WO2005075376A1 - Verfahren zur herstellung oxidischer supraleiter - Google Patents

Verfahren zur herstellung oxidischer supraleiter Download PDF

Info

Publication number
WO2005075376A1
WO2005075376A1 PCT/EP2005/050431 EP2005050431W WO2005075376A1 WO 2005075376 A1 WO2005075376 A1 WO 2005075376A1 EP 2005050431 W EP2005050431 W EP 2005050431W WO 2005075376 A1 WO2005075376 A1 WO 2005075376A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
precursor
powder
superconductors
phases
Prior art date
Application number
PCT/EP2005/050431
Other languages
English (en)
French (fr)
Inventor
Wolfgang Gruner
Wolfgang Hässler
Original Assignee
Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. filed Critical Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V.
Publication of WO2005075376A1 publication Critical patent/WO2005075376A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Processes peculiar to the manufacture or treatment of filaments or composite wires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials

Definitions

  • the invention relates to a method for producing oxide superconductors as powder moldings, wire or tape.
  • the superconductor material can also be used as a coating material.
  • the method can be used, for example, in the production of BPSCCO and YBCO superconductors.
  • the 2223 phase has the best properties with regard to the critical current density and transition temperature.
  • the breakthrough in the industrial use of superconducting products based on BPSCCO occurred among others. So far not yet, because the production of superconductors with a single-phase 2223 phase content is very complex is not satisfactory.
  • complex assembly steps are currently being carried out
  • the invention has for its object to provide a method with which it is possible to produce oxide superconductors with very good superconductor properties while avoiding complex assembly steps and foreign phase formation in a simple, easily reproducible manner.
  • the process is characterized in that a precursor is first produced from the melt by means of melting and rapid cooling, which precursor has an amorphous structure and whose stoichiometry corresponds to the desired superconducting phase / phases.
  • the precursor is then subjected to a heat treatment in a defined atmosphere to recrystallize the superconducting phase / phases.
  • the present superconductor material is heat-treated by means of rapid cooling at a cooling rate in the range from 10 2 to 10 4 K / s from the heat treatment temperature to room temperature.
  • the superconductor material present after the heat treatment and subsequent rapid cooling can be further processed into powder, moldings, wires or strips or used as a coating material.
  • the amorphous precursor in powder form is processed further by means of powder-in-tube technology in order to produce superconducting wire or strip conductors, and the wire or strip thus produced is subsequently the Heat treatment to recrystallize the superconducting phase / phases.
  • the wire or the strip is cooled by means of rapid cooling at a cooling rate in the range from 10 2 to 10 4 K / s from the heat treatment temperature to room temperature.
  • the intermediate annealing required for this must be carried out at temperatures below the recrystallization temperature of the superconducting phase / phases.
  • the method can advantageously be used in the production of BPSCCO and YBCO superconductors.
  • the method according to the invention is distinguished above all from the known methods in that it can be used to produce superconductors with very good superconductor properties while avoiding complex assembly steps and foreign phase formation.
  • the method is relatively simple and can be carried out in a reproducible manner.
  • Powder mixture is melted after a calcination step at 820 ° C and 24 hours in a ceramic crucible at 1150 ° C under an oxygen atmosphere. The melt is then solidified rapidly between two metal plates.
  • the amorphous precursor thus produced is pulverized and then a first heat treatment step below the Subjected to recrystallization temperature at 430 ° C over a period of 24 hours in order to reduce the oxygen deficit of the amorphous precursor powder by a controlled oxidation.
  • the amorphous precursor powder is rapidly heated in a preheated oven to 850 ° C. in an oxygen atmosphere, as a result of which the isothermal oxidation and simultaneous crystallization of the superconducting phase take place. After a treatment period of one hour, the powder is rapidly cooled outside the oven and processed further in a known manner to form superconducting moldings.
  • This powder mixture is processed into a multifilament strip conductor using the known powder-in-tube technology using Ag tubes, the intermediate annealing required to break down the solidification being carried out well below the pretreatment temperature of 430.degree.
  • a ribbon conductor with a dimension of 4 x 0.22 mm 2 and a ceramic phase share of 35% and with 55 iFilaments is produced.
  • This strip conductor is then rapidly heated to 840 ° C. in an oxygen atmosphere and, after a holding time of 3 hours, is cooled to room temperature by crystallization and oxidation to form the superconducting phase at a rate of> 100 K / s.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung oxidischer Supraleiter als Pulver, Formkörper, Draht oder Band. Das Supraleitermaterial ist jedoch auch als Beschichtungsmaterial verwendbar. Das Verfahren ist beispielsweise bei der Herstellung von BPSCCO- und YBCO­Supraleitern anwendbar. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur zu schaffen, mit dem es möglich ist, oxidische Supraleiter mit sehr guten Supraleitereigenschaften unter Vermeidung aufwändiger Konfektionierungsschritte und Fremdphasenbildung in möglichst einfacher, leicht reproduzierbarer Weise herzustellen. Das Verfahren ist dadurch gekennzeichnet, dass zunächst mittels Schmelzen und Raschabkühlung aus der Schmelze ein Precursor erzeugt wird, der ein amorphes Gefüge besitzt und der in seiner Stöchiometrie der oder den angestrebten supraleitenden Phase/Phasen entspricht. Danach wird der Precursor einer Wärmebehandlung in definierter Atmosphäre zur Rekristallisation der supraleitenden Phase/Phasen unterworfen. Im unmittelbaren Anschluss an die Wärmebehandlung wird das vorliegende Supraleitermaterial mittels Raschabkühlung mit einer Abkühlgeschwindigkeit im Bereich von 102 bis 104 K/s aus der Wärmebehandlungs­temperatur bis auf Raumtemperatur abgekühlt.

Description

Verfahren zur Herstellung oxidischer Supraleiter Technisches Gebiet
Die Erfindung betrifft ein Verfahren zur Herstellung oxidischer Supraleiter als Pulver- Formkörper, Draht oder Band. Das Supraleitermaterial ist jedoch auch als Beschichtungsmaterial verwendbar. Das Verfahren ist beispielsweise bei der Herstellung von BPSCCO- und YBCO- Supraleitern anwendbar .
Stand der Technik
In der Klasse der oxidischen Bi-Pb-Sr-Ca-Cu-Supraleiter (BPSCCO) hat die 2223-Phase bezüglich der kritischen Stromdic te und Sprungtemperatur die besten Eigensc_ιaften. Der Durchbruch im industriellen Einsatz von supraleitenden Produkten auf der Basis von BPSCCO erfolgte u.a. bisher deshalb noch nicht, da zur Zeit die Herstellung von Supraleitern mit möglichst einphasigem 2223-Phaseninhalt sehr aufwändig ist nicht befriedigend verläuft. Ausgehend von zahlreichen Varianten der Synthese von Precursor-Material wird gegenwärtig in aufwändigen Konfektionierungsschritten
(Parameteroptimierung mindestens bezüglich Temperatur-Zeit-
Sauerstoffpartialdruck) versucht, die hinsichtlich guter
Supraleitereigenschaften günstigste Phasenbildung bei
Vermeidung von unerwünschten Fremdphasen zu erreichen. Dies ist jedoch schwierig, da die Bildungsmöglichkeiten für Fremdphasen auf dem Wege der Parameteroptimierung bei dem oben genannten Parameterfeld sehr groß sind. Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur zu schaffen, mit dem es möglich ist, oxidische Supraleiter mit sehr guten Supraleitereigenschaften unter Vermeidung aufwändiger Konfektionierungsschritte und Fremdphasenbildung in möglichst einfacher, leicht reproduzierbarer Weise herzustellen .
Diese Aufgabe wird mit dem in den Patentansprüchen dargestellten Verfahren gelöst.
Das Verfahren ist dadurch gekennzeichnet, dass zunächst mittels Schmelzen und Raschabkühlung aus der Schmelze ein Precursor erzeugt wird, der ein amorphes Gefüge besitzt und der in seiner Stöchiometrie der oder den angestrebten supraleitenden Phase/Phasen entspricht. Danach wird der Precursor einer Wärmebehandlung in definierter Atmosphäre zur Rekristallisation der supraleitenden Phase/Phasen unterworfen. Im unmittelbaren Anschluss an die l*
Wärmebehandlung wird das vorliegende Supraleitermaterial mittels Raschabkühlung mit einer Abkühlgeschwindigkeit im Bereich von 102 bis 104 K/s aus der Wärmebehandlungs- temperatur bis auf Raumtemperatur abgekühlt.
Das nach der Wärmebehandlung und anschließenden Raschabkühlung vorliegende Supraleitermaterial kann zu Pulver, Formkörpern, Drähten oder Bändern weiterverarbeitet oder als Beschichtungsmaterial verwendet werden.
Gemäß einer vorteilhaften Ausgestaltung des Verfahrens wird zur Herstellung von supraleitenden Draht- oder Bandleitern der amorphe Precursor in Pulverform mittels der Pulver-im- Rohr-Technologie weiterverarbeitet und der so hergestellte Draht oder das so hergestellte Band anschließend der Wärmebehandlung zur Rekristallisation der supraleitenden Phase/Phasen unterworfen. Im unmittelbaren Anschluss an die Wärmebehandlung wird der Draht beziehungsweise das Band mittels Raschabkühlung mit einer Abkühlgeschwindigkeit im Bereich von 102 bis 104 K/s aus der Wärmebehandlungstemperatur bis auf Raumtemperatur abgekühlt.
