WO2005073314A1 - Systeme thermodurcissable reactif presentant une duree de stockage importante - Google Patents

Systeme thermodurcissable reactif presentant une duree de stockage importante Download PDF

Info

Publication number
WO2005073314A1
WO2005073314A1 PCT/FR2005/000033 FR2005000033W WO2005073314A1 WO 2005073314 A1 WO2005073314 A1 WO 2005073314A1 FR 2005000033 W FR2005000033 W FR 2005000033W WO 2005073314 A1 WO2005073314 A1 WO 2005073314A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
weight
mol
blocks
thermoset
Prior art date
Application number
PCT/FR2005/000033
Other languages
English (en)
Inventor
Anthony Bonnet
Elisabeth Loerch
Laurent Gervat
Régis CIPRIANI
François Beaume
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2006548343A priority Critical patent/JP2007517951A/ja
Priority to DE602005007572T priority patent/DE602005007572D1/de
Priority to US10/585,700 priority patent/US20070078236A1/en
Priority to EP05717381A priority patent/EP1704185B1/fr
Publication of WO2005073314A1 publication Critical patent/WO2005073314A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • C08L2666/08Homopolymers or copolymers according to C08L7/00 - C08L21/00; Derivatives thereof

Definitions

  • thermoset materials particularly to a process for obtaining such materials. It more particularly describes a process making it possible to produce, from two formulations treated separately from semi-finished products such as textiles or reactive films for composites. These semi-products are stable during storage but they can react together during a rise in temperature to form the thermoset material.
  • a thermoset material is defined as being formed of polymer chains of variable length linked together by covalent bonds so as to form a three-dimensional network.
  • Thermosetting materials can be obtained, for example, by reacting a thermosetting resin such as an epoxy with an amine type hardener.
  • Thermoset materials have many interesting properties which make them used as structural adhesives or as a matrix for composite materials or in applications for the protection of electronic components.
  • the reinforcing fiber which may include several thousand filaments, improves the mechanical characteristics of the composite structure. It can be composed of glass, carbon, aramid or any other organic or inorganic material providing the desired characteristics.
  • Epoxy materials have a high crosslinking density, which gives them a high glass transition temperature (Tg) and which gives the material excellent thermomechanical properties.
  • Tg glass transition temperature
  • thermosetting materials and rheology-regulating agents require cold storage to prevent the reaction from occurring during the storage step.
  • the Applicant has just found that specific formulations based on thermosetting materials and rheology-regulating agents can be transformed into objects in which the epoxy and its hardener are separated but close enough to allow their subsequent reaction during their implementation. previously allowing easy handling and above all great stability in storage.
  • the solution proposed by the present invention is based on the simultaneous treatment of two formulations, one based on a thermosetting resin, for example consisting of an epoxy prepolymer and a rheology control agent, the other based hardener and rheology control agent. Simultaneous processing makes it possible to obtain semi-finished products such as textiles or reactive films for composites.
  • the first object of the invention is a new process for the preparation of thermoset materials and objects. This process can be described by the following stages: a- Preparation of a formulation (A) based on epoxy prepolymers and rheology regulating agents, b- Preparation of a formulation (B) based on hardener and rheology regulating agents, c- Preparation of semi-products by simultaneous treatment of formulations (A) and (B), respecting if necessary the stoichiometry between the epoxy prepolymer and the hardener, and including, if necessary, fibers, mats, fabrics or any other material usually used in composite materials, d- Realization of the desired structures with the semi-product obtained in c according to usual techniques of implementation semi-finished products for thermoset composites, such as draping, molding or making sandwich systems, e- Reaction of the formulation to obtain a composite material, according to the usual
  • the formulation (A) of the invention comprises: from 1 to 90% by weight of the total weight of the formulation of a rheology control agent (I) comprising for example at least one block copolymer chosen from copolymers with SBM, BM and MBM blocks in which:> each block is linked to the other by means of a covalent bond or one or more intermediate molecules linked to one of the blocks by a covalent bond and to the other block by another covalent bond,> M is a polymer miscible with the thermosetting resin, for example a homopolymer of methyl methacrylate or a copolymer comprising at least 50% by weight of methyl methacrylate,> B is incompatible with the thermosetting resin and with the block M.> S is incompatible with the thermosetting resin and with the block B.
  • a rheology control agent comprising for example at least one block copolymer chosen from copolymers with SBM, BM and MBM blocks in which:> each block is linked to the other by means of a covalent bond or
  • the formulation (B) comprises, by weight, from 1 to 90% of at least one hardener and from 10 to 99% of at least one rheology regulating agent (I).
  • a and B do not necessarily contain the same rheology regulating agent.
  • the formulations A and B of the invention exhibit a thermoplastic behavior and can be implemented by the usual techniques for transforming thermoplastic materials but have the ability to react together to form a thermoset material. These formulations can during the reaction be in a perfectly liquid or rubbery state.
  • thermoset material it is defined as being formed of polymer chains of variable length linked together by covalent bonds so as to form a three-dimensional network.
  • crosslinked epoxy resins By way of examples, mention may be made of crosslinked epoxy resins.
  • the thermoset material advantageously comes from the reaction of a thermosetting epoxy resin and a hardener. It is also defined as any product of the reaction of an oligomer carrying oxirane functions and a hardener. Due to the reactions involved in the reaction of these epoxy resins, a crosslinked material is obtained corresponding to a more or less dense three-dimensional network depending on the basic characteristics of the resins and hardeners used.
  • epoxy resin hereinafter designated by E, means any organic compound having at least two functions of the oxirane type, polymerizable by ring opening.
  • epoxy resins designates all the usual epoxy resins which are liquid at room temperature (23 ° C.) or at a higher temperature. These epoxy resins can be monomeric or polymeric on the one hand, aliphatic, cycloaliphatic, heterocyclic or aromatic on the other hand.
  • epoxy resins examples include the diglycidyl ether of resorcinol, the diglycidyl ether of bisphenol A, the triglycidyl p-amino phenol, the diglycidyl ether of bromo-bisphenol F, the triglycidyl ether of m-amino phenol, tetraglycidyl methylene dianiline, triglycidyl ether of (trihydroxyphenyl) methane, polyglycidyl ethers of phenol-formaldehyde novolac, polyglycidyl ethers of orthocresol novolac and tetraglycidyl ethers of tetraphenyl ethane.
  • Epoxy resins Preference is given to epoxy resins having at least 1.5 oxirane functions per molecule and more particularly epoxy resins containing between 2 and 4 oxirane functions per molecule. Epoxy resins are also preferred. having at least one aromatic ring such as the diglycidyl ethers of bisphenol A.
  • rheology control agent is understood to mean a compound which, mixed with the thermosetting material, allows the latter to be transformed by all the techniques for using thermoplastics while retaining the ability to react to form a thermoset material.
  • a block copolymer chosen from the SBM, BM or MBM block copolymers will be chosen in which:> each block is linked to the other by means of a covalent bond or of one or more intermediate molecules linked to the one of the blocks by a covalent bond and to the other block by another covalent bond,> M is a polymer miscible with the thermosetting resin.
  • M consists of methyl methacrylate monomers or contains at least 20% by mass of methyl methacrylate, preferably at least 50% by mass of methyl methacrylate.
  • the other monomers constituting the block M can be acrylic monomers or not, be reactive or not.
  • reactive monomer is meant: a chemical group capable of reacting with the oxirane functions of the epoxy molecules or with the chemical groups of the hardener.
  • reactive functions mention may be made of: oxirane functions, amine functions, carboxy functions.
  • the reactive monomer can be (meth) acrylic acid or any other hydrolyzable monomer leading to these acids.
  • monomers which can constitute block M non-limiting examples which may be mentioned are glycidyl methacrylate or tert-butyl methacrylate.
  • Advantageously M consists of at least 60% syndiotactic PMMA.
  • > B is a polymer incompatible with the thermosetting resin and with block M.
  • the Tg of B is less than 0 ° C and preferably less than -40 ° C.
  • the monomer used to synthesize the elastomeric block B can be a diene chosen from butadiene, isoprene, 2,3-dimethyl-1, 3-butadiene, 1,3-pentadiene, 2-phenyl- 1, 3 butadiene.
  • B is advantageously chosen from poly (dienes), in particular poly (butadiene), poly (isoprene) and their random copolymers or also from poly (dienes) partially or totally hydrogenated.
  • polybutadienes those with the lowest Tg are advantageously used, for example polybutadiene-1, 4 of Tg (around -90 ° C.) lower than that of polybutadiene-1, 2. (around 0 ° C).
  • B blocks can also be hydrogenated. This hydrogenation is carried out according to the usual techniques.
  • the monomer used to synthesize the elastomeric block B can also be an alkyl (meth) acrylate, the following Tg are obtained in parentheses according to the name of the acrylate: ethyl acrylate (-24 ° C), l butyl acrylate, (-45 ° C), 2-ethylhexyl acrylate (-60 ° C), n-octyl acrylate (-62 ° C), hydroxyethyl acrylate (-15 ° C ) and 2-ethylhexyl methacrylate (-10 ° C).
  • butyl acrylate is used.
  • the acrylates are different from those of block M to respect the condition of incompatible B and M.
  • the blocks B consist mainly of polybutadiene-1, 4.
  • B is incompatible with the thermosetting resin and with the block M and its glass transition temperature Tg is lower than the temperature of use of the thermosetting material,
  • the Tg or Tf of S is advantageously greater than the Tg of B and at 23 ° C. and preferably greater than 50 ° C.
  • blocks S that may be mentioned are those derived from vinyl aromatic compounds such as styrene, -methyl styrene, vinyltoluene, and those which derive from alkyl esters of acrylic and / or methacrylic acids having from 1 to 18 carbon atoms in the alkyl chain.
  • the SBM, BM or MBM copolymer has a weight-average molar mass which can be between 10,000 g / mol and 500,000 g / mol, preferably between 20,000 and 200,000 g / mol.
  • the rheology control agent comprises at least one SBM block copolymer and at least one SB block copolymer.
  • SB diblock for respectively from 95 to 20% of SBM triblock.
  • the S and B blocks are incompatible and they consist of the same monomers and possibly comonomers as the S blocks and the B blocks of the SBM triblock.
  • the blocks S and B can be identical or different from the other blocks S and B present in the other block copolymers of the impact modifier in the thermoset material.
  • the dibloc SB has a mass-average molar mass which can be between 10,000 g / mol and 500,000 g / mol, preferably between
  • the SB diblock advantageously consists of a mass fraction of B of between 5 and 95% and preferably between 5 and 60%.
  • the advantage of these compositions is that it is not necessary to purify the SBM at the end of its synthesis. Indeed SBM are in general prepared from SB and the reaction often leads to a mixture of SB and SBM which is then separated to have SBM.
  • part of the SBM can be replaced by an SB diblock. This part can be up to 70% by weight of the SBM. It would not be departing from the scope of the invention to replace all or part of the SBM triblock with an MSBSM or MBSBM pentabloc.
  • the formulation of the invention can be prepared by mixing the epoxy prepolymer and the rheology regulating agent (formula A) and the hardener with the rheology regulating agent (formula B) by all conventional mixing techniques. We can use all thermoplastic techniques to achieve a homogeneous mixture between the two parts of the thermosetting resin and the control agent such as extrusion.
  • the material thus obtained unreacted or partially reacted may thus be in the form of a manipulable rubber material.
  • the two types of formulas, formula A and formula B can be coextruded to form an unreacted thermoplastic and non-reactive film as long as the two parts of the film are not mixed by a hot compression type process. It is obvious that this invention can be applied to a reactive liquid resin which can form, after reaction, a linear or branched polymer exhibiting a thermoplastic behavior.
  • the finished objects of the invention can be used in various applications, such as in the fields of sport, industry, automobile, electronics, aeronautics.
  • thermoplastics such as polyethersulfones, polysulfones, polyetherimides, polyphenylene ethers, liquid elastomers or core-shell type impact modifiers.
  • Hardener it is an amine hardener which is an aromatic diamine, 4,4'-Methylenebis- (3-chloro-2,6-diethylaniline) sold by the company Lonza under the commercial reference LONZACURE M-DEA. This product is characterized by a melting point between 87 ° C and 90 ° C and a molar mass of 310 g / mol.
  • SBM1 it is a triblock copolymer S-B-M in which S is polystyrene, B is polybutadiene and M is polymethyl methacrylate.
  • SBM1 contains 12% by mass fraction of polystyrene,
  • SBM2 it is a triblock copolymer S-B-M in which S is polystyrene, B is polybutadiene and M is polymethyl methacrylate.
  • SBM1 contains 13% by mass fraction of polystyrene
  • Cooking conditions The mixes are cooked for 2 hours at 220 ° C.
  • Ta by thermomechanical analysis: The measurement of Ta was carried out by dynamic mechanical analysis on the post-cooked samples using a Rheometrics device (Rheometrics Solid Analyzer RSAII). Samples of parallelepiped shape (1 * 2.5 * 34mm 3 ) are subjected to a temperature sweep between 50 and 250 ° C at a pulling frequency of 1 Hz. The glass transition temperature is taken at most tan d.
  • An SBM1 with a total Mn of 51,000 g / mole is mixed with a DGEBA with a mass of 383 g / mole by extrusion at 190 ° C. in a co-rotating twin screw from the company WERNER, to produce formula A.
  • the SBM content is 40%.
  • the same SBM is mixed with the MDEA using the same co-rotating twin screw, to produce formula B, the SBM content is 40%.
  • the products are extruded from formula A and formula B.
  • These two types of yarns are then woven while respecting a grammage making it possible to obtain the stoichiometry between the epoxide and the amine.
  • the fabric is then placed in a press for 2 h at 200 ° C.
  • a thermoset material is obtained having a Tg of 165 ° C.
  • Example 2 (according to the invention)
  • An SBM2 with a total Mn of 80,000 g / mole is mixed with a DGEBA with a mass of 383 g / mole by extrusion at 190 ° C. in a co-rotating twin screw from the company WERNER, to produce formula A.
  • the content of SBM2 is 40% .
  • the SBM1 of total Mn 51,000 g / mole is mixed with the MDEA using the same corotative twin screw, to produce formula B, the content of SBM1 is 40%.
  • the products are extruded from formula A and formula B.
  • These two types of yarn are then woven in accordance with a grammage making it possible to obtain the stoichiometry between the epoxide and the amine.
  • the fabric is then placed in a press for 2 h at 200 ° C.
  • a thermoset material is obtained having a Tg of 164 ° C.
  • An SBM1 with a total Mn of 51,000 g / mole is mixed with a DGEBA with a mass of 383 g / mole by extrusion at 190 ° C. in a co-rotating twin screw from the company WERNER, to produce formula A.
  • the SBM content is 40%.
  • the same SBM is mixed with the MDEA using the same co-rotating twin screw, to produce formula B, the SBM content is 40%.
  • a coextrusion of the formula A and formula B is carried out on a CAST coextrusion machine from the company COLLIN.
  • the width of the film is 200 mm and its total thickness is 100 ⁇ m.
  • Layer A based on formula A has a thickness of 65 ⁇ m and layer B based on formula B has a thickness of 35 ⁇ m.
  • the film is coextruded with a polyethylene support film to prevent the film from sticking to itself during winding. The film after storage for one month at room temperature can still be handled. The level of reaction at the interface is sufficiently low so that the film retains its thermoplastic character.
  • the polyethylene film is removed without any difficulty from the coextruded A + B structure. This structure is placed in a mold and compressed under 50 kg / cm 2 for 4 hours at 220 ° C. The material obtained has all the characteristics of a thermoset material, it cannot be dissolved in toluene and has a glass transition temperature of 170 ° C.
  • An SBM2 with a total Mn of 80,000 g / mole is mixed with a DGEBA with a mass of 383 g / mole by extrusion at 190 ° C. in a co-rotating twin screw from the company WERNER, to produce formula A.
  • the content of SBM2 is 40% .
  • the SBM1 of total Mn 51,000 g / mole is mixed with the MDEA using the same corotative twin screw, to produce formula B, the content of SBM1 is 40%.
  • Coextrusion of formula A and formula B is carried out on a CAST coextrusion machine from the company COLLIN.
  • the width of the film is 200 mm and its total thickness is 100 ⁇ m.
  • Layer A based on formula A has a thickness of 65 ⁇ m and layer B based on formula B has a thickness of 35 ⁇ m.
  • the film is coextruded with a polyethylene support film to prevent the film from sticking to itself during winding.
  • the film after storage for one month at room temperature can still be handled.
  • the level of reaction at the interface is sufficiently low so that the film retains its thermoplastic character.
  • the polyethylene film is removed without any difficulty from the coextruded A + B structure. This structure is placed in a mold and compressed under 50 kg / cm 2 for 4 h at 220 ° C.
  • the material obtained has all the characteristics of a thermoset material, it cannot be dissolved in toluene and has a glass transition temperature of 170 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention concerne un procédé permettant de réaliser à partir de deux formulations l'une à base de résine époxyde et d'un agent de contrôle de la rhéologie, l'autre à base de durcisseur et d'un agent de contrôle de la rhéologie, des semi-produits tels que textiles ou films réactifs pour composites. Ces semi-produits sont stables lors du stockage mais ils peuvent réagir ensemble lors d'une montée en température pour former le matériau thermodur souhaité.

Description

SYSTEME THERMODURCISSABLE REACTIF PRESENTANT UNE DUREE DE STOCKAGE IMPORTANTE
La présente invention se rapporte au domaine des matériaux thermodurs, particulièrement à un procédé d'obtention de tels matériaux. Elle décrit plus particulièrement un procédé permettant de réaliser à partir de deux formulations traitées séparément de semi-produits tels que textiles ou films réactifs pour composites. Ces semi-produits sont stables lors du stockage mais ils peuvent réagir ensemble lors d'une montée en température pour former le matériau thermodur. Un matériau thermodur est défini comme étant formé de chaînes polymères de longueur variable liées entre elles par des liaisons covalentes de manière à former un réseau tridimensionnel. Les matériaux thermodurs peuvent être obtenus par exemple par réaction d'une résine thermodurcissable telle qu'un époxy avec un durcisseur de type aminé. Les matériaux thermodurs présentent de nombreuses propriétés intéressantes qui les font être utilisés comme adhésifs structuraux ou comme matrice pour des matériaux composites ou encore dans les applications de protection de composants électroniques. La fibre de renfort, qui peut comporter plusieurs milliers de filaments améliore les caractéristiques mécaniques de la structure composite. Elle peut être composée de verre, de carbone, d'aramide ou de tous autres matériaux organiques ou inorganiques apportant les caractéristiques recherchées. Les matériaux époxy ont une densité de réticulation élevée, ce qui leur assure une température de transition vitreuse (Tg) élevée et qui confère au matériau d'excellentes propriétés thermomécaniques. Plus la densité de réticulation est élevée, plus haute est la Tg du matériau et par conséquent meilleures sont les propriétés thermomécaniques et plus haute est la température limite d'utilisation du matériau. Néanmoins leur manipulation reste délicate. Des solutions ont été proposées pour faciliter leur mise en œuvre. Par exemple FR 2841252 propose une solution basée sur l'utilisation d'un agent régulateur de rhéologie à base de copolymère à blocs permettant ainsi l'obtention de films thermodurcissables. Néanmoins ces matériaux nécessitent un stockage à froid pour éviter que la réaction ne se produise pendant l'étape de stockage. La demanderesse vient de trouver que des formulations spécifiques à base de matériaux thermodurcissables et d'agents régulateurs de rhéologie peuvent être transformés en objets où l'époxy et son durcisseur sont séparés mais suffisamment proches pour permettre leur réaction ultérieure lors de leur mise en œuvre tout en permettant auparavant une manipulation aisée et surtout une grande stabilité au stockage. La solution proposée par la présente invention est basée sur le traitement simultané de deux formulations l'une à base d'une résine thermodurcissable par exemple constituée d'un prépolymère époxyde et d'un agent de contrôle de la rhéologie, l'autre à base de durcisseur et d'un agent de contrôle de la rhéologie. Le traitement simultané permet l'obtention de semi-produits tels que textiles ou films réactifs pour composites. Ces semi-produits sont stables lors du stockage mais ils peuvent réagir lors d'une montée en température pour former le matériau thermodur souhaité. Le premier objet de l'invention est un nouveau procédé de préparation de matériaux et d'objets thermodurs. Ce procédé peut être décrit par les étapes suivantes : a- Préparation d'une formulation (A) à base de prépolymères époxydes et d'agents régulateurs de rhéologie, b- Préparation d'une formulation (B) à base de durcisseur et d'agents régulateurs de rhéologie, c- Préparation de semi-produits par traitement simultané des formulations (A) et (B), en respectant si besoin est la stoéchiométrie entre le prépolymère époxyde et le durcisseur, et incluant le cas échéant les fibres, mats, tissus ou tout autre matériau habituellement utilisé dans les matériaux composites, d- Réalisation des structures souhaitées avec le semi-produit obtenu en c selon des techniques habituelles de mise en œuvre de semi-produits pour composites thermodurs, comme le drapage, le moulage ou la réalisation de systèmes sandwich, e- Réaction de la formulation pour obtenir un matériau composite, selon les techniques habituelles de mise en œuvre des matériaux composites thermodurs par association des formulations, (A) et (B) par apport de température et éventuellement de pression, comme le formage à chaud. La formulation (A) de l'invention comprend : - de 1 à 90% en poids du poids total de la formulation d'un agent de contrôle de rhéologie (I) comprenant par exemple au moins un copolymere à blocs choisi parmi les copolymères à blocs S-B-M, B-M et M-B-M dans lesquels: > chaque bloc est relié à l'autre au moyen d'une liaison covalente ou d'une ou plusieurs molécules intermédiaires reliées à l'un des blocs par une liaison covalente et à l'autre bloc par une autre liaison covalente, > M est un polymère miscible avec la résine thermodurcissable, par exemple un homopolymère de méthacrylate de méthyle ou un copolymere comprenant au moins 50% en poids de méthacrylate de méthyle, > B est incompatible avec la résine thermodurcissable et avec le bloc M. > S est incompatible avec la résine thermodurcissable et avec le bloc B. de 10 à 99% en poids du poids total de la formulation d'au moins une résine thermodurcissable (II). Elle peut comprendre en outre de 0 à 50 % en poids du poids total de la formulation d'au moins un matériau thermoplastique (III). La formulation (B) comprend, en poids, de 1 à 90 % d'au moins un durcisseur et de 10 à 99 % d'au moins un agent régulateur de rhéologie (I) . A et B ne contenant pas forcément le même agent régulateur de rhéologie. Les formulations A et B de l'invention présentent un comportement thermoplastique et peuvent être mises en oeuvre par les techniques habituelles de transformation de matériaux thermoplastiques mais ont la faculté de réagir ensemble pour former un matériau thermodur. Ces formulations peuvent pendant la réaction se trouver dans un état parfaitement liquide ou caoutchouteux. L'homme du métier sait fixer les quantités à utiliser de A et de B selon l'objet à préparer. S'agissant du matériau thermodur il est défini comme étant formé de chaînes polymères de longueur variable liées entre elles par des liaisons covalentes de manière à former un réseau tridimensionnel. A titre d'exemples on peut citer les résines époxy réticulées Le matériau thermodur provient avantageusement de la réaction d'une résine époxy thermodurcissable et d'un durcisseur. Il est défini aussi comme tout produit de la réaction d'un oligomère porteur de fonctions oxirane et d'un durcisseur. De par les réactions mises en jeu lors de la réaction des ces résines époxy on aboutit à un matériau réticulé correspondant à un réseau tridimensionnel plus ou moins dense selon les caractéristiques de base des résines et durcisseurs employés. On entend par résine époxy, désignée ci-après par E, tout composé organique possédant au moins deux fonctions de type oxirane, polymérisable par ouverture de cycle. Le terme "résines époxy" désigne toutes les résines époxy usuelles liquides à température ambiante (23°C) ou à température plus élevée. Ces résines époxy peuvent être monomeriques ou polymeriques d'une part, aliphatiques, cycloaliphatiques, hétérocycliques ou aromatiques d'autre part. A titre d'exemples de telles résines époxy, on peut citer le diglycidyl éther de résorcinol, le diglycidyl éther de bisphénol A, le triglycidyl p-amino phénol, le diglycidyléther de bromo-bisphénol F, le triglycidyléther de m-amino phénol, le tetraglycidyl méthylène dianiline, le triglycidyl éther de (trihydroxyphenyl) méthane, les polyglycidyl éthers de phénol-formaldéhyde novolac, les polyglycidyls éthers d'orthocrésol novolac et les tetraglycidyl éthers de tétraphényl éthane. Des mélanges d'au moins deux de ces résines peuvent aussi être utilisés. On préfère les résines époxy possédant au moins 1 ,5 fonctions oxirane par molécule et plus particulièrement les résines époxy contenant entre 2 et 4 fonctions oxirane par molécule. On préfère également les résines époxy possédant au moins un cycle aromatique comme les diglycidyls éthers de bisphénol A. S'agissant du durcisseur on peut citer : • Les anhydrides d'acide, parmi lesquels l'anhydride succinique, • Les polyamines aromatiques ou aliphatiques, parmi lesquelles la diamino diphényl sulphone (DDS) ou encore la méthylène dianiline ou encore la 4,4'-Méthylènebis-(3-chloro-2,6-diéthylaniline) (MCDEA), • La dicyandiamide et ses dérivés. • Les imidazoles • Les acides polycarboxyliques • Les polyphénols On entend par agent de contrôle de rhéologie, un composé qui, mélangé avec le matériau thermodurcissable, permet à ce dernier de pouvoir être transformé par toutes les techniques de mise en œuvre des thermoplastiques tout en conservant la faculté de réagir pour former un matériau thermodur. Avantageusement, on choisira un copolymere à blocs choisi parmi les copolymères à blocs S-B-M, B-M ou M-B-M dans lesquels: > chaque bloc est relié à l'autre au moyen d'une liaison covalente ou d'une ou plusieurs molécules intermédiaires reliées à l'un des blocs par une liaison covalente et à l'autre bloc par une autre liaison covalente, > M est un polymère miscible avec la résine thermodurcissable. De préférence, M est constitué de monomères de méthacrylate de méthyle ou contient au moins 20% en masse de méthacrylate de méthyle, de préférence au moins 50% en masse de méthacrylate de méthyle. Les autres monomères constituant le bloc M peuvent être des monomères acryliques ou non, être réactifs ou non. Par monomère réactif on entend : un groupement chimique capable de réagir avec les fonctions oxirane des molécules époxy ou avec les groupements chimiques du durcisseur. A titre d'exemples non limitatifs de fonctions réactives on peut citer : les fonctions oxirane, les fonctions aminés, les fonctions carboxy. Le monomère réactif peut être l'acide (meth)acrylique ou tout autre monomère hydrolysable conduisant à ces acides. Parmi les autres monomères pouvant constituer le bloc M on peut citer à titre d'exemples non limitatifs le méthacrylate de glycidyle ou le méthacrylate de tertiobutyle. Avantageusement M est constitué de PMMA syndiotactique à au moins 60%. > B est un polymère incompatible avec la résine thermodurcissable et avec le bloc M. Avantageusement la Tg de B est inférieure à 0°C et de préférence inférieure à -40°C. Le monomère utilisé pour synthétiser le bloc B élastomérique peut être un diène choisi parmi le butadiène, l'isoprène, le 2,3-diméthyl-1 ,3-butadiène, le 1,3-pentadiène, le 2-phényl- 1 ,3-butadiène. B est choisi avantageusement parmi les poly(diènes) notamment poly(butadiène), poly(isoprène) et leurs copolymères statistiques ou encore parmi les poly(diènes) partiellement ou totalement hydrogénés. Parmi les polybutadiènes on utilise avantageusement ceux dont la Tg est la plus faible, par exemple le polybutadiène-1 ,4 de Tg (vers -90°C) inférieure à celle du polybutadiène-1 ,2. (vers 0°C). Les blocs B peuvent aussi être hydrogénés. On effectue cette hydrogénation selon les techniques habituelles. Le monomère utilisé pour synthétiser le bloc B élastomérique peut être aussi un (meth)acrylate d'alkyle, on obtient les Tg suivantes entre parenthèses suivant le nom de l'acrylate: l'acrylate d'éthyle (-24°C), l'acrylate de butyle, (-45°C), l'acrylate de 2- éthylhexyle (-60°C), l'acrylate de n octyle (-62°C), l'acrylate d'hydroxyéthyle (-15°C) et le méthacrylate de 2-éthylhexyle (-10°C). On utilise avantageusement l'acrylate de butyle. Les acrylates sont différents de ceux du bloc M pour respecter la condition de B et M incompatibles. De préférence les blocs B sont constitués en majorité de polybutadiène- 1 ,4. B est incompatible avec la résine thermodurcissable et avec le bloc M et sa température de transition vitreuse Tg est inférieure à la température d'utilisation du matériau thermodur,
> S est incompatible avec la résine thermodurcissable et avec le bloc B. La Tg ou la Tf de S est avantageusement supérieure à la Tg de B et à 23°C et de préférence supérieure à 50°C. A titre d'exemples de blocs S on peut citer ceux qui dérivent de composés vinylaromatiques tels que styrène, -méthyl styrène, vinyltoluène, et ceux qui dérivent d'alkyl esters des acides acrylique et/ou méthacrylique ayant de 1 à 18 atomes de carbone dans la chaîne alkyle. Le copolymere S-B-M, B-M ou M-B-M a une masse molaire moyenne en masse qui peut être comprise entre 10 000 g/mol et 500 OOO g/mol, de préférence comprise entre 20 000 et 200 000 g/mol. Avantageusement, exprimée en fraction massique dont le total est 100%, sa composition sera : Pour M : entre 10 et 80% et de préférence entre 15 et 70%. Pour B : entre 2 et 80% et de préférence entre 5 et 70%. Pour S : entre 10 et 88% et de préférence entre 15 et 85%. Les copolymères blocs utilisés dans les matériaux de la présente invention peuvent être fabriqués par polymérisation anionique par exemple selon les procédés décrits dans les demandes de brevet EP 524.054 et EP 749.987. Avantageusement la proportion d'agent rhéologique est de 10 à 60% pour respectivement 90 à 40% de résine thermodure. Selon une forme préférée de l'invention l'agent de contrôle de rhéologie comprend au moins un copolymere bloc S-B-M et au moins un copolymere bloc S-B. Il comprend avantageusement entre 5 et 80% de dibloc S-B pour respectivement de 95 à 20% de tribloc S-B-M. S'agissant du dibloc S-B les blocs S et B sont incompatibles et ils sont constitués des mêmes monomères et éventuellement comonomères que les blocs S et les blocs B du tribloc S-B-M. Les blocs S et B peuvent être identiques ou différents des autres blocs S et B présents dans les autres copolymères blocs du modifiant choc dans le matériau thermodur. Le dibloc S-B a une masse molaire moyenne en masse qui peut être comprise entre 10000 g/mol et 500000 g/mol, de préférence comprise entre
20000 et 200000 g/mol. Le dibloc S-B est avantageusement constitué d'une fraction massique en B comprise entre 5 et 95% et de préférence entre 5 et 60%. De plus l'avantage de ces compositions est qu'il n'est pas nécessaire de purifier le S-B-M à l'issue de sa synthèse. En effet les S-B-M sont en général préparés à partir des S-B et la réaction conduit souvent à un mélange de S-B et S-B-M qu'on sépare ensuite pour disposer de S-B-M. Selon une forme avantageuse une partie du S-B-M peut être remplacée par un dibloc S-B. Cette partie peut être jusqu'à 70% en poids du S-B-M. On ne sortirait pas du cadre de l'invention en remplaçant tout ou partie du tribloc S-B-M par un pentabloc M-S-B-S-M ou M-B-S-B-M. Ils peuvent être préparés par polymérisation anionique comme les di ou triblocs cités plus haut mais en utilisant un amorçeur difonctionnel. La masse molaire moyenne en nombre de ces pentablocs est dans les mêmes intervalles que celle des triblocs S-B-M. La proportion des deux blocs M ensemble, des deux blocs B ou S ensemble est dans les mêmes intervalles que les proportions de S, B et M dans le tribloc S-B-M. La formulation de l'invention peut être préparée par mélange du prépolymère époxyde et de l'agent régulateur de rhéologie (formule A) et du durcisseur avec l'agent régulateur de rhéologie (formule B) par toutes les techniques de mélange conventionnelles. On pourra utiliser toutes les techniques thermoplastiques permettant de réaliser un mélange homogène entre les deux parties de la résine thermodurcissable et l'agent de contrôle telles que Pextrusion. Le matériau ainsi obtenu non réagi ou partiellement réagi pourra ainsi se présenter sous la forme d'un matériau caoutchoutique manipulable. Les deux types de formules, formule A et formule B peuvent être coextrudées pour former un film non réagi thermoplastique et non réactif tant que les deux parties du film ne sont pas mélangées par un procédé de type compression à chaud. II est évident que cette invention peut être appliquée à une résine liquide réactive pouvant former après réaction un polymère linéaire ou branché présentant un comportement thermoplastique. Les objets finis de l'invention peuvent être utilisés dans diverses applications, comme dans les domaines du sport, de l'industrie, de l'automobile, de l'électronique, de l'aéronautique. On ne sortirait pas du cadre de l'invention en ajoutant dans la formulation les additifs habituels, tels que des thermoplastiques comme les polyethersulfones, les polysulfones, les polyetherimides, les polyphénylènes éthers, des élastomères liquides ou des modifiant-chocs de type cœur-écorce.
Conditions de cuisson : Ce sont les conditions habituelles.
[Exemples] On a utilisé les produits suivants : Résine époxy : il s'agit d'un éther diglycidique du Bisphénol A (DGEBAv) de masse molaire 383 g/mol avec un nombre moyen de groupe hydroxyle pou r un groupe époxy de n= 0.075, commercialisé par la société VANTICO sous la référence commerciale LY556. Durcisseur : il s'agit d'un durcisseur aminé qui est une diamine aromatique, la 4,4'-Méthylènebis-(3-chloro-2,6-diéthylaniline) commercialisé par la société Lonza sous la référence commerciale LONZACURE M-DEA. Ce produit est caractérisé par un point de fusion compris entre 87°C et 90°C et une masse molaire de 310 g/mol. SBM1 : il s'agit d'un copolymere tribloc S-B-M dans lequel S est du polystyrène, B est du polybutadiène et M du polymethacrylate de méthyle. SBM1 contient 12% en fraction massique de polystyrène,
10% en fraction massique de polybutadiène et 78% en masse de polymethacrylate de méthyle, obtenu par polymérisation anionique successivement d'un bloc polystyrène de masse molaire moyenne en masse
6 000 g/mol, d'un bloc polybutadiène de masse 5 000 g/mol et d'un bloc polymethacrylate de méthyle de masse molaire moyenne en masse 40 OOO g/mol. Ce produit a été préparé suivant le mode opératoire décrit dans
EP 524-054 et dans EP 749.987. Ce produit présente trois transitions vitreuses, l'une de -90°C, l'autre de 95°C et la troisième de 130°C. SBM2 : il s'agit d'un copolymere tribloc S-B-M dans lequel S est du polystyrène, B est du polybutadiène et M du polymethacrylate de méthyle.
SBM1 contient 13% en fraction massique de polystyrène,
11% en fraction massique de polybutadiène et 74% en masse de polymethacrylate de méthyle, obtenu par polymérisation anionique successivement d'un bloc polystyrène de masse molaire moyenne en masse 10 400 g/mol, d'un bloc polybutadiène de masse 8 800 g/mol et d'un bloc polymethacrylate de méthyle de masse molaire moyenne en masse 59 200 g/mol. Ce produit a été préparé suivant le mode opératoire décrit dans EP 524-054 et dans EP 749.987. Ce produit présente trois transitions vitreuses, l'une de -90°C, l'autre de 95°C et la troisième de 130°C.
Conditions de cuisson : Les mélanges sont cuits pendant 2 heures à 220°C.
Mesure de la température de relaxation mécanique principale. Ta par analyse thermomécanique : La mesure de Ta a été réalisée par analyse mécanique dynamique sur les échantillons post-cuits à l'aide d'un appareil Rheometrics (Rheometrics Solid Analyser RSAII). Les échantillons de forme parallélépipédiques (1*2,5*34mm3) sont soumis à un balayage en température entre 50 et 250°C à une fréquence de traction de 1 Hz. La température de transition vitreuse est prise au maximum de tan d.
Exemple 1 (selon l'invention)
Un SBM1 de Mn totale 51000 g/mole est mélangé avec un DGEBA de masse 383 g/mole par extrusion à 190°C dans une bivis corotative de la société WERNER, pour produire la formule A. La teneur en SBM est de 40%. Le même SBM est mélangé avec la MDEA en utilisant la même bivis corotative, pour produire la formule B, la teneur en SBM est de 40%. Les produits sont extrudés à partir de la formule A et de la formule B. Ces deux types de fils sont ensuite tissés en respectant un grammage permettant d'obtenir la stoéchiométrie entre l'époxyde et l'aminé. Le tissu est ensuite placé sous presse pendant 2 h à 200°C. Un matériau thermodurci est obtenu présentant une Tg de 165°C. Exemple 2 (selon l'invention)
Un SBM2 de Mn totale 80 000 g/mole est mélangé avec un DGEBA de masse 383 g/mole par extrusion à 190°C dans une bivis corotative de la société WERNER, pour produire la formule A. La teneur en SBM2 est de 40%. Le SBM1 de Mn totale 51 000 g/mole est mélangé avec la MDEA en utilisant la même bivis corotative, pour produire la formule B, la teneur en SBM1 est de 40%. Les produits sont extrudés à partir de la formule A et de la formule B. Ces deux types de fils sont ensuite tissés en respectant un grammage permettant d'obtenir la stoechiometrie entre l'epoxyde et l'aminé. Le tissu est ensuite placé sous presse pendant 2 h à 200°C. Un matériau thermodurci est obtenu présentant une Tg de 164°C.
Exemple 3 (comparatif)
Sur un mélangeur à rouleau sont introduits 40 gr de SBM1 ainsi que 60 gr de mélange époxyde DGEBA de la société DOW Chemicals de masse molaire 348,5 gr/mole et d'aminé MDEA de la société Lonza. Le DGEBA ainsi que la MDEA sont introduits dans le mélange à stoechiometrie soit 41 ,53 gr de DGEBA et 18,47 gr de MDEA. Le mélange est réalisé à 150°C. Après compression le film obtenu est transparent et présente une épaisseur de 100 μm. Le film est manipulable à température ambiante. Après un stockage de 1 mois à température ambiante le film est devenu rigide et cassant et ne peut être manipulé facilement. Sa température de transition vitreuse est de 26°C.
Exemple 4 ( selon l'invention)
Un SBM1 de Mn totale 51000 g/mole est mélangé avec un DGEBA de masse 383 g/mole par extrusion à 190°C dans une bivis corotative de la société WERNER, pour produire la formule A. La teneur en SBM est de 40%. Le même SBM est mélangé avec la MDEA en utilisant la même bivis corotative, pour produire la formule B, la teneur en SBM est de 40%. Une coextrusion de la formule A et de la formule B est réalisée sur une machine.de coextrusion CAST de la société COLLIN. La largeur du film est de 200 mm et son épaisseur totale est de 100 μm. La couche A basée sur la formule A présente une épaisseur de 65 μm et la couche B basée sur la formule B présente une épaisseur de 35 μm. Le film est coextrudé avec un film support polyethylène pour éviter lors de l'enroulement que le film ne colle sur lui-même. Le film après un stockage d'un mois à température ambiante est toujours manipulable le niveau de réaction à l'interface est suffisamment faible pour que le film conserve son caractère thermoplastique. Le film de polyethylène est enlevé sans aucune difficulté de la structure A+B coextrudée. Cette structure est placée dans un moule et comprimée sous 50 kg/cm2 pendant 4h à 220°C. Le matériau obtenu présente toutes les caractéristiques d'un matériau thermodur, il ne peut être dissout dans le toluène et présente une température de transition vitreuse de 170°C.
Exemple 5 (selon l'invention)
Un SBM2 de Mn totale 80 000 g/mole est mélangé avec un DGEBA de masse 383 g/mole par extrusion à 190°C dans une bivis corotative de la société WERNER, pour produire la formule A. La teneur en SBM2 est de 40%. Le SBM1 de Mn totale 51 000 g/mole est mélangé avec la MDEA en utilisant la même bivis corotative, pour produire la formule B, la teneur en SBM1 est de 40%. Une coextrusion de la formule A et de la formule B est réalisée sur une machine de coextrusion CAST de la société COLLIN. La largeur du film est de 200 mm et son épaisseur totale est de 100 μm. La couche A basée sur la formule A présente une épaisseur de 65 μm et la couche B basée sur la formule B présente une épaisseur de 35 μm.
Le film est coextrudé avec un film support polyethylène pour éviter lors de l'enroulement que le film ne colle sur lui-même. Le film après un stockage d'un mois à température ambiante est toujours manipulable le niveau de réaction à l'interface est suffisamment faible pour que le film conserve son caractère thermoplastique. Le film de polyethylène est enlevé sans aucune difficulté de la structure A+B coextrudée. Cette structure est placée dans un moule et comprimée sous 50 kg/cm2 pendant 4h à 220°C. Le matériau obtenu présente toutes les caractéristiques d'un matériau thermodur, il ne peut être dissout dans le toluène et présente une température de transition vitreuse de 170°C.
Exemple 6 (comparatif)
Sur un mélangeur à rouleau sont introduits 40 gr de SBM1 ainsi que 60 gr de mélange époxyde DGEBA de la société DOW Chemicals de masse molaire 348,5 gr/mole et d'aminé MDEA de la société Lonza. Le DGEBA ainsi que la MDEA sont introduits dans le mélange à stoechiometrie soit 41 ,53 gr de DGEBA et 18,47 gr de MDEA. Le mélange est réalisé à 150°C. Après compression le film obtenu est transparent et présente une épaisseur de 100 μm. Le film est manipulable à température ambiante. Après un stockage de 1 mois à température ambiante le film est devenu rigide et cassant et ne peut être manipulé facilement. Sa température de transition vitreuse est de 26°C.

Claims

REVENDICATIONS
1. Procédé de préparation de matériaux et d'objets thermodurs suivant les étapes suivantes : a- Préparation d'une formulation (A) comprenant, en poids, de 10 à 99% d'au moins un prépolymère époxyde et de 1 à 90 % d'au moins un agent régulateur de rhéologie (I), b- Préparation d'une formulation (B) comprenant, en poids, de 1 à 90 % au moins d'un durcisseur et de 10 à 99 % d'au moins un agent régulateur de rhéologie (I), c- Préparation de semi-produits par un traitement simultané des formulations (A) et (B) selon la nature des matériaux et objets à préparer, en respectant si besoin est la stoechiometrie entre le prépolymère époxyde et le durcisseur, et incluant le cas échéant les fibres, mats, tissus ou tout autre matériau habituellement utilisé dans les matériaux composites, d- Réalisation des structures souhaitées avec le semi-produit obtenu en c selon des techniques habituelles de mise en œuvre de semi-produits pour composites thermodurs, comme le drapage, le moulage, ou la réalisation de systèmes sandwich, e- Réaction de la formulation pour obtenir un matériau composite, selon les techniques habituelles de mise en œuvre des matériaux composites thermodurs, comme le formage à chaud, A et B ne contenant pas nécessairement le même agent régulateur de rhéologie.
2. Procédé suivant la revendication 1 caractérisé en ce que l'agent régulateur de rhéologie est au moins un copolymere à blocs choisi parmi les copolymères à blocs S-B-M, B-M et M-B-M dans lesquels:
> chaque bloc est relié à l'autre au moyen d'une liaison covalente ou d'une ou plusieurs molécules intermédiaires reliées à l'un des blocs par une liaison covalente et à l'autre bloc par une autre liaison covalente, > M est un polymère miscible avec le prépolymère époxyde, par exemple un homopolymère de méthacrylate de méthyle ou un copolymere comprenant au moins 20% en poids de méthacrylate de méthyle,
> B est incompatible avec le prépolymère époxyde et avec le bloc M. > S est incompatible avec la résine thermodurcissable et avec le bloc B.
3. Procédé suivant la revendication 2 caractérisé en ce que le bloc M est choisi parmi les polyméthacrylates de méthyle et les copolymères comprenant au moins 20% en poids de méthacrylate de méthyle.
4. Procédé suivant la revendication 3 caractérisé en ce que les blocs M des copolymères à blocs sont constitués de PMMA syndiotactique à au moins 75%.
5. Procédé selon l'une des revendications 2 à 4 caractérisé en ce que les blocs M des copolymères à blocs comprennent en outre des monomères réactifs tels que le méthacrylate de glycidyle, le méthacrylate de tertiobutyle ou l'acide acrylique.
6. Procédé suivant l'une des revendications 2 à 5 caractérisé en ce que la Tg des blocs B est inférieure à 0°C, et de préférence inférieure à -40°C.
7. Procédé suivant la revendication 2 caractérisé en ce que le bloc B est choisi parmi les poly(acrylate d'alkyle) tels que le polyacrylate de butyle, d'ethyle hexyle ou d'octyle et les polydiènes.
8. Procédé suivant la revendication 7 caractérisé en ce que le bloc B est un polybutadiène, 1-4.
9. Procédé suivant la revendication 7 ou 8 caractérisé en ce que les diènes du bloc B sont hydrogénés.
10. Procédé suivant la revendication 2 caractérisé en ce que la Tg ou la Tf de S est supérieure à 23°C et de préférence supérieure à 50°C.
11. Procédé suivant la revendication 10 caractérisé en ce que S est du polystyrène.
12. Procédé suivant l'une des revendications 2 à 11 caractérisé en ce que la masse molaire moyenne en masse des copolymères à blocs peut être comprise entre 10 000 g/mol et 500 000 g/mol.
13. Procédé suivant la revendication 12 caractérisé en ce que la masse molaire moyenne en masse des copolymères à blocs peut être comprise entre 20 000 g/mol et 200 000 g/mol.
14. Procédé suivant la revendication 1 caractérisé en ce que ledit traitement simultané est un co-tissage.
15. Tissus et tricots préparés suivant le procédé de la revendication 14.
16. Procédé suivant la revendication 1 caractérisé en ce que ledit traitement simultané est une co-extrusion.
17. Procédé suivant la revendication 1 caractérisé en ce que ledit traitement est une imprégnation par un mélange de poudres.
18. Objets et matériaux thermodurs préparés suivant le procédé de la revendication 16 ou 17.
PCT/FR2005/000033 2004-01-13 2005-01-07 Systeme thermodurcissable reactif presentant une duree de stockage importante WO2005073314A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006548343A JP2007517951A (ja) 2004-01-13 2005-01-07 期貯蔵寿命が長い反応性熱硬化系
DE602005007572T DE602005007572D1 (de) 2004-01-13 2005-01-07 Reaktives hitzehärtendes system mit langer haltbarkeit
US10/585,700 US20070078236A1 (en) 2004-01-13 2005-01-07 Reactive thermosetting system with long storage life
EP05717381A EP1704185B1 (fr) 2004-01-13 2005-01-07 Systeme thermodurcissable reactif presentant une duree de stockage importante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0400266A FR2864963B1 (fr) 2004-01-13 2004-01-13 Systeme thermodurcissable reactif presentant une duree de stockage importante
FR0400266 2004-01-13

Publications (1)

Publication Number Publication Date
WO2005073314A1 true WO2005073314A1 (fr) 2005-08-11

Family

ID=34684957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/000033 WO2005073314A1 (fr) 2004-01-13 2005-01-07 Systeme thermodurcissable reactif presentant une duree de stockage importante

Country Status (10)

Country Link
US (1) US20070078236A1 (fr)
EP (1) EP1704185B1 (fr)
JP (1) JP2007517951A (fr)
KR (1) KR100810951B1 (fr)
CN (1) CN1910235A (fr)
AT (1) ATE398653T1 (fr)
DE (1) DE602005007572D1 (fr)
ES (1) ES2306113T3 (fr)
FR (1) FR2864963B1 (fr)
WO (1) WO2005073314A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154160A (ja) * 2005-11-14 2007-06-21 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
EP2031000A1 (fr) 2007-08-29 2009-03-04 Essilor International (Compagnie Générale D'Optique) Procédé de préparation d'un materiau transparent de type alliage de polymère thermodurcissable / polymère thermoplastique et son application dans l'optique pour la fabrication de verres organiques
EP2030998A1 (fr) 2007-08-29 2009-03-04 Essilor International (Compagnie Générale D'Optique) Procédé de préparation d'un article moulé transparent à base d'un alliage de polymer thermoplastique et de polymère thermodurcissable
EP2036950A1 (fr) * 2006-06-30 2009-03-18 Toray Industries, Inc. Composition de résine époxy, préimprégné, et matériau composite renforcé par des fibres

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896507B1 (fr) * 2006-01-20 2008-04-04 Essilor Int Composition polymerisable a base de polyurethane et de copolymeres a blocs et materiau transparent obtenu a partir de celle-ci.
FR2896506B1 (fr) * 2006-01-20 2008-04-04 Essilor Int Composition polymerisable a base de polyurethane-uree et de copolymeres a blocs et materiau transparent obtenu a partir de celle-ci
CN101583646B (zh) * 2006-10-19 2012-12-26 陶氏环球技术有限责任公司 具有改善的与金属基底的粘合性的可固化环氧树脂组合物以及制备涂覆和纤维增强的复合制品的方法
US8278389B2 (en) * 2007-05-16 2012-10-02 Toray Industries, Ltd. Epoxy resin composition, prepreg, fiber-reinforced composite material
US8025926B2 (en) * 2008-04-23 2011-09-27 Sabic Innovative Plastics Ip B.V. Varnish compositions for electrical insulation and method of using the same
US8092722B2 (en) * 2008-09-30 2012-01-10 Sabic Innovative Plastics Ip B.V. Varnish compositions for electrical insulation and method of using the same
US9434857B2 (en) 2011-11-15 2016-09-06 Ethicon, Inc. Rapid cure silicone lubricious coatings
DE102022105738A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare Klebemasse mit verbesserter Stanzbarkeit
DE102022105737A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare Klebemasse mit verbesserter Stanzbarkeit und verbesserten Schockeigenschaften
DE102022124902A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit Indikation der Haltefestigkeit
DE102022124904A1 (de) 2022-09-28 2024-03-28 Tesa Se Aushärtbare Haftklebemasse mit verbesserten Klebeeigenschaften
DE102022124903A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit definierter Färbung im ausgehärteten Zustand

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393195A (en) * 1979-08-08 1983-07-12 Mitsubishi Gas Chemical Company, Inc. Curable cyanate ester/acrylic epoxy ester composition
FR2841252A1 (fr) * 2002-06-19 2003-12-26 Atofina Structuration d'un liquide reactif a l'aide d'un agent renforcant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140492B1 (fr) * 1969-11-20 1976-11-04
GB8305312D0 (en) * 1983-02-25 1983-03-30 Raychem Ltd Curable sheet
US4686250A (en) * 1985-12-27 1987-08-11 Amoco Corporation Moisture resistant, wet winding epoxy resin system containing aromatic diamines
FR2679237B1 (fr) * 1991-07-19 1994-07-22 Atochem Systeme d'amorcage pour la polymerisation anionique de monomeres (meth) acryliques.
JPH0873621A (ja) * 1994-09-07 1996-03-19 Toshiba Corp 樹脂シート
FR2735480B1 (fr) * 1995-06-15 1997-07-18 Atochem Elf Sa Procede de polymerisation anionique en continu d'au moins un monomere (meth)acrylique pour l'obtention de polymeres a haut taux de solide
US5709948A (en) * 1995-09-20 1998-01-20 Minnesota Mining And Manufacturing Company Semi-interpenetrating polymer networks of epoxy and polyolefin resins, methods therefor, and uses thereof
JP3861425B2 (ja) * 1997-12-22 2006-12-20 大日本インキ化学工業株式会社 加熱圧縮成形材料組成物、シートモールディングコンパウンド及びバルクモールディングコンパウンド
JP2000071372A (ja) * 1998-02-26 2000-03-07 Shell Internatl Res Maatschappij Bv 反応成分の一方のみを含む各プレプレグおよびそれらから誘導される複合体
FR2809741B1 (fr) * 2000-05-31 2002-08-16 Atofina Materiaux thermodurs a tenue au choc amelioree
US6685985B2 (en) * 2001-02-09 2004-02-03 Basf Corporation Method of improving the appearance of coated articles having both vertical and horizontal surfaces, and coating compositions for use therein
JP4765208B2 (ja) * 2001-07-02 2011-09-07 東レ株式会社 エポキシ樹脂組成物およびそれを用いたコンクリート構造体の補修・補強方法
US20030036587A1 (en) * 2002-08-26 2003-02-20 Kozak Kyra M Rheology-controlled epoxy-based compositons
DE10241853B3 (de) * 2002-09-09 2004-01-22 Byk-Chemie Gmbh Polymeres Harnstoffurethan als Rheologiesteuerungsmittel und Verfahren zur Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393195A (en) * 1979-08-08 1983-07-12 Mitsubishi Gas Chemical Company, Inc. Curable cyanate ester/acrylic epoxy ester composition
FR2841252A1 (fr) * 2002-06-19 2003-12-26 Atofina Structuration d'un liquide reactif a l'aide d'un agent renforcant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154160A (ja) * 2005-11-14 2007-06-21 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
EP2036950A1 (fr) * 2006-06-30 2009-03-18 Toray Industries, Inc. Composition de résine époxy, préimprégné, et matériau composite renforcé par des fibres
EP2036950A4 (fr) * 2006-06-30 2010-04-21 Toray Industries Composition de résine époxy, préimprégné, et matériau composite renforcé par des fibres
US8338535B2 (en) 2006-06-30 2012-12-25 Toray Industries, Inc. Epoxy resins, curing agent and (Co)poly(methyl methacrylate) block copolymer
TWI408171B (zh) * 2006-06-30 2013-09-11 Toray Industries 環氧樹脂組成物、預浸漬物及纖維強化複合材料
EP2031000A1 (fr) 2007-08-29 2009-03-04 Essilor International (Compagnie Générale D'Optique) Procédé de préparation d'un materiau transparent de type alliage de polymère thermodurcissable / polymère thermoplastique et son application dans l'optique pour la fabrication de verres organiques
EP2030998A1 (fr) 2007-08-29 2009-03-04 Essilor International (Compagnie Générale D'Optique) Procédé de préparation d'un article moulé transparent à base d'un alliage de polymer thermoplastique et de polymère thermodurcissable

Also Published As

Publication number Publication date
JP2007517951A (ja) 2007-07-05
FR2864963B1 (fr) 2006-03-03
EP1704185B1 (fr) 2008-06-18
ES2306113T3 (es) 2008-11-01
DE602005007572D1 (de) 2008-07-31
KR20060132646A (ko) 2006-12-21
EP1704185A1 (fr) 2006-09-27
ATE398653T1 (de) 2008-07-15
US20070078236A1 (en) 2007-04-05
KR100810951B1 (ko) 2008-03-10
FR2864963A1 (fr) 2005-07-15
CN1910235A (zh) 2007-02-07

Similar Documents

Publication Publication Date Title
EP1704185B1 (fr) Systeme thermodurcissable reactif presentant une duree de stockage importante
CA2410674C (fr) Materiaux thermodurs a tenue au choc amelioree
TWI548698B (zh) 韌性增加的熱固性樹脂組合物
CN118048006A (zh) 包含多阶段聚合物的组合物、其制备方法及其用途
EP1687374B1 (fr) Procede de fabrication d'une fibre organique a base de resine epoxy et d'agent regulateur de rheologie et tissus correspondants
WO2012066244A1 (fr) Melange maitre de nanotubes de carbone et de durcisseur pour les resines thermodurcissables
WO2017187783A1 (fr) Composition de résine thermodurcissable, objet durci, matériau de moulage et objet moulé
CN106751503A (zh) 高模碳纤维预浸料用中温固化环氧树脂体系的制备方法
Guhanathan et al. Studies on castor oil–based polyurethane/polyacrylonitrile interpenetrating polymer network for toughening of unsaturated polyester resin
WO2005014699A1 (fr) Procede de preparation d’objets a base de resines thermodures
FR2841252A1 (fr) Structuration d'un liquide reactif a l'aide d'un agent renforcant
WO2003063572A2 (fr) Materiaux thermodurs a tenue au choc amelioree
CA1139035A (fr) Compositions thermodurcissables a base de prepolymere a groupement imide et de resine epoxy
CN109467814B (zh) 一种复合矿物纤维填充聚丙烯复合材料及其制备方法
EP0764629B1 (fr) Matériau composite à renfort fibreux et matrice obtenue par polymérisation de monomères acryliques, et sa fabrication
CN113930052B (zh) 一种碳纤维用高粘性环氧树脂组合物的拉挤成型方法
KR100886600B1 (ko) 열경화성 수지로부터의 대상물의 제조 방법
FR2880895A1 (fr) Materiaux thermodurs a tenue au choc amelioree
Huynh et al. Synthesis of evagma and its effects on tensile properties and morphology of ethylene vinyl acetate copolymer/bamboo flour and polypropylene/bamboo flour composites
EP4031624A1 (fr) Compositions de polyamides comprenant des fibres de renfort et présentant une stabilité de module élevée et leurs utilisations
FR2678210A1 (fr) Particules de polyamide rigide poreux et leur application dans des materiaux composites renforces par des fibres.
FR2880894A1 (fr) Materiaux thermodurs a tenue au choc amelioree
Saalbrink et al. Blends of poly (ethylene terepthalate) and epoxy resin as a matrix material for continuous fibre-reinforced composites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005717381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007078236

Country of ref document: US

Ref document number: 10585700

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006548343

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580002396.2

Country of ref document: CN

Ref document number: 1020067014113

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005717381

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067014113

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10585700

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005717381

Country of ref document: EP