolithic solid phase column.
  • This protocol was designed to purify double-stranded DNA fragments from enzyme reactions such as restriction enzyme digestion and labeling reactions. If one monolith column and a purification buffer are used, a fragment of 35 bp to 10OKb: can be separated from enzymes, primers, nucleotides, salts, and the like by centrifugation.
  • wash buffer ⁇ with approx. 301 (wash buffer).
  • the monolith column is connected to a suction manifold including a luer adapter. More operations can be performed. This protocol was designed for the purpose of purifying a double-stranded DNA fragment from an enzyme reaction solution such as a restriction enzyme digestion-labeling reaction. If one monolithic column and a purification buffer are used, a fragment of 35 bp to 35 Kbp can be separated from enzymes, primers, nucleotides, salts, etc. by a sample processor using a suction device.
  • buffer A1 adsorption buffer
  • wash the buffer with about 300 ⁇ l (one washing buffer).
  • silica gel particles, glass particles, and those obtained by filtering them are used. In all of them, the space through which the liquid passes will pass through the particle surface, and will hit the particles, causing turbulence and an uneven flow. Therefore, touching all surfaces uniformly Can not.
  • the monolith structure has an integral structure and continuous holes inside, so the image passes through the inside of the particle. That is, all the liquids come into uniform contact.
  • the skeleton is small, and the flow is uniform without turbulence after the liquid is hit.
  • the reaction is easily caused by increasing the chaotropic salt concentration in order to prevent the escape.
  • salt precipitation occurs and limits are imposed, so that the collection of small molecule DNA is limited.
  • the monolith type of the present invention a uniform liquid flow is ensured, and adsorption of lower-molecular-weight DNA becomes possible.
  • an inorganic base material is disposed near an outlet of a cylindrical hollow body having an inlet and an outlet, and the inorganic base material is sandwiched between tightly packed polyethylene frit. There are examples that are retained. (Patent Document 3)
  • the portion contributing to the separation is the inorganic base material portion, and the upper and lower frit are used to hold the inorganic body in a hollow body. No matter how tight it is, a space will be created between the frit and the inorganic material, and the liquid will remain in that space. Liquid in that space Expulsion and replacement becomes difficult.
  • the depressurization method if a gas phase part is formed in a part, the part flows preferentially, and the liquid cannot be drained uniformly. In the sample addition and washing steps, replacement of the liquid becomes difficult.
  • the pores of the orifice through which the liquid flows become a continuous body, and the liquid changes uniformly in the direction of flow. That is, the displacement efficiency of the liquid greatly increases.
  • this conventional type is considered to be one of the causes of a large amount of sample components remaining after the second elution.
  • the monolith structure of the continuum according to the present invention it can be seen that, since the displacement efficiency of the liquid is high, one elution is sufficient, and the second dissolution hardly remains.
  • the monolithic structure is an integral structure, and there is no variation when the monolithic structure is pushed into the hollow body.
  • it is expensive as a commercial product and does not exist, it is also possible to further crush the frit and the inorganic material into one, but this method also creates a different layer at the crushed interface. Liquid flow is impeded compared to monolith structures, which also have uniform continuous holes.
  • an inorganic substance such as silica gel and an organic substance such as polyethylene as a frit material are mixed in the sol-gel process, it is possible to prepare a uniform phase of a hybrid having the properties of silica and polyethylene. It is. If the inorganic material is in the form of particles, the upper and lower flits are indispensable to stop it, and the problem of replacement efficiency as described above arises.
  • Silica gel film with silica fiber ⁇ kel particles embedded for example, 3M company Even if Mporeadisk (registered trademark) is used as an inorganic material, it still has no physical hardness, and may be deformed due to rapid decompression or high-speed centrifugation, and some of the fibers and particles may be eluted. is there. Even with a slight deformation, the volume of space will change, which will be a factor of variation. In the monolithic structure, reproducibility can be obtained because it is not deformed even by pressure fluctuations because it is separated by continuous pores inside a rigid skeleton.
  • Mporeadisk registered trademark
  • a monolithic structure that does not generate turbulence can achieve adsorption of low-molecular-weight DNA and high cleaning effect.
  • the channels of the conventional type particles and the micropores in the monolith structure of the present invention are different in that they are in contact with the liquid flow.
  • particle type there is no uniformity of pressure in the liquid resistance between the side where liquid enters and the side where liquid exits, and the contact of the liquid inside the pores differs.
  • HPLC pressurized system
  • the pressure can be made uniform, so the effect is reduced.
  • the inlet side is at normal pressure
  • the outlet side is under negative pressure, and particles Ingress and egress into and out of the pores in one piece becomes uneven.
  • the same component may or may not enter the pores depending on the component molecules, and the width at the time of elution will increase in total. Therefore, it is difficult to remove only the components to be removed at the time of washing, and the finally eluted components remain in the low molecular side primer as in the conventional example shown in Example 1.
  • the micropores are present on the surface of the macropores through which the liquid flows, so that all of them enter uniformly. Therefore, it is possible to easily remove the primer which is a low molecular impurity.
  • the conventional method for large DNA, it is difficult to get into the small holes, and the viscosity of the liquid containing the components also increases, so that the contact becomes uneven and two phenomena occur simultaneously. It is considered that many parts are not adsorbed. The turbulence also causes physical damage to the high molecular weight DNA, increasing the possibility of rupture.
  • the salt concentration can be reduced, and the above problems can be solved, which is very effective.
  • it is more effective to use a combination of a permeate with a cation exchange action.
  • Potassium salt has a strong cation exchange effect and contributes to the adsorption of nucleic acids to the surface.However, if it remains on the substrate surface during elution, the problem arises that the target purified DNA will not elute. However, reliable cleaning is indeterminate. In the case of the particle type, turbulence is generated even during washing, and the penetration into the pores is uneven, so that a portion where the potassium salt remains in the substrate at a high concentration is inevitably formed.
  • a buffer that can remove potassium, that is, other salts may be added to the eluate, but this is still not suitable for the purpose of later application. '
  • the potassium salt works effectively because a uniform flow of the liquid and a uniform penetration into the pores are possible. .
  • Example 1 For purification of a PCR reaction solution (fragment DNA), pCR amplification reaction product 50/1 was mixed with buffer A 1 (1 M guanidine hydrochloride, 0.2 M potassium acetate, 50% 2-propanol). ) Mix to 300 / zl. Insert the silica monolith solid phase column 9 into the collection tube 8, inject the mixture into the silica monolith solid phase column 9, and centrifuge in a 1.5 ml centrifuge tube. Wash the silica monolith solid phase column 9 with B buffer (0.2 M potassium acetate, 50% ethanol) to remove salts.
  • buffer A 1 1 M guanidine hydrochloride, 0.2 M potassium acetate, 50% 2-propanol
  • elution buffer C EDTA 4 mM, Tris — HCI 1 OmM, pH 8 or sterile DNA, RNA free water
  • elution buffer C EDTA 4 mM, Tris — HCI 1 OmM, pH 8 or sterile DNA, RNA free water
  • (1) is an evaluation by electrophoresis of a sample (400 bp) purified by the conventional method of Patent Document 3.
  • 2 is the method of the present invention.
  • (1) a large amount of the lower (lower) portion remains, but in (2), almost no residue remains, and high purification efficiency is obtained.
  • 11 and 1 and 2 are performed by the conventional method twice and the remaining is observed, and 2 and 1 and 2 are those of the present invention. In the case of the present invention, it hardly remains in the first run, indicating that high purification efficiency can be obtained.
  • Figure 3 shows the evaluation using HPLC.
  • HPLC conditions are as follows HPLC conditions
  • a / B 50 / 50- (10MIN) -0/100 Flow rate: 3ral / min
  • the HPLC evaluation data of the unpurified PCR solution is the top chromatogram, which shows a change in the pattern as compared to the conventional Kokuto Mataram (bottom) purified by the method of Patent Document 3.
  • dNTPS and the primer were hardly excluded.
  • the two peaks of dNTPS and the primer were significantly removed as in the second method, indicating that the target nucleic acid was highly purified.
  • Example 2 In the purification of DNA fragments from agarose gel, the PCR amplified product was electrophoresed on a standard or low-melting-point agarose gel (using TE or TBE buffer), and the DNA was converted to agarose gel. Or in 8 £ 0.5%). Cut the DNA fragment to be isolated with a clean force razor or scalpel from the gel and place it in a 1.5 ml centrifuge tube. Mix in Buffer A 2 (2 M guadindinocyanic acid, 0.4 M potassium acetate, 30% 2-propanol) at 300/1 and dissolve gel slice completely at 60 ° C for 5 minutes. Incubate until done.
  • Buffer A 2 (2 M guadindinocyanic acid, 0.4 M potassium acetate, 30% 2-propanol
  • the lysate was introduced into the monolithic solid phase column 9 according to Example 1, and the mixture was injected into the monolithic solid phase column 9 in a 1.5 ml centrifuge tube. Centrifuge. Treat monolithic solid phase column 9 with buffer B (0.2 M potassium acetate, 50% ethanol) ⁇ : Wash more to avoid salt.
  • buffer B 0.2 M potassium acetate, 50% ethanol
  • small molecules from 35 bp to about lOOK bp are recovered. This indicates that a wide range of DNA can be purified from agarose gel. Similar results were obtained with water containing no EDTA buffer as the elution buffer.
  • Example 3 DNA 100 ⁇ g after restriction enzyme reaction is treated with a restriction enzyme. This DNA restriction reaction solution was mixed with buffer A1, 300 ⁇ l according to Example 1, and the subsequent processing was performed in the same manner as in Example 1. After elution, the obtained purified DNA did not contain restriction enzymes and salts, and the ratio of absorbance measurement (mm) 260 Z280 was as good as 1.8.
  • Example 4 For purification of a 35 bp PCR product with a small molecular size, PCR amplification reaction product 101 was mixed with buffer A1, 100 ⁇ l according to Example 1, and the subsequent processing was performed. Was performed in the same manner as in Example 1. (See Fig. 5) ⁇ : molecular weight marker, 1: sample before purification, 2: sample purified by the present invention.
  • Example 5 For purification of a PCR amplification product having a large molecular size (from 100 bp to 100,000 bp), use PCR amplification reaction solution (20 ⁇ l) according to Example 1 in buffers A1, 2 0 0 / ⁇ 1, and the subsequent processing was performed in the same manner as in Example 1. (See Fig. 6) In the figure, ⁇ ⁇ ⁇ ⁇ : molecular weight marker, 1: sample before purification, 2: sample purified by the present invention, 3: sample purified by conventional method.
  • Example 6 In the purification of a single-stranded DNA solution, 20 ⁇ l of the solution was mixed with buffers A 1 and 201 according to Example 1, and the subsequent treatment was performed in the same manner as in Example 1. (See Fig. 7) M: molecular weight marker, 1: purification Previous sample, 2: sample purified according to the present invention.
  • the single-stranded DNA 35 m er was not recovered by the conventional method (3) Force S, and in the present invention (2) It was recovered both times with good reproducibility.
  • DNA separation and purification characterized by adsorbing the corresponding nucleic acids to the through-holes of the monolithic monolith structure by intercalating the solution containing nucleic acids with metal salts, washing with a washing solution, and then eluting.
  • a method for separating and purifying DNA wherein the alkali metal salt is potassium acetate.
  • a method for separation and purification comprising using a dissolution and adsorption buffer containing 0.1 to less than 1 M of potassium acetate.
  • a method for separating and purifying DNA wherein dissolution and adsorption are carried out using a dissolution / adsorption buffer containing a guanidine salt or a potassium sulfate such as acetic acid potassium.
  • Tris A method for separating and purifying DNA, characterized by elution with water containing HCl and EDTA.
  • Dissolution, adsorption, separation, and washing operations are performed using a single monolithic solid phase column.
  • a method for separating and purifying DNA is performed using a single monolithic solid phase column.
  • Kit consisting of dissolution and adsorption buffer, water and separation and purification mechanism.
  • the separation and production mechanism of DNA and the like according to the present invention is very frequently used in molecular biology research, and is used for PCR, cloning, sequence sink, restriction enzyme digestion, and other enzyme actions. Particularly useful for purification of fragment DNA, etc., performed prior to application.Quantitative separation and efficient purification of a wide range of DNA of 35 bp (mer) and less than 100 Kbp (mer). Can be used to purify a wide range of nucleic acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Saccharide Compounds (AREA)

Abstract

核酸、就中フラグメントDNAの分離精製を極めて効率化し、再現性を高く行うものであって、高濃度の塩による溶出を行わず、溶出精製の必要がない簡単な機構、方法により高純度のフラグメントを得る。この機構はモノリス構造体を使用し、核酸、就中フラグメントDNAを精製するための機構であって、ガラスやシリカにより形成されるモノリス構造体、即ち、細孔が上端から下端まで連通した開放構造を有する一体が多孔質体であって、核酸大きさ35bp(mer)から100Kbp(mer)に対応する通孔が設けられている。

Description

明 細 書
DN Aなどの分離精製機構 技術分野
本発明は、 DNAなどの分離精製機構に関するものである。 背景技術
今まで、 核酸含有物からの核酸の精製分離法は、 核酸混合物を力オト 口ピックの塩の存在下でガラスやシリカゲルの粒子、 ガラス、 石英ウー ル、 シリカ、 ガラス膜、 ポリマーなどに吸着させることはよく知られて いる。 核酸含有物としては、 培養細胞 ·組織、 血液 ·血清 · 尿 · 糞便な どの体液、 バクテリア ' ヒ ト結核菌などの細菌、 H I V ■ B型肝炎 · C 型肝炎などのウィルスなどの生物学的原料物質が主なもので、 プラスミ ド DNA、 ゲノム DNA、 染色体 DNA、 RNA、 ミ トコンドリア D N A、 フラグメント DNAなどが分離精製可能である。
フラグメント DNAの精製は、 分子生物学的研究において、 非常に頻 繁に用いられる技術で、 P C R、 クローユング、 シークェンシング、 制 限酵素消化、 その他酵素的作用などのアプリケーションに先立って行わ れている。
例えば、 組換 M l 3ファージから DNAを単離する方法があり、 ガラ ス繊維フィルター上でカオトロピック物質の添加により、 M l 3ファー ジ DN Aを結合させ、 次いで分離洗浄乾燥を経て溶離する単離方法が Nucleic Acids Research Vol.15 5507-5516 (1987)に示されている。 又、 ガラスパゥダーを添加して D N Aをガラスパウダーに結合させ、 遠心分離して、ガラスパウダーを集め、洗浄、溶離し単離する方法が Pvoc. Natl . Acad. Sci. USA Vol . 76, 615- 619. (1979)に示されている。 又、 同様 の方法は、 特開昭 5 9— 2 2 7 7 4 4号公報、 Analyti cal Biochemistry Vo l. 121. 382-387. ( 1982) s Mol ecular cloning : A Laboratory Manual 188 - 190·. ( 1982)等に記載されている。
又、 複合性生物出発材料、 カオトロピック物質及びシリカ又はその誘 導体を含む核酸結合性固相を混合し、 核酸を結合した固相を液体から 分離し、 洗浄し、 核酸を溶離する方法が特許第 2 6 8 ひ 4 6 2号公報に 提案されている。
カオトロピック試薬の存在下で D N Aや R N Aを吸着させる物理的メ 力ニズムについては詳しくは明らかになつていないが、 負に帯電した担 体と、 核酸との間にカチオン交換反応が起こると考えられている。 従つ て精製の効率は、 担体表面と生体試料の接触の効率とィコールと考える ことができる。
前記のどの担体を使用するにしろ、 吸着させる担体を容器 (カートリ ッジ、 チップなど) に保持し、 その容器に生体試料を通液し、 吸着バッ ファー液で担体に核酸を吸着させ、 その後洗浄液で核酸成分以外の夾粹 物をカートリ ッジ外に追い出し、 更にその後、 溶出液を通液して核酸成 分をその液と共に取り出す手順が一般的である。
その他に、 電気泳動やさまざまな抽出によってフラグメント D N Aを ァガロースゲルから精製することもよく行われるが、 この方法は時間が かかり、 得られた D N Aも極めて希薄となり、 塩や有機溶媒が含まれて いるため、 更にエタノール沈殿で脱塩や濃縮する必要が生じるものであ る。 又、 ゲル濾過精製テクノロジーのような従来法では、 分子量の類似 した分子同士を分離することは非常に困難である。
担体を使用するこれらの分離方法は、 高濃度の塩類を使う必要がある ため、 D N Aのガラスまたはシリ力ゲルの粒子表面での分解若しくは変 性をもたらす現象が確認されている。 高濃度のカオト口ピック塩の存在 下では、 この吸着は略定量的に生じるが、 吸着した D N Aの溶出は、 塩 類の緩衝液の存在下で行われる。 D N Aの断片の処理は 1 0 0塩基対( b p ) 〜: L 0, 0 0 0塩基対 (b p ) の範囲が限度で、 1 0 0塩基対 (b p ) 以下の D N A断片や 1 0, 0 0 0塩基対 (b p ) 以上の 1 0 0 , 0 0 0塩基対 (b p ) までの D N Aの定量的な分離や精製をすることは不 可能であった。
担体として、 ガラス粉末をベースにした調整方法では、 その表面と核 酸との接触効率を上げるために、 ビーズを小さくする、 量を増やすと云 うことが考えられる。 然し、 通液時の圧力が上がってしまい、 操作性が 著しく落ちると共に、 ビーズ間空隙が小さくなり、 核酸分子は分子量が 大きいため、 その空隙に入り込めず、 かえって効率が落ちると云う問題 が生じる。 又、 分離の向上を目的に容器の長さを長くすると、 圧力が上 がることに加えて溶出溶媒の量も増え、 濃縮効率が落ちること【こなり、 簡便な処理からは遠ざかってしまう。 更に、 ビーズやウールなどを使用 すると微量ながらそのかけらや粒が溶出液に入り込んでしまうので、 後 のアプリケーションに問題となる。 又、 容器に充填する際の充填法が一 定しないと分離時間やパターンが変わってしまうので、 分離の安定性が 悪いと云う問題も生じる。
担体として膜やフィルターを使用する方法は、 使い勝手よく加;!:でき るメ リ ツ トがある力 S、分離に適当な孔を制御して作成することが難しく、 実用性に乏しい。 , 又、 ポリマーを使用する方法は、 そのポリマーの性質によって核酸と 特異的に反応する働きが充分でなかったり、 又その部分以外に影響を与 える部分が存在したり と分離系が複雑になり、 単純なプロ トコルでの精 製は不可能である。
何れも高純度なフラグメント D N Aを精製することは不可能である。 又、 粉末シリカ樹脂や懸濁液が持つ取扱い難さや、 その後のアプリケー ション反応を妨げる虞がある等の欠点がある。
特許文献 2の発明に於ける如く、 複雑な出発材料から、 前処理なしで 核酸を直接単離する考え方は、 所謂 「消化」 と 「精製」 を同時に行うも のである。 そのために過激な反応条件が必要となり、 且つ適用できる核 酸の分子量範囲が狭くなると云う弊害が生じる。
核酸混合物を、 高濃度の塩 (イオン強度) を含み、 且つ脂肪族アルコ ールゃポリエチレンダリコール等の有機酸を含む吸着水溶液からシリ力 ゲル、 ガラス等の多孔質、 非多孔質の無機基体上に吸着させ、 洗浄させ、 次いでより低濃度の塩 (イオン強度) を含む溶液で溶出して核酸を得る 方法が特表平 8— 5 0 1 1 3 2 1号公報に提案されている。
然し、 この方法に於いては、 高濃度の塩を含む吸着水溶液から、 核酸 混合物を無機体上に吸着させること及び低濃度ではあるが、 塩を含む溶 液で核酸を溶出するため、 例えば D N Aサンプルが大きなァガロース片 に含まれる場合には、 複数のカラムを使っての処理が必要であり、 溶出 したフラグメント D N Aをプールし、 更に得られたフラグメント D N A に塩や有機溶媒が含まれるので、濃縮や脱塩等の操作工程が必要であり、 その上ェタノール沈殿中に精製 D N Aを損失する虞もある。 発明の開示
そこで本発明に於いては、 先行技術の上述した点を改良し、 吸着や溶 出分離が極めて簡単且つ容易に行えると共に、 高濃度の塩による溶出を 行わず、 溶出精製の必要がなく、 核酸就中フラグメント D N Aなどの分 離精製が著しく効率化された再現性の高い方法を提案せんとするもので、 一体型モリ ノス構造体であって、 一端から他端まで連続した通孔を形成 させ、 かつ核酸大きさが 3 5 b p (m e r ) 力 ら l O O K b p (m e r ) に対応する通孔が設けられ、 分離すべき核酸を含有する溶液を通過させ ることにより、 該通孔に対応する核酸が夫々保持できるように構成した ことを特徴とし、 モノ リス構造体は、 ガラス、 シリカ等の無機物又は無 機物に有機物を含有するハイプリ ッド体であって、 上面から下面まで貫 通しているマク口細孔を持つ多孔質体を使用することを特徴とし、 モノ リス構造体の多孔質体はマク口細孔の内部にミク口細孔を有することを 特徴とし、 モノ リス構造体の多孔質体はマクロ細孔 1〜 1 0 0 μ m、 ミ クロ細孔 0〜 1 0 0 nmであることを特徴とし、 カラムチューブにモノ リス構造体により形成されるデイスクを配置することにより、 モノ リス 固相カラムを構成することを特徴とし、 上下を開放した筒状体に、 モノ リス構造体により構成した基体を着脱自在に装着して形成したモノ リス 固相カラムを使用することを特徴とする。
本発明によれば、 l O O b p (m e r ) 以下の D N A断片や 1 0 0 0 0 b p (m e r ) 以上の l O O K b p (m e r ) までの広範囲の DNA 断片の定量的な分離や効率的な精製が可能である。 又、 過敏な反応条件 を使用しないで核酸の吸着分離が可能となり、 高濃度の塩による溶解、 吸着が必要なく、 濃縮や脱塩の操作が必要なく、 核酸精製就中 DN Aフ ラグメントの精製が容易である。 又、 塩を含まない溶液又は無菌水で溶 出でき、 高純度フラグメント D N Aなどが容易に得られる。 図面の簡単な説明
図 1は、本発明による実施例 1の従来法との対比図であり、図 2は、 本発明による実施例 1の従来法との対比図であり、 図 3は、 本発明実施 例 1の HP L Cによる評価図であり、 図 4は、 本発明による実施例 2の D N Aフラグメント精製分離図であり、 図 5は、 本発明による実施例 4 の D N Aフラグメント精製分離図であり、 図 6は、 本発明による実施例 5の D N Aフラグメント精製分離図であり、 図 7は、 本発明による実施 例 6の 1本鎖 P C R増幅産物分離図であり、 図 8は、 本発明による実施 例 7のナトリ ウムとカリ ゥムによる精製比較図であり、 図 9は、 本発明 一実施例カラムチューブ説明斜面図であり、 図 1 0は、 同上ディスク説 明斜面図であり、 図 1 1は、 同上コレクションチューブ説明斜面図であ り、 図 1 2は、 同上モノリス固相カラム説明斜面図である。 発明を実施する為の最良の形態
本発明者らは、 効率のよいモノ リス構造体を核酸精製に使用し、 バッ ファー条件を整えると、 これまで常識とされていた塩濃度の高いバッフ ァーを使用しなくてもよいことを見出した。 核酸保存のために加える ト リス塩酸 E D T Aのほかには水だけで、 吸着していた担体から結合が外 れて溶出する。 核酸を吸着させる際にも、 分離溶媒として働くイソプロ パノールとシラノール基と反応すると思われるイオンを供給する塩化合 物、 そしてァガロースゲルを溶解させるためのカオトロピック塩である グァニジン塩酸塩などを吸着溶媒とする。 このとき陽イオンになりやす い、 アルカリ金属塩が存在すると、 容易に脱水素反応を起こし、 それに よりその陽イオンがカチオン架橋反応を核酸のリン酸部分と起こし、 核 酸を吸着すると考えられる。 アルカリ金属は、 例えばリチウム、 ナトリ ゥム、 カリ ウム、 ルビジウム、 セシウム、 フランシウムなどが該当する。 中でも電気陰性度が小さく、 容易に陽イオンとなりカチオン架橋反応を するカリ ウム塩は反応が起こりやすく、 最後に、 核酸成分と一緒にィォ ン状態で溶出されるが、 後のアプリケーションの妨害をしないので有用 である。 尚、 ナトリ ウム塩はその後のアプリケーションの妨害となるの で、脱塩操作を行わないと使用できずあまり有用ではない。換言すれば、 この装置及び方法であれば、脱塩操作やアルコール沈殿などが必要なく、 得られた精製液をそのまま後の操作 (P C R、 クローニング、 シークェ ンシング、 酵素的操作) に持っていけることになる。 操作手順が簡便化 することは、 核酸の損傷を防ぐために非常に重要な事項である。
本発明の目的は、 精製効率のよいモノ リス構造体のシリ力やガラスを 使用し、 より簡単な緩衝液を使用することで、 その後のクローユングな どの各種アプリケーション操作に影響を与えず、 核酸を精製することが できる方法を提供することにある。
モノ リス構造体とは、 上端から下端まで連通した開放構造のマクロ細 孔を持つ、 一体型多孔質体のことを指し、 そのマクロ細孔に更にミクロ 細孔を持つものが多く合成されている。
モノ リス構造体は、 主に、 ゾルーゲル法で作成することができる。 即 ち、 金属アルコキシドを部分的に加水分解して反応性モノマーを作り、 このモノマーを重縮合してコロイ ド状オリゴマーを作り(ゾルの生成)、 更に加水分解して重合と架橋を促進させ、 三次元構造を作る (ゲルの生 成) ことで合成される。
この反応時に種々の有機モノマーを添加すると、 有機 ·無機ハイプリ ッ ドモノ リスも簡単に作成できる。 従って、 添加する有機モノマーの種 類によって、 化学的特性を加えることも可能となる。 例えば、 親水基を 持つ有機モノマーを添加することによって、 水系試料成分の吸水性を向 上することができる。 又、 選択的な化学作用を示す官能基を持つ有機モ ノマーを添加することによって、 精製における不純物となる特性成分の 吸着に利用し、 その不純物を固相に残すことで、 核酸の精製効率をアツ プすることができるようになる。 又、 弾性率の高いポリマーをゾルーゲ ル工程中に入れることにより、 モノリス構造体に弾力性を持たせること も出来る。 更に基本的には、 有機 ·無機を混在させることによって、 モ ノ リス構造体の化学的安定を上げることも可能となる。
これらのことは、 ゾル一ゲル法にて作成される有機 ·無機ハイプリ ッ ドモノ リス構造体は、 添加有機モノマーの種類で目的に応じた化学表面 を構成したり、 化学的安定性を向上したり と云う性質を付加できること を意味し、 D N A前処理に於いて有効なモノ リス特性を目的に応じて自 由に改善できることを示している。 更に、 ゾル一ゲル方法から作成した モノ リスは、 本発明の D N A用固相として金属含有が少ないと云う点で 適している。 一般的なシリカゲルなどは、 ケィ酸ナトリ ウムなどから作 成され、 多量の金属が残る。 確かに、 一部では精製したケィ酸ナトリ ウ ムからの作成やゾル一ゲル法からの高純度のシリ力ゲルもあるが、 それ らは高価であり、 通常使用態様である使い捨てには適さない。 又、 安価 に出来たとしても、 粒子作成時点ではバッチ式合成であり、 合成雰囲気 から金属濃縮が生じる可能性が大きい。
ゾル一ゲル法におけるモノリ 構造の合成に於いては、 連続行程によ り作成され、 金属のコンタミネーシヨ ンは全くない。 従来、 シリカゲル では、 塩酸や硝酸等で洗浄するなどの工夫や、 金属影響を減らすような E D T Aなどの添加があつたが、 本発明固相では全く必要ない。
もう一法として、 ガラス分相によってもモノリス構造固相を作成でき る。 基本的には、 ゾルーゲル法からのモノ リ ス構造の合成と同様の有効 性があるが、 ゾルーゲルモノ リスよりもマク口細孔を大きく作る事がで きるので、 2次ミクロ細孔を内部表面に作る場合に有効である。 更に、 ガラス分相は、 その組成より耐アルカリ性が高く、 アルカリ洗浄による 再生が出来ると言うメ リ ッ トがある。
以下、 図に示す実施例により、 本発明を詳細に説明する。
本発明に於いて最も基本的な構成は、 フラグメント D N Aをァガロー スゲル、 P C R反応物、 制限酵素処理 D N A、 1本鎖 D N A及び R N A 等から精製するために、 カオトロピック塩の存在下、 ガラスやシリカに 吸着させること、 殊に優れた分離能力を有するガラスゃシリ力により形 成されるモノ リス構造体、 即ち、 細孔が上端から下端まで連通した開放 構造を有する一体型多孔質体を使用し、 これに吸着させることにある。
フラグメント D N Aをカオトロピック塩の存在下ガラスゃシリ力に吸 着させることは、 前記の如く既に提案され実施されている。
然し、 従来の方法は全て充填材を使用していた。 このため、 充填材の 充填にばらつきがあり、 均一にならないこと、 また充填材通過の後に粒 が D N A液に残留してしまうこと、 液との接触面積が小さく反応効率が 悪いこと、 通液圧力が大きく扱いにくいこと等の欠点が残るものであつ た。
本発明は、 カオトロピック塩の存在下に於いて、 ァガロースゲル、 P C R反応液からガラスやシリカゲル粒子に吸着したものを抽出する点に 於いて、 従来の技術とある部分共通するところがあるものである。
この従来の技術は、 高濃度のカオト口ピック塩の存在下で吸着を定量 的に生じさせ、 吸着した核酸の溶出はより低い塩濃度で行なうものであ つた。 ,
然も、 特表平 8— 5 0 1 1 3 2 1号公報の方法は、 分離すべき核酸を 予備的精製行程なしに 1つの操作行程で、 核酸分画を行う方法である。 このために高濃度の塩のバッファーによる過激な反応条件が必要となり、 適用できる核酸の分子量範囲が狭くなる。 更に精製 D N Aは極めて希薄 で、 塩や有機溶媒があるため、 更にエタノール沈殿や濃縮する必要があ る。
本発明はこれらの欠点を改良するもので、 高濃度の塩での吸着や溶出 は行わず、 水で溶出するものである。 この結果、 非常に高濃度で更なる 精製の必要のないサンプルが得られる。
本発明はァガロースゲルからの D N A断片と P C R増幅反応 D N A液、 酵素反応液からのフラグメント DN Aなどの精製を 1つの目的とするも のである。
本発明は、 T r i s酢酸(TAE) バッファー又は T r. i sホウ酸(T B E) バッファ一で作成した標準ァガロースゲルや低沸点ァガロースゲ ルからの 3 5 13 1)〜 1 0 01^ 3 1)の D N A断片の抽出、 精製が可能で 6 0〜 8 0 %の回収率を得ることが出来る。 又ゲルからの抽出のほかにも P C R増幅反応液からも 3 5 b p〜: L O O k b pの P C R産物を直接精 製することができ、 8 0〜 9 5 %の回収率を得ることが出来る。 得られ たフラグメント DNAに塩や有機溶媒が含まないため、ェタノール沈殿、 脱塩や濃縮する必要がない。本製品はモノ リスベースのシステムであり、 DNA結合能は最大 5〜 8 μ gで、 単離したフラグメント DNAを僅か 5分で回収することができる。
ゲルから精製する場合は、 電気泳動後にゲルから目的の D N Aバンド を切出し、 グァニジンチォシアン酸 (溶解、 吸着バッファー) の存在下 で溶解する。 P C R増幅後の精製の場合は、 吸着バッファーを増幅反応 液に直接添加する。 溶解したゲル片は、 マイクロ遠心機又は吸引装置を 用いてモノ リス固相カラムを通過させる。 その際、 目的のフラグメント DNAはシリカモノ リスやガラスモノ リスの表面に結合し、 結合したフ ラグメント DNA断片を洗浄バッファーで洗浄後、 D N Aを水で溶出す る (溶出バッファー)。
このバッファーとして下記が使用される。
A バッファー (溶解、 吸着バッファー)
B バッファー (洗浄バッファー)
C バッファー (溶出バッファ一又無菌水) これを更に詳述すると
A 1 バッファー P CR反応液用 (グァ二ジン塩酸塩 1〜 8 M、 酢酸カリ ウム 0. 1〜: L M未満、 2—プロパノール 1〜 7 0 %)
A 2 バッファー ァガロースゲル用 (グァュジンチォシアン酸 1 ~ 8M、 酢酸力リ ウム 0. 1〜 1 M未満、 2—プロパノール 1〜 7 0 %) B バッファー (酢酸カリ ウム 0. 1〜 1 M未満、 エタノーノレ 1〜 8 0 %)
C ノ ッファー (p H= 8〜 8. 5 T r i s— HC I 1 0 mM、 E DTA l mM、 又は無菌 DNA、 R N A f r e e水)
A 1バッファーに於いて、 グァニジン塩酸塩はグァニジンチォシアン 酸が好適で、 1〜 8Mがより好ましい。 2 _プロパノールは 4 0 %以上 が効率的である。
A 2バッファーに於いても以上の条件が当て嵌まる。
溶出バッファー液 Cに於いては、 水による溶出が可能であるが、 雑菌 の混入を防ぐために、 限外濾過膜処理やディェチルピロカーネートで処 理などを行った RN a s eフリ一な水を使用する事が推奨される。 又、 精製した DNAを保管する場合、 菌の混入を防ぐため、 溶出バッファー 液 Cとして、 先に ED T Aバッファーを添加した水を使用してもよい。 分離機構から見ても E D T Aバッファ一の有無で精製効率が変わること は無い。
本願発明に於いて、 基体にモノリス構造体を使用することにより、 核 酸のリン酸基とシラノール基との反応を効率的に進行させることが出来 る。 又、 粒状の充填材を使用する場合に避けられないサンプルにシリカ 粒子が付着したまま精製され、 所謂アプリケーショ ン反応を妨げる虞の あるシリカのキャリーオーバーの問題を防ぐことができる。 更に、 分離 時における圧力も低く抑えられ、 又充填材を使用する場合と異なり、 封 止剤も不要である等の利点を有する。
このモノ リス構造体は、 例えば、 シリカゲル等の無機質多孔質体を、 重合可能な低分子化合物ゾルを精製し、 最終的に凝集体や重合体のゲル を得る、 所謂ゾルゲル法によって作製することが出来る。 この方法は、 一般的に中心細孔径 1〜 1 0 0 ;u mであるが、 その後の技術進歩により 数 n mも可能である。
又、 ゾル一ゲル過程におけるスピノールダル分解を利用し、 2種類の 細孔を有するシリ力骨格中に細孔の存在するモノ リス構造体も作成でき る。
'又、 上面から下面まで貫通しているマクロ細孔の内部に開放構造を有 するミクロ細孔を持つ多孔質体が充填された構造の多孔質体も作成でき る。 因みに、 この多孔質体はマクロ細孔の直径 1〜 1 0 0 mであり、 ミクロ細孔が 0〜; L O O n mである。
この他、 ガラス、 シリカが含有されて形成されるものであれば、 適宜 のモノ リス構造体が使用しうること勿論である。 ,
このモノ リス構造体は、 その製法により、 多孔質体の貫通孔は所望の 通り形成できるので、 適宜選択して形成するが、 1〜 1 0 0 m程度が 使用しやすい。 然し、 この選択は、 使用する原料、 例えばァガロースゲ ルゃ P C R反応液、 バッファ一により、 又その目的により決められる。
このモノ リス構造体により構成される基体の一使用形態について述べ ると、 筒型のカラムチューブ 1を形成し、 上端開放部 2には密閉可能な 蓋 3を着脱自在に設ける。 下端には細口径の出口 4を構成し、 出口 4上 部には段差 5を設けて中口径部 6を形成してある。 該段差 5にはモノ リ ス構造体により形成された基体としてのディスク 7が載置乃至嵌合でき るようにしてある。 該ディスク 7は中口径部 6 と略同形で所望厚さ例え ば 0 . 1〜 1 O m m程度の円盤状或は所望に応じ、 円錐状を形成しても よい。 このカラムチューブ 1 とディスク 7により、 モノ リス固相カラム 9を構成する。 8はコレクションチューブで、 カラムチューブ 1の揷通 が可能の径に構成され、 上部にカラムチューブ 1の上端縁が係止可能に 構成してある。
前記カラムチューブ 1やコレクションチューブ 8については、 ポリプ ロピレン製が使用されるが、 核酸に影響を与えない有機ポリマー、 例え ばポリエチレン、 ポリエチレンテレフタレート、 ポリスチレンや無機化 合物、 例えばガラス、 シリカ等視認性がよくある程度強度があれば使用 できる。
又、 モノ リス構造体の基体としてディスク 7が挙げられているが、 こ れに限らず皿状や筒状等溶液の通過の自在である型で使用できる。
DNAの分子サイズは、 1 0塩基対あたり、 約 3. 4 nm程库と云わ れている。 例えば、 3 5 b p〜 3 0 0 b pの DNAに於いて、 l O n m 〜; L 0 0 n程度のマク口細孔、 3 0 0 b !)〜 3 K b pの DNAに於いて、 1 0 0 n n!〜 1 / m程度のマクロ細孔、 3 0 K b p 3 0 0 K b pの D N Aに於いては、 1 μ π!〜 1 0 / m程度のマクロ細孔、 3 0 K b p 3 O 〜 K b pの DNAに於いては、 !〜 1 0 0 /i m程度のマク口細孔 を持てば、 DNA分子を傷つけたり、 壌したりすることなく、 DNA分 子を通過させることが可能と考えられる。
又、不純物などとの相互作用を高め、 より効率的に精製するためには、 ミクロ細孔の付加が行われる。 各種試験、 実験などの経験から、 ミクロ 細孔が数 1 0 n m前後であれば分子量数 1 0万の化合物、 1 0 nm前後 であれば分子量数百〜数万の化合物と相互作用があることが確認されて おり、 更に大きな分子量の化合物ならば、 その分子の破壊を助長すると 云われるミクロ細穴が限りなくない状態、 つまり 0 nmがよいことが判 つている。 マク口細孔にミク口細孔を付加した種々の一体型モノリス構造体を数 種用意し、 DN Aの種類及び不純物除去などの目的ごとに使い分けるこ とも可能である。 ちなみに、 数種類の一体型モノ リス構造体を作成する には、 マクロ細孔を予め作成し、 その後にミクロ細孔を形成させる方法 の方が合成上便利である。
現状必要とされている精製に於いては、 プライマーゃァガロースゲル 分解物などの低分子からの分離精製が中心であり、 1種類のモノ リス構 造体でも充分分離可能である。
1〜 1 0 0 μ m、 好ましくは 2 0 μ m程度のマク口細孔と、 0〜 1 0 0 nm、 好ましくは 1 0 n m程度のミク口細孔を形成したモノ リス構造 体を用いれば、 実施例にあるような、 3 5 b p (m e r ) 〜; L O O K b p (m e r ) の広範囲の D N Aの精製が充分可能である。
A. モノ リス固相カラムを用いて P C R産物を生成するのには次の方 法がある。
① マイクロ遠心法
このプロ トコールは、 P C R反応液から 2本鎖 D N Aフラグメン トを精製する目的でデザィンされ、 1 つのモノ リス固相カラムと精製用 ノ ッファーを用いれば、 遠心操作により、 3 5 b p〜: L O O K b pのフ ラグメントがプライマー、 ヌクレオチド、 ポリメラーゼ.、 塩等力 ら分離 可能である。
P C R反応液 1 0 z 1 に対して、 1 0 0 1 のバッファー A 1 (吸着 ノ ッファー) を添加する。 ノ ッファー Bは約 3 0 0 μ 1 (洗浄バッファ 一) で洗浄する。
全ての遠心操作は一般的な卓上マイク口遠心機で〜 1 0, 0 0 0 r ρ mで行う。
1. P C R反応液に 1 0倍容量のバッファー A 1を加えて混合する。 ミネラルオイルを除去する必要はない。 例えば、 5 0 1の?〇尺反応 溶液 (オイルを含まない量) には 5 0 0 At 1バッファー A 1を加える。
2. コレクションチューブ 8にモノリス固相カラム 9を揷入し、 調整 したサンプルをモノ リス固相カラムにアプライする。 高回収率を得るた め、 サンプル液を残さないでモノ リス固相カラム 9に添加する。
3. モノ リス固相カラム 9を 1 0 , O O O r p m、 3 0秒間遠心した 後、 モノリス固相カラム 9を取外し、 コレクションチューブ 8内の液体 を除去。 モノ リス固相カラム 9を、 コレクションチューブに再度挿入す る。
4. ノ ッファー B (洗浄バッファー) 5 0 0 μ 1 を添加し、 モノ リス 固相力ラム 9を 1 0, O O O r p m、 3 0秒間遠心。 更に 1 0, 0 0 0 r p m、 1分間遠心する。
コレクションチューブ 8内の液体を捨てた後に、 バッファー由来の残 留ェタノールを完全に除去するためには再遠心操作を行うことが必要で ある。
5. モノ リス固相カラム 9を新しい; L . 5 m 1遠心サンプリングチュ ープに移し、 ノ ッファー C (溶出バッファー) 1 0〜 5 0 μ 1 をモノ リ ス表面の中央に添加し、 モノ リス固相カラム 9を 1分間室温でィンキュ ペートした後、 1 0, 0 0 ◦ r p m、 1 分間遠心する。 遠心チューブ内 に溶出された DNAは精製された DNAで、 一 2 0°Cで保存する。 又は 後の操作にそのまま使用する。
モノリスに結合した DN Aが完全に溶出されるように、 モノ リス表面 中央部分に溶出バッファー Cを添加する。 1 0 1 の溶出バッファー C を用いた場合は溶出液量は 9 1である。
溶出効率は p Hが 8〜 8. 5の間で最大となる。 溶出に滅菌水系を用 いる場合には、 p Hがこの範囲であることを確認するのがよい。 ② 吸引マ二ホールド法
モノ リス固相カラムは、 一般的なルアーアダプターを含む吸引マ二 ホールドにより操作を行うことが出来る。 このプロ トコールは、 P C R 反応液から 2本鎖 DN Aフラグメントを精製する目的でデザィンされて いる。 1 つのモノ リ ス固相カラムと精製用バッファーを用いれば、 吸引 装置によるサンプル処理操作により、 3 5 b p〜 : L O O K b pのフラグ メントがプライマー、 ヌクレオチド、 ポリメラーゼ、 塩等から分離可能 である。
P C R反応液 1 0 ;ζ 1 に対して、 1 0 0 μ 1のバッファー A 1 (吸着 バッファー) を添加する。 ノ ッファー Bは約 3 0 0 μ 1 (洗浄バッファ 一) で洗浄する。
一定で安定した吸引が行われるよう、 各操作ステップ毎に一端 引ス イッチを切る。
1. P C R反応液に 1 0倍量のバッファー A 1を加えて混合する。 ミ ネラルオイルを除去する必要はない。 例えば、 5 0 /z lの P C R反応溶 液 (オイルを含まない量) には 5 0 0 1 ッファー A 1を加える。
2. 吸引マ二ホールドとモノリス固相カラムを準備する。
ルアーアダプター吸引マ二ホールドを吸引装置に接続する。
3. 吸引マユホールド上のポートに取付けたバキュームアダプターを 装着。 モノ リス固相カラム 9をバキュームアダプターに挿入する。
4. 調整した P C Rサンプルをピぺッ トによりモノ リス固相カラム 9 にアプライし、 DNAを結合させるために吸引する。 溶液がモノ リ ス固 相カラム 9を完全に通過するまで吸引する。 サンプルがカラムを通過し た後、 吸引を止める。
高回収率を得るため、 サンプル液を残さないでモノ リ ス固相カラム 9 に添加する。 添加最大容量は 8 0 0 1で、 8 0 0 μ 1 よりサンプル量 が多い場合には、 数回に分けて添加する。
5. ノ ッファー B (洗浄バッファー) 5 0 0 /X 1 をモノ リス固相力ラ ム 9に添加し、 液体がモノ リス固相カラムを通過するまで吸引する。
6. モノ リ ス固相カラム 9をマ-ホールドから外し、 コ レクショ ンチ ユーブ 8に移す。 1 0 , 0 0 0 r p mで 1分間遠心する。
バッファー由来の残留エタノールを完全に除去するために遠心操作が 必要である。 (液体がモノ リ ス固相カラムを通過するまで吸引し、 乾燥 させる。 モノリス固相カラム 9に残っている洗浄バッファーを完全に除 去するための必要手段である。)
7. モノ リス固相カラム 9を新しい 1. 5 m 1遠心サンプリングチュ ーブに移し、 バッファー C (溶出バッファー) 1 0~ 5 0 1 をモノ リ ス表面の中央に添加し、 カラムを 1分間室温でィンキュベータした後、 1 0, 0 0 0 r p m、 1分間遠心する。 遠心チューブ内の溶 された D NAは精製された DNAで、 一 2 0°Cで保存する。 又は後の操作にその まま使用する。
モノ リ スに結合した DN Aが完全に溶出されるよ う に、 モノ リ ス表面 中央部分に溶出バッファー Cを添加する。 1 0 μ 1 の溶出バッファー C を用いた場合は溶出液量は 9 μ 1である。
溶出効率は ρ Ηが 8〜 8. 5の間で最大となる。 溶出に滅菌水系を 用いる爭合には、 ρ Ηがこの範囲であることを雉認するのがよい。
Β. モノリス固相カラム 9を用いてァガロースゲルを精製するのには 次の方法がある。
① マイクロ遠心法
このプロ トコールは、 標準的又は低温融解ァガロースゲル (Τ Ε 又は Τ Ε Βバッファー使用) から、 D Ν Αフラグメントを精製する目的 でデザィンされ、 1つのモノ リスカラムと精製用バッファーを用いれば、 遠心操作により、 3 5 b !)〜 1 0 O K b pのフラグメントがプライマー、 ヌクレオチド、 ポリメラーゼ、 塩等から分離可能である。 1個のモノリ スカラムにつき、 最大 1 0 0 0 m gのァガロースの処理が可能である。 ァガロースゲル 1 O m gに対し 1 0 μ 1 のバッファー Α (溶解、 吸着 ノ ッファー) を添加する。 バッファー Bは約 5 0 0 1 (洗浄バッファ 一) で洗浄する。
全ての遠心操作は一般的な卓上マイク口遠心機で〜 1 0, 0 0 0 r p mで行う。
1 · 清潔な力ミソリやメスで目的のバンドを切取り、 1. 5 m l遠心 チューブに入れる。 余分なゲルを取除いて、 ゲルスライスのサイズを最 小になるようにする。
2. ノ ッファー A 2 (溶解、 吸着バッファー) をゲルスライス 1 0 0 m gに対し 1 0 0 Z 1添加する。
1 0 0 m gのゲルには、 ノ ッファー A 2を 1 0 0 μ 1添加するが、 濃 度が 2 %以上のァガロースゲルを用いる場合は、 バッファー Βを 6 0 0 1添加する。 1個のモノ リスカラムで処理できるゲル量は 1 , 0 0 0 m gであるので、 ゲル量が 1, 0 0 0 m gを超える場合は 2個以上のモ ノ リスカラムを使用する。
3. 6 0°Cで 5分間又はゲルスライスが完全に溶解するまでィンキュ ベーシヨンする。 インキュベーション中、 2回チューブをボノ テックス にかけて溶液を混合する。 ァガロースを完全に溶解させる。 2 %以上の ゲルを用いる場合は、 ィンキュベーション時間を長くすると回収率がァ ップする。
以下の操作は、 前記 A. モノ リ ス固相カラムを用いた P C R反応液の 精製①マイクロ遠心法と同じであるから省略する。
② 吸引マユホールド法 モノ リスカラムは、 ルアーアダプターを含む吸引マユホールドに より操作を行うことが出来る。 このプロ トコールは、 標準的又は低温融 解ァガロースゲル (T E又は T B Eバッファー使用) から、 DNAフラ グメントを精製する目的でデザインされた。 1 つのモノ リ スカラムと精 製用バッファーを用いれば、 吸引装置によるサンプル処理操作により、 3 5 b p〜 l 0 O K b pのフラグメントがプライマー、 ヌクレオチド、 ポリメラーゼ、 塩等から分離可能である。
ァガロースゲル 1 0m g対し 1 0 1 のバッファー A 2 (溶解、 吸着 バッファー) を添加する。 バッファー Bは約 5 0 0 1 (洗浄バッファ 一) で洗浄する。
溶出は遠心操作により卓上マイク口遠心機で〜 1 0 , 0 0 0 r p mで 行う。
一定で安定した吸引が行われるよう、 各操作ステップ毎に一端吸引ス イッチを切る。
1. 清潔な力ミソリやメスで目的のバン ドを切取り、 1. 5 m l遠 心チューブに入れる。 余分なゲルを取除いて、 ゲルスライスのサイズを 最小になるようにする。
2 , バッファー A 2 (溶解、 吸着バッファー) をゲルスライス 1 0 0 m gに対し 1 0 0 / 1添加する。
1 0 0 m のゲルには、 ノ ッファー A 2を 1 0 0 x l添加するが、 濃 度が 2 %以上のァガロースゲルを用いる場合は、 バッファー A 1を 6 0 0 μ 1添加する。 1個のモノ リスカラムで処理できるゲル量は 6 0 0 m gであるので、 ゲル量が 6 0 0 m gを超える場合は 2個以上のモノ リ ス カラムを使用する。
3. 6 0 °Cで 5分間又はゲルスライスが完全に溶解するまでインキュ ベーシヨンする。 インキュベーショ ン中、 2回チューブをポノレテックス にかけて溶液を混合する。 ァガロースを完全に溶解させる。 2 %以上の ゲルを用いる場合は、 ィンキュベーション時間を長くすると回収率がァ ップする。
以下の操作は、 前記 A. モノ リス固相カラムを用いた P C R反応液の 精製②吸引マ二ホールド法と同じであるから省略する。
C. モノ リス固相カラムを用いて酵素反応液を精製するのには次の方 法がある。
① マイクロ遠心法
このプロ トコールは、 制限酵素分解や標識反応などの酵素反応液か ら 2本鎖 DNAフラグメントを精製する目的でデザインされた。 1 つの モノリスカラムと精製用バッファーを用いれば、 遠心操作により、 3 5 b p〜 l 0 O K b : のフラグメントが酵素、 プライマー、ヌクレオチド、 塩等から分離可能である。
酵素反応液 1 ◦ 1 に対し、 3 0 μ 1 のバッファー A 1 (吸着バッフ ァー) を添加する。 バッファー Βは約 3 0 0 1 (洗净バッファー) で 洗浄する。
全ての遠心操作は一般的な卓上マイク口遠心機で〜 1 0 , 0 0 0 r ρ mで行う。
1. 酵素反応液に 3倍容量のバッファー A 1を加えて混合する。 モノ リスカラムで処理できる酵素反応液の最大容量は 1 0 0 /X 1 であ 。 例えば、 1 0 0 μ 1 の酵素反応液には 3 0 0 1バッファー A 1を加 える。
以下の操作は、 前記 A. モノリス固相カラムを用いた P C R反応液 の精製①マイク口遠心法と同じであるから省略する。
② 吸引マユホールド法
モノリスカラムは、 ルアーアダプターを含む吸引マ二ホールドに より操作を行うことが出来る。 このプロ トコールは、 制限酵素分解ゃ標 識反応などの酵素反応液から 2本鎖 D N Aフラグメントを精製する目的 でデザィンされた。 1 つのモノ リスカラムと精製用バッファーを用いれ ば、 吸引装置によるサンプル処理装置により 3 5 b p〜3 5 K b pのフ ラグメ ン トが酵素、 プライマー、 ヌク レオチ ド、 塩等から分離可能であ る。
例えば、 酵素反応液 1 0 μ 1 に対し 3 0 μ 1 のバッファー A 1 (吸着 バッファー) を添加する。 ノ ッファー Βは約 3 0 0 μ 1 (洗浄バッファ 一) で洗浄する。
全ての遠心操作は一般的な卓上マイクロ遠心機で〜 1 0, 0 0 0 r p mで行つ。
一定で安定した吸引が行われるよう、 各操作ステップ毎に一端吸引ス イッチを切る。
1 . 酵素反応液に 3倍容量のバッファー A 1を加えて混合する。 モノ リスカラムで処理できる酵素反応液は最大容量は 1 0 0 1 である。 例えば、 1 0 0 1 の酵素反応液には 3 0 0 μ 1 ノ ッファー A 1を加 える。
以下の操作は、 前記 A . モノ リ ス固相カラムを用いた P C R反応液の 精製②吸引マユホールド法と同じであるから省略する。
この本発明の吸着や溶出分離が極めて容易に行え、 高濃度の塩による 溶出は必要なく 、 核酸の精製が極めて効率的に行える利点は、 核酸成分 をモノ リス構造体に吸着させる点に基因する。
従来タイプの方法では、 シリカゲル粒子、 ガラス粒子、 それらをフィ ルター状にしたものが使用されている。 それら全てに於いて、 液が通る 空間は、 粒子表面を通ることになり、 粒子にぶっかり、 乱流が生じ、 不 均一な流れとなってしまう。 そのため、 全て表面に均一に触れることは できない。 モノ リス構造は、 一体構造で内部に連続孔があるので、 粒子 内部を通るイメージとなる。 即ち、 全ての液が均一に接触する。 又、 粒 子に比べると、 骨格が小さく、 液がぶっかった後の乱流の生ずることな く均一な流れとなる。
即ち、 従来の固相タイプでは、 粒子における乱流が生じ、 表面との接 触が不均一となり、 低分子側 D N Aの吸着が生ぜずに抜けてしまうこと になる。
その抜けを防止させるために、 従来のタイプでは、 カオトロピック塩 濃度を増やすことにより、 反応を起こし易く している。 然し、 この場合 塩沈殿が生じ、 限界が生じるため、低分子 D N A捕集には限界が生じる。 本発明モノ リスタイプでは、 均一な液の流れが保障されており、 より 低分子 D N Aの吸着が可能となる。
当然、 洗浄工程でも同じことが起きる。 従来の方法では洗浄液の乱流 が生じてゲル表面を洗浄することが困難となる。 実施例 1に記載されて いるように、 1回目洗浄後でも従来の方法では目的と しないプライマー などがかなり残っているが、 本発明の方法では殆ど残らない。
繊維に粒子を埋め込んだフィルタ一や繊維そのものを用いたものでも 乱流が生ずるのはやはり同じことになる。
従来例として、 入口と出口を備えた円筒状の中空体の出口付近に無機 基体材料が配置されており、 その無機基体材料は、 きつく押込められた ポリエチレンフリ ッ トの間にはさまれて保持されている例がある。 (特 許文献 3 )
この場合、 分離に寄与する部分は、 その無機基体材料部分であり、 上 下フリ ッ トは無機体を中空体の保持されるために用いられている。 . いく らきつく押込められても、 フリ ッ トと無機体の間には空間が生じ ることになり、 その空間部分に液は残存してしまう。 その空間部分の液 の追出しや置換は困難となる。 特に、 上記の如き減圧方法では、 一部に 気相部分ができてしまうと、 その部分が優先的に流れることになり、 均 一に液を抜く ことができなきなる。 試料付加、 洗浄工程に於いては、 液 体の置換が成され難くなってしまう。
又、 最後の溶出に於いては、 液が残ってしまい、 回収が悪くなつてし まう。
本発明のモノ リス構造では、液体の流れるマク口細孔は連続体となり、 流れの方向に対して均一に液体が変わってゆく ことになる。 即ち、 液体 の置換効率が大幅に上昇する。実施例 1のように、 この従来タイプでは、 2回目の溶出でも試料成分が多く残る原因の 1つになっていると考えら れる。 本発明の連続体のモノ リス構造に於いては、 液体の置換効率が高 いので、 1回の溶出で充分であり、 2回目溶 の残存が殆どないことが わかる。
又、 従来タイプでは、 押込み具合で、 その空間は変化し、 中空体への 押込み時のロッ ト間のバラツキも出易くなる。 本発明に於いて、 モノ リ ス構造は一体構造であり、 中空体への押込み時のバラツキは全くない。 市販品と しては高価であり、 実在しないが、 フリ ツ トと無機体を更に 押し潰し一体にすることも可能となるが、 この方法でも押し潰した界面 部分に異なる層ができてしまう。 やはり均一な連続孔を持つモノ リス構 造に比べると、 液体の流れは阻害される。
更に、 本発明では、 シリカゲルである無機物とフリ ッ ト材料であるポ リエチレンなどの有機物を、 ゾルーゲル行程で混合すれば、 シリカとポ リエチレンの性質を持つハイプリ ッ ドの均一相での作成も可能である。 無機体が粒子状の物では、 それを止めるために、 上下フリ ッ トは不可 欠となり、 上記説明のような置換効率の問題が生じる。
シリカ繊維ゃケル粒子を埋込んだシリカゲル薄膜 (例えば 3 M社のェ ムポアディスク (登録商標)) を無機体とした場合でも、 やはり物理的 な硬さが無く、 急激な減圧や高回転の遠心分離により、 変形して繊維の 一部や粒子が溶出してしまうことがある。 僅かな変形に於てでも、 空間 容積は変化することになり 、 バラツキ要因になってしまう。 モノ リ ス構 造では、 固い骨格の内部にある連続孔による分離のため、 圧力変動など でも変形しないので、 再現性も得られる。
例え、 フリ ツ トで止める必要のない固い繊維膜ゃシリ力ゲル薄膜を形 成できたとしても、 液の流れは、 繊維やゲル表面を流れることにより、 乱流が生じ、 均一な分離が得られず、 本発明のモノ リス構造体を用いた 場合ほどの分離は期待できない。
乱流の生じないモノ リス構造体であることにより、 初めて低分子 D N Aの吸着及ぴ高い洗浄効果を達成できる。
更に、 従来タイプの粒子における流路と本発明のモノ リス構造体にお けるミク口細孔とは液流れに対して接触と云う点で異なる。 粒子タイプ などでは、 液が入ってくる側と液が抜ける側とは、 液抵抗における圧力 の均一性がなく、 細孔内部への液の接触が異なってしまう。 H P L Cの ような加圧系では均一な圧力にできるので、 その影響は少なくなるが、, 本発明分野で用いられる減圧系では、 入口側は常圧であり、 出口側では 負圧になり、 粒子 1個における細孔内部への出入りが不均一となる。 即 ち、 同じ成分でも成分分子によって、 細孔内部まで入るものと、 入らな いものが生じ、 トータル的には溶出時における幅が大きくなることにな る。 そのため洗浄時に除去したい成分だけを排除するのが難しく、 最終 的に溶出された成分は、 実施例 1に示す従来例のように低分子側のブラ イマ一が残ってしまう。 本発明のモノ リ ス構造体に於いては、 液の流れ るマクロ細孔表面にミクロ細孔があるので、 全て均一な入り込みが生じ る。 そのため、 低分子不純物であるプライマーの除去が簡単に行える。 従来法に於いて、 大きな D N Aに於いては、 細穴へ入込み難くなり、 更に、 成分が含まれる液の粘性も上がるため、 接触が不均一になり、 2 種現象が同時に起こることになり、 吸着されない部分が多いと考えられ る。 又、 乱流により、 高分子 D N Aへの物理的なダメージが生じ、 破壌 してしまう可能性も高まる。
基本的には、 カオトロピック塩濃度を増やすことにより、 それらの現 象は軽減できるが、 洗浄時でも取除かれず、 溶出時に溶出してきてしま う。 即ち、 精製後の試料成分に多量の塩が入ることになる。 これは、 後 の使用に於いては大きな問題となる。
モノ リス構造体を用いた本発明方法では、塩濃度を下げることができ、 上記の諸問題は解決でき非常に有効である。 更に、 よりカチオン交換作 用を持つ力リ ゥム塩を合せて使用するとより効果的になる。 カリ ウム塩 はカチオン交換作用が強いので、 核酸の表面への吸着に寄与するが、 そ れが故に、 溶出時に基体表面に残ってしまう と目的とする精製 D N Aが 溶出しないと云う問題が生じるため、 確実な洗浄が不可決である。 粒子 タイプでは、 洗浄時にも乱流が生じ、 更に細孔への入込 が不均一のた め、 どう してもカリ ウム塩が高濃度で基体に残存する部分が生じる。. 対 策として、 溶出液にカリ ウムを除けるバッファー、 即ち他の塩を加えた りすればよいことになるが、 やはり後のアプリケーション目的に適さな いことになる。 '
モノ リス構造体では、 均一な液の流れと均一な細孔への入込みが可能 となるため、 カリウム塩が有効に作用する。 .
実施例
〔実施例 1〕 P C R反応液 (フラグメント D N A ) の精製では、 p C R増幅反応物 5 0 / 1 をバッファー A 1 ( 1 Mグァニジン塩酸塩、 0 . 2 M酢酸カリ ウム、 5 0 % 2 —プロパノール) 3 0 0 /z l に混合する。 シリカモノ リス固相カラム 9をコレクションチューブ 8に揷入し、 混合 物をシリカモノ リス固相カラム 9に注入、 1 . 5 m l の遠心管内で遠心 分離する。 シリカモノ リス固相カラム 9を Bバッファー (0. 2 M酢酸 カリ ウム、 5 0 %エタノール) での洗浄処理により塩を含まないように する。
溶出には溶出用バッファー C (E D TA 4 mM、 T r i s — H C I 1 O mM、 p H 8又は無菌 D NA、 R N A f r e e水) 2 Q μ 1 を、 別 の 1 . 5 m 1 の遠心管で遠心用カラムに通して遠心分離する。 こう して 精製された P C R産物 (フラグメント D NA) にはプライマー、 d N T P s、 ポリメラーゼ及ぴ塩が含まれず、 後の操作に直接用いることがで きる。 (図 1, 図 2参照) 図 1中 M: 分子量マーカー、 ①従来法で精製 したサンプル、 ②本発明で精製したサンプル。
①が従来の特許文献 3の方法で精製した試料 (4 0 0 b p ) での電気 泳動による評価である。 ②が本発明方法である。 ①では、 低分子側 (下) 部分が多く残っているが、 ②では殆ど残っておらず、 高い精製効率が得 られている。 又、図 2に於いて 1 一 1及び 1 — 2は従来方法で 2回行い、 残存を見たもので、 2 — 1, 2 — 2は本発明のものである。 本発明の場 合 1回目で殆ど残っておらず、 高い精製効率が得られることが分かる。 図 3は H P L Cを使用しての評価である。 H P L C条件は以下の通り H P L C条件
カラム : C I M D EA E
溶離液:
A : 2 0 mM Tris-HCl Ph7.4
B : A + 1 M NaCl
A/B =50/50- (10MIN)- 0/100 Flow rate: 3ral/min
検出 : U V 2 6 0 n m 図 3に於いて未精製の P C R溶液の H P L C評価データは、 1番上の クロマトグラムであり、 従来の特許文献 3法による精製のク口マトダラ ム (一番下) と比べてパターンに変化がなく、 d NT P s及ぴプライマ 一は、 殆ど除かれていないことがわかる。 本発明方法では、 2番目のク 口マトのように d NT P s及びプライマーの 2つのピークが大幅に取除 かれ、 目的とする核酸が高く精製されていることがわかる。 (図 3参照) 〔実施例 2〕 ァガロースゲルからの D N A断片の精製では P C R增 幅産物を標準的又は低融点ァガロースゲル (T E又は T B Eバッファー 使用) を用いて電気泳動し、 DN Aをァガロースゲル (丁£又は丁 8 £ 0. 5 %) 中で分離する。 清潔な力ミソリやメスで単離すべき DNA断 片をゲルから切出して、 1. 5 m 1遠心チューブに入れる。 ノ ッファー A 2 ( 2 Mグァ-ジンチォシアン酸、 0. 4M酢酸カリ ウム、 3 0 %の 2—プロパノール) 3 0 0 / 1 に混合し、 6 0 °Cで 5分間又はゲルスラ イスが完全に溶解するまでィンキュベー トする。
この溶解液を実施例 1に従って、 モノ リ ス固相カラム 9を、 コ レクシ ヨ ンチューブ 8に揷入し、 混合物をモノ リ ス固相カラム 9に注入、 1. 5 m 1 の遠心管内で遠心分離する。 モノ リ ス固相カラム 9を ッファー B ( 0. 2 M酢酸カリウム、 5 0 %エタノール) での処理^:より洗って 塩を含まないようにする。
溶出にはバッファー C (EDTA 1 mM、 T r i s _HC I 1 0 mM、 p H 8又は無菌 D N A、 R N A f r e e水) 2 0 / l を、 別の 1. 5 m 1の遠心管で遠心用カラムに通して遠心分離する。 図 4のうち図 4— 1は 3 5 b pの、 図 4— 2は 1 0 0〜5 0 0 b pの、 図 4— 3は 1 0, O O O b pの、 図 4— 4は 3 5, 0 0 0 b pの電気泳動による評価であ る。
本発明方法では、 低分子の 3 5 b pから約 l O O K b pまで回収され ており、 ァガロースゲルからでも広い範囲の D N Aが精製できることが わかる。 溶出バッファ一と して、 E D T Aバッファーを含まない水でも 同様の結果が得られた。
〔実施例 3〕 制限酵素反応後の D N A 1 0 0 β gを制限酵素で処理 する。 この D N A制限反応溶液を実施例 1に従ってバッファー A 1, 3 0 0 μ 1 に混合し、 そしてそれ以後の処理は実施例 1 と同様に行った。 溶出後、 得られた精製 D NAには制限酵素及び塩が含まれず、 吸光度測 定比率 (mm) 2 6 0 Z 2 8 0の比率が 1 . 8 と良好なものであった。
〔実施例 4〕 分子サイズの小さい、 3 5 b pの P C R增幅産物の精 製では P C R増幅反応物 1 0 1 を実施例 1に従ってバッファー A 1 , 1 0 0 μ 1 に混合し、 それ以後の処理は実施例 1 と同様に行った。 (図 5参照) 図中 Μ : 分子量マーカー、 1 : 精製前のサンプル、 2 :本発明 で精製したサンプル。
1 0 0 b pや 1 0 0 b p以下の小さな D NAでもここでは 3 5 b の D NAの P C R反応液からの精製が出来た。
〔実施例 5〕 分子サイズの大きな ( 1 0 0 b p以上 1 0 0, 0 0 0 b pまで) P C R増幅産物の精製では P C R増幅反応溶液 2 0 μ 1 を実 施例 1に従ってバッファー A 1 , 2 0 0 /^ 1 に混合し、 それ以後の処理 は実施例 1 と同様に行った。 (図 6参照) 図中 Μ:分子量マーカー、 1 : 精製前のサンプル、 2 :本発明で精製したサンプル 3 :従来法で精製し たサンプル。
1 0 0 0 b!)〜 1 O O K b pまでの D NAでも P C R反応液からの精 製が出来た。
〔実施例 6〕 1本鎖 D N A溶液の精製では溶液 2 0 μ 1 を実施例 1 に従ってバッファー A 1 , 2 0 0 1 に混合し、 それ以後の処理は実施 例 1 と同様に行った。 (図 7参照) 図中 M: 分子量マーカー、 1 : 精製 前のサンプル、 2 :本発明で精製したサンプル。
1本鎖 D N A 3 5 m e rは、 従来方法では回収できていない ( 3 ) 力 S、 本発明では (2 ) 再現性よく 2回とも回収されている。
〔実施例 7〕 ナトリ ウムとカリ ウムによる精製比較 (保持メカュズ ム) (図 8参照) 図中 M : 分子量マーカー、 1 : ガラスモノ リス、 カリ ゥムによる精製後サンプル、 2 : シリカモノ リス、 カリ ゥムによる精製 後サンプル、 3 : シリカモノ リス、 ナトリ ゥムによる精製後サンプル、 従来からよく用いられるナトリ ウムと、 本発明の効果がある力リ ウム との精製比較を行なった。 ナトリウムでは、 保持が殆ど得られず、 カリ ゥムでは高い精製効率が得られた。 又、 シリカモノ リスと同様にガラス モノ リスでも同じくカリ ゥムの方が高い生成効率が得られた。
本発明を実効あらしめるために下記の方法を実施することは意義があ る。
核酸を含有する溶液をアル力リ金属塩を介在させることにより、 一体 型モノ リス構造体の通孔に夫々対応する核酸を吸着させ、 洗浄液で洗浄 後、 溶出させることを特徴とする D N A分離精製方法。
アル力リ金属塩は酢酸力リウムであることを特徴とする D N Aの分離 精製方法。
酢酸カリ ゥムは 0 . 1〜 1 M未満含有する溶解吸着バッファーを使用 することを特徴とする分離精製方法。
グァニジン塩又は、 酢酸力リ ゥムなどの力リ ゥム塩を含有する溶解、 吸着バッファ一により、 溶解吸着を行うことを特徴とする D N Aの分離 精製方法。
T r i s— H C 1、 E D T Aを含有する水により溶出を行うことを特 徴とする D N Aの分離精製方法。
溶解、 吸着、 分離、 洗浄操作を 1つのモノリス固相カラムを用いて行 なうことを特徴とする DNAの分離精製方法。
溶解吸着バッファー、 水及び分離精製機構よりなるキッ ト。 産業上の利用可能性
以上のように本発明に係る DNAなどの分離生成機構は、 分子生物学 的研究に於いて、 非常に頻繁に用いられ、 P. C. R、 クローニング、 シークェンシンク、 制限酵素消化、 その他酵素作用などのアプリケーシ ョンに先立って行われるフラグメント D N Aなどの精製に特に有用で 3 5 b p (m e r ) 力、ら 1 0 0 K b p (m e r ) 以下の広範な DNAの定 量的な分離や効率的な精製ができ、 幅広い核酸の精製に対応できる。

Claims

請 求 の 範 囲
1. —体型モリ ノス構造体であって、 一端から他端まで連続した通孔を 形成させ、 かつ核酸大きさに対応する大きさの通孔が設けられ、 分離す べき核酸を含有する溶液を通過させることにより、 該通孔に対応する核 酸が夫々保持できるように構成したことを特徴とする DN Aなどの分離 精製機構。
2. モノ リス構造体は、 ガラス、 シリカ等の無機物又は無機物に有機物 を含有するハイブリ ッ ド体であって、 上面から下面まで貫通しているマ ク口細孔を持つ多孔質体を使用することを特徴とする請求項 1に記載の DNAなどの分離精製機構。
3. モノ リス構造体の多孔質体はマク口細孔の内部にミク口細孔を有す ることを特徴とする請求項 1又は 2の何れかの項に記載の D N Aなどの 分離精製機構。
4. モノ リス構造体の多孔質体はマクロ細孔 1〜 1 0 0 μ ra、 ミクロ細 孔 0〜 1 0 0 n mであることを特徴とする請求項 1乃至 3の何れかの項 に記載の DN Aなどの分離精製機構。
5. カラムチューブにモノ リス構造体により形成されるディスクを配置 することにより、 モノ リ ス固相カラムを構成することを特徴とする請求 項 1乃至 4の何れかの項に記載の DN Aなどの分離精製機構。
6. 上下を開放した筒状体に、 モノ リス構造体により構成した基体を着 脱自在に装着して形成したモノ リス固相カラムを使用することを特徴と する請求項 1乃至 5の何れかの項に記載の DNAなどの分離精製機構。
PCT/JP2004/001465 2004-02-12 2004-02-12 Dnaなどの分離精製機構 WO2005078088A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04710506A EP1719816B1 (en) 2004-02-12 2004-02-12 Mechanism of separating and purifying dna
JP2005517842A JP4597870B2 (ja) 2004-02-12 2004-02-12 Dnaなどの分離精製機構
US10/597,954 US8586350B2 (en) 2004-02-12 2004-02-12 Mechanism of separating and purifying DNA and the like
PCT/JP2004/001465 WO2005078088A1 (ja) 2004-02-12 2004-02-12 Dnaなどの分離精製機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/001465 WO2005078088A1 (ja) 2004-02-12 2004-02-12 Dnaなどの分離精製機構

Publications (1)

Publication Number Publication Date
WO2005078088A1 true WO2005078088A1 (ja) 2005-08-25

Family

ID=34857513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001465 WO2005078088A1 (ja) 2004-02-12 2004-02-12 Dnaなどの分離精製機構

Country Status (4)

Country Link
US (1) US8586350B2 (ja)
EP (1) EP1719816B1 (ja)
JP (1) JP4597870B2 (ja)
WO (1) WO2005078088A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150834A1 (ja) 2008-06-12 2009-12-17 住友ベークライト株式会社 糖鎖試料調製方法、糖鎖試料および糖鎖分析法
JP2011502251A (ja) * 2007-10-31 2011-01-20 アコーニ バイオシステムズ サンプル調製装置
WO2011158815A1 (ja) * 2010-06-18 2011-12-22 東洋紡績株式会社 抗酸菌の溶菌とその核酸の分離を同時に行う方法
JP2013533741A (ja) * 2011-05-16 2013-08-29 ナノヘリックス カンパニー リミテッド 超高速核酸精製方法
JP5570422B2 (ja) * 2009-01-16 2014-08-13 アークレイ株式会社 核酸試料の製造方法、および、それを用いた核酸増幅物の製造方法
JP2015526091A (ja) * 2012-08-28 2015-09-10 バイオキューブシステム カンパニーリミテッドBio Cube System Co., Ltd. 生物学的試料から核酸増幅反応用生物学的分子を迅速に分離するための多孔性固体相及びその用途
WO2017119503A1 (ja) * 2016-01-08 2017-07-13 株式会社ジーンデザイン ゾル-ゲル法で作製される無機多孔質体を用いた核酸合成用担体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0818609D0 (en) * 2008-10-10 2008-11-19 Univ Hull apparatus and method
JP2013522578A (ja) * 2010-01-21 2013-06-13 プロメガ コーポレイション 高溶解性のプラスチックを含む消耗性の分析用プラスチック製品
AU2013330344B2 (en) 2012-09-17 2018-07-05 W. R. Grace & Co.-Conn. Chromatography media and devices
ES2730737T3 (es) 2012-09-17 2019-11-12 Grace W R & Co Material de soporte de partículas funcionalizado y métodos de fabricación y uso del mismo
ES2887110T3 (es) 2014-01-16 2021-12-21 Grace W R & Co Medios para cromatografía de afinidad y dispositivos para cromatografía
EP3099799B1 (en) 2014-01-28 2019-05-15 Dice Molecules SV. LLC Arrays of monoliths with attached recognition compounds
JP6914189B2 (ja) 2014-05-02 2021-08-04 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn 官能化担体材料並びに官能化担体材料を作製及び使用する方法
EP3302784B1 (en) 2015-06-05 2021-10-06 W.R. Grace & Co.-Conn. Adsorbent bioprocessing clarification agents and methods of making and using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227744A (ja) 1983-06-08 1984-12-21 Rikaken Kk Dna回収用ガラス粉粒物
NL8900725A (nl) 1989-03-23 1990-10-16 Az Univ Amsterdam Werkwijze en combinatie van middelen voor het isoleren van nucleinezuur.
DE4321904B4 (de) 1993-07-01 2013-05-16 Qiagen Gmbh Verfahren zur chromatographischen Reinigung und Trennung von Nucleinsäuregemischen
DE69922740T2 (de) * 1998-05-11 2005-12-08 Tosoh Corp., Shinnanyo Methode zur Trennung von Nucleinsäuren mittels Flüssigchromatographie
EP0969090A1 (en) * 1998-05-27 2000-01-05 QIAGEN GmbH Rapid and simple process for isolation of circular nucleic acids
US6238565B1 (en) 1998-09-16 2001-05-29 Varian, Inc. Monolithic matrix for separating bio-organic molecules
DE19903507A1 (de) * 1999-01-29 2000-08-10 Roche Diagnostics Gmbh Verfahren zur Herstellung endotoxinfreier oder an Endotoxin abgereicherter Nukleinsäuren und deren Verwendung
JP2003532088A (ja) 2000-05-01 2003-10-28 トランスジエノミツク・インコーポレーテツド ポリマー分離媒体でのポリヌクレオチド分離
JP2004532392A (ja) 2001-02-20 2004-10-21 アドヴィオン バイオサイエンシィズ インコーポレイテッド 親和性吸着剤を有するマイクロチップ電子噴霧装置およびカラムならびにそれらの使用法
JP3644426B2 (ja) 2001-11-15 2005-04-27 株式会社日立製作所 核酸の精製分離方法および装置
US20040002081A1 (en) * 2001-12-18 2004-01-01 Boehringer Ingelheim International Gmbh And Bia Separations D.O.O. Method and device for isolating and purifying a polynucleotide of interest on a manufacturing scale
US20030148291A1 (en) * 2002-02-05 2003-08-07 Karla Robotti Method of immobilizing biologically active molecules for assay purposes in a microfluidic format
JP4220164B2 (ja) 2002-02-06 2009-02-04 東洋紡績株式会社 核酸の精製方法および当該方法に用いる核酸抽出用溶液ならびに核酸精製用試薬キット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALES PODGORNIK, ET AL: "Application of very short monolithic columns for separation of low and high molecular mass substances", JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES, vol. 25, no. 20, 2002, pages 3099 - 3116, XP002976459 *
LUBBAD S, ET AL: "Micropreparative fractionation of DNA fragments on metathesis-based monoliths: influence of stoichiometry on separation", J CHROMATOGR A., vol. 959, no. 1-2, 2002, pages 121 - 129, XP004360281 *
WALCHER W, ET AL: "Monolithic capillary columns for liquid chromatography-electrospray ionization mass spectrometry in proteomic and genomic research", J CHROMATOGR B ANALYT TECHNOL BIOMED LIFE SCI., vol. 782, no. 1-2, 2002, pages 111 - 125, XP004394220 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502251A (ja) * 2007-10-31 2011-01-20 アコーニ バイオシステムズ サンプル調製装置
WO2009150834A1 (ja) 2008-06-12 2009-12-17 住友ベークライト株式会社 糖鎖試料調製方法、糖鎖試料および糖鎖分析法
JP5570422B2 (ja) * 2009-01-16 2014-08-13 アークレイ株式会社 核酸試料の製造方法、および、それを用いた核酸増幅物の製造方法
WO2011158815A1 (ja) * 2010-06-18 2011-12-22 東洋紡績株式会社 抗酸菌の溶菌とその核酸の分離を同時に行う方法
JP2013533741A (ja) * 2011-05-16 2013-08-29 ナノヘリックス カンパニー リミテッド 超高速核酸精製方法
JP2016010408A (ja) * 2011-05-16 2016-01-21 ナノヘリックス カンパニー リミテッド 超高速核酸精製方法
JP2015526091A (ja) * 2012-08-28 2015-09-10 バイオキューブシステム カンパニーリミテッドBio Cube System Co., Ltd. 生物学的試料から核酸増幅反応用生物学的分子を迅速に分離するための多孔性固体相及びその用途
US10837010B2 (en) 2012-08-28 2020-11-17 Bio Cube System Co., Ltd. Porous solid phase for rapidly isolating biological molecules for nucleic acid amplification reaction from biological sample, and use thereof
WO2017119503A1 (ja) * 2016-01-08 2017-07-13 株式会社ジーンデザイン ゾル-ゲル法で作製される無機多孔質体を用いた核酸合成用担体
JPWO2017119503A1 (ja) * 2016-01-08 2018-10-25 株式会社ジーンデザイン ゾル−ゲル法で作製される無機多孔質体を用いた核酸合成用担体
JP7033923B2 (ja) 2016-01-08 2022-03-11 株式会社ジーンデザイン ゾル-ゲル法で作製される無機多孔質体を用いた核酸合成用担体

Also Published As

Publication number Publication date
JPWO2005078088A1 (ja) 2007-08-30
EP1719816A4 (en) 2007-06-06
JP4597870B2 (ja) 2010-12-15
US8586350B2 (en) 2013-11-19
EP1719816B1 (en) 2011-06-01
EP1719816A1 (en) 2006-11-08
US20070181482A1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US6383393B1 (en) Chromatographic purification and separation process for mixtures of nucleic acids
JP5977921B2 (ja) 核酸を精製することを目的とした装置、システムおよび方法
EP1461155B1 (en) Methods and devices for removal of organic molecules from biological mixtures using anion exchange
WO2005078088A1 (ja) Dnaなどの分離精製機構
KR0148693B1 (ko) 핵산 분리방법
US20120107799A1 (en) Disposable, rapid extraction apparatus and methods
US20150166592A1 (en) Selective Nucleic Acid Fragment Recovery
US20090215124A1 (en) Nucleic acid isolation methods and materials and devices thereof
JP2009540868A (ja) 生体分子を試料から単離するシステム
US8921539B2 (en) Methods and devices for nucleic acid purification
JP2008529516A (ja) エチレングリコール多量体の使用を含む核酸の単離方法
US20160376636A1 (en) Compositions and methods for sample preparation
JP2007244375A (ja) リボ核酸の分離精製方法
JP5880626B2 (ja) 簡便かつ迅速な核酸抽出方法
WO2016052386A1 (ja) 核酸の分離精製方法および固相担体、デバイス、キット
JP4690656B2 (ja) 核酸の分離精製方法及び分離吸着体
US9434980B2 (en) Method for concentrating sample constituents and for multiplying nucleic acids from a biological sample which are contained in the sample constituents
JP2010233579A (ja) Dnaなどの分離精製機構
KR101380909B1 (ko) 핵산 정제용 흡착제 및 그 흡착제를 이용한 정제방법
Mamaev et al. Method for automated extraction and purification of nucleic acids and its implementation in microfluidic system
WO2021100801A1 (ja) 核酸の分離方法、検出方法、核酸精製カラム及びその製造方法
JP2010200661A (ja) 簡便かつ迅速な核酸抽出方法
RU2595374C2 (ru) Способ автоматизированного выделения с одновременной очисткой нуклеиновых кислот из нескольких биологических образцов

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517842

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10597954

Country of ref document: US

Ref document number: 2007181482

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004710506

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004710506

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10597954

Country of ref document: US