Die dabei erforderlichen Zwischenglühungen müssen bei Temperaturen unterhalb der Rekristallisationstemperatur der supraleitenden Phase/Phasen durchgeführt werden.
Das Verfahren kann vorteilhaft bei der Herstellung von BPSCCO- und YBCO-Supraleitern angewandt werden.
Das erfindungsgemäße Verfahren zeichnet sich gegenüber den bekannten Verfahren vor allem dadurch aus, dass damit Supraleiter mit sehr guten Supraleitereigenschaften unter Vermeidung aufwändiger Konfektionierungsschritte und Fremdphasenbildung herstellbar sind. Das Verfahren ist relativ einfach und gut reproduzierbar durchführbar.
Ausführungsmöglichkeiten der Erfindung
Nachstehend ist die Erfindung an Hand von Ausführungsbeispielen näher erläutert.
Beispiel 1
Zunächst werden Bi203-, PbO-, CuO-, SrC03- und CaC03-Pulver : hoher Reinheit in der stöchiometrischen Zusammensetzung von Bi;ι.,6P o,4Sr2Ca2Cu3θx homogen miteinander vermischt. Diese
Pulvermischung wird nach einem Calzinierungsschritt bei 820 °C und 24 Stunden in einem Keramiktiegel bei 1150 °C unter Sauerstoffatmosphäre aufgeschmolzen. Die Schmelze wird anschließend zwischen zwei Metallplatten rascherstarrt. Der so erzeugte amorphe Precursor wird pulverisiert und danach einer ersten Wärmebehandlungsstufe unterhalb der Rekristallisationstemperatur bei 430°C über einen Zeitraum von 24 Stunden unterworfen, um das Sauerstoffdefizit des amorphen Precursorpulvers durch eine kontrollierte Oxidation zu verringern.
In einer zweiten Wärmebehandlungsstufe erfolgt die schnelle Erwärmung des amorphen Precursorpulvers in einem vorgeheizten Ofen auf 850°C in Sauerstoffatmosphäre, wodurch die isotherme Oxidation und simultane Kristallisation der supraleitenden Phase stattfindet. Nach einer Behandlungsdauer von einer Stunde wird das Pulver außerhalb des Ofens rasch abgekühlt und in bekannter Weise zu supraleitenden Formkörpern weiterverarbeitet . Beispiel 2 Das gemäß Beispiel 1 erzeugte amorphe Precursorpulver wird nach der dort beschriebenen ersten Wärmebehandlungsstufe mit 5 bis 10 Mol-% kristallinem 2223-Pulver in der Größe d50=2 bis 3um vermischt.
Dieses Pulvergemisch wird mittels der bekannten Pulver-im- ""Rohr-Technologie unter Verwendung von Ag-Rohren zu einem Multifilament-Bandleiter verarbeitet, wobei die notwendigen Zwischenglühungen zum Abbau der Verfestigung deutlich unter der Vorbehandlungstemperatur von 430°C durchgeführt werden. Hergestellt wird ein Bandleiter in der Dimension 4 x 0,22 mm2 mit einem Anteil der keramischen Phase von 35 % und mit 55 iFilamenten. Dieser Bandleiter wird anschließend rasch auf 840°C in Sauerstoffatmosphäre aufgeheizt und nach einer Haltezeit von 3h zur Bildung der supraleitenden Phase durch Kristallisation und Oxidation mit einer Abkühlgeschwindigkeit von > 100 K/s auf Raumtemperatur abgekühlt.

Claims

Patentansprüche I 1. Verfahren zur Herstellung oxidischer Supraleiter, dadurch gekennzeichnet:, dass zunächst mittels Schmelzen und Raschabkühlung aus der Schmelze ein Precursor erzeugt wird, der ein amorphes Gefüge besitzt und der in seiner Stöchiometrie der oder den angestrebten supraleitenden Phase/Phasen entspricht, dass danach der Precursor einer Wärmebehandlung in definierter Atmosphäre zur Rekristallisation der supraleitenden Phase/Phasen unterworfen wird und dass im unmittelbaren Anschluss an die Wärmebehandlung das vorliegende Supraleitermaterial mittels Raschabkühlung mit einer Abkühlgeschwindigkeit im Bereich von 102 bis 104 K/s aus der Wärmebehandlungs- temperatur bis auf Raumtemperatur abgekühlt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das nach der Wärmebehandlung und anschließenden Raschabkühlung vorliegende Supraleitermaterial zu Pulver, Formkörpern, Drähten oder Bändern weiterverarbeitet oder als Beschichtungsmaterial verwendet wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der amorphe Precursor in Pulverform mittels der Pulver- im-Rohr-Technologie weiterverarbeitet wird, dass der so hergestellte Draht oder das so hergestellte Band anschließend der Wärmebehandlung zur Rekristallisation der supraleitenden Phase/Phasen unterworfen wird, und dass im unmittelbaren Anschluss an die Wärmebehandlung der Draht beziehungsweise das Band mittels Raschabkühlung mit einer Abkühlgeschwindigkeit im Bereich von 102 bis 104 K/s aus der Wärmebehandlungstemperatur bis auf Raumtemperatur abgekühlt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die bei der Pulver-im-Rohr-Technologie erforderlichen Zwischenglühungen bei Temperaturen unterhalb der Rekristallisationstemperatur der supraleitenden Phase/Phasen durchgeführt werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieses bei der Herstellung von BPSCCO- und YBCO- Supraleitern angewandt wird.
PCT/EP2005/050431 2004-02-03 2005-02-01 Verfahren zur herstellung oxidischer supraleiter WO2005075376A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004006243.9 2004-02-03
DE102004006243A DE102004006243B4 (de) 2004-02-03 2004-02-03 Verfahren zur Herstellung oxidischer Supraleiter

Publications (1)

Publication Number Publication Date
WO2005075376A1 true WO2005075376A1 (de) 2005-08-18

Family

ID=34801775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050431 WO2005075376A1 (de) 2004-02-03 2005-02-01 Verfahren zur herstellung oxidischer supraleiter

Country Status (2)

Country Link
DE (1) DE102004006243B4 (de)
WO (1) WO2005075376A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846912A (en) * 1996-01-04 1998-12-08 Lockheed Martin Energy Systems, Inc. Method for preparation of textured YBa2 Cu3 Ox superconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59408222D1 (de) * 1993-02-17 1999-06-17 Hoechst Ag Verfahren zur Herstellung eines Hoch-Tc-Supraleiters als Precursormaterial für die Oxide Powder in Tube Methode (OPIT)
US5814122A (en) * 1995-12-12 1998-09-29 Owens-Corning Fiberglas Technology, Inc. Method of making hollow high temperature ceramic superconducting fibers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846912A (en) * 1996-01-04 1998-12-08 Lockheed Martin Energy Systems, Inc. Method for preparation of textured YBa2 Cu3 Ox superconductor

Also Published As

Publication number Publication date
DE102004006243A1 (de) 2005-08-18
DE102004006243B4 (de) 2009-01-29

Similar Documents

Publication Publication Date Title
CH678246A5 (de)
DE4433093C2 (de) Verfahren zum Verbinden von Oxid-Supraleitern auf Y-Basis
DE68922514T3 (de) Oxidischer Hochtemperatur-Supraleiter und Verfahren zu seiner Herstellung.
DE4243053C2 (de) Voluminöser Oxid-Supraleiter in Form eines Einkristalls und Verfahren zu dessen Herstellung
DE19721649C2 (de) Verfahren zur Herstellung eines Mischkristallpulvers mit geringem spezifischen elektrischen Widerstand
EP0799166B1 (de) Verfahren zur herstellung eines langgestreckten supraleiters mit einer bismut-phase hoher sprungtemperatur sowie nach dem verfahren hergestellter supraleiter
EP0285960A1 (de) Verfahren zur Herstellung eines keramischen Supraleiter-Materials mit hoher Sprungtemperatur
WO2005075376A1 (de) Verfahren zur herstellung oxidischer supraleiter
EP0394799A1 (de) Verfahren zur Herstellung eines Hochtemperatur-Supraleiters
US5229357A (en) Method of producing superconducting ceramic wire and product
US5126321A (en) Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors
DE10125929B4 (de) Verfahren zur Herstellung eines Nb3Al-supraleitenden Mehrfaserdrahtes
DE69815914T2 (de) Supraleiter, Stromzuführung und Verfahren zum Herstellen des Supraleiters
CH682358A5 (en) Ceramic high temp. superconductor prodn. - by pouring starting material into mould, heating, cooling, thermally treating in oxygen@ and cooling, for shield magnetic fields in switching elements
EP0524442A1 (de) Hochtemperatur-Supraleiter und Verfahren zu seiner Herstellung
EP0325751B1 (de) Verfahren zur Herstellung eines langgestreckten elektrischen Leiters mit einem oxidkeramischen Supraleitermaterial und Vorrichtung zur Durchführung des Verfahrens
JP3181642B2 (ja) 酸化物超電導線材の製造方法
DE69636713T2 (de) Supraleiter und ihre Vorläufer, ihre Herstellung und Verwendung von Supraleiter
DE10359131B4 (de) Hochtemperatursupraleitender Körper und Verfahren zu dessen Herstellung
EP0481337A1 (de) Supraleitende Verbindung und Verfahren zu ihrer Herstellung
DE2222214A1 (de) Supraleiter aus Verbundmaterial und Verfahren zu deren Herstellung
DE10307643B4 (de) Hochtemperatursupraleitender Körper und Verfahren zu dessen Herstellung
DE2355005C3 (de) Verfahren zum Herstellen eines Supraleiters mit einer Schicht der A15-Phase des Systems Nb-Al-Si
JP3073798B2 (ja) 超電導線材の製造方法
DE1458558C (de) Verfahren zur Verbesserung der Supra leitungseigenschaften von mit starken Sto rungen des Kristallbaus behafteten, durch Abscheiden hergestellten supraleitenden in termetallischen Verbindungen vom A tief 3 B Typ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase