WO2005077851A1 - 赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法 - Google Patents

赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法 Download PDF

Info

Publication number
WO2005077851A1
WO2005077851A1 PCT/JP2005/002167 JP2005002167W WO2005077851A1 WO 2005077851 A1 WO2005077851 A1 WO 2005077851A1 JP 2005002167 W JP2005002167 W JP 2005002167W WO 2005077851 A1 WO2005077851 A1 WO 2005077851A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
glass
bismuth
composition according
light
Prior art date
Application number
PCT/JP2005/002167
Other languages
English (en)
French (fr)
Inventor
Masahiro Tsuda
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to JP2005517999A priority Critical patent/JPWO2005077851A1/ja
Publication of WO2005077851A1 publication Critical patent/WO2005077851A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Definitions

  • the present invention relates to a glass composition that functions as a luminous body, an optical amplification medium, and the like, and a method for amplifying signal light using the glass composition.
  • Japanese Patent Application Laid-Open No. 2002-252397 discloses BiO—AlO—SiO using bismuth as a light emitting element.
  • An optical fiber made of 2 3 2 3 2 glass is disclosed.
  • signal light can be amplified in a wider wavelength range than a conventional optical fiber doped with erbium.
  • JP-A-2003-283028 discloses a glass composition containing a divalent metal oxide in addition to the above components.
  • This glass composition is more excellent in melting property than the glass disclosed in Japanese Patent Application Laid-Open No. 2002-252397 by the addition of divalent metal oxide.
  • An optical amplifier using this glass composition also operates in a wide wavelength range because bismuth is used as a light emitting element.
  • the present invention provides a method for selecting bismuth, a glass network former, dysprosium, erbium, ytterbium, neodymium, thulium, honolemium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper and molybdenum. At least one element (excluding tetravalent titanium and trivalent iron), and the bismuth is irradiated by the excitation light.
  • a glass composition that functions as a luminescent species and emits fluorescence in an infrared wavelength region.
  • tetravalent titanium and trivalent iron are not excluded from the at least one element, and are not intended to exclude the addition to the glass composition.
  • the content of tetravalent titanium and trivalent iron is optional, as with other elements.
  • a conventional glass composition using bismuth as a light-emitting element can emit fluorescence in a wide wavelength range of an infrared wavelength range (infrared range), but has sufficient absorption in the 0.9 band and the 0.98 zm band. Not great.
  • the at least one element absorbs the excitation light and transfers the energy to bismuth, the emission intensity in the 1.3 ⁇ m band when excited in the above band increases. .
  • FIG. 1 is a diagram showing a configuration example of an optical system for evaluating optical amplification characteristics of an optical fiber, and is also a diagram showing a configuration example of an optical amplification device of the present invention.
  • FIG. 2 is a diagram showing an example of a fluorescence spectrum by the glass composition of the present invention.
  • FIG. 3 is a diagram showing an example of amplification of an optical signal using the glass composition of the present invention.
  • FIG. 4 is a diagram showing the relationship between ytterbium content and luminescence intensity.
  • FIG. 5 is a view showing a relationship between a bismuth content and a light emission intensity.
  • Bi is an essential element for the glass composition of the present invention to exhibit a light emitting function or a light amplification function.
  • Bi is not limited in its valence and the like as long as it can have a light-emitting function, and may be contained as bismuth trioxide (BiO) or bismuth pentoxide (BiO).
  • Bi content is not limited in its valence and the like as long as it can have a light-emitting function, and may be contained as bismuth trioxide (BiO) or bismuth pentoxide (BiO).
  • the rate is too low, the emission intensity in the infrared region will be too weak.
  • the Bi content is too high, the emission intensity decreases due to an increase in the non-radiative transition speed between bismuth ions.
  • the content of Bi is 0.01-1-15%, further 0.01-1-10%, especially 0, in terms of Bi ⁇ .
  • the main factors that reduce the intensity of light emitted by Bi include so-called concentration quenching, which increases as the concentration of Bi increases, and coloring of the glass accompanying the reduction of Bi.
  • Concentration In order to suppress light, the content of Bi may be limited to the above-described level. In order to suppress the reduction of Bi, adjustment of components other than Bi is effective. In particular, when the Bi content is relatively high, the content of a component that promotes the reduction of Bi represented by an alkali oxide or an alkaline earth oxide may be limited. Specifically, convert the Bi content to BiO
  • the total content represented by Zn ⁇ is preferably 20% or less, and more preferably 15% or less.
  • components that suppress the reduction of Bi such as Fe
  • At least one of the elements listed above is an indispensable element responsible for sensitization, and is Dy3 + , Er, Yb, Nd, Tm, ⁇ , ⁇ , V, V, V, Cr, Cr, Cr. , ⁇ , ⁇ 3+ , Fe 2+ , Co 2+ , Ni 2+ , Cu +, Cu 2+ , Mo 3+ and at least one cation selected from Mo 4+ . If the content of this element is too low, sufficient sensitizing action cannot be obtained, and if the content is too high, the concentration quenching phenomenon occurs, and the emission of bismuth may decrease. In view of this, the content of cations, in terms of oxide, 0.01 - 12%, especially 0. 01 8 0/0, the force S preferably les, 0
  • the cation may be appropriately selected according to the wavelength of the excitation light.
  • excitation light in the 0.98 ⁇ band 900-11 OO nm wavelength band
  • At least one cation selected from and Cu 2+ is suitable.
  • At least one cation selected from 3+ and ⁇ 4+ especially at least one cation selected from Dy 3+ , Er 3+ , Nd 3+ , T m 3+ and Cu 2+ .
  • a cation having a large absorption coefficient in the target wavelength band for example, a cation having an absorption coefficient of 0.05 cm- 1 or more should be selected. Is preferred.
  • the cations listed above were selected in consideration of the absorption coefficient in the target wavelength band.
  • the absorption coefficient of the above cation is exemplified in kakko (unit: cm— 1 ): Er 3+ (0.19), Yb 3+ (3.70), V at a wavelength of 0.98 ⁇ band.
  • Fe 3+ , Pr 3+ , and Ti 4+ have an absorption coefficient of 0 at the wavelengths of 0.98 ⁇ m band and 0.8 ⁇ m band, and thus are added in anticipation of a sensitizing effect. It is not suitable as an ion. However, the glass composition of the present invention may contain these components for other purposes or as unavoidable impurities.
  • the cation sensitizing action involves the cation content and the like.
  • the absorption coefficient is a major indicator in the selection of cations, but this alone does not determine the magnitude of the sensitizing effect.
  • the glass network former in the glass composition of the present invention is not particularly limited as long as it can form a glass skeleton together with, for example, an anion as oxygen, and is selected from silicon, phosphorus, boron and germanium. It is preferable that at least one of the above-mentioned compounds contains a preferred silicon as a main component.
  • the main component refers to a component having the highest content.
  • the content of the glass network former is preferably 30 to 80% in terms of oxide.
  • Preferred glass compositions in the case where the glass network former mainly contains silicon (Si 4+ ) are exemplified below.
  • the inside of kakko is a more preferable range.
  • compositions are as follows.
  • Bismuth of 0.01-2.0% is preferable, and 0.01-5% of YbO is more preferable.
  • the monovalent or divalent metal oxide exemplified above facilitates vitrification.
  • MgO force S is suitable as a divalent metal oxide
  • Li 2 O is preferable as a monovalent metal oxide.
  • Li ⁇ enhances the melting
  • the glass thread composition of the present invention is selected from MgO and Li ⁇ .
  • At least one of them is contained, for example, at 0.1% or more.
  • BO is reduced to, for example, 0.1% or more in order to reduce the viscosity of the glass melt and homogenize the glass.
  • the glass composition of the present invention may include a plurality of types of glass network formers.
  • Al O is a preferable component for increasing the emission intensity. If necessary, 0.1% or more of A1
  • the glass deteriorates and the glass is apt to be devitrified, it is preferable to keep it in the above range.
  • the divalent metal oxide MO MgO + CaO + SrO + BaO + ZnO
  • R 0 Li O + Na O + K ⁇
  • the content of MO + R ⁇ is preferably 3 to 40%, particularly preferably 5 to 35%.
  • Ca ⁇ like MgO, enhances the meltability of the raw material batch and, even in a small amount (for example, 0.1% or more), enhances the devitrification resistance of the glass. If the content of Ca ⁇ is too high, the glass shows a dark brown color and the luminous intensity is reduced.
  • SrO like MgO and Ca ⁇ , enhances the meltability of raw material batches and, even in small amounts (eg, 0.1% or more), significantly improves the devitrification resistance of glass. However, SrO has a strong effect of rapidly lowering the intensity of light emitted by bismuth. BaO, like Mg ⁇ and CaO, also improves the solubility of raw material batches.
  • Ba ⁇ is more effective in increasing the refractive index than other divalent metal oxides. As the refractive index increases, the gloss of the glass surface also increases, and the color of the glass also increases. For this reason, Ba is preferably added, for example, in a range of 0.1% or more. However, BaO has a strong effect of rapidly lowering the emission intensity. ZnO also enhances the solubility of the raw material batch. Zn ⁇ is superior to CaO, SrO, and BaO in the effect of coloring the glass. Compared to MgO, ZnO is also excellent in increasing the refractive index of glass. In consideration of this, a small amount (for example, 0.1% or more) of ZnO may be added.
  • the glass As with MgO, if the content of Zn ⁇ is too high, the glass shows a dark brown color and the luminous intensity decreases. If the content of ZnO is too high, the glass will be phase-separated and emulsified, making it impossible to obtain a transparent glass.
  • MO divalent oxide
  • Na ⁇ has a strong effect of weakening the luminescence by making the glass dark brown.
  • K ⁇ lowers liquidus temperature
  • TiO increases the refractive index of glass and helps light emission.
  • BaO is a product that lowers the emission intensity
  • TiO has the effect of increasing the emission intensity.
  • TiO contains glass
  • ZrO increases the refractive index of glass and emits infrared light.
  • ZrO has the effect of promoting glass crystallization and increasing the density of glass.
  • YO has the effect of lowering the viscosity of glass, but also has the effect of devitrifying glass .
  • La O has the effect of suppressing concentration quenching, but increases the refractive index to increase coupling loss.
  • the glass composition exemplified above may contain other components.
  • other components for example, for the purpose of controlling the refractive index, controlling the temperature-viscosity characteristics, and suppressing devitrification, TaO and I
  • 25 n ⁇ may be included, preferably in a total of 5% or less. Also, for example,
  • CI and F may be included, preferably in a total of 1% or less.
  • the glass composition of the present invention may be substantially composed of the components whose preferred ranges have been exemplified above.
  • the present invention provides an optical fiber containing the glass composition of the present invention, and an optical amplifying device containing the glass composition of the present invention.
  • the present invention provides, from still another aspect, a signal light amplification method for causing excitation light and signal light to enter the glass composition of the present invention and amplifying the signal light.
  • the wavelength of the excitation light is set to 700 to 1100 (700 to 900 or 900 to HOO nm), and further to 730 to 880 or 930 to 1070, especially 750 to 850 or 950 to 105 Onm.
  • the wavelength of the signal light is preferably 100 nm to 1650 nm, more preferably 1150 nm to 157 Onm, and particularly preferably 1200 nm to 1470 nm.
  • the glass composition of the present invention is useful not only in optical amplifiers but also as near-infrared broadband light sources.
  • the sample glass was cut, and the surface was mirror-polished so as to become a 20 mm X 30 mm X 3 mm thick parallel plate to prepare a plate-shaped sample.
  • the fluorescence spectrum of the plate sample was measured using a commercially available spectrofluorometer. For excitation light with a wavelength of 980 nm, the wavelength of fluorescence emission is lOOOnm—measured over the 1600 nm range.
  • the sample temperature during measurement was room temperature.
  • the optical amplification characteristics of the optical fiber used as a sample were measured.
  • the excitation light 11 and the signal light 12 are guided by the lens 3 to the optical fiber end 2 which is the incident part to the core of the optical fiber 1, and enter the optical fiber 1 while being spatially overlapped near this end.
  • the signal light 13 transmitted through the optical fiber 1 is amplified by the pump light 11.
  • the cross section of the optical fiber 1 was cut so as to be a mirror surface.
  • the light sources 21 and 22 for the excitation light 11 and the signal light 12 semiconductor lasers were used for both.
  • the multiplexing of the excitation light 11 and the signal light 12 was performed using the wavelength selective reflecting mirror 5.
  • the reflecting mirror 5 is configured so that the signal light 12 passes through but the excitation light 11 reflects.
  • the signal light 13 emitted from the optical fiber 1 was guided to the photodetector 23 by using the lens 4.
  • a filter 6 that transmits the amplified signal light 13 but cuts off the excitation light 11 was inserted so that the photodetector 23 detects only the signal light 13.
  • the intensity of the detected signal light 13 was measured with an oscilloscope 24.
  • the traveling direction of the pump light 11 and the traveling direction of the signal light 12 are matched, but the invention is not limited to this.
  • the traveling directions of both lights may be reversed.
  • the multiplexing of the excitation light 11 and the signal light 12 may be performed using a reflecting mirror that reflects the signal light 12 and transmits the excitation light 11, or may be performed using means other than the reflecting mirror.
  • the device shown in FIG. 1 is not only an example of the evaluation device, but also a configuration example of the optical amplifying device of the present invention.
  • a light source for excitation light and a light source for signal light may be installed in the optical amplifier together with the glass composition of the present invention.
  • the optical amplifying device is not limited to the illustrated configuration.
  • a signal input optical fiber may be provided instead of a signal light source, and a signal output optical fiber may be provided instead of a photodetector.
  • the multiplexing and demultiplexing of the pump light and the signal light may be performed using a fiber force bra or the like.
  • Raw material batches were prepared by weighing commonly used raw materials such as silicon oxide, lithium carbonate, bismuth trioxide, and ytterbium oxide so as to have the compositions shown in Table 1.
  • the prepared batch was put into an alumina crucible, kept in an electric furnace at 1500 ° C for 4 hours, and then poured out on an iron plate and cooled. After holding this glass in an electric furnace at 500 ° C for 30 minutes, the furnace was turned off and cooled slowly to room temperature to obtain a sample glass (samples 13).
  • a sample glass was prepared in the same manner as in Example 1 except that the preparation of the batch was changed.
  • the fluorescence was measured in the same manner as in Example 1, and the emission intensity at a wavelength of 1310 nm was obtained.
  • the content of YbO was changed (Table 2).
  • FIG. 5 shows the relationship between the O content and the emission intensity.
  • the emission intensity increased when the YbO content was in the range of 0.01-2.0%.
  • the emission intensity increased when the content of Bi 2 O was in the range of 0.01-2.0%.
  • the composition of the core glass of the optical fiber is: Si 0: 58.8%, Li 0: 7.8%, MgO: 15.7%, CaO: 7.8%, Al O: 7.8%, Bi ⁇
  • the cladding glass is composed of core glass,
  • the composition was made excluding Yb ⁇ ⁇ ⁇ .
  • the core diameter is 80 zm, and the cross section of the optical fiber is mirror-finished.
  • the excitation light having a wavelength of 980 nm is intermittently irradiated with a constant intensity and a constant cycle by a chile (not shown in FIG. 1).
  • the signal light intensity increased during the excitation light irradiation (see Fig. 3).
  • the intensity of the signal light was increased about 65 times by the irradiation of the excitation light.
  • a glass composition containing bismuth that emits light in a wide wavelength range as a light-emitting element is used, and it is possible to obtain 1.3 zm by exciting the excitation wavelengths of 0.9 band and 0.98 zm band, particularly 0.98 zm band. High emission intensity can be obtained in the band.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Abstract

 本発明は、ビスマスを発光元素とする発光強度が改善されたガラス組成物を提供する。このガラス組成物は、ビスマスと、ガラス網目形成体と、ジスプロシウム,エルビウム,イッテルビウム,ネオジム,ツリウム,ホルミウム,チタン,バナジウム,クロム,マンガン,鉄,コバルト,ニッケル,銅およびモリブデンから選ばれる少なくとも1種の元素(ただし、4価のチタンおよび3価の鉄を除く)とを含み、励起光の照射により上記ビスマスが発光種として機能して赤外波長域で蛍光を発するガラス組成物とし、上記少なくとも1種の元素の増感作用により発光強度を大きくする。

Description

明 細 書
赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の 増幅方法
技術分野
[0001] 本発明は、発光体、光増幅媒体等として機能するガラス組成物、およびこのガラス 組成物を用いた信号光の増幅方法に関する。
背景技術
[0002] 赤外波長域で蛍光を発するガラスとしては、ネオジム,エルビウム,プラセオジム等 の希土類元素が添加されたガラス組成物が研究されてきた。これに加え、近年、ビス マスを発光元素として含有するガラス組成物が提案されている。
[0003] 特開 2002—252397号公報には、ビスマスを発光元素とする Bi O—Al O—SiO
2 3 2 3 2 ガラスからなる光ファイバが開示されている。この光ファイバを用いると、エルビウムを ドープした従来の光ファイバよりも広い波長域で信号光を増幅できる。
[0004] 特開 2003-283028号公報には、上記成分に加え、 2価金属酸化物を含むガラス 組成物が開示されている。このガラス組成物は、 2価金属酸化物の添カ卩により、特開 2002—252397号公報が開示するガラスと比較して熔融性に優れたものとなる。この ガラス組成物を用いた光増幅器も、ビスマスを発光元素としているため、広い波長域 で動作する。
発明の開示
[0005] これまで、ビスマスを発光元素とするガラス組成物は、増幅波長域の広さに着目さ れて開発されてきた。しかし、上記従来のビスマスを発光元素とするガラス組成物は、 一般に使用されている励起波長である 0. 8 111帯ぉょび0. 98 z m帯、特に 0. 98 z m帯による励起では、 1. 3 z m帯での発光強度が十分に大きくならない。
[0006] そこで、本発明は、ビスマスと、ガラス網目形成体と、ジスプロシウム,エルビウム,ィ ッテルビウム,ネオジム,ツリウム,ホノレミゥム,チタン,バナジウム,クロム,マンガン, 鉄,コバルト,ニッケル,銅およびモリブデンから選ばれる少なくとも 1種の元素(ただ し、 4価のチタンおよび 3価の鉄を除く)とを含み、励起光の照射により上記ビスマスが 発光種として機能して赤外波長域で蛍光を発するガラス組成物を提供する。
[0007] 上記のとおり、 4価のチタンおよび 3価の鉄は上記少なくとも 1種の元素からは除外 される力 ガラス組成物への添加を除外する趣旨ではなレ、。 4価のチタンおよび 3価 の鉄は、他の元素と同様、その含有は任意である。
[0008] 発光元素としてビスマスを用いた従来のガラス組成物は、赤外波長域 (赤外域)の 広い波長範囲で蛍光を発しうるが、 0. 帯および 0. 98 z m帯での吸収が十分 に大きくない。本発明のガラス組成物では、上記少なくとも 1種の元素が励起光を吸 収してそのエネルギーをビスマスに伝達するため、上記帯域で励起したときの 1. 3 μ m帯における発光強度が増加する。
図面の簡単な説明
[0009] [図 1]図 1は、光ファイバの光増幅特性評価用光学系の構成例を示す図であり、本発 明の光増幅装置の構成例を示す図でもある。
[図 2]図 2は、本発明のガラス組成物による蛍光スペクトルの一例を示す図である。
[図 3]図 3は、本発明のガラス組成物を用いた光信号の増幅の一例を示す図である。
[図 4]図 4は、イッテルビウムの含有率と発光強度との関係を示す図である。
[図 5]図 5は、ビスマスの含有率と発光強度との関係を示す図である。
発明を実施するための最良の形態
[0010] 以下、成分の含有率を示す%表示はすべてモル%である。
[0011] Biは、本発明のガラス組成物が発光機能または光増幅機能を奏するために必須の 元素である。 Biは、発光機能を担いうる限り、その価数等に制限はなぐ例えば三酸 化ビスマス(Bi O )、五酸化ビスマス(Bi O )として含まれていればよい。 Biの含有
2 3 2 5
率が低すぎると赤外域における発光強度が弱くなりすぎてしまう。一方、 Biの含有率 が高すぎると、ビスマスイオン間の非輻射遷移速度の増大により、発光強度が低下す る。 Biの含有率は、 Bi〇に換算して、 0. 01— 15%、さらには 0. 01— 10%、特に 0
2 3
. 01— 5%、が好ましレ、。最も好ましい Biの含有率は、 Bi Oに換算して、 0. 01 -2.
2 3
0%である。
[0012] Biによる発光の強度を低下させる主な要因としては、 Biの濃度が高くなるにつれて 大きくなるいわゆる濃度消光と、 Biの還元に伴うガラスの着色とが挙げられる。濃度消 光を抑制するためには、 Biの含有率を上記例示の程度に制限するとよい。 Biの還元 を抑制するためには、 Bi以外の成分の調整が有効である。特に、 Bi含有率が比較的 高い場合には、アルカリ酸化物、アルカリ土類酸化物に代表される Biの還元を促進 する成分の含有率を制限するとよい。具体的には、 Biの含有率を、 Bi Oに換算して
2 3
、 1. 5%以上とする場合には、 Li O + Na O + K〇 + Mg〇 + Ca〇 + Sr〇 + Ba〇 +
2 2 2
Zn〇で示される含有率の合計を 20%以下、好ましくは 15%以下、とすることが好まし レ、。 Bi含有率が高い場合には、 Fe〇 のような Biの還元を抑制する成分をガラスに
2 3
添加してもよい。
[0013] 上記に列挙した少なくとも 1種の元素は、増感作用を担う必須の元素であり、 Dy3+ , Er , Yb , Nd , Tm , Ηο , Τι , V , V , V , Cr , Cr , Μη , Μη3+ , Fe2+, Co2+, Ni2+ , Cu+ , Cu2+, Mo3+および Mo4+から選ばれる少なくとも 1種の陽イオンであることが好ましい。この元素の含有率が低すぎると十分な増感作 用が得られず、含有率が高すぎると濃度消光現象がおこり、ビスマスによる発光が低 下する場合がある。これを考慮すると、陽イオンの含有率は、酸化物に換算して、 0. 01 - 12%,特に 0. 01— 80/0、力 S好ましレ、0
[0014] 陽イオンは、励起光の波長に応じて適宜選択するとよい。 0. 98 μ ΐη帯(900— 11 OOnmの波長帯)の励起光を用いる場合には、 Dy3+, Er3+, Yb3+, Ho3+, Ti3+, V3
+ + 75+ ^ 3 + ^ 6 + Λ /Γ 2+ Λ /Γ 3+ „ 2+ „ 2+ , τ.2+ „ + „ 2+ , Λ 3 +
, V , V , Cr , Cr , Μη , Μη , Fe , Co , Νι , Cu , Cu , Μο および Μο4+から選ばれる少なくとも 1種の陽イオン、特に Dy3+ , Er3+ , Yb3+および Cu2+から選ばれる少なくとも 1種の陽イオンが適している。 0. 8 /i m帯(700— 900η mの波長帯)の励起光を用いる場合には、 Dy3+, Er3+, Nd3+, Tm3+, Ho3+, Ti3+
^ T3+ ^ T + ^ T5+ „ 3+ „ 6 + Λ /Γ 2+ Λ /Γ 3 + „ 2+ „ 2+ · 2+ ^ + ^ 2+ Λ ,
, V , V , V ,し r , Cr , Μη , Μη , Fe , Co , Νι , Cu , Cu , Μ
3+および Μο4+から選ばれる少なくとも 1種の陽イオン、特に Dy3+ , Er3+ , Nd3+ , T m3+および Cu2+から選ばれる少なくとも 1種の陽イオンが適している。
[0015] 期待される増感作用を顕著にするためには、対象とする波長帯における吸収係数 が大きい陽イオン、例えば 0. 05cm— 1以上の吸収係数を有する陽イオン、を選択す ることが好ましい。上記に列挙した陽イオンは、対象とする波長帯の吸収係数を考慮 して選択した。 [0016] 以下、上記陽イオンの吸収係数をカツコ内に例示する(単位: cm—1):波長 0· 98 μΐη 帯において、 Er3+(0. 19), Yb3+(3.70) , V3+, V4+および V5+ (19· 00) , Fe2+ (2 2.86), Co2+(0.72), Ni2+(10.4), Cu+および Cu2+ (7· 46), Mo3+および Mo4 + (0.45);波長 0.8 μ m帯において、 Dy3+ (0.20) , Er3+ (0. 10), Nd3+ (1.20) , Tm3+(0.50), Ti3+(2.00), V3+, V4+および V5+(9.00), Cr3+および Cr6+ (0 .14), Mn2+および Mn3+(1.50), Fe2+(13.33), Co2+(0.45), Ni2+(9.77), Cu+および Cu2+(13.05), Mo3+および Mo4+(0.47)。なお、上記に列記した他 の陽イオンも、 700 llOOnmの少なくとも一部において 0.05cm— 1以上の吸収係 数を有する。
[0017] これに対し、 Fe3+, Pr3+, Ti4+は、波長 0.98 μ m帯および 0.8 μ m帯における吸 収係数が 0であるため、増感作用を期待して添加する陽イオンとしては不適である。 ただし、本発明のガラス組成物は、他の目的で、あるいは不可避的な不純物として、 これらの成分を含んでレ、てもよレ、。
[0018] 陽イオンの増感作用には、吸収係数以外にも陽イオンの含有率等が関与している 。陽イオンの選択において吸収係数は主要な指標となるが、これのみにより増感作用 の大きさが定まるわけではなレ、。
[0019] 本発明のガラス組成物におけるガラス網目形成体は、例えば酸素である陰イオンと ともにガラス骨格を形成しうるものであれば特に制限はないが、ケィ素,リン,ホウ素 およびゲルマニウムから選ばれる少なくとも 1種が好ましぐケィ素を主成分とすること が好ましい。本明細書において、主成分とは、含有率が最も高い成分をいう。ガラス 網目形成体の含有率は、酸化物に換算して、 30— 80%が好ましい。
[0020] ガラス網目形成体がケィ素(Si4+)を主成分とする場合の好ましいガラス組成を以下 に例示する。カツコ内はより好ましい範囲である。
[0021] SiO :30— 80(40— 75)%、 Li 0:0 40(0 35)%、 Na〇:0— 30(0— 20)%
2 2 2
、 K〇:0— 20(0— 15)%、 Mg〇:0— 40(0— 30)%、 CaO: 0 40 (0— 30) %、 Sr
2
0:0 30(0 20)%、 BaO:0— 20(0— 15)%、 Al O : 0— 40 (0— 30) %、 ZnO:
2 3
0—40(0—35)%. TiO :0—30(0—20)%, ZrO : 0 30 (0 20) %、 Y〇 :0
2 2 2 3 一 30(0 20)%、 La〇 : 0 30 (0 20) %、 B〇 : 0 40 (0 30) %で示される 成分を含み、 Li O + Na O+K O + CaO + SrO + BaO + ZnO + B Οが 0· 1— 60
2 2 2 2 3
(10— 55)%の範囲にあり、かつ、 Bi O に換算して 0· 01— 15(0.01— 10)%のビ
2 3
スマスと、 Yb〇に換算して 0· 01— 12(0.01— 8)%の Yb3+とをさらに含む組成。
2 3
[0022] 特に好ましい組成は以下のとおりである。
[0023] SiO :50— 70%、 Li〇:0— 30%、 Na O:0 10%、 K O:0— 10%、 MgO:0
2 2 2 2
20%、 CaO:0 20%、 SrO:0 10%、 BaO:0 10%、 Al O :0 20%、 ZnO:
2 3
0— 30%、Ti〇 :0 10%、 Zr〇 :0—10%、Y〇 :0—10%、La〇 :0 10%、 B
2 2 2 3 2 3
O :0— 20%で示される成分を含み、 Li O + Na O + K 0 + CaO + SrO + BaO +
2 3 2 2 2
ZnO + B O力 S15— 50%の範囲にあり、かつ、 Bi Oに換算して 0.01-5%,より好
2 3 2 3
ましくは 0.01— 2.0%、のビスマスと、 Yb Oに換算して 0.01— 5%,より好ましく
2 3
は 0.01-2.0%、の Yb3+とをさらに含む組成。
[0024] 以下、本発明のガラス組成物の任意成分について説明する。
[0025] 上記に例示した 1価または 2価の金属の酸化物はガラス化を容易にする。赤外域で 発光するガラス組成物には、 2価の金属の酸化物としては MgO力 S、 1価の金属の酸 化物としては Li Oが、それぞれ好適である。特に、 Li〇は、熔解性を高めるとともに
2 2
ガラスの屈折率を高める。また、 Li Oの適量の添加は、光吸収強度を高め、赤外発
2
光強度の増加に寄与する。本発明のガラス糸且成物は、 MgOおよび Li〇から選ばれ
2
る少なくとも一方を例えば 0. 1%以上含有することが好ましい。
[0026] 上記に例示したように、ガラス網目形成体の主成分としてケィ素を含むガラスでは、 ガラス融液の粘性を下げ、ガラスを均質化するために、 B Oを例えば 0· 1%以上さ
2 3
らに添加してもよい。このように、本発明のガラス組成物は、複数種のガラス網目形成 体を含んでいてよい。
[0027] Al Oは発光強度を増加させる好ましい成分である。必要に応じ、 0. 1%以上の A1
2 3
Oを添加してもよレ、。しかし、 Al Oの含有率が高すぎるとガラス原材料の熔解性が
2 3 2 3
悪化し、ガラスが失透しやすくなるため、上記の範囲にとどめておくとよい。
[0028] 2価金属酸化物 MO (MO = MgO + CaO + SrO + BaO + ZnO)および 1価金属 酸化物 R 0(R 0 = Li O + Na O+K〇)は、ガラス化の容易のためには少なくとも
2 2 2 2 2
3%を添カ卩することが好ましい。 MO + R〇の含有率の増加に従ってガラスの均質化 は容易になる、一方、 MO + R Oの含有率が 40%を超えると失透が生じやすくなる。
2
したがって、 MO +R〇の含有率は 3— 40%、特に 5— 35%が好ましい。
2
[0029] Ca〇は、 MgOと同様に原材料バッチの熔解性を高め、少量 (例えば 0. 1 %以上) であってもガラスの耐失透性を高める。し力し、 MgOも同様である力 Ca〇は、その 含有率が高すぎると、ガラスが濃褐色を示し、発光強度を低下させる。 SrOも、 MgO 、 Ca〇と同様、原材料バッチの熔解性を高め、少量 (例えば 0. 1 %以上)であっても ガラスの耐失透性を大幅に改善する。しかし、 SrOは、ビスマスによる発光の強度を 急激に低下させる作用が強い。 BaOも、 Mg〇、 CaOと同様、原材料バッチの熔解性 を高める。 Ba〇は、他の 2価金属の酸化物よりも屈折率を高める効果が高レ、。屈折率 が高くなるとガラス表面の光沢も強くなるため、ガラスの発色も強まる。このため、 Ba〇 は例えば 0. 1 %以上の範囲で添加するとよい。しかし、 BaOは、発光強度を急激に 低下させる作用が強レ、。 ZnOもまた原材料バッチの熔解性を高める。 Zn〇は CaO、 SrO、 BaOと比較して、ガラスを発色させる効果に優れている。 ZnOは、 MgOと比較 して、ガラスの屈折率を高める作用にも優れている。これを考慮して少量 (例えば 0. 1 %以上)の ZnOを添加してもよレ、。し力し、 MgOと同様、 Zn〇の含有率が高すぎる と、ガラスは濃褐色を示し、発光強度が低下する。 ZnOの含有率が高すぎると、ガラ スが分相して乳濁し、透明なガラスが得られなくもなる。以上を考慮して、上記 2価の 酸化物(MO)を添加する場合は、それぞれ上記に例示した範囲とするとよレ、。
[0030] Na〇は、熔融温度とともに液相温度を低下させ、ガラスの失透を抑制する。しかし
2
、 Na〇は、ガラスを濃褐色として発光を弱める作用が強い。 K〇は、液相温度を低
2 2
下させ、ガラスの失透を抑制する。しかし、 K〇は、少量でもガラスの赤外域での発
2
光を弱める。以上を考慮して、上記 1価の酸化物 (R O)を添加する場合は、それぞ
2
れ上記に例示した範囲とするとよい。
[0031] TiOは、ガラスの屈折率を高め、発光を助ける。 BaOは発光強度を低下させる作
2
用が強いが、 TiOは逆に発光強度を高める効果を有する。しかし、 TiOにはガラス
2 2 を乳濁させる作用がある。 ZrOは、 TiOと同様、ガラスの屈折率を高め、赤外発光を
2 2
助ける。しかし、 ZrOは、ガラスの結晶化を促し、ガラスの密度を高める作用を有する
2
。 Y Oは、ガラスの粘性を下げる効果を有するが、ガラスを失透させる作用も有する 。 La Oは、濃度消光を抑制する効果を有するが、屈折率を高くして結合損失を増
2 3
大させる作用も有する。従って、これらの成分の添加量も、上記に例示した範囲とす るとよレ、。
[0032] 上記に例示したガラス組成物は、その他成分を含んでいてもよレ、。例えば、屈折率 の制御、温度粘性特性の制御、失透の抑制等を目的として、 Ta O よび I
2 5、 Nb〇お
2 5 n〇を、好ましくは合計で 5%以下となるように、含んでいてもよい。また例えば、熔
2 3
解時の清澄、ビスマスの還元防止等を目的として、 As〇、 Sb〇、 SO、 Sn〇、 Fe
2 3 2 3 3 2
O
2 3、 CIおよび Fを、好ましくは合計で 1 %以下となるように、含んでいてもよい。
[0033] なお、ガラスの原材料には、微量の不純物として上記以外の成分が混入することも ある。しかし、これら不純物の合計の含有率が 1 %未満であれば、ガラス組成物の物 性に及ぶ影響は小さぐ実質上問題とならない。
[0034] 上記程度にその他の成分を許容することを前提として、本発明のガラス組成物は、 好ましい範囲を上記に例示した各成分から実質的に構成されていてもよい。
[0035] 本発明は、別の側面から、本発明のガラス組成物を含む光ファイバ、および本発明 のガラス組成物を含む光増幅装置を提供する。本発明は、さらに別の側面から、本 発明のガラス組成物に励起光と信号光とを入射させ、この信号光を増幅する信号光 の増幅方法を提供する。本発明のガラス組成物の特徴を活かすには、励起光の波 長を 700應一 1100應(700— 900應または 900— HOOnm)、さらには 730應 一 880應または 930應一 1070應、特に 750應一 850應または 950應一 105 Onmとするとよい。信号光の波長は l lOOnm— 1650nm、さらには 1150nm— 157 Onm、特に 1200nm— 1470nm力 S好ましい。本発明のガラス組成物は、光増幅装置 に限らず、近赤外域広帯域光源等としても有用である。
[0036] 以下、実施例により、本発明をさらに詳細に説明する。まず、ガラス組成物の特性 の評価方法を説明する。
[0037] (蛍光スペクトル)
試料ガラスを切断し、 20mm X 30mm X厚さ 3mmの平行平板になるように表面を 鏡面研磨し、板状試料を作製した。この板状試料の蛍光スペクトルを、市販の分光蛍 光光度計を用いて測定した。波長 980nmの励起光について、蛍光の発光の波長は lOOOnm— 1600nmの範囲について測定した。なお、測定時の試料温度は室温と した。
[0038] (光ファイバ増幅実験)
図 1に示した測定装置を用レ、て試料とする光ファイバの光増幅特性を測定した。
[0039] 光増幅のエネルギー源となる励起光 11の波長は 980nm、増幅すべき信号光 12の 波長は 1314nmとした。この装置では、励起光 11および信号光 12が、レンズ 3により 光ファイバ 1のコアへの入射部分となる光ファイバ端 2に導かれ、この付近で空間的 に重なりながら光ファイバ 1に入射する。光ファイバ 1を透過してきた信号光 13は励起 光 11により増幅されてレ、る。光ファイバ 1の断面は鏡面になるように切断した。
[0040] 励起光 11および信号光 12の光源 21 , 22にはいずれも半導体レーザを用いた。励 起光 11と信号光 12との合波は、波長選択反射鏡 5を用いて行った。この反射鏡 5は 、信号光 12は通過するが励起光 11は反射するように構成した。
[0041] 光ファイバ 1から出射した信号光 13はレンズ 4を用いて光検出器 23に導いた。光路 の途中に、増幅された信号光 13は透過するが励起光 11を遮断するフィルタ 6を挿入 し、光検出器 23では信号光 13のみが検出されるようにした。検出された信号光 13の 強度はオシロスコープ 24で測定した。信号光 12のみを光ファイバ 1に入射させたとき の信号光 13の強度と、励起光 11とともに信号光 12を光ファイバ 1に入射させたとき の信号光 13の強度とを比較することにより、光増幅現象を確認できる。
[0042] 図 1に示した光学系では、励起光 11の進行方向と信号光 12の進行方向とを一致さ せたが、これに限らず、例えば両方の光の進行方向を逆方向としてもよい。励起光 1 1と信号光 12の合波は、信号光 12を反射させ、励起光 11を透過させる反射鏡を用 レ、てもよく、反射鏡以外の手段を用いて行ってもよい。
[0043] 図 1に示した装置は、評価装置の例示であるとともに、本発明の光増幅装置の構成 例でもある。上記に例示したように、光増幅装置には、本発明のガラス組成物とともに 、励起光の光源および信号光の光源を設置するとよい。光増幅装置は、図示した構 成に限らず、例えば信号光の光源に代えて信号入力用光ファイバを、光検出器に代 えて信号出力用光ファイバを、それぞれ配置してもよい。また、励起光と信号光との 合波 ·分波を、ファイバ力ブラ等を用いて行ってもょレ、。 [0044] (実施例 1)
表 1に示した各組成となるように、通常用いられる原料である酸化ケィ素、炭酸リチ ゥム、三酸化ビスマス、酸化イッテルビウムを秤量して原材料バッチを調合した。
[0045] 調合したバッチをアルミナルツボに投入して 1500°Cの電気炉中で 4時間保持し、 その後、鉄板上に流し出して冷却した。このガラスを 500°Cの電気炉中で 30分保持 した後、炉の電源を切り、室温まで徐冷して試料ガラス(サンプル 1一 3)とした。
[0046] 波長 980nmの励起光を用レ、、これらの試料ガラスについて蛍光スペクトルを測定 した。図 2に結果を示す。サンプル 1、 2からは広い波長域で強い発光が得られた。サ ンプル 3からも発光は確認できた力 その発光強度はサンプル 1, 2よりも遙かに低い
[0047] [表 1]
(モル%)
Figure imgf000011_0001
[0048] (実施例 2)
バッチの調合を変更した以外は実施例 1と同様にして試料ガラスを作製し、実施例 1と同様にして蛍光を測定し、波長 1310nmにおける発光強度を得た。サンプル 11 一 17の組成では Yb Oの含有率を変化させ(表 2)、サンプル 21— 27の組成では Bi
2 3
Oの含有率を変化させた (表 3)。 Yb〇の含有率と発光強度との関係を図 4に、 Bi
2 3 2 3
Oの含有率と発光強度との関係を図 5に、それぞれ示す。
2 3
[0049] [表 2] (モル
Figure imgf000012_0001
[0050] [表 3]
(モル%)
Figure imgf000012_0002
[0051] 図 4によると、 Yb Oの含有率が 0.01-2.0%の範囲で発光強度が増加した。ま
2 3
た、図 5によると、 Bi Oの含有率が 0.01-2.0%の範囲で発光強度が増加した。
2 3
[0052] (実施例 3)
光ファイバを作製して光増幅特性を測定した。光ファイバのコアガラスの組成は、 Si 0 :58.8%、 Li 0:7.8%、 MgO:15.7%、 CaO:7.8%、 Al O :7.8%、 Bi〇
2 2 2 3 2 3
:1.0%、 Yb O :1.0%とした。クラッドガラスは、コアガラスの組成力、ら Bi Oおよび
2 3 2 3
Yb〇を除いた組成とした。コア径は 80 zmとし、光ファイバの断面が鏡面になるよう
2 3
に長さ 95cmに切断して用いた。
[0053] 図 1に用いた装置を用レ、、波長 1314nmの信号光を入射させながら、波長 980nm の励起光を一定強度、一定周期でチヨツバ(図 1では図示省略)により断続照射する と、励起光が照射されている間、信号光の強度が増加した(図 3参照)。励起光の照 射により、信号光の強度は約 65倍となった。 産業上の利用可能性
本発明によれば、広い波長域で発光するビスマスを発光元素とするガラス組成物を 用い、利用価値が高い励起波長である 0. 帯および 0.98 zm帯、特に 0.98 zm帯による励起により、 1.3 zm帯で高い発光強度を得ることができる。

Claims

請求の範囲
[1] ビスマスと、ガラス網目形成体と、ジスプロシウム,エルビウム,イッテルビウム,ネオ ジム,ツリウム,ホノレミゥム,チタン,バナジウム,クロム,マンガン,鉄,コバルト,ニッケ ノレ,銅およびモリブデンから選ばれる少なくとも 1種の元素(ただし、 4価のチタンおよ び 3価の鉄を除く)とを含み、
励起光の照射により前記ビスマスが発光種として機能して赤外波長域で蛍光を発 するガラス組成物。
[2] 前記少なくとも 1種の元素力 Dy3+, Er3+, Yb3+, Nd3+, Tm3+, Ho3+, Ti3+, V3
+ + 75+ ^ 3 + ^ 6 + Λ /Γ 2+ Λ /Γ 3+ „ 2+ „ 2+ , τ.2+ „ + „ 2+ , Λ 3 +
, V , V , Cr , Cr , Μη , Μη , Fe , Co , Νι , Cu , Cu , Μο および Μο4+から選ばれる少なくとも 1種の陽イオンとして含まれる請求項 1に記載の ガラス組成物。
[3] 前記陽イオンが Yb3+である請求項 2に記載のガラス組成物。
[4] Bi Oに換算して、前記ビスマスを 0. 01— 15モル%の範囲で含む請求項 1に記載
2 3
のガラス組成物。
[5] Bi Oに換算して、前記ビスマスを 0. 01 -2. 0モル%の範囲で含む請求項 4に記
2 3
載のガラス組成物。
[6] 酸化物に換算して、前記少なくとも 1種の元素を 0. 01 12モル%の範囲で含む 請求項 1に記載のガラス組成物。
[7] Yb Oに換算して、前記イッテルビウムを 0. 01 -2. 0モル0 /0の範囲で含む請求項
2 3
1に記載のガラス組成物。
[8] 前記ガラス網目形成体が、ケィ素,リン,ホウ素およびゲルマニウムから選ばれる少 なくとも 1種の元素である請求項 1に記載のガラス組成物。
[9] 酸化物に換算して、前記ガラス網目形成体を 30— 80モル%の範囲で含む請求項
1に記載のガラス組成物。
[10] モル%により表示して、
SiO 30— 80
2
Li O 0— 40
2
Na O 0一 30 K 20
2 o 0一
Mg〇 0、一 40
CaO o- -40
SrO 0— 、30
Ba〇 o- -20
Al〇 0 - 、40
2 3
ZnO 0 -40
TiO 0— 、30
2
ZrO 0— 、30
2
Y〇 0、一 30
2 3
La O 0 ~30
2 3
B〇 o一 40
で示される成分を含み、
Li O + Na O +K O + CaO + SrO + BaO + ZnO + B〇が 0. 1— 60モノレ0 /0の範
2 2 2 2 3
囲にあり、かつ、
Bi Oに換算して 0. 01— 15モノレ0 /0のビスマスと、 Yb Oに換算して 0. 01— 12モ
2 3 2 3
ル%の Yb3+とをさらに含む請求項 1に記載のガラス組成物。
Bi Oに換算して 0. 01— 2. 0モノレ0 /0のビスマスと、 Yb Oに換算して 0. 01— 2. 0
2 3 2 3
モル%の Yb3+とを含む請求項 10に記載のガラス組成物。
請求項 1に記載のガラス組成物を含む光ファイバ。
請求項 1に記載のガラス組成物を含む光増幅装置。
請求項 1に記載のガラス組成物に励起光と信号光とを入射させ、前記信号光を増 幅する信号光の増幅方法。
PCT/JP2005/002167 2004-02-18 2005-02-14 赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法 WO2005077851A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517999A JPWO2005077851A1 (ja) 2004-02-18 2005-02-14 赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-041324 2004-02-18
JP2004041324 2004-02-18

Publications (1)

Publication Number Publication Date
WO2005077851A1 true WO2005077851A1 (ja) 2005-08-25

Family

ID=34857922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002167 WO2005077851A1 (ja) 2004-02-18 2005-02-14 赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法

Country Status (3)

Country Link
JP (1) JPWO2005077851A1 (ja)
CN (1) CN1918080A (ja)
WO (1) WO2005077851A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049457A (ja) * 2012-08-29 2014-03-17 Osaka Univ 蛍光ガラス、蛍光ガラスの製造方法、光ファイバおよびファイバレーザ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117271B (zh) * 2007-07-25 2010-12-15 中国科学院上海光学精密机械研究所 镱铋共掺的磷酸盐基光学玻璃及其制备方法
JP5569942B2 (ja) * 2009-10-27 2014-08-13 学校法人東京理科大学 発光ガラス、当該発光ガラスを備えた発光装置及び発光ガラスの製造方法
CN102211871B (zh) * 2011-04-01 2013-01-02 中国科学院上海光学精密机械研究所 镱铋共掺无碱硼磷酸盐光学玻璃及其制备方法
CN102260042B (zh) * 2011-05-20 2013-09-11 昆明理工大学 一种掺铋的磷酸盐光学玻璃及其制备方法
CN102557440B (zh) * 2012-01-06 2014-07-16 深圳市卓先实业有限公司 含铒、钕元素的磷锗酸盐玻璃芯片的制备方法
CN103708735A (zh) * 2013-12-05 2014-04-09 浙江大学 一种提高Bi掺杂玻璃近红外发光热稳定性的方法
CN106356702B (zh) * 2015-07-17 2020-01-21 高值光电股份有限公司 超短脉冲光纤放大器
CN110407462B (zh) * 2019-08-27 2021-10-22 上海尖丰光电技术有限公司 一种稀土掺杂硅酸盐玻璃及其制备方法和应用
CN113387564B (zh) * 2020-03-13 2022-04-05 包头稀土研究院 掺镨和铒的发光玻璃及其制备方法
CN113113844B (zh) * 2021-03-18 2022-11-15 北京大学 用于硅基光波导放大器和激光器的增益材料及其制备方法
CN115113325B (zh) * 2021-03-23 2023-11-03 华为技术有限公司 一种掺铒光纤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109152A (ja) * 1997-09-29 1999-04-23 Central Glass Co Ltd 光導波路用ハライド酸化物ガラス組成物及び該光導波路並びにそれを用いた光学装置
JP2002223022A (ja) * 2001-01-05 2002-08-09 Pohang Eng College 広帯域光学的導波管増幅器及びその製造方法
JP2003283028A (ja) * 2002-01-21 2003-10-03 Nippon Sheet Glass Co Ltd 赤外発光体および光増幅媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109152A (ja) * 1997-09-29 1999-04-23 Central Glass Co Ltd 光導波路用ハライド酸化物ガラス組成物及び該光導波路並びにそれを用いた光学装置
JP2002223022A (ja) * 2001-01-05 2002-08-09 Pohang Eng College 広帯域光学的導波管増幅器及びその製造方法
JP2003283028A (ja) * 2002-01-21 2003-10-03 Nippon Sheet Glass Co Ltd 赤外発光体および光増幅媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAO X. ET AL: "Study on effect of rare earth in blue-purple night luminous phosphor CaS:Bi,Cu", ACTA SCIENTARIUM NATURALIUM UNIVERSITATIS NORMALIS HUNANENSIS, vol. 15, no. 2, June 1992 (1992-06-01), pages 145 - 148, XP002987983 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049457A (ja) * 2012-08-29 2014-03-17 Osaka Univ 蛍光ガラス、蛍光ガラスの製造方法、光ファイバおよびファイバレーザ

Also Published As

Publication number Publication date
JPWO2005077851A1 (ja) 2008-02-21
CN1918080A (zh) 2007-02-21

Similar Documents

Publication Publication Date Title
WO2005077851A1 (ja) 赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法
US7515332B2 (en) Glass composition that emits fluorescence in infrared wavelength region and method of amplifying signal light using the same
JP3897170B2 (ja) 赤外発光体および光増幅媒体
JP4341981B2 (ja) ビスマスを含有するガラス組成物、およびこれを用いた信号光の増幅方法
US7531475B2 (en) Glass composition that emits fluorescence in infrared wavelength region
JP4240720B2 (ja) 光増幅ガラス
JP4773948B2 (ja) 酸化ビスマスガラスおよびそれを製造するプロセス
Sołtys et al. Electrical and optical properties of glasses and glass-ceramics
EP0665992A1 (en) Phosphate glass useful in high energy lasers
US20120033694A1 (en) Broadening of rare earth ion emission bandwidth in phosphate based laser glasses
WO2007058205A1 (ja) ガラス組成物およびガラス基板
WO2005085148A1 (ja) 赤外波長域で蛍光を発するガラス組成物、およびこれを用いた信号光の増幅方法
dos Santos et al. Evaluating the link between blue-green luminescence and cross-relaxation processes in Tb3+-doped glasses
WO2004058657A1 (ja) 赤外波長域で蛍光を発するガラス組成物
Zhou et al. Broadband near-infrared emission from Bi-doped aluminosilicate glasses
US20020041750A1 (en) Rare earth element-doped, Bi-Sb-Al-Si glass and its use in optical amplifiers
JPWO2010053057A1 (ja) 光増幅ガラス
JP2004277252A (ja) 光増幅ガラスおよび光導波路
Angnanon et al. Quantum yield and scintillation behaviors of lanthanum barium borate doped with Eu3+ ion scintillating glasses
Zhang et al. Spectroscopic Properties of Er3+‐Doped Na2O–La2O3–Al2O3–SiO2 Glasses
Ruan et al. Energy transfer and enhanced broadband near-infrared luminescence in Yb–Bi codoped phosphate glasses
Mattarelli et al. Effect of Eu3+ and Ce3+ codoping on the relaxation of Er3+ in silica‐hafnia and tellurite glasses
Berneschi et al. Soda-zinc-aluminosilicate glasses doped with Tb3+, Ce3+ and Sm3+ for frequency conversion and white light generation
CZ201264A3 (cs) Optické luminiscencní sodnohlinitokremicité sklo dopované oxidy kovu a urcené pro fotoniku
Del Cacho et al. Blue cooperative emission in Yb3+-doped GeO2-PbO glasses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517999

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580004965.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase