WO2005076164A1 - プリント基板のリターン経路チェック方法およびプリント基板のパターン設計cad装置 - Google Patents

プリント基板のリターン経路チェック方法およびプリント基板のパターン設計cad装置 Download PDF

Info

Publication number
WO2005076164A1
WO2005076164A1 PCT/JP2005/001593 JP2005001593W WO2005076164A1 WO 2005076164 A1 WO2005076164 A1 WO 2005076164A1 JP 2005001593 W JP2005001593 W JP 2005001593W WO 2005076164 A1 WO2005076164 A1 WO 2005076164A1
Authority
WO
WIPO (PCT)
Prior art keywords
guard ground
ground
guard
circuit board
printed circuit
Prior art date
Application number
PCT/JP2005/001593
Other languages
English (en)
French (fr)
Inventor
Hirotsugu Fusayasu
Seiji Hamada
Shoichi Mimura
Miyoko Irikiin
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/555,762 priority Critical patent/US7409665B2/en
Priority to EP05709686A priority patent/EP1657659B1/en
Priority to DE602005013172T priority patent/DE602005013172D1/de
Publication of WO2005076164A1 publication Critical patent/WO2005076164A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer

Definitions

  • the present invention relates to a wiring design of a printed circuit board, and in particular, to a method of checking a return path of a printed circuit board and a pattern of the printed circuit board corresponding to an EMC (Electro-Magnetic Compatibility) measure for preventing generation of unnecessary radiation noise of the printed circuit board.
  • Design CAD Computer Aided Design
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-16337
  • the guard ground detection method as described above is used, as shown in FIG. If the ground discrimination value G is reduced, the extended portion 43 of the guard ground where pads and vias are arranged on the signal wiring pattern 31 is determined as an error as a break in guard ground, and the guard ground discrimination value G is also determined. If it is made larger, there is a problem in that a short or broken 44 of the guard ground, which is an error, is determined to be OK.
  • the present invention provides a printed circuit board return path check method and a printed circuit board pattern design CAD apparatus that can check a return path without any check error at a much higher speed than conventional methods.
  • the purpose is to provide.
  • a method of checking a return path of a printed circuit board includes the steps of: detecting a signal wiring pattern by referring to wiring information of the printed circuit board; Tracing along the direction and detecting the presence or absence of a guard ground within a distance from the signal wiring pattern to a predetermined first determination specified value GL; and Identifying a non-existent guard ground absence section;
  • the length of the guard ground non-existence section is defined as L
  • the signal wiring pattern force at the boundary of the guard ground non-existence section is defined as G
  • the printed board is a multilayer printed board including a wiring layer on which a signal wiring pattern exists and a ground layer on which a ground plane exists.
  • guard ground does not exist within the distance to the second determination specified value GU in the guard ground non-existence section, if the ground connected to the guard ground exists in the ground layer and V, if not, And determining that there is an error in the guard ground.
  • the first determination specified value GL is set based on a minimum distance between lines in a printed circuit board pattern design.
  • the above check method can be realized as a program to be executed by a computer, and the program can be recorded on a recording medium.
  • the printed circuit board pattern design CAD apparatus includes a signal wiring pattern detection unit for detecting a signal wiring pattern with reference to the wiring information of the printed circuit board, and a longitudinal direction of the signal wiring pattern.
  • the guard trace is detected within the distance from the signal wiring pattern to the predetermined first discrimination specified value GL, and the guard ground is not within the distance to the first discrimination specified value GL
  • a guard ground detection unit A guard ground detection unit,
  • a return path determination unit for determining that there is a guard ground error is provided.
  • FIG. 1 is a block diagram showing an example of an EMC design CAD apparatus according to the present invention.
  • FIG. 2 is a flowchart showing an example of a method of checking a return path of a printed circuit board according to the present invention.
  • FIG. 3A and FIG. 3B are partial plan views for explaining a state of guard ground detection.
  • FIG. 4 is a flowchart showing another example of the method for checking the return path of a printed circuit board according to the present invention.
  • FIG. 5 is a partial plan view for explaining a state of guard ground detection.
  • FIG. 6 is a flowchart showing a third example of the printed circuit board return path checking method according to the present invention.
  • FIG. 7 is a schematic perspective view for explaining a state of guard ground detection.
  • FIG. 8 is a partial plan view for explaining a conventional guard ground detection method.
  • FIG. 1 is a block diagram showing an example of an EMC design CAD apparatus according to the present invention.
  • Figure 2 is a block diagram showing an example of an EMC design CAD apparatus according to the present invention.
  • FIG. 4 is a flowchart illustrating an example of a method of checking a return path of a printed circuit board according to the present invention.
  • FIG. 3 is a partial plan view for explaining a state of guard ground detection.
  • FIG. 1 shows that the EMC design CAD device includes an input / output device 11 such as a keyboard, a pointing device, and a display, a computer 12 for circuit pattern design such as an arithmetic processor, a hard disk drive, and an optical disk. Drives, memory and other storage devices 13
  • circuit board design printed circuit board CAD program 14 including a guard ground detecting means 21 and the like.
  • the guard ground detecting means 21 includes a signal wiring pattern detecting section 22, a guard ground detecting section
  • the signal wiring pattern detection unit 22 detects individual signal wiring patterns with reference to wiring information of a printed circuit board to be designed. Such wiring information is stored in the storage device 13 or the like as printed circuit board design data.
  • the guard ground detecting section 23 traces each signal wiring pattern detected by the signal wiring pattern detecting section 22 along the longitudinal direction, and returns the return path of the signal wiring pattern on both sides of the signal wiring pattern. It detects whether or not there is a guard ground that becomes At this time, the first guard ground discriminating value GL for limiting the search range is determined in advance, and the presence or absence of a guard ground is also detected within the distance to the first guard ground discriminating value GL for the center line force of the signal wiring pattern. .
  • the guard ground detecting unit 23 determines whether the guard ground exists within the distance to the first guard ground discriminating value GL, and the guard ground exists within the distance to the first guard ground discriminating value GL.
  • the former is defined as a guard ground OK section, and the latter is defined as a guard ground NG section.
  • a second guard ground determination specified value GU larger than the first guard ground determination specified value GL is set, and the center line force of the signal wiring pattern is also set to the second guard ground determined value GU.
  • Guard ground discrimination value Detects the presence of guard ground within the distance to GU.
  • the return route determining unit 25 determines that there is an error in the guard ground. Such an error determination result may be displayed to the user via the input / output device 11 such as a display, or may be notified to another program.
  • the return path of the signal wiring pattern may be a via hole or the like. It may be formed on the ground plane in the ground layer via Therefore, when the guard ground in the wiring layer is discontinuous, the plane ground detection unit 24 detects whether or not the ground connected to the guard ground exists in the ground layer!
  • step al the signal wiring pattern detection unit 22 extracts individual signal wiring patterns with reference to the wiring information of the printed circuit board to be designed.
  • the signal wiring pattern 31 is detected.
  • a first guard ground determination prescribed value GL is set. 1st gar
  • the ground discrimination specified value GL specifies a search range on both sides with reference to the center line of the signal wiring pattern 31, and is preferably a minimum distance between lines in a printed circuit board pattern design. Set to.
  • step a3 the guard ground detection unit 23 traces along the longitudinal direction of the signal wiring pattern, and in step a4, the signal wiring pattern force is also within the distance to the first guard ground determination specified value GL. Detects the presence or absence of a guard ground. If a guard ground exists within the distance to the first guard ground discriminating value GL in all trace sections, the return path of the signal wiring pattern is secured, and the process proceeds to step a5. Then, the return route determination unit 25 determines that there is no guard ground error, and ends the return route check routine.
  • step alO the guard ground detection unit 23 sets the first guard ground
  • the section where the guard ground exists within the distance to the discrimination threshold GL is defined as a guard ground OK section, and the section where no guard ground exists within the distance to the first guard ground discrimination value GL is defined as the guard ground NG section. I do.
  • the guard ground 32 bends away from the signal wiring pattern 31 so that the portion exceeding the first guard ground determination specified value GL and the guard ground 32 are continuous. There are some parts that do not exist, and the section including these parts corresponds to Guard Ground NG section 35. In addition, a section including the portion where the guard ground 32 exceeds the first guard ground determination specified value GL corresponds to a guard ground OK section.
  • a second guard ground discriminating prescribed value GU is set so as to be larger than the first guard ground discriminating prescribed value GL.
  • the second guard ground determination value GU be set so as to further expand the search range in the guard ground NG section 35 to include the bent portion of the guard ground 32. Only the discontinuous portion of the guard ground 32 can be extracted.
  • the second guard ground discriminating value GU may be appropriately changed according to the length of the guard ground NG section.For example, the first guard ground discriminating value GL is set to 0.
  • the guard ground detection unit 23 performs re-tracing in the range of the guard ground NG section, and determines whether or not the signal wiring pattern force is within the distance to the second guard ground determination specified value GU. Is detected.
  • the process proceeds to step al5, and the return route determination unit 25 determines that there is a guard ground error. The determination is displayed to the user via the input / output device 11, and the return route check routine ends.
  • step al3 if a guard ground exists within the distance to the second guard ground discriminating value GU in the guard ground NG section, the process proceeds to step al4.
  • step al4 it is detected whether the guard ground is continuous in the guard ground NG section. If the guard grounds are continuous, it means that the return path of the signal wiring pattern is secured, and the process proceeds to step a5, where the return path determination unit 25 determines that there is no guard ground error, and The return path check routine ends.
  • step al4 determines whether the guard ground is discontinuous in the guard ground NG section in step al4. If the guard ground is discontinuous in the guard ground NG section in step al4, the return route of the signal wiring pattern is missing, and the process proceeds to step al5 to determine the return route.
  • the unit 25 determines that there is an error in the guard ground, displays the error to the user via the input / output device 11, and ends the return route check routine.
  • the guard ground 32 in the guard ground NG section A35a, is continuous without interruption, and does not exceed the second guard ground determination specified value GU. It is determined that there is no error. On the other hand, since the guard ground 32 does not exist in the guard ground NG section B 35b, it is determined that there is a guard ground error.
  • the return path of the signal wiring pattern can be reliably checked by adopting two large and small guard ground discriminating values GL and GU and determining the continuity of the guard ground. .
  • the second guard ground determination specified value GU is equal to the guard ground NG.
  • the case of setting according to the length of the section has been described as an example, but the same applies when the second guard ground determination reference value GU is set according to the signal frequency or signal current flowing through the signal wiring pattern. Has an effect.
  • FIG. 4 is a flowchart showing another example of the method for checking the return path of a printed circuit board according to the present invention.
  • FIG. 5 is a partial plan view for explaining a state of guard ground detection. Also in this embodiment, the EMC design CAD apparatus shown in FIG. 1 is used.
  • the continuity of the guard ground is determined by numerical comparison in step b 14 of FIG.
  • the signal wiring pattern detection unit 22 extracts individual signal wiring patterns with reference to wiring information of a printed circuit board to be designed. In the pattern example shown in FIG. 5, the signal wiring pattern 31 is detected.
  • a first guard ground determination specified value GL is set.
  • the first guard ground discriminating specified value GL defines the search range on both sides based on the center line of the signal wiring pattern 31 as in FIG. 3A, and is preferably the minimum distance between lines in the printed circuit board pattern design. Set to distance.
  • step b3 the guard ground detection unit 23 traces along the longitudinal direction of the signal wiring pattern.
  • step b4 the signal wiring pattern force is also guarded within the distance to the first guard dullness determination specified value GL. Detects the presence of ground. If a guard ground exists within the distance to the first guard ground discriminating value GL in all trace sections, the return route of the signal wiring pattern is secured, and the process proceeds to step b5. Then, the return route determination unit 25 determines that there is no guard ground error, and ends the return route check routine.
  • step blO where the guard ground detection unit 23 sets the first guard ground.
  • the section where the guard ground exists within the distance to the discrimination threshold GL is defined as the guard ground OK section
  • the section where no guard ground exists within the distance to the first guard ground discrimination value GL is defined as the guard ground NG section. I do.
  • the guard ground 32 is bent so as to move away from the signal wiring pattern 31 so that the portion exceeding the first guard ground determination specified value GL and the guard ground 32 are not continuous.
  • the section including these parts is equivalent to the guard ground NG section 35.
  • a section including the portion where the guard ground 32 does not exceed the first guard ground determination specified value GL corresponds to a guard ground OK section.
  • a second guard ground discrimination prescribed value GU is set to be larger than the first guard ground discrimination prescribed value GL.
  • the second guard ground discriminating specified value GU it is preferable to set the second guard ground discriminating specified value GU so as to further expand the search range in the guard ground NG section 35 so as to include the bent portion of the guard ground 32. Only the discontinuous portion of the guard ground 32 can be extracted.
  • the specified value GU of the second guard ground discrimination value may be changed as appropriate according to the length of the guard ground NG section.
  • the first guard ground discrimination specified value GL is set to 0.2 mm as the minimum distance between lines in the pattern design.
  • the second guard ground discrimination specified value GU is set to about 10 mm.
  • step bl3 the guard ground detection unit 23 performs re-tracing within the range of the guard ground NG section, and determines whether the signal wiring pattern force is within the distance to the second guard ground determination specified value GU. Is detected.
  • the process proceeds to step bl5, where the return route determination unit 25 determines that there is a guard ground error. The determination is displayed to the user via the input / output device 11, and the return route check routine ends.
  • step bl4 if there is a guard ground within the distance to the second guard ground discriminating value GU in the guard ground NG section in step bl3, the process proceeds to step bl4.
  • step bl4 as shown in FIG. 5, L is the length of the guard ground NG section, and the signal wiring pattern force at the boundary of the guard ground NG section is G, the distance to the guard ground is G, and L ⁇ 2 X (GU If 2 -G 2 ) is satisfied, the process proceeds to step b15, where the return route determination unit 25 determines that there is an error in the guard ground, displays the error to the user via the input / output device 11, and checks the return route. The routine ends.
  • step bl4 determines that there is no guard ground error, and ends the return path check routine.
  • FIG. 5 is a guard ground 32 guard ground terminal point X36a, interrupted by Y36b /, indicates a case Ru, its interruption length L, 2 X! - when equal was summer and (GU 2 G 2)
  • the end points X and Y are located on a semicircle having a radius GU centered at the intersection of the signal wiring pattern 31 and the center line 37 between XY. Further, L> 2 when X of (GU 2 -G 2), since the end point X, Y is present in a semicircular outside radius GU, guard ground is discontinuous, the guard ground error.
  • the discontinuity of the guard ground cannot be detected because the end points X and Y are within the semicircle of the radius GU. Therefore, by comparing the length L of the guard ground NG section with 2 X ⁇ (GU 2 — G 2 ), if the length L of the guard ground NG section is large, it can be determined that the guard ground is spreading. There is no error. If the length L of the guard ground NG section is shorter, it can be determined that the guard ground is short, and a guard ground error occurs.
  • FIG. 6 is a flow chart showing a third example of the printed circuit board return path checking method according to the present invention.
  • FIG. 7 is a schematic perspective view for explaining a state of guard ground detection. Also in this embodiment, the EMC design CAD apparatus shown in FIG. 1 is used.
  • the printed circuit board to be designed is a multilayer printed circuit board including a wiring layer on which a signal wiring pattern exists and a ground layer on which a ground plane exists, the return path of the signal wiring pattern is formed via a via hole or the like. May be formed on the ground plane in the ground layer.
  • the plane ground detection unit 24 detects whether the ground connected to the guard ground exists in the ground layer. are doing.
  • the signal wiring pattern detection unit 22 extracts individual signal wiring patterns with reference to the wiring information of the printed circuit board to be designed. In the pattern example shown in FIG. 7, the signal wiring pattern 31 connecting the two ICs 38 is detected.
  • a first guard ground determination specified value GL is set.
  • the first guard ground discriminating specified value GL defines the search range on both sides based on the center line of the signal wiring pattern 31 as in FIG. 3A, and is preferably the minimum distance between lines in the printed circuit board pattern design. Set to distance.
  • a plane ground discrimination prescribed value GPG is set.
  • the plane ground discrimination specified value GPG defines a search range in the stacking direction of the multilayer substrate with reference to the wiring layer 51 where the signal wiring pattern 31 exists. Set by the layer identification code or the distance from the wiring layer 51.
  • step c4 the plane ground detection unit 24 extracts a plane ground whose wiring layer strength in which the signal wiring pattern exists is also within the range of the plane ground determination specified value GPG.
  • step c5 the guard ground detection unit 23 traces along the longitudinal direction of the signal wiring pattern, and in step c6, the signal wiring pattern force is also within the distance to the first guard ground determination specified value GL. Detects the presence or absence of a guard ground. If a guard ground exists within the distance to the first guard ground discriminating value GL in all trace sections, it means that the return path of the relevant signal wiring pattern is secured, and the process proceeds to step c7. Then, the return route determination unit 25 determines that there is no guard ground error, and ends the return route check routine.
  • step clO the guard ground detection unit 23 sets The section where the guard ground exists within the distance to the discrimination threshold GL is defined as a guard ground OK section, and the section where no guard ground exists within the distance to the first guard ground discrimination value GL is defined as the guard ground NG section. I do.
  • the guard ground 32 is bent so as to move away from the signal wiring pattern 31 so that the portion exceeding the first guard ground determination specified value GL and the guard ground 32 are continuously formed. There is a part that does not exist, and the section including these parts corresponds to Guard Ground NG section 35. In addition, a section including the portion where the guard ground 32 does not exceed the first guard ground determination specified value GL corresponds to a guard ground OK section.
  • the second guard ground discrimination specified value GU is set to be larger than the first guard ground discrimination specified value GL.
  • the specified value GU of the second guard ground discrimination value may be changed as appropriate according to the length of the guard ground NG section.
  • the first guard ground discrimination specified value GL is set to 0.2 mm as the minimum distance between lines in the pattern design.
  • the second guard ground discrimination specified value GU is set to about 10 mm.
  • step cl3 the guard ground detection unit 23 performs re-tracing in the range of the guard ground NG section, and determines whether the signal wiring pattern force is within the distance to the second guard ground determination specified value GU. Is detected. If there is a section where there is no guard ground within the distance to the second guard ground discriminating value GU in the guard ground NG section, the process proceeds to step c15.
  • step cl3 if a guard ground exists within the distance to the second guard ground determination specified value GU in the guard ground NG section, the process proceeds to step cl4.
  • step cl4 it is detected whether or not the guard ground is continuous in the guard ground NG section. If the guard grounds are continuous, it means that the return path of the signal wiring pattern is secured, and the process proceeds to step c7, where the return path determination unit 25 determines that there is no guard ground error, and The return path check routine ends.
  • step cl4 if the guard ground is discontinuous in the guard ground NG section in step cl4, it means that the return path of the signal wiring pattern is missing, and the process proceeds to step c15.
  • step cl5 the plane ground detection unit 24 searches the plane ground extracted in step c4 to determine whether or not there is a plane ground connected to the guard ground in the guard ground NG section. Is detected. Such a plain ground If there is, the return path of the signal wiring pattern is secured, and the process shifts to step c7, where the return path determination unit 25 determines that there is no guard ground error, and returns to the return path check routine. Ends.
  • the guard ground 32 in the wiring layer 51 is discontinuous.
  • Plane ground discrimination value Since the ground plane 52 within the GPG range is connected to the adjacent plane ground 40 via the via 41, the return path 42 is secured, and it is judged that there is no guard ground error. Is done.
  • step c15 if there is no plane ground connected to the guard ground in step c15, the process proceeds to step cl6, where the return path determination unit 25 determines that there is an error in the guard ground, and This is displayed to the user via the input / output device 11, and the return path check routine ends.
  • the signal wiring pattern can be determined. Can be reliably checked.
  • the method for checking the return path of a printed circuit board and the pattern design CAD apparatus according to the present invention can check both the widened portion of the guard ground and the short break of the guard ground at high speed without making a check mistake. Therefore, EMC measures for suppressing the electromagnetic waves generated by the high-frequency current loop force consisting of the signal wiring and the guard ground can be implemented efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 プリント基板のパターン設計CAD装置は、プリント基板配線情報を参照して、信号配線パターンを検出する信号配線パターン検出部22と、該信号配線パターンの長手方向に沿ってトレースし、信号配線パターンから第1判別規定値GLまでの距離内でガードグランドの有無を検出して、ガードグランドが第1判別規定値GLまでの距離内に存在しないガードグランド不存在区間を特定し、該ガードグランド不存在区間において、信号配線パターンから第1判別規定値GLより大きい第2判別規定値GUまでの距離内でガードグランドの有無を検出するガードグランド検出部23と、ガードグランド不存在区間において、ガードグランドが第2判別規定値GUまでの距離内に存在しない場合、ガードグランドのエラー有りと判定するリターン経路判定部25などで構成される。  こうした手法によって、高速に、チェックミスすることなくリターン経路をチェックできる。

Description

明 細 書
プリント基板のリターン経路チェック方法およびプリント基板のパターン設 計 CAD装置
技術分野
[0001] 本発明は、プリント基板の配線設計に関し、特に、プリント基板の不要輻射ノイズの 発生を防止する EMC(Electro- Magnetic Compatibility)対策に対応したプリント基板 のリターン経路チェック方法およびプリント基板のパターン設計 CAD(Computer Aided Design)装置に関するものである。
背景技術
[0002] デジタル AV機器、情報機器等の電子機器の不要輻射ノイズを低減するためには、 まずノイズ源である回路基板の配線経路を把握することが大切である。従来のプリン ト基板 CADでは、配線エラーを検出する場合、クロック配線パターンの配線経路が、 EMC設計条件に違反しているかを、 目視等の人手で検出し、違反箇所の配線経路 を修正していた。
[0003] し力しながら、上記のようなプリント基板 CADでは、 EMC設計エラーの検出を人手 に依存していたため、検出漏れが発生しやすぐまた、検出には時間を要するといつ た課題があった。
[0004] この解決策として、プリント基板 CADでのパターン形状の認識技術の発展によって 、信号配線に隣接してグランド属性のガードパターンであるガードグランドが存在する かを検出することが可能となってきた。一般的な検出方法としては、信号配線からガ ードグランド判別規定値以内にガードグランドが存在しない配線区間が存在すると、 エラーとすることが考免られる。
[0005] 関連する先行技術として、下記のものが挙げられる。
[0006] 特許文献 1 :特開 2002— 16337号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上記のようなガードグランド検出方法では、図 8に示すように、ガード グランド判別規定値 Gを小さくすると、信号配線パターン 31にパッドやビア等が配置 される部分のガードグランドの広がり部分 43を、ガードグランドの途切れとしてエラー 判別し、また、ガードグランド判別規定値 Gを大きくすると、エラーであるガードグラン ドの短 、途切れ 44を OK判別してしまうと 、う課題がある。
[0008] 本発明は、前記課題に鑑み、従来の方法に比べ格段に高速に、チェックミスするこ となくリターン経路をチェックできるプリント基板のリターン経路チェック方法およびプリ ント基板のパターン設計 CAD装置を提供することを目的とする。
課題を解決するための手段
[0009] 上記目的を達成するために、本発明に係るプリント基板のリターン経路チェック方 法は、プリント基板の配線情報を参照して、信号配線パターンを検出するステップと、 該信号配線パターンの長手方向に沿ってトレースし、信号配線パターンから予め定 めた第 1判別規定値 GLまでの距離内でガードグランドの有無を検出するステップと、 ガードグランドが第 1判別規定値 GLまでの距離内に存在しないガードグランド不存 在区間を特定するステップと、
第 1判別規定値 GLより大きい第 2判別規定値 GUを設定するステップと、 該ガードグランド不存在区間において、信号配線パターン力も第 2判別規定値 GU までの距離内でガードグランドの有無を検出するステップと、
ガードグランド不存在区間にお 、て、ガードグランドが第 2判別規定値 GUまでの距 離内に存在しない場合、ガードグランドのエラー有りと判定するステップとを含むこと を特徴とする。
[0010] 本発明のチェック方法において、ガードグランド不存在区間において、不連続なガ ードグランドが第 2判別規定値 GUまでの距離内に存在する場合、ガードグランドの エラー有りと判定するステップとを含むことが好ましい。
[0011] また本発明のチェック方法において、ガードグランド不存在区間の長さを Lとし、ガ ードグランド不存在区間の境界における信号配線パターン力 ガードグランドまでの 距離を Gとして、
L≤ 2 X (GU -G2)が成立する場合、ガードグランドのエラー有りと判定するステ ップとを含むことが好まし 、。 [0012] また本発明のチェック方法において、プリント基板は、信号配線パターンが存在す る配線層と、グランドプレーンが存在するグランド層とを含む多層プリント基板であつ て、
ガードグランド不存在区間にお 、て、ガードグランドが第 2判別規定値 GUまでの距 離内に存在しな 、場合、該ガードグランドと接続したグランドがグランド層に存在して V、なければ、ガードグランドのエラー有りと判定するステップとを含むことが好ま 、。
[0013] また本発明のチェック方法において、第 1判別規定値 GLは、プリント基板のパター ン設計における最小線間距離で設定することが好ましい。
[0014] 上記チェック方法は、コンピュータで実行するためのプログラムとして実現可能であ り、該プログラムは記録媒体に記録可能である。
[0015] さらに、本発明に係るプリント基板のパターン設計 CAD装置は、プリント基板の配 線情報を参照して、信号配線パターンを検出するための信号配線パターン検出部と 該信号配線パターンの長手方向に沿ってトレースし、信号配線パターンから予め定 めた第 1判別規定値 GLまでの距離内でガードグランドの有無を検出して、ガードダラ ンドが第 1判別規定値 GLまでの距離内に存在しないガードグランド不存在区間を特 定し、該ガードグランド不存在区間において、信号配線パターンから第 1判別規定値 GLより大きい第 2判別規定値 GUまでの距離内でガードグランドの有無を検出するた めのガードグランド検出部と、
ガードグランド不存在区間にお 、て、ガードグランドが第 2判別規定値 GUまでの距 離内に存在しない場合、ガードグランドのエラー有りと判定するためのリターン経路判 定部とを備えることを特徴とする。
発明の効果
[0016] こうした手法によって、ガードグランドの広がり部分とガードグランドの短い途切れの 双方をチェックミスすることなぐ高速にチェックできる。そのため、信号配線とガード グランドからなる高周波電流ループ力 発生する電磁波を抑制するための EMC対 策を効率よく実施できる。
図面の簡単な説明 [0017] [図 1]本発明に係る EMC設計 CAD装置の一例を示すブロック図である。
[図 2]本発明に係るプリント基板のリターン経路チェック方法の一例を示すフローチヤ ートである。
[図 3]図 3A、図 3Bは、ガードグランド検出の様子を説明するための部分平面図であ る。
[図 4]本発明に係るプリント基板のリターン経路チェック方法の他の例を示すフローチ ヤートである。
[図 5]ガードグランド検出の様子を説明するための部分平面図である。
[図 6]本発明に係るプリント基板のリターン経路チェック方法の第 3の例を示すフロー チャートである。
[図 7]ガードグランド検出の様子を説明するための概略斜視図である。
[図 8]従来のガードグランド検出方法を説明するための部分平面図である。
符号の説明
[0018] 11 入出力装置
12 回路パターン設計用コンピュータ
13 記憶装置
14 回路パターン設計用プリント基板 CADプログラム
21 ガードグランド検出手段
22 信号配線パターン検出部
23 ガードグランド検出部
24 プレーングランド検出部
25 リターン経路判定部
31 信号配線パターン
32 ガードグランド
34 ガードグランド ΌΚ区間
35 ガードグランド NG区間
35a ガードグランド NG区間 A
35b ガードグランド NG区間 B 36a ガードグランド端点 X
36b ガードグランド端点 Y
37 ΧΥ間の中央線
38 IC
39 グランドプレーン
40 隣接プレーングランド
41 ビア
42 リターン経路
43 ガードグランド広がり部分
44 ガードグランド途切れ部分
45 半径判別規定値の半円
51 配線層
52 グランド層
発明を実施するための最良の形態
[0019] (実施の形態 1)
図 1は、本発明に係る EMC設計 CAD装置の一例を示すブロック図である。図 2は
、本発明に係るプリント基板のリターン経路チェック方法の一例を示すフローチャート である。図 3は、ガードグランド検出の様子を説明するための部分平面図である。
[0020] まず図 1にお!/、て、 EMC設計 CAD装置は、キーボード、ポインティングデバイス、 ディスプレイなどの入出力装置 11と、演算プロセッサなどの回路パターン設計用コン ピュータ 12と、ハードディスクドライブ、光ディスクドライブ、メモリなどの記憶装置 13と
、ガードグランド検出手段 21等を含む回路パターン設計用プリント基板 CADプログ ラム 14などで構成される。
[0021] ガードグランド検出手段 21は、信号配線パターン検出部 22、ガードグランド検出部
23、プレーングランド検出部 24、リターン経路判別部 25などを備える。
[0022] 信号配線パターン検出部 22は、設計対象であるプリント基板の配線情報を参照し て、個々の信号配線パターンを検出する。こうした配線情報は、プリント基板の設計 データとして記憶装置 13などに格納されて 、る。 [0023] ガードグランド検出部 23は、信号配線パターン検出部 22によって検出された個々 の信号配線パターンを長手方向に沿ってトレースし、信号配線パターンの両サイドに おいて当該信号配線パターンのリターン経路となるガードグランドが存在するか否か を検出する。このときサーチ範囲を限定するための第 1ガードグランド判別規定値 GL を予め定めておき、信号配線パターンの中心線力も第 1ガードグランド判別規定値 G Lまでの距離内でガードグランドの有無を検出する。
[0024] 続 、て、ガードグランド検出部 23は、第 1ガードグランド判別規定値 GLまでの距離 内にガードグランドが存在する区間と、第 1ガードグランド判別規定値 GLまでの距離 内にガードグランドが存在しない区間とを特定して、前者をガードグランド OK区間、 後者をガードグランド NG区間と定義する。そして、ガードグランド NG区間において サーチ範囲をより拡大するために、第 1ガードグランド判別規定値 GLより大きい第 2 ガードグランド判別規定値 GUを設定しておいて、信号配線パターンの中心線力も第 2ガードグランド判別規定値 GUまでの距離内でガードグランドの有無を検出する。
[0025] リターン経路判別部 25は、ガードグランド NG区間においてガードグランドが第 2ガ ードグランド判別規定値 GUまでの距離内に存在しな 、場合、ガードグランドのエラ 一有りと判定する。こうしたエラー判定結果は、ディスプレイなどの入出力装置 11を 介して使用者に表示したり、他のプログラムに通知してもよい。
[0026] なお、設計対象であるプリント基板が、信号配線パターンが存在する配線層とダラ ンドプレーンが存在するグランド層とを含む多層プリント基板である場合、信号配線 パターンのリターン経路がビアホール等を介してグランド層でのグランドプレーンに形 成されている可能性がある。そこで、プレーングランド検出部 24は、配線層でのガー ドグランドが不連続である場合、該ガードグランドと接続したグランドがグランド層に存 在して!/、るか否かを検出する。
[0027] 次に、図 2のフローチャートを説明する。まずステップ alにおいて、信号配線パター ン検出部 22は、設計対象であるプリント基板の配線情報を参照して、個々の信号配 線パターンを抽出する。図 3Aに示すパターン例では、信号配線パターン 31が検出 される。
[0028] 次にステップ a2において、第 1ガードグランド判別規定値 GLを設定する。第 1ガー ドグランド判別規定値 GLは、図 3Aに示すように、信号配線パターン 31の中心線を 基準として両サイドのサーチ範囲を規定するものであり、好ましくはプリント基板のパ ターン設計における最小線間距離に設定する。
[0029] 次にステップ a3において、ガードグランド検出部 23は、信号配線パターンの長手方 向に沿ってトレースし、ステップ a4において、信号配線パターン力も第 1ガードグラン ド判別規定値 GLまでの距離内でガードグランドの有無を検出する。全てのトレース 区間において、第 1ガードグランド判別規定値 GLまでの距離内でガードグランドが存 在していれば、当該信号配線パターンのリターン経路が確保されていることになり、ス テツプ a5に移行して、リターン経路判別部 25はガードグランドのエラーなしと判定し て、リターン経路チェックルーチンは終了する。
[0030] 一方、第 1ガードグランド判別規定値 GLまでの距離内でガードグランドが存在して いない区間がある場合には、ステップ alOに移行して、ガードグランド検出部 23は、 第 1ガードグランド判別規定値 GLまでの距離内にガードグランドが存在する区間を ガードグランド OK区間と定義し、第 1ガードグランド判別規定値 GLまでの距離内に ガードグランドが存在しない区間をガードグランド NG区間と定義する。
[0031] 図 3Aに示すパターン例では、ガードグランド 32が信号配線パターン 31から遠ざか るように屈曲して、第 1ガードグランド判別規定値 GLを超えた部分と、ガードグランド 3 2が連続していない部分とが存在しており、これらの部分を含む区間がガードグランド NG区間 35に相当する。また、ガードグランド 32が第 1ガードグランド判別規定値 GL を超えて 、な 、部分を含む区間がガードグランド OK区間に相当する。
[0032] 次にステップ al l, al2において、第 1ガードグランド判別規定値 GLより大きくなる ように第 2ガードグランド判別規定値 GUを設定する。第 2ガードグランド判別規定値 GUは、図 3Bに示すように、ガードグランド NG区間 35においてサーチ範囲をより拡 大して、ガードグランド 32の屈曲部分を包含するように設定することが好ましぐこれ によりガードグランド 32の不連続部分だけを抽出することができる。第 2ガードグラン ド判別規定値 GUは、ガードグランド NG区間の長さに応じて適宜変更してもよぐ例 えば、第 1ガードグランド判別規定値 GLをパターン設計の最小線間距離として 0. 2 mmに設定した場合、第 2ガードグランド判別規定値 GUは 10mm程度に設定される [0033] 次にステップ al3において、ガードグランド検出部 23は、ガードグランド NG区間の 範囲で再トレースを行なって、信号配線パターン力も第 2ガードグランド判別規定値 GUまでの距離内でガードグランドの有無を検出する。ガードグランド NG区間におい て、第 2ガードグランド判別規定値 GUまでの距離内でガードグランドが無い区間があ る場合、ステップ al5に移行して、リターン経路判別部 25はガードグランドのエラー有 りと判定して、入出力装置 11を介して使用者に表示し、リターン経路チヱックルーチ ンは終了する。
[0034] 一方、ステップ al3で、ガードグランド NG区間において第 2ガードグランド判別規定 値 GUまでの距離内でガードグランドが存在して 、る場合、ステップ al4に移行する。 ステップ al4では、ガードグランド NG区間において、ガードグランドが連続しているか 否かを検出する。ガードグランドが連続していれば、当該信号配線パターンのリタ一 ン経路が確保されていることになり、ステップ a5に移行して、リターン経路判別部 25 はガードグランドのエラーなしと判定して、リターン経路チェックルーチンは終了する。
[0035] 一方、ステップ al4において、ガードグランド NG区間においてガードグランドが不 連続である場合、当該信号配線パターンのリターン経路が欠落していることになり、ス テツプ al5に移行して、リターン経路判別部 25はガードグランドのエラー有りと判定し て、入出力装置 11を介して使用者に表示し、リターン経路チェックルーチンは終了 する。
[0036] 図 3Bに示すパターン例では、ガードグランド NG区間 A35aにおいて、ガードグラン ド 32は途切れることなく連続し、かつ第 2ガードグランド判別規定値 GUを超えて 、な いことから、ガードグランドのエラーなしと判定される。一方、ガードグランド NG区間 B 35bにおいて、ガードグランド 32は存在していないことから、ガードグランドのエラー 有りと判定される。
[0037] 以上のように、大小 2つのガードグランド判別規定値 GL, GUを採用し、さらにガー ドグランドの連続性を判定することによって、信号配線パターンのリターン経路を確実 にチェックすることができる。
[0038] なお、第 1実施形態として、第 2ガードグランド判別規定値 GUがガードグランド NG 区間の長さに応じて設定する場合を例として説明したが、第 2ガードグランド判別規 定値 GUが信号配線パターンを流れる信号周波数または信号電流に応じて設定す る場合にっ ヽても同様の効果を有する。
[0039] (実施の形態 2)
図 4は、本発明に係るプリント基板のリターン経路チェック方法の他の例を示すフロ 一チャートである。図 5は、ガードグランド検出の様子を説明するための部分平面図 である。本実施形態においても、図 1に示した EMC設計 CAD装置を使用する。
[0040] 本実施形態では、図 4のステップ b 14においてガードグランドの連続性を数値比較 によって判定している。
[0041] まず図 4のステップ blにおいて、信号配線パターン検出部 22は、設計対象である プリント基板の配線情報を参照して、個々の信号配線パターンを抽出する。図 5に示 すパターン例では、信号配線パターン 31が検出される。
[0042] 次にステップ b2において、第 1ガードグランド判別規定値 GLを設定する。第 1ガー ドグランド判別規定値 GLは、図 3Aと同様に、信号配線パターン 31の中心線を基準 として両サイドのサーチ範囲を規定するものであり、好ましくはプリント基板のパターン 設計における最小線間距離に設定する。
[0043] 次にステップ b3において、ガードグランド検出部 23は、信号配線パターンの長手 方向に沿ってトレースし、ステップ b4において、信号配線パターン力も第 1ガードダラ ンド判別規定値 GLまでの距離内でガードグランドの有無を検出する。全てのトレース 区間において、第 1ガードグランド判別規定値 GLまでの距離内でガードグランドが存 在していれば、当該信号配線パターンのリターン経路が確保されていることになり、ス テツプ b5に移行して、リターン経路判別部 25はガードグランドのエラーなしと判定し て、リターン経路チェックルーチンは終了する。
[0044] 一方、第 1ガードグランド判別規定値 GLまでの距離内でガードグランドが存在して いない区間がある場合には、ステップ blOに移行して、ガードグランド検出部 23は、 第 1ガードグランド判別規定値 GLまでの距離内にガードグランドが存在する区間を ガードグランド OK区間と定義し、第 1ガードグランド判別規定値 GLまでの距離内に ガードグランドが存在しない区間をガードグランド NG区間と定義する。 [0045] 図 3Aと同様に、ガードグランド 32が信号配線パターン 31から遠ざ力るように屈曲し て、第 1ガードグランド判別規定値 GLを超えた部分と、ガードグランド 32が連続して いない部分とが存在しており、これらの部分を含む区間がガードグランド NG区間 35 に相当する。また、ガードグランド 32が第 1ガードグランド判別規定値 GLを超えてい な 、部分を含む区間がガードグランド OK区間に相当する。
[0046] 次にステップ bl l, bl2において、第 1ガードグランド判別規定値 GLより大きくなる ように第 2ガードグランド判別規定値 GUを設定する。第 2ガードグランド判別規定値 GUは、図 3Bと同様に、ガードグランド NG区間 35においてサーチ範囲をより拡大し て、ガードグランド 32の屈曲部分を包含するように設定することが好ましぐこれにより ガードグランド 32の不連続部分だけを抽出することができる。第 2ガードグランド判別 規定値 GUは、ガードグランド NG区間の長さに応じて適宜変更してもよぐ例えば、 第 1ガードグランド判別規定値 GLをパターン設計の最小線間距離として 0. 2mmに 設定した場合、第 2ガードグランド判別規定値 GUは 10mm程度に設定される。
[0047] 次にステップ bl3において、ガードグランド検出部 23は、ガードグランド NG区間の 範囲で再トレースを行なって、信号配線パターン力も第 2ガードグランド判別規定値 GUまでの距離内でガードグランドの有無を検出する。ガードグランド NG区間におい て、第 2ガードグランド判別規定値 GUまでの距離内でガードグランドが無い区間があ る場合、ステップ bl5に移行して、リターン経路判別部 25はガードグランドのエラー有 りと判定して、入出力装置 11を介して使用者に表示し、リターン経路チヱックルーチ ンは終了する。
[0048] 一方、ステップ bl3で、ガードグランド NG区間において第 2ガードグランド判別規定 値 GUまでの距離内でガードグランドが存在して 、る場合、ステップ bl4に移行する。 ステップ bl4では、図 5に示すように、ガードグランド NG区間の長さを Lとし、ガードグ ランド NG区間の境界における信号配線パターン力もガードグランドまでの距離を Gと して、 L≤2 X (GU2-G2)が成立する場合、ステップ b 15に移行して、リターン経路 判別部 25はガードグランドのエラー有りと判定して、入出力装置 11を介して使用者 に表示し、リターン経路チェックルーチンは終了する。
[0049] 一方、ステップ bl4において、 L> 2 X (GU2— G2)が成立する場合、ステップ b5 に移行して、リターン経路判別部 25はガードグランドのエラーなしと判定して、リタ一 ン経路チェックルーチンは終了する。
[0050] 図 5は、ガードグランド 32がガードグランド端点 X36a、 Y36bで途切れて!/、る場合 を示し、その途切れ長さ Lが、 2 X (GU2— G2)と等しくなつたときに、端点 X, Yは、 信号配線パターン 31と XY間の中央線 37との交点を中心とした半径 GUの半円上に 存在する。また、 L> 2 X (GU2-G2)のとき、端点 X, Yは半径 GUの半円外に存在 するため、ガードグランドは不連続であり、ガードグランドエラーとなる。さらに、 L≤2 X (GU2— G2)のときには、端点 X, Yは半径 GUの半円内に存在するため、ガード グランドの不連続が検出できない。そこで、ガードグランド NG区間の長さ Lと 2 X ^ ( GU2— G2)とを比較して、ガードグランド NG区間の長さ Lが大きい場合には、ガードグ ランドの広がりと判断できて、エラーなしとなる。ガードグランド NG区間の長さ Lの方 が短い場合は、ガードグランドの短い途切れと判断できて、ガードグランドエラーとな る。
[0051] 以上のように、大小 2つのガードグランド判別規定値 GL, GUを採用し、さらにガー ドグランド NG区間の長さ Lと、ガードグランド NG区間の境界における信号配線パタ ーン力 ガードグランドまでの距離 Gとを数値比較することによって、信号配線パター ンのリターン経路を確実にチェックすることができる。
[0052] (実施の形態 3)
図 6は、本発明に係るプリント基板のリターン経路チェック方法の第 3の例を示すフ ローチャートである。図 7は、ガードグランド検出の様子を説明するための概略斜視図 である。本実施形態においても、図 1に示した EMC設計 CAD装置を使用する。
[0053] 設計対象であるプリント基板が、信号配線パターンが存在する配線層とグランドプレ ーンが存在するグランド層とを含む多層プリント基板である場合、信号配線パターン のリターン経路がビアホール等を介してグランド層でのグランドプレーンに形成されて いる可能性がある。
[0054] 本実施形態では、配線層でのガードグランドが不連続である場合、プレーングラン ド検出部 24が、該ガードグランドと接続したグランドがグランド層に存在して 、るか否 かを検出している。 [0055] まず図 6のステップ clにおいて、信号配線パターン検出部 22は、設計対象である プリント基板の配線情報を参照して、個々の信号配線パターンを抽出する。図 7に示 すパターン例では、 2つの IC38を接続している信号配線パターン 31が検出される。
[0056] 次にステップ c2において、第 1ガードグランド判別規定値 GLを設定する。第 1ガー ドグランド判別規定値 GLは、図 3Aと同様に、信号配線パターン 31の中心線を基準 として両サイドのサーチ範囲を規定するものであり、好ましくはプリント基板のパターン 設計における最小線間距離に設定する。
[0057] 次にステップ c3において、プレーングランド判別規定値 GPGを設定する。プレーン グランド判別規定値 GPGは、図 7に示すように、信号配線パターン 31が存在する配 線層 51を基準として、多層基板の積層方向へのサーチ範囲を規定するものであり、 例えばサーチすべき層の識別記号または配線層 51からの距離で設定する。
[0058] 次にステップ c4において、プレーングランド検出部 24は、当該信号配線パターンが 存在する配線層力もプレーングランド判別規定値 GPGまでの範囲内にあるプレーン グランドを抽出する。
[0059] 次にステップ c5において、ガードグランド検出部 23は、信号配線パターンの長手方 向に沿ってトレースし、ステップ c6において、信号配線パターン力も第 1ガードグラン ド判別規定値 GLまでの距離内でガードグランドの有無を検出する。全てのトレース 区間において、第 1ガードグランド判別規定値 GLまでの距離内でガードグランドが存 在していれば、当該信号配線パターンのリターン経路が確保されていることになり、ス テツプ c7に移行して、リターン経路判別部 25はガードグランドのエラーなしと判定し て、リターン経路チェックルーチンは終了する。
[0060] 一方、第 1ガードグランド判別規定値 GLまでの距離内でガードグランドが存在して いない区間がある場合には、ステップ clOに移行して、ガードグランド検出部 23は、 第 1ガードグランド判別規定値 GLまでの距離内にガードグランドが存在する区間を ガードグランド OK区間と定義し、第 1ガードグランド判別規定値 GLまでの距離内に ガードグランドが存在しない区間をガードグランド NG区間と定義する。
[0061] 図 3Aと同様に、ガードグランド 32が信号配線パターン 31から遠ざ力るように屈曲し て、第 1ガードグランド判別規定値 GLを超えた部分と、ガードグランド 32が連続して いない部分とが存在しており、これらの部分を含む区間がガードグランド NG区間 35 に相当する。また、ガードグランド 32が第 1ガードグランド判別規定値 GLを超えてい な 、部分を含む区間がガードグランド OK区間に相当する。
[0062] 次にステップ cl l, cl2において、第 1ガードグランド判別規定値 GLより大きくなる ように第 2ガードグランド判別規定値 GUを設定する。第 2ガードグランド判別規定値 GUは、図 3Bと同様に、ガードグランド NG区間 35においてサーチ範囲をより拡大し て、ガードグランド 32の屈曲部分を包含するように設定することが好ましぐこれにより ガードグランド 32の不連続部分だけを抽出することができる。第 2ガードグランド判別 規定値 GUは、ガードグランド NG区間の長さに応じて適宜変更してもよぐ例えば、 第 1ガードグランド判別規定値 GLをパターン設計の最小線間距離として 0. 2mmに 設定した場合、第 2ガードグランド判別規定値 GUは 10mm程度に設定される。
[0063] 次にステップ cl3において、ガードグランド検出部 23は、ガードグランド NG区間の 範囲で再トレースを行なって、信号配線パターン力も第 2ガードグランド判別規定値 GUまでの距離内でガードグランドの有無を検出する。ガードグランド NG区間におい て、第 2ガードグランド判別規定値 GUまでの距離内でガードグランドが無い区間があ る場合、ステップ c 15に移行する。
[0064] 一方、ステップ cl3で、ガードグランド NG区間において第 2ガードグランド判別規定 値 GUまでの距離内でガードグランドが存在して 、る場合、ステップ cl4に移行する。 ステップ cl4では、ガードグランド NG区間において、ガードグランドが連続しているか 否かを検出する。ガードグランドが連続していれば、当該信号配線パターンのリタ一 ン経路が確保されていることになり、ステップ c7に移行して、リターン経路判別部 25 はガードグランドのエラーなしと判定して、リターン経路チェックルーチンは終了する。
[0065] 一方、ステップ cl4において、ガードグランド NG区間においてガードグランドが不 連続である場合、当該信号配線パターンのリターン経路が欠落していることになり、ス テツプ c 15に移行する。
[0066] ステップ cl5では、プレーングランド検出部 24は、ステップ c4で抽出されたプレーン グランドをサーチ対象として、ガードグランド NG区間にお 、て該ガードグランドと接続 したプレーングランドが存在しているか否かを検出する。こうしたプレーングランドが 存在してれば、当該信号配線パターンのリターン経路が確保されていることになり、ス テツプ c7に移行して、リターン経路判別部 25はガードグランドのエラーなしと判定し て、リターン経路チェックルーチンは終了する。
[0067] 図 7に示すパターン例では、配線層 51におけるガードグランド 32は不連続であるが
、プレーングランド判別規定値 GPGの範囲内にあるグランド層 52における隣接プレ ーングランド 40にビア 41を経由して接続されていることから、リターン経路 42が確保 されており、ガードグランドのエラーなしと判定される。
[0068] 一方、ステップ c 15にお 、て該ガードグランドと接続したプレーングランドが存在し ていない場合、ステップ cl6に移行して、リターン経路判別部 25はガードグランドの エラー有りと判定して、入出力装置 11を介して使用者に表示し、リターン経路チェッ クルーチンは終了する。
[0069] 以上のように、大小 2つのガードグランド判別規定値 GL, GUを採用し、さらに別の 層に存在するプレーングランドを考慮しながらガードグランドの連続性を判定すること によって、信号配線パターンのリターン経路を確実にチェックすることができる。 産業上の利用可能性
[0070] 本発明に係るプリント基板のリターン経路チェック方法およびパターン設計 CAD装 置によって、ガードグランドの広がり部分とガードグランドの短い途切れの双方をチェ ックミスすることなく、高速にチェックできる。そのため、信号配線とガードグランドから なる高周波電流ループ力 発生する電磁波を抑制するための EMC対策を効率よく 実施できる。

Claims

請求の範囲
[1] プリント基板の配線情報を参照して、信号配線パターンを検出するステップと、 該信号配線パターンの長手方向に沿ってトレースし、信号配線パターンから予め定 めた第 1判別規定値 GLまでの距離内でガードグランドの有無を検出するステップと、 ガードグランドが第 1判別規定値 GLまでの距離内に存在しないガードグランド不存 在区間を特定するステップと、
第 1判別規定値 GLより大きい第 2判別規定値 GUを設定するステップと、 該ガードグランド不存在区間において、信号配線パターン力も第 2判別規定値 GU までの距離内でガードグランドの有無を検出するステップと、
ガードグランド不存在区間にお 、て、ガードグランドが第 2判別規定値 GUまでの距 離内に存在しない場合、ガードグランドのエラー有りと判定するステップとを含むこと を特徴とするプリント基板のリターン経路チェック方法。
[2] ガードグランド不存在区間において、不連続なガードグランドが第 2判別規定値 GU までの距離内に存在する場合、ガードグランドのエラー有りと判定するステップとを含 むことを特徴とする請求項 1記載のプリント基板のリターン経路チェック方法。
[3] ガードグランド不存在区間の長さを Lとし、ガードグランド不存在区間の境界におけ る信号配線パターン力もガードグランドまでの距離を Gとして、
L≤ 2 X (GU -G2)が成立する場合、ガードグランドのエラー有りと判定するステ ップとを含むことを特徴とする請求項 1記載のプリント基板のリターン経路チェック方 法。
[4] プリント基板は、信号配線パターンが存在する配線層と、グランドプレーンが存在す るグランド層とを含む多層プリント基板であって、
ガードグランド不存在区間にお 、て、ガードグランドが第 2判別規定値 GUまでの距 離内に存在しな 、場合、該ガードグランドと接続したグランドがグランド層に存在して
V、なければ、ガードグランドのエラー有りと判定するステップとを含むことを特徴とする 請求項 1記載のプリント基板のリターン経路チェック方法。
[5] 第 1判別規定値 GLは、プリント基板のパターン設計における最小線間距離で設定 することを特徴とする請求項 1記載のプリント基板のリターン経路チェック方法。
[6] 請求項 1一 5のいずれかに記載されたプリント基板のリターン経路チェック方法をコ ンピュータで実行するためのプログラム。
[7] 請求項 1一 5のいずれかに記載されたプリント基板のリターン経路チェック方法をコ ンピュータで実行するためのプログラムを記録した記録媒体。
[8] プリント基板の配線情報を参照して、信号配線パターンを検出するための信号配線 パターン検出部と、
該信号配線パターンの長手方向に沿ってトレースし、信号配線パターンから予め定 めた第 1判別規定値 GLまでの距離内でガードグランドの有無を検出して、ガードダラ ンドが第 1判別規定値 GLまでの距離内に存在しないガードグランド不存在区間を特 定し、該ガードグランド不存在区間において、信号配線パターンから第 1判別規定値 GLより大きい第 2判別規定値 GUまでの距離内でガードグランドの有無を検出するた めのガードグランド検出部と、
ガードグランド不存在区間にお 、て、ガードグランドが第 2判別規定値 GUまでの距 離内に存在しない場合、ガードグランドのエラー有りと判定するためのリターン経路判 定部とを備えることを特徴とするプリント基板のパターン設計 CAD装置。
PCT/JP2005/001593 2004-02-05 2005-02-03 プリント基板のリターン経路チェック方法およびプリント基板のパターン設計cad装置 WO2005076164A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/555,762 US7409665B2 (en) 2004-02-05 2005-02-03 Method for checking return path of printed and CAD apparatus for designing patterns of printed board
EP05709686A EP1657659B1 (en) 2004-02-05 2005-02-03 Printed circuit board return route check method and printed circuit board pattern design cad device
DE602005013172T DE602005013172D1 (de) 2004-02-05 2005-02-03 Leiterplatten-rückroutenprüfverfahren und leiterplattenstrukturentwurfs-cad-einrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-029049 2004-02-05
JP2004029049A JP4651284B2 (ja) 2004-02-05 2004-02-05 プリント基板のリターン経路チェック方法およびプリント基板のパターン設計cad装置

Publications (1)

Publication Number Publication Date
WO2005076164A1 true WO2005076164A1 (ja) 2005-08-18

Family

ID=34835939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001593 WO2005076164A1 (ja) 2004-02-05 2005-02-03 プリント基板のリターン経路チェック方法およびプリント基板のパターン設計cad装置

Country Status (6)

Country Link
US (1) US7409665B2 (ja)
EP (1) EP1657659B1 (ja)
JP (1) JP4651284B2 (ja)
CN (1) CN100543752C (ja)
DE (1) DE602005013172D1 (ja)
WO (1) WO2005076164A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336044B2 (en) * 2002-10-09 2012-12-18 Rpx Corporation Method and system for deploying a software image
CN101131708A (zh) * 2006-08-25 2008-02-27 鸿富锦精密工业(深圳)有限公司 信号线参考平面检查系统及方法
CN101175377B (zh) * 2006-10-30 2010-08-25 英业达股份有限公司 电子组件移除系统及方法
CN101252811B (zh) * 2008-03-27 2010-09-29 北京星网锐捷网络技术有限公司 一种印刷电路板走线回流路径的检查装置及方法
JP2010114109A (ja) * 2008-11-04 2010-05-20 Alps Electric Co Ltd 高周波機器
JP5359626B2 (ja) * 2009-07-08 2013-12-04 富士通セミコンダクター株式会社 レイアウト検証方法及びレイアウト検証装置
JP5477244B2 (ja) 2010-09-29 2014-04-23 富士通株式会社 プリント基板設計支援装置、方法及びプログラム
JP5962224B2 (ja) 2012-05-31 2016-08-03 富士通株式会社 ノイズ対策設計検査についての情報処理方法、装置及びプログラム
CN102990179B (zh) * 2012-10-19 2014-07-23 廖怀宝 一种使用cad文件提高焊锡机器人编程速度和精度的方法
JP6349871B2 (ja) * 2014-03-31 2018-07-04 富士通株式会社 基板設計支援プログラム、基板設計支援方法、及び基板設計支援装置
CN110856350B (zh) * 2019-11-08 2021-03-12 广东浪潮大数据研究有限公司 一种板卡边缘走线返回路径的补偿方法、系统及板卡

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001331539A (ja) * 2000-05-22 2001-11-30 Sony Corp プリント基板の配線構造チェックシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729183A (en) * 1996-11-27 1998-03-17 Dell Usa, L.P. Tuned guard circuit for conductive transmission lines on a printed circuit board
US6236572B1 (en) * 1999-02-04 2001-05-22 Dell Usa, L.P. Controlled impedance bus and method for a computer system
US6381730B1 (en) * 1999-07-09 2002-04-30 Sequence Design, Inc. Method and system for extraction of parasitic interconnect impedance including inductance
US6553555B1 (en) * 1999-08-27 2003-04-22 Dell Products L.P. Maintaining signal guard bands when routing through a field of obstacles
JP2002016337A (ja) 2000-06-29 2002-01-18 Sony Corp プリント基板の配線構造チェックシステム
US6769102B2 (en) * 2002-07-19 2004-07-27 Hewlett-Packard Development Company Verifying proximity of ground metal to signal traces in an integrated circuit
US6859915B1 (en) * 2003-02-13 2005-02-22 Hewlett-Packard Development Company, L.P. Signal line impedance verification tool
US6971077B1 (en) * 2003-02-13 2005-11-29 Hewlett-Packard Development Company, L.P. Signal line impedance adjustment tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001331539A (ja) * 2000-05-22 2001-11-30 Sony Corp プリント基板の配線構造チェックシステム

Also Published As

Publication number Publication date
EP1657659B1 (en) 2009-03-11
DE602005013172D1 (de) 2009-04-23
CN100543752C (zh) 2009-09-23
CN1771501A (zh) 2006-05-10
JP2005223120A (ja) 2005-08-18
US7409665B2 (en) 2008-08-05
US20070044062A1 (en) 2007-02-22
EP1657659A1 (en) 2006-05-17
EP1657659A4 (en) 2006-05-17
JP4651284B2 (ja) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2005076164A1 (ja) プリント基板のリターン経路チェック方法およびプリント基板のパターン設計cad装置
US9075949B2 (en) Supporting design of electronic equipment
WO2005081142A1 (ja) 素子配置チェック装置とプリント基板設計装置
US20080109773A1 (en) Analyzing Impedance Discontinuities In A Printed Circuit Board
US8856717B2 (en) Shielded pattern generation for a circuit design board
US8832637B2 (en) Support apparatus and information processing method thereof
US6581196B2 (en) Automated crosstalk identification system
US20090031270A1 (en) Design Method and System for Minimizing Blind Via Current Loops
CN113591430B (zh) 检测版图布线线网违例的方法
KR101518771B1 (ko) 설계 지원장치, 설계 지원방법 및 기억매체
US7904862B2 (en) Method and mechanism for performing clearance-based zoning
US7752591B2 (en) Board layout check apparatus and board layout check method for guard wiring
US7185296B2 (en) Method of extraction of wire capacitances in LSI device having diagonal wires and extraction program for same
JP4682873B2 (ja) バイパスコンデンサのチェック方法およびそのチェック装置
WO2012161333A1 (ja) 配線チェック装置及び配線チェックシステム
JP2000020573A (ja) プリント基板配線処理システム及び方法
JP3770100B2 (ja) プリント基板設計装置、プリント基板設計方法、及びその制御プログラム
JP2009211405A (ja) 多層プリント配線基板のプレーン跨ぎ配線チェックシステム、方法、プログラム、及び情報記録媒体
TWI503684B (zh) 印刷電路檢查方法與裝置
JP4283647B2 (ja) レイアウトチェックシステム
WO2012073917A1 (ja) 配線チェック装置及び配線チェックシステム
JP2007026390A (ja) プリント基板設計検証システム、プリント基板設計検証方法およびプリント基板設計検証プログラム
JP2003216680A (ja) プリント基板cadにおけるクリアランスチェック方法及びコンピュータプログラム
Evans et al. Enhanced image detection on an ARM based embedded system
JP2008293090A (ja) 基板レイアウトチェック装置、その方法およびそのコンピュータ・プログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007044062

Country of ref document: US

Ref document number: 10555762

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005709686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20058002487

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005709686

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10555762

Country of ref document: US