WO2005067137A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2005067137A1
WO2005067137A1 PCT/JP2004/000028 JP2004000028W WO2005067137A1 WO 2005067137 A1 WO2005067137 A1 WO 2005067137A1 JP 2004000028 W JP2004000028 W JP 2004000028W WO 2005067137 A1 WO2005067137 A1 WO 2005067137A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
command
outputs
input
signal
Prior art date
Application number
PCT/JP2004/000028
Other languages
English (en)
French (fr)
Inventor
Kei Terada
Tetsuaki Nagano
Yasunobu Harada
Kazutaka Takahashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to GB0615648A priority Critical patent/GB2428144B/en
Priority to CNB2004800401124A priority patent/CN100477483C/zh
Priority to PCT/JP2004/000028 priority patent/WO2005067137A1/ja
Priority to JP2005516772A priority patent/JP4496410B2/ja
Priority to DE112004002619T priority patent/DE112004002619T5/de
Priority to US10/585,416 priority patent/US7511448B2/en
Priority to TW093104053A priority patent/TWI234340B/zh
Publication of WO2005067137A1 publication Critical patent/WO2005067137A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Definitions

  • the present invention relates to a motor control device that controls a synchronous motor, and more particularly to a motor control device that includes an axis deviation detection unit that detects an axis deviation angle between a dq axis of a synchronous motor to be controlled and a dQ axis of control.
  • Vector control which is a control method that separates the current into the field flux direction of the motor (d-axis) and the direction orthogonal to it (Q-axis) and performs each current control, is generally performed as the servo control of the synchronous motor. ing. In this vector control, it is necessary to detect the magnetic pole position in order to generate torque effectively. Linear motors are often used in combination with incremental encoders that cannot detect the absolute position of the motor when the power is turned on.However, since incremental encoders can only detect relative positions, the initial magnetic pole position can be detected. Is required.
  • the dq axis (dm-qm axis) of the actual motor and the control axis (dc-axis) will be displaced. Adverse effects such as a decrease in the maximum generated torque will occur.
  • Patent Document 1 discloses an error adjusting device based on an estimated initial magnetic pole position value of a synchronous motor provided with means for calculating an initial magnetic pole position of a rotor.
  • the command torque current becomes zero.
  • the command magnetic flux current is set to an arbitrary finite repetitive waveform
  • the angular acceleration is calculated from the detected speed
  • the command magnetic flux current, the detected speed, angular acceleration, motor inertia, viscous friction, friction torque Estimate the generated torque from the motor motion equation from the information of the motor, estimate the torque current by dividing the estimated torque by the torque constant, estimate the initial magnetic pole position using the command magnetic flux current and the estimated torque current, and It is displayed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. H10-303299 No. 1 discloses a motor control device.
  • Patent Document 2 discloses that an estimation AC current signal or an estimation AC voltage signal is applied in one axis direction of an orthogonal two-axis coordinate system, and the magnetic pole position of the synchronous motor is determined by the current or voltage in the other orthogonal axis direction.
  • the magnetic pole position estimating means calculates a current or voltage value detected at a predetermined phase timing with respect to the estimating AC current signal or the estimating AC voltage signal. Is used to estimate the magnetic pole position.
  • the deviation angle of the initial magnetic pole position existing when the encoder is mounted on the AC synchronous motor is accurately estimated using the initial magnetic pole estimation formula, and this is displayed.
  • the motor control device disclosed in Patent Document 2 detects the current of the other orthogonal axis flowing by the estimation signal at a predetermined phase and performs a multiplication operation, so that the synchronization control is performed in a simple manner.
  • the configuration does not include a speed detector or a position detector.Since speed feedback information cannot be used, actual speed fluctuations or position fluctuations cannot be detected. T has the problem that it is difficult to increase the accuracy.
  • the motor control device disclosed in Patent Document 2 described above has a problem that detection is difficult with a motor having no electric saliency or a small motor because electric saliency is used.
  • the present invention has been made to solve the above-described problems.
  • the first object of the present invention is to provide a simple configuration in which vector position of an initial magnetic pole is determined during normal operation such as speed control with a simple configuration. A motor control device that can be estimated is obtained.
  • a second object is to obtain a motor control device that does not use division in estimating the axis deviation angle.
  • a third object is to provide a motor control device capable of estimating an initial magnetic pole position without using a motor constant.
  • a fourth object is to obtain a data controller that can acquire data necessary for estimating an axis deviation angle without using a complicated sequence for obtaining data acquisition timing.
  • a motor control device includes a speed calculation unit that calculates an actual speed from a detected position detected by a detector, which is a position of a motor or a load connected to the motor, and the actual speed follows a speed command.
  • Speed control unit that outputs a Q-axis current command, and a three-phase current detected in the inverter, and from the UVW three-phase stationary coordinate system to the dQ synchronous rotating coordinate system
  • the coordinate transformation of Uvw / d that outputs the d-axis current and the Q-axis current (i-coordinate conversion unit, inputs the d-axis current command, the d-axis current command, the d-axis current feedback, and the q-axis current feedback
  • a current control unit that performs current control so that the dq-axis actual current matches the dQ-axis current command, and outputs a d-axis voltage command and a Q-axis voltage command;
  • Dd Z uvw coordinate conversion unit that inputs the
  • a voltage command is input, an actual three-phase voltage is applied to the motor, and an impeller that drives the motor at a variable speed is output.
  • Superimposed signal generator and d-axis current command generated by the superimposed signal generator
  • the d-axis current command generator that outputs the d-axis current command by adding the superimposed signals that have been input, and the axis that inputs the d-axis current command and the q-axis current command and outputs the estimated axis deviation angle
  • the axis deviation detection uses d-axis current command and q-axis current command or torque current error data that are almost in phase (in-phase or out-of-phase). in action
  • detection can be performed in real time by an arbitrary timing operation, and a position command and a detection position detected by the detector are input, and position control is performed so that the detection position follows the position command.
  • a position control unit for outputting a speed command to the speed control unit, wherein the superimposition signal generation unit includes a triangular wave or Since a superimposed signal of a repetitive waveform such as a sine wave is output, there is an effect that an axis deviation can be detected while performing a normal position control operation.
  • the motor control device further includes a speed calculation unit that calculates an actual speed from a detected position that is a position of the motor detected by the detector or a load connected to the motor, and a three-phase current detected within the inverter.
  • Uvw / dq coordinate conversion unit that performs coordinate conversion from the UVW three-phase stationary coordinate system to the dq synchronous rotation coordinate system and outputs d-axis current and q-axis current, and d-axis current command and Q
  • the axis current command, the d-axis current feedback, and the Q-axis current feedback are input, and current control is performed so that the actual dq-axis current matches the d-Q axis current command.
  • the d-axis voltage command and the q-axis voltage command The d-axis voltage command, the Q-axis voltage command, and the detection position are input, and coordinate conversion from the dq synchronous rotary coordinate system to the uvw three-phase stationary coordinate system is performed.
  • D ci Z uvw coordinate converter that outputs a phase voltage command, and this three-phase voltage command And an actual three-phase voltage is applied to the motor, and a motor controller that drives the motor at a variable speed.
  • a superimposed signal generator to be output, a superimposed signal i dh generated by the superimposed signal generator to the d-axis current command, a d-axis current command generator to output a d-axis current command, and a speed calculator. Input the actual speed that is output and the q-axis current command, and estimate the torque current error that is actually occurring in motor and motor.
  • a torque current error calculating section, and an axis shift detecting section that inputs the d-axis current command and the torque current error, and outputs an axis shift angle estimation value.
  • the apparatus further includes a speed control unit that performs speed control so that the actual speed follows the speed command and outputs a q-axis current command.
  • the superimposition signal generation unit generates a superimposition signal having a repetitive waveform such as a triangular wave or a sine wave.
  • the torque current error of the actual motor can be calculated based on the actual speed, and it can be used to detect axis deviation.
  • the speed control response cannot be increased and the speed control band is low. In this case, it is also possible to detect the axis deviation.
  • an estimated value of the axis deviation angle output from the axis deviation detection unit and the detection position detected by the detector are input, and the corrected position is calculated.
  • the dq Z uvw coordinate conversion unit and the uv A wZ d Q coordinate conversion unit is provided with an axis misalignment correction unit, and the dq / uvw coordinate conversion unit and the uvw / d ci coordinate conversion unit perform coordinate conversion based on the corrected position.
  • the axis deviation detection unit filters the d-axis current command and outputs a d-axis signal for axis deviation detection, a first input filter, and a Q-axis current command or a torque current error.
  • a second input filter that performs processing and outputs an i-axis signal for axis deviation detection; and an adaptive filter that calculates an adaptive input by multiplying the d-axis signal for axis deviation detection and the q-axis signal for axis deviation detection.
  • An input operation unit a gain unit that multiplies the adaptive input by a gain to generate an integral input, and an integrator that integrates the integral input and outputs an axis deviation angle estimation value. Since it is possible to separate only the signals necessary for axis deviation detection by using this function, there is an effect that axis deviation can be detected and corrected even during normal operation (speed control operation). Also, since the initial magnetic pole position can be estimated without using the motor constant, there is an effect that the motor pole error is not affected.
  • the axis deviation detection unit performs a filtering process on the d-axis current command, and calculates a first input filter that outputs an axis deviation detection d-axis signal and a function of the axis deviation detection d-axis signal.
  • a variable gain calculation unit a second input filter that filters a Q-axis current command or a torque current error and outputs an axis deviation detection q-axis signal, and a function of the axis deviation detection d-axis signal.
  • An adaptive input calculation unit that calculates an adaptive input by multiplying by the q-axis signal for axis shift detection; an integrator that integrates the integrated input to output an estimated axis deviation angle;
  • the axis deviation detecting unit filters the d-axis current command, outputs a first axis of the axis deviation detection d-axis signal, and detects the sign of the axis deviation detection d-axis signal.
  • Outputs signed d-axis signal for axis deviation detection A first sign detector, a Q-axis current command or a torque current error, and a second input filter that outputs a Q-axis signal for axis deviation detection; and a q-axis for axis deviation detection.
  • a second sign detector that detects a sign of the signal and outputs a signed axis deviation detection Q-axis signal; a signed axis deviation detection d-axis signal and the signed axis deviation detection Q-axis
  • An adaptive input operation unit that calculates a signed adaptive input by multiplying by a signal; a gain unit that generates an integrated input by multiplying the signed adaptive input by a gain; and an axis misalignment that integrates the integrated input. Since it has an integrator that outputs the angle estimation value and, there is also an effect that it is more resistant to pulse-like disturbances.
  • the axis deviation detection unit filters the d-axis current command and outputs a d-axis signal for axis deviation detection, and a first input filter that filters a Q-axis current command or a torque current error.
  • a second input filter that outputs a q-axis signal for axis deviation detection, a d-axis signal for axis deviation detection that has been filtered by the input filter, and an estimated axis deviation angle described later,
  • An estimated output calculator for outputting the estimated output; and an axis shift error obtained by calculating a difference between the q-axis signal for axis shift detection filtered by the input filter and the estimated output output from the estimated output calculator.
  • a variable gain section that multiplies the axis error output from the axis shift error section by a gain to output an integral input, and an integral input output from the variable gain section. Is integrated to estimate the axis deviation angle. And obtaining the integrator, so with a, it is possible to suppress the influence of noise, there is an effect that it is accurate axial deviation detection. Further, since it is possible to perform detection while performing real-time correction, and it is also possible to detect only the axis deviation angle without performing correction, there is an effect that the applicable range is expanded.
  • the motor control device further includes a speed calculation unit that calculates an actual speed from a detection position that is a position of a motor or a load connected to the motor detected by the detector, Uv wZ dq coordinate conversion unit that inputs the three-phase current that has been input, performs a coordinate conversion from the UVW three-phase stationary coordinate system to d (1 synchronous rotation coordinate system, and outputs the d-axis current and the q-axis current, The d-axis current command and the (1-axis current command, the d-axis current feedback, and the q [axis current feedback] are input, and current control is performed so that the dq-axis actual current matches the d Q-axis current command.
  • a current control unit that outputs a shaft voltage command and a Q-axis voltage command, and inputs the d-axis voltage command, the ⁇ -axis voltage command, and the detection position, and converts the d ci synchronous rotary coordinate system to a uvw three-phase stationary coordinate system.
  • D Q / U vw coordinate conversion unit that performs coordinate conversion to and outputs a three-phase voltage command.
  • a voltage command is input, an actual three-phase voltage is applied to the motor, and a motor controller that drives the motor at a variable speed.
  • a superimposed signal generator that outputs a superimposed signal with a repeating waveform such as a wave, and a d-axis current command generator that adds the superimposed signal generated by the superimposed signal generator to the d-axis current command and outputs a d-axis current command
  • An axis deviation detecting unit that inputs the d-axis current command and the Q-axis current command and outputs an estimated axis deviation angle
  • a display unit that displays the estimated axis deviation angle
  • a memory for storing the angle estimation value, and an axis deviation correction unit for inputting the estimated value of the axis deviation angle stored in the memory and the detected position, and outputting the corrected position.
  • FIG. 1 is a diagram showing a configuration of a mobile control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an example of a configuration of the shaft deviation detecting unit 11a in the motor control device according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining the relationship between the dQ axis (dm—qm axis) of the actual motor and the dq axis (dc—qc axis) of control.
  • FIG. 4 is a diagram showing an example of a configuration of a shaft deviation detecting unit 11b in a motor control device according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing an example of a configuration of a shaft deviation detecting unit 11c in a motor control device according to Embodiment 3 of the present invention.
  • FIG. 6 is a diagram showing an example of a configuration of a shaft deviation detecting unit 11 d in a motor control device according to Embodiment 4 of the present invention.
  • FIG. 7 is a diagram showing a configuration of a motor control device according to Embodiment 5 of the present invention.
  • FIG. 8 is a diagram showing a configuration of a motor control device according to Embodiment 6 of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of a motor control device according to Embodiment 7 of the present invention.
  • FIG. 10 is a diagram showing a configuration of a motor control device according to Embodiment 8 of the present invention.
  • FIG. 1 is a diagram showing a configuration of a motor control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an example of a configuration of an axis deviation detecting unit in the motor control device according to Embodiment 1 of the present invention.
  • Fig. 3 is a diagram for explaining the relationship between the dQ axis (01111-1111 axis) of the actual motor and the control axis ((-3 axes)). The processing operation of the motor control device according to the first embodiment will be described with reference to FIGS.
  • the speed controller 1 inputs the speed command wm * and the actual speed wm, and performs speed control using PI control etc. so that the actual speed wm follows the speed command wm *.
  • the current control unit 2 receives the d-axis current command i dc *, the i-axis current command i qc *, the d-axis current feedback i dc, and the q-axis current feedback i qc, for example, for each axis PI control or voltage feed.
  • the d dZu vw coordinate conversion unit 3 receives the d-axis voltage command V d *, the q-axis voltage command V, and the detection position, and performs a coordinate conversion from the dq synchronous rotating coordinate system to the u vw three-phase stationary coordinate system. Go and output three-phase voltage commands vu *, vv vw *.
  • Inverter 4 inputs three-phase voltage commands vu * and vvvw *, and supplies the actual three-phase voltage to motor 5 to drive motor 5 at a variable speed.
  • the u vwZd q coordinate conversion unit 6 receives the three-phase currents iu, iv, and iw detected in the inverter 4, and performs ii vw coordinate conversion from the three-phase stationary coordinate system to the dQ synchronous rotation coordinate system. Then, the d-axis current idc and the d-axis current iqc are output to the current control unit 2.
  • the speed calculation unit 7 generally calculates the actual speed from the actual detection position 0 m, which is the position of the motor 5 detected by the detector 8 or the position of the load connected to the motor 5, using a difference + filter. Calculate wm and output it to speed control unit 1.
  • the superimposed signal generator 9 When the speed control is performed overnight, the superimposed signal generator 9 generates a triangular wave or a sine wave, etc.
  • the superimposed signal i dh of the repetitive waveform 3 is output.
  • the d-axis current command generation unit 10 adds the superimposition signal i dh generated by the superimposition signal generation unit 9 d to the d-axis current command i dc * 0 and outputs the d-axis current command i dc *.
  • the axis deviation detection unit 11 (11a, lib, 11c) inputs the d-axis current command i dc * and the Q-axis current command i cic * and calculates the axis deviation angle estimated value ⁇ . Output.
  • the axis deviation correction unit 12 receives the estimated value of the axis deviation angle ⁇ and the actual detected position ⁇ ⁇ and outputs the corrected position 0 m ′. Next, the processing operation of the axis deviation detecting unit will be described with reference to FIG.
  • an input filter 101 as a first input filter
  • an input filter 102 as a second input filter
  • a d-axis current command i dc * input to the axis deviation detecting unit 11
  • a And Q-axis current command i qc * (or torque current error i qm)
  • outputs d-axis signal i dh for axis deviation detection and Q-axis signal i qh for axis deviation detection .
  • the filter characteristics of the input filters 101 and 102 are basically common, and a band-pass filter or the like that extracts a frequency component used for axis deviation detection is selected.
  • the adaptive input operation unit 103 a calculates an adaptive input (i dhX i qh) by multiplying the axis deviation detection d-axis signal i dh by the axis deviation detection Q-axis signal i qh. .
  • the gain section 104 multiplies the adaptive input (i dhX i qh) by a gain to generate an integral input, and the integrator 105 integrates the value to output the estimated axis deviation angle '. I do.
  • a torque component current error i qm of the following equation (1) occurs in the motor.
  • the frequency of the superimposed signal is preferably several 10 Hz.
  • FIG. 3 shows the relationship when the axis shift angle ⁇ ⁇ 0 is 0 ⁇ 0 ⁇ 2, and FIG. 3 (b) shows the relationship when the axis shift angle ⁇ > is ⁇ 2. As shown in FIG.
  • the d-axis signal i dh for axis misalignment detection and the Q-axis current fluctuation i dh have an in-phase or anti-phase relationship depending on the polarity of. If the calculated adaptive input (idhXiqh) is positive, then ⁇ ⁇ > 0, and if the adaptive input (idhXiqh) calculated by the adaptive input operation unit 103 is negative, then ⁇ .
  • the adaptive input (i dhX i qh) is gained by the gain unit 104 and the integrator 105, and the axis deviation angle estimated value ⁇ 0 ⁇ calculated by integrating and compensated is detected by the axis deviation correction unit 12 shown in Fig. 1. By correcting 0 m, it becomes possible to adaptively converge the axis deviation angle ⁇ 0 from ⁇ 0 to 0.
  • K is the integral gain
  • s is the derivative operator
  • the axis deviation angle can be detected and corrected.
  • the vector control operates correctly, and no torque is generated when the motor dm-qm axis and the control dc-qc axis are aligned.
  • torque is generated because a part of the d-axis current becomes the Q-axis current of the motor, and the axis deviation is detected using the fact that a mechanical response is obtained. It was made.
  • the axis deviation detection method according to the first embodiment is used after the initial axis deviation angle is roughly derived in advance to about ⁇ 7C2 or less.
  • the axis deviation angle is detected at the time of speed control, the effect of the static friction is reduced, and there is an effect that the axis deviation can be detected with high accuracy using a small applied superimposition signal.
  • the motor control device it is possible to separate only the signals necessary for detecting the axis deviation by using the filter, so that the axis deviation can be performed during the normal operation operation (speed control operation). This has the effect of enabling detection and correction.
  • the motor is used in a non-zero speed state such as constant speed driving by home return operation, there is an effect that the influence of static friction does not occur and extremely small axis deviation can be detected and corrected even with a small superimposed signal. .
  • a speed control system since a speed control system is formed, almost no speed deviation occurs when there is no axis deviation. When the speed command is zero or the position command is zero, the axis deviation can be detected almost in the stopped state. There is an effect that.
  • the value can be stored in a memory or the like and corrected. There is no need to attach the attached encoder, which has the effect of improving workability.
  • the motor control device since the initial magnetic pole position can be estimated without using the motor constant, there is an effect that the motor control apparatus is not affected by the motor constant error.
  • the motor control device may have a configuration in which an axis deviation detection unit is simply added to a general servo control loop, and has an effect that a soft load is extremely small.
  • the axis deviation detection unit in the motor control device according to Embodiment 1 does not use division and arc sine, and has a simple configuration of only multiplication and an integrator. Thus, there is an effect that correction can be accurately performed in real time. Furthermore, since the detection is performed adaptively instead of directly obtaining the value by division, there is an effect that a highly accurate axis deviation can be detected.
  • a variable (mechanical characteristic) based on the speed feedback can be used and the electric saliency of the motor is not used. It has the effect of being able to perform high-accuracy detection without receiving it, and can be used even for non-salient motors such as surface magnet motors.
  • the axis deviation detecting unit in the motor control device according to Embodiment 1 uses the current command without using the actual current, so that accurate detection that is not affected by the current detection noise can be performed. There is an effect that can be. Further, as shown in FIG.
  • the axis deviation detecting unit in the motor control device includes a d-axis current command i dc * and a q-axis current command i qc * (or a torque current error i qm ), which is almost in phase (in-phase or out-of-phase), so it is not necessary to detect the peak value or rate of change, or to detect at a certain phase timing. There is an effect that detection or correction can be performed in real time by an arbitrary calculating operation.
  • the adaptive input (i dh X i Qh) which is the product of the d-axis signal i dh for axis deviation detection and the Q-axis current fluctuation i qh is used.
  • the integral gain K is changed according to the sign of the axis deviation detection d-axis signal i dh or the Q-axis current fluctuation i Qh.
  • FIG. 4 101, 102, 104, and 105 are the same as in FIG. 2, and the description thereof is omitted.
  • the axis misalignment detector 11b shown in FIG. 4 is the same as the axis misalignment detector shown in FIG. 11 between the input filters 101 and 102 and the adaptive input operation unit 103a, a code detector as a first code detector and a code detector as a second code detector. In this configuration, a code detector 107 is inserted.
  • Input filter 1 Inputs the d-axis signal i dh for axis deviation detection and the q-axis signal i qh for axis deviation detection, which have been filtered by the filter 101 and 102, and detects the sign with the sign detectors 106 and 107. Detected and output to the adaptive input operation unit 103 b as a signed d-axis signal sign (i dh) for axis deviation detection and a signed Q axis signal for axis deviation detection sign (i qh). The adaptive input operation unit 103 b multiplies the signed axis deviation detection d-axis signal sign (i dh) and the signed axis deviation detection q-axis signal sign (i qh) by signed adaptation.
  • the adaptive input operation unit 103a of the axis deviation detection unit 11a is configured to perform a d-axis signal for axis deviation detection that has been subjected to the filter processing by the input filters 101 and 102.
  • the adaptive input (i dhX i qh) was calculated by multiplying i dh by the Q-axis signal i qh for axis deviation detection, whereas the axis deviation detection unit 11 b in the motor control device according to the second embodiment was calculated.
  • the output of the sign detectors 106 and 107 is a signed d-axis signal for detecting axis misalignment sign (i dh) and a signed Q-axis signal for detecting axis deviation sin (sin ( i qh) and the operating principle is the same.
  • the axis deviation detecting unit according to the second embodiment has a configuration in which the code detectors 106 and 107 are inserted between the input filters 101 and 102 and the adaptive input operation unit 103a. This has the effect of reducing the computational load of. In addition, since the code is used, there is also an effect of being resistant to a pulse-like disturbance.
  • the input filters 101 and 102 filter the d-axis current command i dc * and Q-axis current command i qc * (or torque current error i qm) input to the axis deviation detector 1 1 c. Processing is performed, and a d-axis signal i dh for axis deviation detection and a q-axis signal i dh for axis deviation detection are output.
  • the estimation output calculation unit 108 multiplies the axis deviation detection d-axis signal i dh filtered by the input filter 101 with an axis deviation angle estimation value described later, and outputs an estimation output (i dhxAS).
  • the axis deviation error calculation unit 109 is configured to output the axis deviation detection C1 axis signal i qh subjected to the filtering process by the input filter 102 and the estimated output (i dh ⁇ ) output from the estimated output calculation unit 108.
  • the variable gain unit 110 outputs the integral input by multiplying the axis error output from the axis error calculator 109 by a gain, and outputs the integral input.
  • Integrator 1 1 1 is the integral input output from variable gain section 1 1 0 Is integrated to obtain an estimated axis shift angle ".
  • Equation (5) is a coefficient.
  • the axis deviation detecting unit uses a statistical method without using division in axis deviation detection, so that it is possible to suppress the influence of noise and detect axis deviation with high accuracy. effective. Furthermore, since it is possible to perform detection while performing real-time correction, and it is also possible to detect only the axis deviation angle without performing correction, there is an effect that the applicable range is expanded. By the way, in the above description, an example in which an integral compensator is used has been described, but it goes without saying that the initial response is improved by using a proportional integral compensator or the like. Embodiment 4.
  • FIG. 6 shows a configuration in which a variable gain operation unit 112 is provided after the input filter 101 in the axis deviation detection unit 11a shown in FIG. 2 and the gain 104 is omitted.
  • the variable gain calculator 1 12 calculates the function G (idh) from the function G (idh) or the d-axis signal idh for axis deviation detection output from the input filter 101 by a table.
  • the input filter 102 as the second input filter filters the q-axis current command i qc * (or the torque current error i qm) input to the axis deviation detection unit 11 a. Output the q-axis signal i qh for axis deviation detection.
  • the filter characteristics of the input filters 101 and 102 are basically common, and a band-pass filter or the like that extracts a frequency component used for axis deviation detection is selected.
  • the adaptive input operation unit 113 calculates the adaptive input (G (idh) Xiqh) by multiplying the function G (idh) by the axis deviation detection Q-axis signal iqh.
  • the integrator 114 integrates the value and outputs an estimated value of the axis deviation angle.
  • accuracy and convergence speed can be easily improved by how to create a function. For example, if it is desired to make the convergence faster, for example, by using the function shown in Fig. (B) and increasing the gain where i dh is large, it is possible to increase the sensitivity and make the convergence faster. it can.
  • FIG. 7 shows a configuration of the motor control device according to the first embodiment, in which a position control unit 13 is added to FIG. 1 to enable position control.
  • the position control unit 13 receives the position command 0m * and the actual detection position 0m, performs position control using P control or the like so that the detection position follows the position command, and outputs the speed command wm *. Output to speed control unit 1.
  • the motor control device according to the fifth embodiment has an effect that axis deviation can be detected while performing a normal position control operation.
  • the motor control device by forming a position loop, there is no need to worry about the deviation of the final absolute position after axis deviation detection or correction. It can be used for applications where you do not want to move from the initial position.
  • the deviation with respect to the absolute position and the position command can be observed. I can respond. Embodiment 6.
  • FIG. 8 2 to 10, 11 (lla, 1 lb, 11c) and 12 are the same as those in FIG.
  • First Fig. 7 shows an example of use when speed control cannot be performed, such as when the motor is used in the torque control mode because there is no speed command, and the q-axis current command i qc * 0 is used.
  • the torque current error calculator 14 receives the actual speed wm output from the speed calculator 7 and the Q-axis current command iqc * 0, and uses, for example, an observer that processes the following equation (7). Then, the torque current error i qm generated in the motor is estimated.
  • i qm (cZ (s + c c no) ⁇ (i qc * 0— J / t ⁇ s com) ⁇ ⁇ ⁇ (7)
  • c cZ (s + ⁇ c) in the above equation (7) can be simplified by combining it with the input filter section of the axis deviation detection section.
  • the mode control device according to Embodiment 6 has been described with an example including a detector, the present invention can also be applied to a configuration in which, for example, the position or speed is estimated using another method without using a detector.
  • Embodiment 7 is described with an example including a detector, the present invention can also be applied to a configuration in which, for example, the position or speed is estimated using another method without using a detector.
  • FIG. 9 shows the configuration of a speed control system by adding a speed control unit 1 to FIG. 8 so that axis deviation can be detected while performing speed control operation.
  • 10 to 11 (11a, 1lb, 11c), 12 and 14 are the same as those in Fig. 8, and the description thereof is omitted.
  • FIG. 9 shows a configuration of the motor control device according to the first embodiment, in which a torque current error calculation unit 14 is added to FIG. 1, and an axis deviation detection unit 11 (1 la, lib, 1 In 1c), the torque current error i qm estimated by the torque current error calculator 14 and the d-axis current command i dc * output from the d-axis current command generator 10 are input, and the axis deviation angle is estimated. It outputs the value ⁇ .
  • the torque current error calculation unit 14 receives the actual speed wm output from the speed calculation unit 7 and the q-axis current command i qc * output from the speed control unit 1 and, for example, processes the following equation (8). Using an observer that calculates the current, the torque current error idm actually generated in the motor is estimated.
  • i qm ( ⁇ c /, s + c))) (i qc * — J / K ts s ⁇ m)
  • cZ (s + ⁇ c) in the above equation (7) can be simplified by combining it with the input filter section of the axis deviation detection section.
  • the axis deviation detecting unit 11 (11a, lib, 11c, lid) of the motor control device according to Embodiments 1 and 5 the Q-axis current command i output from the speed control unit 1 is used. Input the qc * and the d-axis current command i dc * output from the d-axis current command generator 10 so that the estimated axis deviation angle is output.
  • the axis deviation detecting unit 11 (11a, lib, 11c, lid) of the control device according to Embodiment 7 uses the Q-axis current command iqc * directly.
  • the motor control device receives the d-axis current command i dc * and outputs the estimated axis deviation angle ⁇ 0 ′. Since the torque current error is calculated and used to detect the axis deviation, the axis deviation can be detected even when the speed control response cannot be increased and the speed control band is low.
  • the control is switched to the torque control mode, the q-axis current command is set to zero, and a sine wave or a triangular wave is applied to the d-axis current command.
  • the axis deviation detector 15 estimates the axis deviation angle estimated value ′ from the d-axis current command i dc * output from the d-axis current command generator 10 and the actual speed wm output from the speed calculator 7. Output to the display unit 16 and the memory 17.
  • the display unit 16 displays the estimated axis deviation angle in seven segments or the like.
  • the axis deviation correcting unit 18 inputs the axis deviation angle estimated value ⁇ ⁇ ”stored in the memory 17 and the actual detection position 0 m, and outputs the corrected position 0 m ′.
  • the estimated axis deviation angle ' is displayed on the display unit 16, and the estimated axis deviation angle ⁇ ⁇ ⁇ is stored in the memory 17, and the actual detected position 0 Since the axis deviation is suppressed by adding to m each time, there is an effect that a series of operations of estimating the axis deviation angle again after the encoder is mounted again can be omitted.
  • ⁇ 8 if the AC component is used as the superimposed signal, the effects of low frequency disturbances such as static friction, viscous friction, and unbalanced load such as gravitational torque can be eliminated, and the detection accuracy of the axis deviation can be improved.
  • the superimposition signal is applied to the d-axis current command.
  • the superposition signal may be applied to the d-axis actual current or d-axis voltage.
  • a DC component and a plurality of frequency components as a superimposed signal, it is possible to enhance robustness.
  • large fluctuations in position and speed The frequency and magnitude of the superimposed signal may be changed according to the magnitude of the magnitude and the axis deviation angle.
  • Embodiments 1 to 8 described above an example is described in which the q-axis current command i qc * or the torque current fluctuation i qm is used for detecting the axis deviation, but these may be various amounts based on the speed feedback. Of course, depending on the conditions, it goes without saying that the same operation can be obtained by using the speed deviation A com or the proportional term or integral term of the Q-axis current command instead.
  • the synchronous motor to be controlled by the motor control device any type such as a linear motor / rotary motor can be used.
  • the motor control device of the present invention can accurately detect the axis deviation of the synchronous motor, and thus is suitable for use in vector control of the synchronous motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

この発明のモータ制御装置において、モータの速度制御時に、重畳信号生成部9は、三角波または正弦波等の繰り返し波形の重畳信号idhを出力する。d軸電流指令生成部10では、d軸電流指令idc*0に、重畳信号生成部9dで生成した重畳信号idhを加算して、d軸電流指令idc*を出力する。また、軸ずれ検出部11(11a、11b、11c、11d)は、d軸電流指令idc*とq軸電流指令iqc*とを入力して、軸ずれ角推定値△θ^を出力する。また、軸ずれ補正部12は、軸ずれ角推定値△θ^と実検出位置θmとを入力して、補正後の位置θm’を出力するので、通常動作中の任意タイミングの演算でリアルタイムに検出および補正することができる。

Description

明 細 書 モータ制御装置 技術分野
この発明は、 同期モータの制御を行うモータ制御装置に関し、 特に制 御対象である同期モータの d q軸と制御の d Q軸との軸ずれ角を検出す る軸ずれ検出部を備えたモータ制御装置に関する。 背景技術
同期モータのサーポ制御として、電流をモータの界磁磁束方向(d軸) とそれに直交する方向 (Q軸) とに分離して各々の電流制御を行う制御 方式であるべクトル制御が一般に行われている。 このべクトル制御にお いては、トルクを有効に発生させるために磁極位置の検出が必要となる。 また、 リニアモータは、 電源投入時にモータの絶対位置を検出できな ぃィンクリメンタルエンコーダと組み合わせて用いられることが多いが、 ィンクリメンタルエンコーダは相対位置しか検出できないため、 初期磁 極位置の検出が必要となる。 この初期磁極位置検出の精度が悪いと、 実 モ一夕の d q軸 (d m— q m軸) と制御の 軸 (d c — 軸) とが ずれてしまう軸ずれ現象が生じ、 トルク制御精度の悪化や最大発生トル クの減少などの悪影響が発生する。
また、 絶対値エンコーダを用いた場合には、 絶対位置を検出できるの で初期磁極位置検出の必要はないが、 取り付け精度が悪い場合には同様 の軸ずれが発生することになる。 エンコーダを同期モータに取り付けた時に存在する磁極位置のずれを 推定する従来技術として、 特許文献 1 (特開 2 0 0 1— 2 0 4 1 9 0号 公報) に開示されたものがある。
特許文献 1は、 回転子の初期磁極位置を演算する手段を備えた同期モ 一夕の初期磁極位置推定値に基づくその誤差調整装置において、 2相指 令電流の中で指令トルク電流はゼロに設定し、 指令磁束電流は任意の有 限な繰り返し波形に設定し、 検出速度から角加速度を計算し、 指令磁束 電流と検出速度と角加速度とモータのイナ一シャと粘性摩擦と摩擦トル クとの情報からモータ運動方程式で発生トルクを推定し、 この推定トル クをトルク定数で割ってトルク電流を推定し、 指令磁束電流と推定トル ク電流を用いて初期磁極位置を推定し、 その結果を表示させるというも のである。 また、 突極型同期モ一夕の位置センサレス制御における回転子の磁極 位置を推定し、 磁極位置推定値により制御を行う従来技術として、 特許 文献 2 (特開平 1 0— 3 2 3 0 9 9号公報) に開示されたモータ制御装 置がある。
特許文献 2は、 直交する 2軸座標系の一方の軸方向に推定用交流電流 信号あるいは推定用交流電圧信号を印加し、 他方の直交する軸方向の電 流あるいは電圧により同期モータの磁極位置を推定する手段を有するモ 一夕制御装置において、 磁極位置推定手段は、 推定用交流電流信号ある いは推定用交流電圧信号に対して、 所定の位相のタイミングで検出され た電流あるいは電圧の値を用いて磁極位置を推定するものである。 上記特許文献 1における初期磁極位置推定装置においては、 初期磁極 推定式を用いてエンコーダを A C同期モ一夕に取り付けした時に存在す る初期磁極位置のずれ角を正確に推定し、これを表示することによって、 初期磁極位置を正しく調整することが可能となるという効果があるが、 指令トルク電流 (q軸電流指令 i qc * ) = 0の時しか推定ができないた め、速度制御などの通常動作中に推定ができないという問題点があった。 また、 上記特許文献 1における初期磁極位置推定装置においては、 軸 ずれ角を表示し、 エンコーダを取り付けなおした後、 再び軸ずれ角を推 定するという一連の作業を繰り返す必要があり、 非効率な作業が発生す るという問題点があった。
また、 上記特許文献 1における初期磁極位置推定装置においては、 軸 ずれ角を推定する過程で割り算を使用しているため、 ノイズや摩擦変動 や定常外乱負荷などに対する口バスト性が低いという問題点があった。 また、 上記特許文献 1における初期磁極位置推定装置においては、 軸 ずれ角の推定にィナーシャや摩擦などの定数が必要となるため、 正確な 定数が求まらない場合には推定精度が大幅に劣化するという問題点があ つ丁こ。 また、 上記特許文献 2におけるモータ制御装置は、 推定用信号によつ て流れる他方の直交する軸の電流を所定の位相で検出し乗算演算を行う ことにより、 簡易な方法で同期モ一夕の磁極位置を推定することができ るが、 速度検出器または位置検出器を含まない構成であり、 速度フィー ドバック情報が利用できないため、 実際の速度変動もしくは位置変動を 検出できないので、 磁極位置推定の精度を上げにくいという問題点があ つ T 。
また、 上記特許文献 2におけるモータ制御装置においては、 電気的突 極性を利用するため、 電気的突極性のないモータや小さいモー夕では検 出が困難であるという問題点があった。
また、 上記特許文献 2におけるモータ制御装置においては、 電気的に 閉じた特性を利用するため、 電流フィードバックしか利用できない (電 流指令を利用できない) ので、 電流検出ノイズの影響を受けるという問 題点があった。
また、 上記特許文献 2におけるモータ制御装置においては、 重畳信号 と検出信号が同位相ではないので、 ある特定での位相タイミングで検出 するとか、 ピーク値や変化率を演算するなどの工夫が必要となり、 シ一 ケンスが複雑になるという問題点があった。 この発明は、 上述のような課題を解決するためになされたもので、 第 1の目的は、 同期モー夕のベクトル制御において、 簡単な構成で速度制 御などの通常動作中に初期磁極位置を推定できるモータ制御装置を得る ものである。
また、 第 2の目的は軸ずれ角を推定するにおいて割り算を使用しない モータ制御装置を得るものである。
また、 第 3の目的はモータ定数を利用しなくても初期磁極位置を推定 できるモ一タ制御装置を得るものである。
また、 第 4の目的はデータ取得夕イミングを得るための複雑なシーケ ンスを使用せずに、 軸ずれ角を推定するための必要なデータが取得でき るモ一夕制御装置を得るものである。 発明の開示
この発明のモー夕制御装置は、 検出器で検出したモー夕またはモ一夕 に接続された負荷の位置である検出位置から実速度を演算する速度演算 部と、 この実速度が速度指令に追従するように速度制御を行い、 Q軸電 流指令を出力する速度制御部と、 インバ一タ内で検出した三相電流を入 力し、 U V W三相静止座標系から d Q同期回転座標系への座標変換を行 つて、 d軸電流と Q軸電流とを出力する u v w/ d (i座標変換部と、 d 軸電流指令と前記 d軸電流指令と前記 d軸電流フィ一ドバックと前記 q 軸電流フィードバックとを入力し、 d q軸実電流が d Q軸電流指令に一 致するように電流制御を行い、 d軸電圧指令と Q軸電圧指令とを出力す る電流制御部と、 前記 d軸電圧指令と前記 q軸電圧指令と検出位置とを 入力し、 d Q同期回転座標系から U V W三相静止座標系への座標変換を 行って、 三相電圧指令を出力する d d Z u v w座標変換部と、 この三相 電圧指令を入力し、 実際の三相電圧をモータに与えて、 このモータを可 変速駆動するインパ一夕と、 を有するモータ制御装置において、 三角波 または正弦波等の繰り返し波形の重畳信号を出力する重畳信号生成部と、 d軸電流指令に、 前記重畳信号生成部で生成した重畳信号を加算して、 d軸電流指令を出力する d軸電流指令生成部と、 この d軸電流指令と前 記 q軸電流指令とを入力して、 軸ずれ角推定値を出力する軸ずれ検出部 と、 を備えたので、 軸ずれ検出に際して実電流を使用しなくともよく、 一般的なサーポ制御ループに軸ずれ検出部を追加しただけの構成で、 電 流検出ノイズの影響を受けない精度のよい検出ができるという効果があ る。 また、 速度制御系を組んでいるので、 軸ずれが存在しない場合には ほとんど速度偏差が生じないため、 ほぼ停止状態で軸ずれ検出ができる という効果がある。 また、 軸ずれ検出において、 d軸電流指令と q軸電 流指令または、 トルク電流誤差というほぼ位相が一致 (同相もしくは逆 相) しているデータを使用するようにしたので、 通常動作中の任意タイ ミングの演算でリアルタイムに検出することができるという効果がある。 また、 位置指令と前記検出器で検出した検出位置とを入力し、 検出位 置が位置指令に追従するように位置制御を行い、 速度指令を前記速度制 御部に出力する位置制御部を備え、 前記重畳信号生成部は三角波または 正弦波等の繰り返し波形の重畳信号を出力するようにしたので、 通常の 位置制御動作を行いながら軸ずれの検出ができるという効果がある。 ま た、 位置ループを組むことにより、 軸ずれ検出または補正後の最終的な 絶対位置がずれる心配がないので、 初期絶対位置を確保しながら補正し たい場合など、初期位置から移動させたくない用途に使用できる。また、 絶対位置および位置指令に対する偏差を観測できるので、 例えば偏差過 大時にアラームでストップさせるとか、 偏差の大きさに応じて重畳信号 を変更するとかの対応ができる。 また、 この発明のモータ制御装置は、 検出器で検出したモータまたは モータに接続された負荷の位置である検出位置から実速度を演算する速 度演算部と、 インバー夕内で検出した三相電流を入力し、 U V W三相静 止座標系から d q同期回転座標系への座標変換を行って、 d軸電流と q 軸電流とを出力する u v w/ d q座標変換部と、 d軸電流指令と Q軸電 流指令と前記 d軸電流フィードバックと前記 Q軸電流フィードバックと を入力し、 d q軸実電流が d Q軸電流指令に一致するように電流制御を 行い、 d軸電圧指令と q軸電圧指令とを出力する電流制御部と、 前記 d 軸電圧指令と前記 Q軸電圧指令と検出位置とを入力し、 d q同期回転座 標系から u v w三相静止座標系への座標変換を行って、 三相電圧指令を 出力する d ci Z u v w座標変換部と、 この三相電圧指令を入力し、 実際 の三相電圧をモ一夕に与えて、 このモー夕を可変速駆動するィンバー夕 と、 を有するモータ制御装置において、 三角波または正弦波等の繰り返 し波形の重畳信号を出力する重畳信号生成部と、 d軸電流指令に、 重畳 信号生成部で生成した重畳信号 i dhを加算して、 d軸電流指令を出力す る d軸電流指令生成部と、 速度演算部から出力される実速度と q軸電流 指令とを入力し、 実際にモー夕で発生しているトルク電流誤差を推定す るトルク電流誤差演算部と、 前記 d軸電流指令と前記トルク電流誤差と を入力して、軸ずれ角推定値を出力する軸ずれ検出部と、を備えたので、 トルク指令が入っている通常動作状態で使用できるという効果がある。 また、 Q軸電流指令でなく トルク電流誤差の演算値を利用するので、 軸 ずれ角の絶対値が 9 0度以上の場合においても、 正しく軸ずれ検出がで きるという効果がある。 さらに、 実速度が速度指令に追従するように速度制御を行い、 q軸電 流指令を出力する速度制御部を備え、 前記重畳信号生成部は三角波また は正弦波等の繰り返し波形の重畳信号を出力するようにしたので、 実速 度に基づいて実モ一夕のトルク電流誤差を演算してそれを用いて軸ずれ 検出を行うことができ、 速度制御応答が上げられず速度制御帯域が低い 場合にも軸ずれ検出が可能となる。 さらにまた、 前記軸ずれ検出部から出力された軸ずれ角推定値と前記 検出器で検出した検出位置とを入力して、 補正後の位置を演算し、 前記 d q Z u v w座標変換部および前記 u v wZ d Q座標変換部に出力する 軸ずれ補正部を備え、 前記 d q / u v w座標変換部および前記 u v w/ d ci座標変換部は補正後の位置に基づき座標変換を行うようにしたので、 一旦取り付けたエンコーダを取り付けなおさなくとも良く、 作業性がよ くなるという効果がある。 また、 軸ずれ検出において、 d軸電流指令と Q軸電流指令または、 トルク電流誤差というほぼ位相が一致 (同相もし くは逆相) しているデータを使用するようにしたので、 通常動作中の任 意夕イミングの演算でリアルタイムに補正することができるという効果 がある。 また、 前記軸ずれ検出部は、 d軸電流指令をフィルタ処理を行い、 軸 ずれ検出用 d軸信号を出力する第 1の入力フィル夕と、 Q軸電流指令ま たは、 トルク電流誤差をフィルタ処理を行い、 軸ずれ検出用 i軸信号を 出力する第 2の入力フィルタと、 前記軸ずれ検出用 d軸信号と前記軸ず れ検出用 q軸信号とを乗算して適応入力を演算する適応入力演算部と、 この適応入力にゲインを掛けて積分入力を生成するゲイン部と、 この積 分入力を積分して軸ずれ角推定値を出力する積分器と、 を備えたので、 フィル夕を利用して軸ずれ検出に必要な信号のみを分離することが可能 なため、 通常運転動作 (速度制御動作) 中にも軸ずれの検出および補正 ができるという効果がある。 また、 モータ定数を利用しなくても初期磁 極位置を推定できるので、 モータ定数誤差の影響を受けないという効果 がある。 また、 前記軸ずれ検出部は、 d軸電流指令をフィルタ処理を行い、 軸 ずれ検出用 d軸信号を出力する第 1の入力フィル夕と、 この軸ずれ検出 用 d軸信号の関数を演算する可変ゲイン演算部と、 Q軸電流指令または、 トルク電流誤差をフィルタ処理を行い、 軸ずれ検出用 q軸信号を出力す る第 2の入力フィルタと、 前記軸ずれ検出用 d軸信号の関数と前記軸ず れ検出用 q軸信号とを乗算して適応入力を演算する適応入力演算部と、 この積分入力を積分して軸ずれ角推定値を出力する積分器と、
を備えたので、可変ゲイン演算部で演算する関数の作り方によって精度、 収束速度を容易に向上させることができるという効果がある。 また、 前記軸ずれ検出部は、 d軸電流指令をフィルタ処理を行い、 軸 ずれ検出用 d軸信号を出力する第 1の入力フィルタと、 この軸ずれ検出 用 d軸信号の符号を検出し、 符号付きの軸ずれ検出用 d軸信号を出力す る第 1の符号検出器と、 Q軸電流指令または、 トルク電流誤差をフィル 夕処理を行い、軸ずれ検出用 Q軸信号を出力する第 2の入力フィル夕と、 この軸ずれ検出用 q軸信号の符号を検出し、 符号付きの軸ずれ検出用 Q 軸信号を出力する第 2の符号検出器と、 前記符号付きの軸ずれ検出用 d 軸信号と前記符号付きの軸ずれ検出用 Q軸信号とを乗算して符号付きの 適応入力を演算する適応入力演算部と、 この符号付きの適応入力にゲイ ンを掛けて積分入力を生成するゲイン部と、 この積分入力を積分して軸 ずれ角推定値を出力する積分器と、 を備えたので、 パルス状の外乱に強 くなるという効果もある。 また、 前記軸ずれ検出部は、 d軸電流指令をフィルタ処理を行い、 軸 ずれ検出用 d軸信号を出力する第 1の入力フィルタと、 Q軸電流指令ま たは、 トルク電流誤差をフィルタ処理を行い、 軸ずれ検出用 q軸信号を 出力する第 2の入力フィルタと、 前記入力フィルタでフィル夕処理を行 つた軸ずれ検出用 d軸信号と後述の軸ずれ角推定値とを乗算し、 推定出 力を出力する推定出力演算部と、 前記入力フィルタでフィルタ処理を行 つた軸ずれ検出用 q軸信号と前記推定出力演算部から出力された推定出 力との差を取って軸ずれ誤差を出力する軸ずれ誤差演算部と、 この軸ず れ誤差演算部から出力された軸ずれ誤差にゲインを掛けて積分入力を出 力する可変ゲイン部と、 この可変ゲイン部から出力された積分入力を積 分して軸ずれ角推定値を得る積分器と、 を備えたので、 ノイズの影響を 抑えることができ、 精度のよい軸ずれ検出ができるという効果がある。 さらに、 リアルタイム補正を行いながら検出することが可能であり、 ま た補正せずに軸ずれ角の検出のみを行うことも可能となるので、 適用可 能範囲が広がるという効果もある。 また、 この発明のモ一夕制御装置は、 検出器で検出したモータまたは モ一夕に接続された負荷の位置である検出位置から実速度を演算する速 度演算部と、 インバー夕内で検出した三相電流を入力し、 U V W三相静 止座標系から d (1同期回転座標系への座標変換を行って、 d軸電流と q 軸電流とを出力する u v wZ d q座標変換部と、 d軸電流指令と(1軸電 流指令と前記 d軸電流フィードバックと前記 q [軸電流フィードバックと を入力し、 d q軸実電流が d Q軸電流指令に一致するように電流制御を 行い、 d軸電圧指令と Q軸電圧指令とを出力する電流制御部と、 前記 d 軸電圧指令と前記 ςΐ軸電圧指令と検出位置とを入力し、 d ci同期回転座 標系から u v w三相静止座標系への座標変換を行って、 三相電圧指令を 出力する d Q / U v w座標変換部と、 この三相電圧指令を入力し、 実際 の三相電圧をモータに与えて、 このモー夕を可変速駆動するィンバ一夕 と、 を有するモータ制御装置において、 QL軸電流指令を零に設定すると ともに三角波または正弦波等の繰り返し波形の重畳信号を出力する重畳 信号生成部と、 d軸電流指令に、 重畳信号生成部で生成した重畳信号を 加算して、 d軸電流指令を出力する d軸電流指令生成部と、 この d軸電 流指令と前記 Q軸電流指令とを入力して、 軸ずれ角推定値を出力する軸 ずれ検出部と、 この軸ずれ角推定値を表示する表示部と、 この軸ずれ角 推定値を格納するメモリと、 このメモリに格納された軸ずれ角推定値と 前記検出位置とを入力して、 補正後の位置を出力する軸ずれ補正部と、 を備えたので、 エンコーダを取り付けなおした後、 再び軸ずれ角を推定 するという一連の作業を省けるという効果がある。 図面の簡単な説明
第 1図はこの発明の実施の形態 1に係るモ一夕制御装置の構成を示す 図である。 第 2図はこの発明の実施の形態 1に係るモー夕制御装置における軸ず れ検出部 1 1 aの構成の一例を示す図である。
第 3図は実モータの d Q軸 (d m— q m軸) と制御の d q軸 (d c— q c軸) との関係を説明する図である。
第 4図はこの発明の実施の形態 2に係るモータ制御装置における軸ず れ検出部 1 1 bの構成の一例を示す図である。
第 5図はこの発明の実施の形態 3に係るモータ制御装置における軸ず れ検出部 1 1 cの構成の一例を示す図である。
第 6図はこの発明の実施の形態 4に係るモータ制御装置における軸ず れ検出部 1 1 dの構成の一例を示す図である。
第 7図はこの発明の実施の形態 5に係るモータ制御装置の構成を示す 図である。
第 8図はこの発明の実施の形態 6に係るモータ制御装置の構成を示す 図である。
第 9図はこの発明の実施の形態 7に係るモータ制御装置の構成を説明 する図である。
第 1 0図はこの発明の実施の形態 8に係るモータ制御装置の構成を示 す図である。 発明を実施するための最良の形態
実施の形態 1 .
第 1図はこの発明の実施の形態 1に係るモータ制御装置の構成を示す 図である。 また、 第 2図はこの発明の実施の形態 1に係るモー夕制御装 置における軸ずれ検出部の構成の一例を示す図である。 また、 第 3図は 実モータの d Q軸 (01 111— 1 111軸) と制御の 軸 ( (:ー 3 軸) と の関係を説明する図である。 第 1図〜第 3図により実施の形態 1に係るモータ制御装置の処理動作 について説明する。
第 1図において、 速度制御部 1は速度指令 wm*と実速度 wmを入力 し、 実速度 wmが速度指令 wm*に追従するように P I制御等を利用し て速度制御を行い Q軸電流指令 i qc*を出力する。 また、 電流制御部 2 は、 d軸電流指令 i dc*と i軸電流指令 i qc*と d軸電流フィードバック i dcと q軸電流フィードバック i qcとを入力し、例えば各軸 P I制御や 電圧フィードフォワード制御 (非干渉制御) などを利用して d Q軸実電 流が d q_軸電流指令に一致するように電流制御を行い、 d軸電圧指令 V d *と Q軸電圧指令 V Q *とを出力する。 また、 d dZu vw座標変換部 3は、 d軸電圧指令 V d *と q軸電圧指令 V と検出位置とを入力し、 d q同期回転座標系から u vw三相静止座標系への座標変換を行って、 三相電圧指令 v u*、 v v vw*を出力する。 また、 インバー夕 4は 三相電圧指令 v u*、 v v vw*を入力し、 実際の三相電圧をモータ 5に与えて、 モータ 5を可変速駆動する。
また、 u vwZd q座標変換部 6はインバ一タ 4内で検出した三相電 流 i u、 i v、 i wを入力し、 ii vw三相静止座標系から d Q同期回転 座標系への座標変換を行って、 d軸電流 i d cと d軸電流 i q cとを電 流制御部 2に出力する。 また、 速度演算部 7は、 検出器 8で検出したモ 一夕 5またはモータ 5に接続された負荷の位置である実検出位置 0 mか ら、 一般的には差分 +フィルタを用いて実速度 wmを演算し、 速度制御 部 1に出力する。
次に、 実施の形態 1に係るモー夕制御装置のモータ制御の軸ずれ検出 方式について説明する。
モ一夕の速度制御時に、 重畳信号生成部 9は、 三角波または正弦波等 3 の繰り返し波形の重畳信号 i dhを出力する。 d軸電流指令生成部 1 0で は、 d軸電流指令 i dc* 0に、 重畳信号生成部 9 dで生成した重畳信号 i dh を加算して、 d軸電流指令 i dc*を出力する。 また、 軸ずれ検出部 1 1 ( 1 1 a , l i b , 1 1 c ) は、 d軸電流指令 i dc*と Q軸電流指 令 i cic*とを入力して、 軸ずれ角推定値 ~を出力する。 また、 軸ずれ 補正部 1 2は、 軸ずれ角推定値 ~ と実検出位置 θ πιとを入力して、 補正後の位置 0 m' を出力する。 次に、 軸ずれ検出部の処理動作について第 2図により説明する。
第 2図において、 第 1の入力フィルタとしての入力フィルタ 1 0 1、 第 2の入力フィルタとしての入力フィルタ 1 0 2で、 軸ずれ検出部 1 1 aに入力される d軸電流指令 i dc*と Q軸電流指令 i qc* (または、 トル ク電流誤差 i qm ) とに対してフィルタ処理を行い、 軸ずれ検出用 d軸 信号 i dhと軸ずれ検出用 Q軸信号 i qhとを出力する。入力フィルタ 1 0 1、 1 0 2のフィルタ特性は基本的には共通であり、 軸ずれ検出に利用 する周波数成分を抜き出すバンドパスフィルタなどが選択される。
次に、 適応入力演算部 1 0 3 aで、 軸ずれ検出用 d軸信号 i dhと軸ず れ検出用 Q軸信号 i qhとを乗算して適応入力 ( i dhX i qh ) を演算す る。 次に、 ゲイン部 1 0 4で、 適応入力 ( i dhX i qh ) にゲインを掛 けて積分入力を生成し、 積分器 1 0 5はその値を積分して軸ずれ角推定 値 'を出力する。 軸ずれ角 とすると、 d軸電流指令 i dc*に交流の重畳信号 i dh を 印加した場合、 モー夕には下式 (1 ) のトルク分電流誤差 i qmが発生す る。 重畳信号の周波数は数 1 0 H zが好ましい。
i qra = i dh · s i n A Θ · · · 、 1 ) ここで、 負荷が理想的なイナ一シャのみと仮定すると、 このトルクに 応じて速度変動が発生する。 さらに、 実施の形態 1のように速度制御系 を組み、 かつその帯域が充分に高ければ、 結果として交流の重畳信号 i dh によって生じるトルク分電流誤差 i qm を打ち消すような Q軸電流変 動 i qh が発生する。
i qh = i qm · c o s θ · · · ( 2 )
軸ずれ角がある程度小さいと仮定すると、 (1軸電流変動 i qh は下式 (3) に近似することができる。
i qh - i qm - i dh · Α θ · · · ( 3 ) また、 第 3図により、 実モータの d Q軸 (dm— 軸) と制御の d q軸 (d c— Q C軸) との関係を説明する。 第 3図 (a) は軸ずれ角△ 0が 0 <△ 0 <ττΖ 2の場合、 第 3図 (b) は軸ずれ角△ >がー ττΖ 2 く の場合の関係を示す図である。 第 3図に示すように、 軸ずれ 検出用 d軸信号 i dhと Q軸電流変動 i dhとは、 の極性に応じて、 同 相または逆相の関係となり、 適応入力演算部 1 0 3で演算した適応入力 ( i dhX i qh ) が正の時は△ Θ〉 0、 また適応入力演算部 1 0 3で演 算した適応入力 ( i dhX i qh ) が負の時は となる。 適応入力 ( i dhX i qh ) をゲイン部 1 04、 積分器 1 0 5で、 積分 補償して演算した軸ずれ角推定値△ 0 ~を、第 1図の軸ずれ補正部 1 2で 検出位置 0mを補正することにより、 適応的に軸ずれ角△ 0を△ 0→0 に収束させることが可能となる。
これを式で示すと下式 (4) となる。 Kは積分ゲイン、 sは微分演算 子である。
軸ずれ角推定値 (K/s ) · ( i dhX i qh ) · · · (4) 上記の処理により軸ずれ角を検出、 補正することが可能である。 実施の形態 1では、 d軸電流を流した場合、 ベクトル制御が正しく動 作しておりモー夕の d m— q m軸と制御の d c - q c軸とがー致してい る場合にはトルクが発生しないが、 軸ずれが存在する場合には、 d軸電 流の一部がモータの Q軸電流になるためトルクが発生し、 機械的な応答 が得られることを利用して軸ずれ検出を行うようにしたものである。 実 施の形態 1の軸ずれ検出方式は、 あらかじめ初期軸ずれ角を ± 7C 2未 満程度にラフに導出した後に用いる。
また、実施の形態 1は、 Q軸電流指令 i qc * =トルク電流誤差 i qui と して、 処理した例である。 実施の形態 1に係るモータ制御装置においては、 速度制御時に軸ずれ 角を検出するので、 静止摩擦の影響が小さくなり、 小さな印加重畳信号 で高精度な軸ずれ検出ができるという効果がある。
また、 実施の形態 1に係るモータ制御装置においては、 フィルタを利 用して軸ずれ検出に必要な信号のみを分離することが可能なため、 通常 運転動作 (速度制御動作) 中にも軸ずれの検出および補正ができるとい う効果がある。 また、 例えば原点復帰動作による一定速駆動などの速度 非零状態で用いれば、 静止摩擦の影響が入らず、 小さな重畳信号でも極 めて精度の良い軸ずれの検出および補正ができるという効果がある。 また、 実施の形態 1に係るモータ制御装置においては、 速度制御系を 組んでいるため、 軸ずれが存在しない場合にはほとんど速度偏差が生じ ないので、 軸ずれ検出に伴い位置変動を発生させることがなく、 また速 度指令零または位置指令零の場合ではほぼ停止状態で軸ずれ検出ができ るという効果がある。
また、 実施の形態 1に係るモータ制御装置においては、 積分項に自動 的に軸ずれ角が格納する形になるので、 その値をメモリ等に保持してお き補正することができるので、 一旦取り付けたエンコーダを取り付けな おさなくとも良く、 作業性がよくなるという効果がある。
また、 実施の形態 1に係るモータ制御装置においては、 モータ定数を 利用しなくても初期磁極位置を推定できるので、 モータ定数誤差の影響 を受けないという効果がある。
また、 実施の形態 1に係るモータ制御装置においては、 一般的なサー ポ制御ループに軸ずれ検出部を追加しただけの構成でよく、 ソフトゥェ ァ負荷が非常に小さくてすむという効果がある。
また、 実施の形態 1に係るモー夕制御装置における軸ずれ検出部は、 割り算およびアークサインを利用せず、 掛け算と積分器のみという単純 な構成としたので、 演算負荷が軽減され、 極めて短時間でリアルタイム に精度よく補正ができるという効果がある。 さらに、 割り算で直接値を 求めるのではなく適応的に検出を行うので、 精度が高い軸ずれ検出がで きるという効果がある。
また、 実施の形態 1に係るモータ制御装置における軸ずれ検出では、 速度フィードバックに基づく変数 (機械的な特性) を利用でき、 モー夕 の電気的突極性を利用しないので、 電流検出ノイズの影響を受けず精度 の高い検出ができるという効果があり、 表面磁石モ一タなどの非突極性 モ一夕でも利用することができる。 また、 実施の形態 1に係るモー夕制御装置における軸ずれ検出部は、 実電流を使用せず、 電流指令を使用するようにしたので、 電流検出ノィ ズの影響を受けない精度のよい検出ができるという効果がある。 また、 実施の形態 1に係るモー夕制御装置における軸ずれ検出部は、 第 3図に示すように、 d軸電流指令 i dc *と q軸電流指令 i qc * (または、 トルク電流誤差 i qm ) というほぼ位相が一致 (同相もしくは逆相) し ているデータを使用するようにしたので、 ピーク値や変化率を検出した り、 またある位相のタイミングで検出するなどの工夫が不要であり、 任 意夕イミングの演算でリアルタイムに検出または補正することができる という効果がある。 ところで、 実施の形態 1では、 軸ずれ検出用 d軸信号 i dhと Q軸電流 変動 i qhとの積である適応入力 ( i dh X i Qh ) を使用した例で説明し たが、 Q軸電流変動 i Qhのみを使用した場合には、 軸ずれ検出用 d軸信 号 i dh または Q軸電流変動 i Qh の符号に応じて積分ゲイン Kを変更す る。
また、 第 2図で示した軸ずれ検出部の構成例では、 d軸電流指令 i dc *大の場合に、 積分入力大となるが、 これは入力信号大ほど適応ゲイン 大であることと等価であり、 精度及び収束速度が向上することになる。 ところで、 上記説明では、 軸ずれ検出部の構成として積分補償器を使 用した例について述べたが、 比例積分補償器等を用いれば初期応答が改 善されることは言うまでもない。 実施の形態 2 .
次に、 第 4図により、 実施の形態 2に係るモ一夕制御装置における軸 ずれ検出部 1 1 bの処理動作について説明する。 第 4図において、 1 0 1、 1 0 2、 1 0 4、 1 0 5は第 2図と同様であり、 その説明を省略す る。 第 4図に示す軸ずれ検出部 1 1 bは、 第 2図に示した軸ずれ検出部 1 1 aにおける入力フィルタ 1 0 1、 1 02と適応入力演算部 1 0 3 a との間に第 1の符号検出器としての符号検出器符号検出器 1 06、 第 2 の符号検出器としての符号検出器 1 0 7を挿入した構成である。
入力フィルタ 1 0 1、 1 02でフィルタ処理を行った軸ずれ検出用 d 軸信号 i dhと軸ずれ検出用 q軸信号 i qhとを入力し、符号検出器 1 06、 1 0 7で符号を検出し、 符号付きの軸ずれ検出用 d軸信号 s i g n ( i dh) 、 符号付きの軸ずれ検出用 Q軸信号 s i g n ( i qh) として適応入 力演算部 1 0 3 bに出力する。 適応入力演算部 1 0 3 bで、 符号付きの 軸ずれ検出用 d軸信号 s i g n ( i dh) と符号付きの軸ずれ検出用 q軸 信号 s i g n ( i qh) とを乗算して符号付きの適応入力 ( i dhX i qh ) を演算する。 次に、 ゲイン部 1 04で、 符号付きの適応入力 ( i dhX i qh ) にゲインを掛けて積分入力を生成し、 積分器 1 0 5はその値を積 分して軸ずれ角推定値 を出力する。 実施の形態 1に係るモータ制御装置における軸ずれ検出部 1 1 aの適 応入力演算部 1 03 aでは、 入力フィルタ 1 0 1、 1 02でフィルタ処 理を行った軸ずれ検出用 d軸信号 i dh と軸ずれ検出用 Q軸信号 i qh と を乗算して適応入力 ( i dhX i qh ) を演算したのに対し、 実施の形態 2に係るモータ制御装置における軸ずれ検出部 1 1 bの適応入力演算部 1 03 bでは、 符号検出器 1 06、 1 07の出力である符号付きの軸ず れ検出用 d軸信号 s i g n ( i dh) と符号付きの軸ずれ検出用 Q軸信号 s i n ( i qh) とを乗算するようにしたものであり、 動作原理は同一 である。
上記の第 4図では、軸ずれ検出用 d軸信号 i dhと軸ずれ検出用 Q軸信 号 i qhとの両者の符号を取った例で説明したが、 どちらか一方の符号を 取った場合には、 収束特性が異なるが同様の動作を行うことができる。 実施の形態 2に係る軸ずれ検出部は、 入力フィルタ 1 0 1、 1 02と 適応入力演算部 1 03 aとの間に符号検出器 1 06、 1 07を揷入する 構成としたので、 後ろの演算負荷を軽減することができるという効果が ある。 また、 符号を用いるようにしたので、 パルス状の外乱に強くなる という効果もある。 ところで、上記説明では、積分補償器を使用した例について述べたが、 比例積分補償器等を用いれば初期応答が改善されることは言うまでもな い。 実施の形態 3.
次に、 第 5図により、 実施の形態 3に係るモー夕制御装置における軸 ずれ検出部 1 1 cの処理動作について説明する。
入力フィルタ 1 0 1、 1 02で、 軸ずれ検出部 1 1 cに入力される d 軸電流指令 i dc*と Q軸電流指令 i qc* (または、 トルク電流誤差 i qm ) とに対してフィルタ処理を行い、 軸ずれ検出用 d軸信号 i dhと軸 ずれ検出用 q軸信号 i dhとを出力する。
推定出力演算部 1 08は、 入力フィルタ 1 0 1でフィルタ処理を行つ た軸ずれ検出用 d軸信号 i dh と後述の軸ずれ角推定値 とを乗算し、 推定出力( i dhxAS を出力する。 また、 軸ずれ誤差演算部 1 09は、 入力フィルタ 1 0 2でフィル夕処理を行った軸ずれ検出用 C1軸信号 i qh と推定出力演算部 1 08から出力された推定出力( i dh ΧΔΘ ')との差 を取って軸ずれ誤差を出力する。 また、 可変ゲイン部 1 1 0は、 軸ずれ 誤差演算部 1 09から出力された軸ずれ誤差にゲインを掛けて積分入力 を出力し、 積分器 1 1 1は可変ゲイン部 1 1 0から出力された積分入力 を積分して軸ずれ角推定値 "を得る。
上記を離散時間の漸化式で表現すると下式 (5) となる。 可変ゲイン Gは固定ゲインまたは下式 (6) を用いる。 下式 (5) 、 (6) は固定 トレース法と呼ばれる統計的手法を利用したものである。 また、 P 0は 係数である。
Δ Θ " [k] =Δ θ " [k - 1 ]
+ G [k] ( i qh [ k ] - i dh [ k ] ■ θ ' [k- 1] ) · · · (5) G [k] =P 0 - i qh [k] · · · (6) 実施の形態 3に係る軸ずれ検出部は、 軸ずれ検出において割り算を使 用せず、 統計的手法を用いたので、 ノイズの影響を抑えることができ、 精度のよい軸ずれ検出ができるという効果がある。 さらに、 リアルタイ ム補正を行いながら検出することが可能であり、 また補正せずに軸ずれ 角の検出のみを行うことも可能となるので、 適用可能範囲が広がるとい う効果もある。 ところで、上記説明では、積分補償器を使用した例について述べたが、 比例積分補償器等を用いれば初期応答が改善されることは言うまでもな い。 実施の形態 4.
次に、 第 6図により、 実施の形態 4に係るモー夕制御装置における軸 ずれ検出部 1 1 dの処理動作について説明する。 第 6図は、 第 2図に示 した軸ずれ検出部 1 1 aにおける入力フィル夕 1 0 1の後段に可変ゲイ ン演算部 1 1 2を設け、 ゲイン 1 04を省略した構成である。
第 6図において、第 1の入力フィルタとしての入力フィル夕 1 0 1で、 軸ずれ検出部 1 1 aに入力される d軸電流指令 i dc *に対してフィルタ 処理を行い、 軸ずれ検出用 d軸信号 i dhを出力する。 可変ゲイン演算部 1 1 2では、 関数 G ( i dh ) またはテ一ブルにより入力フィルタ 1 0 1から出力された軸ずれ検出用 d軸信号 i dh から関数 G ( i dh ) を演 算する。 また、 第 2の入力フィルタとしての入力フィルタ 1 0 2で、 軸 ずれ検出部 1 1 aに入力される q軸電流指令 i qc * (または、 トルク電 流誤差 i qm ) に対してフィルタ処理を行い、 軸ずれ検出用 q軸信号 i qhを出力する。 入力フィル夕 1 0 1 、 1 0 2のフィルタ特性は基本的に は共通であり、 軸ずれ検出に利用する周波数成分を抜き出すバンドパス フィルタなどが選択される。
次に、 適応入力演算部 1 1 3で、 関数 G ( i dh ) と軸ずれ検出用 Q 軸信号 i qhとを乗算して適応入力 ( G ( i dh ) X i qh ) を演算する。 次に、積分器 1 1 4はその値を積分して軸ずれ角推定値 を出力する。 実施の形態 4においては、 関数の作り方によって精度、 収束速度を容易 に向上させることができるという効果がある。 例えば、 収束を早くさせ たい場合には、 例えば図 (b ) に示す関数を使用して、 i dh が大きい ところでゲインをより大きくさせることにより、感度が増すようにして、 収束を早くすることができる。 実施の形態 4の軸ずれ検出部 1 1 cUこおいて、 関数 G ( i dh ) 部 1 1 2における関数を G ( i dh ) = K X i dh とすると、 第 2図と同等の 構成になる。
また、 関数を G ( i dh ) = s i g n ( i dh ) とすると、 第 4図にお いて s i g n 1 0 7を省略した構成と同等になる。 実施の形態 5.
第 7図により、 この発明の実施の形態 5に係るモー夕制御装置の処理 動作について説明する。 第 7図において、 1〜 1 0、 1 1 (l l a、 1 l b、 l l c、 l i d) , 1 2は第 1図と同様であり、 その説明を省略 する。 第 7図は、 実施の形態 1に係るモータ制御装置の構成を示した第 1図に、 位置制御部 1 3を追加し、 位置制御を行えるようにしたもので ある。
位置制御部 1 3は、 位置指令 0m*と実検出位置 0mとを入力し、 検 出位置が位置指令に追従するように P制御等を利用して位置制御を行い, 速度指令 wm*を、 速度制御部 1に出力する。 実施の形態 5に係るモータ制御装置では、 通常の位置制御動作を行い ながら軸ずれの検出ができるという効果がある。
また、 実施の形態 5に係るモー夕制御装置では位置ループを組むこと により、 軸ずれ検出または補正後の最終的な絶対位置がずれる心配がな いので、 初期絶対位置を確保しながら補正したい場合など、 初期位置か ら移動させたくない用途に使用できる。
また、 実施の形態 5に係るモータ制御装置では、 絶対位置および位置 指令に対する偏差を観測できるので、 例えば偏差過大時にアラームでス トップさせるとか、 偏差の大きさに応じて重畳信号を変更するとかの対 応ができる。 実施の形態 6.
第 8図により、 この発明の実施の形態 6に係るモータ制御装置の処理 動作について説明する。 第 8図において、 2〜 1 0、 1 1 (l l a、 1 l b、 1 1 c) , 1 2は第 1図と同様であり、 その説明を省略する。 第 7図は、 速度指令がなく トルク制御モードで使用している場合など速度 制御ができない場合に使用する一例で、 q軸電流指令 i qc* 0を使用す るようにしたものである。 トルク電流誤差演算部 14は、 速度演算部 7から出力される実速度 w mと Q軸電流指令 i qc* 0とを入力し、 例えば下式 (7) の処理をする 観測器を用いて、実際にモータで発生しているトルク電流誤差 i qmを推 定する。
i qm = ( cZ (s +c cノ ) · ( i qc*0— J/ t · s com) · · · ( 7 )
ここで、 sは微分演算子、 ω cは観測器の帯域である。
ただし、 上式 (7) の c cZ ( s + ω c ) は軸ずれ検出部の入力フィ ルタ部と組み合わせて簡略化することも可能である。
実施の形態 5に係るモータ制御装置においては、 トルク指令としての q軸電流指令 i qc* 0は零である必要がないので、 トルク指令が入って いる通常動作状態で使用できるという効果がある。
また、 (1軸電流指令でなく トルク電流誤差の演算値を利用するので、 軸ずれ角の絶対値が 90度以上の場合においても、 正しく軸ずれ検出が できるという効果がある。 ところで、 上記実施の形態 6に係るモー夕制御装置では検出器を備え た例で説明したが、 例えば検出器レスで、 別の方法を使って位置または 速度の推定を行っているような構成において適用することも可能である。 実施の形態 7.
第 9図により、 この発明の実施の形態 7に係るモー夕制御装置の処理 動作について説明する。 第 9図は第 8図に速度制御部 1を追加して速度 制御系を構成し、 速度制御動作を行いながら軸ずれ検出を行うことがで きるようにしたもので、 第 9図において、 2〜 1 0、 1 1 ( 1 1 a、 1 l b、 1 1 c ) 、 1 2、 1 4は第 8図と同様であり、 その説明を省略す る。
また、 第 9図は、 実施の形態 1に係るモータ制御装置の構成を示した 第 1図に、 トルク電流誤差演算部 1 4を追加し、 軸ずれ検出部 1 1 ( 1 l a、 l i b, 1 1 c ) では、 トルク電流誤差演算部 1 4で推定したト ルク電流誤差 i qm と d軸電流指令生成部 1 0から出力される d軸電流 指令 i dc*とを入力し、 軸ずれ角推定値 ~を出力するようにしたもの である。 トルク電流誤差演算部 1 4は、 速度演算部 7から出力される実速度 w mと速度制御部 1から出力される q軸電流指令 i qc*とを入力し、 例え ば下式 (8 ) の処理をする観測器を用いて、 実際にモータで発生してい るトルク電流誤差 i dmを推定する。
i qm = {ω c / 、 s + c ) ) · ( i qc*— J /K t · s ω m) · · · ( 8)
ここで、 sは微分演算子、 ω cは観測器の帯域である。
ただし、 上式 (7 ) の cZ ( s +ω c) は軸ずれ検出部の入力フィ ルタ部と組み合わせて簡略化することも可能である。 実施の形態 1および実施の形態 5に係るモータ制御装置の軸ずれ検出 部 1 1 ( 1 1 a、 l i b, 1 1 c、 l i d) では、 速度制御部 1から出 力される Q軸電流指令 i qc*と d軸電流指令生成部 1 0から出力される d軸電流指令 i dc*とを入力し、 軸ずれ角推定値 を出力するように したものであるが、 実施の形態 7に係るモ一夕制御装置の軸ずれ検出部 1 1 ( 1 1 a、 l i b, 1 1 c、 l i d) では、 Q軸電流指令 i qc*を 直接使用せず、 速度演算部 7から出力される実速度 wmと速度制御部 1 から出力される Q軸電流指令 i qc*とから推定したトルク電流誤差 i qm と d軸電流指令生成部 1 0から出力される d軸電流指令 i dc*とを 入力し、 軸ずれ角推定値△ 0 'を出力するようにしたものである 実施の形態 7に係るモータ制御装置においては、 実速度に基づいて実 モータのトルク電流誤差を演算してそれを用いて軸ずれ検出を行うよう にしたので、 速度制御応答が上げられず速度制御帯域が低い場合にも軸 ずれ検出が可能となる。
また、 Q軸電流指令でなく トルク電流誤差の演算値を利用するので、 軸ずれ角の絶対値が 90度以上の場合においても正しく軸ずれ検出が可 能となる。 実施の形態 8.
第 1 0図により、 この発明の実施の形態 7に係るモータ制御装置の処 理動作について説明する。 第 1 08図において、 2〜9は第 8図と同様 であり、 その説明を省略する。
実施の形態 8に係るモータ制御装置におけるモータ制御の軸ずれ検出 においては、 制御をトルク制御モードに切り替え、 q軸電流指令を零に 設定し、 d軸電流指令に正弦波または三角波を印加する。
軸ずれ検出部 1 5では、 d軸電流指令生成部 1 0から出力された d軸 電流指令 i dc*と速度演算部 7から出力された実速度 wmとから軸ずれ 角推定値 'を推定し、表示部 1 6およびメモリ 1 7に出力する。表示 部 1 6は、 軸ずれ角推定値 を 7セグメント等により表示する。 また、 軸ずれ補正部 1 8は、 メモリ 1 7に格納された軸ずれ角推定値 Α Θ " と実検出位置 0 mとを入力して、補正後の位置 0 m 'を出力する。 実施の形態 8に係るモータ制御装置においては、 推定した軸ずれ角推 定値 'を表示部 1 6に表示するとともに、推定した軸ずれ角推定値△ Θ 'をメモリ 1 7に格納し、 実検出位置 0 mに毎回加算することにより、 軸ずれを抑制するようにしたので、 エンコーダを取り付けなおした後、 再び軸ずれ角を推定するという一連の作業を省けるという効果がある。 また、 上記実施の形態 1〜8において、 重畳信号として交流成分を利 用すれば、 静止摩擦や粘性摩擦や重力トルクなどのアンバランス負荷な どによる低周波外乱の影響を除去することができ、 軸ずれ検出精度が向 上するという効果がある。 また、 交流成分を運転周波数ゃコギングトル ク周波数成分と離れた周波数に設定することにより、 それらの影響を排 除できるという効果がある。 また、 交流成分を複数周波数成分にするこ とにより、 交流成分の周波数範囲と運転周波数ゃコギングトルク周波数 成分の範囲が重なる場合でも、 その影響を受けにくくすることができる という効果がある。 また、 上記実施の形態 1〜8においては、 d q軸電流の次元で計算し た例について述べたが、 トルクの次元に直して計算しても同様の効果が 得られる。
また、 上記実施の形態 1〜8においては、 d軸電流指令に重畳信号を 印加した例について述べたが、 d軸実電流や d軸電圧に印加してもよい。 また、 重畳信号として直流成分や複数周波数成分を含むことにより、 ロバスト性を高めることも可能である。 また、 位置変動や速度変動の大 きさ、 軸ずれ角の大きさに応じて、 重畳信号の周波数や大きさを変更す るようにしてもよい。
また、 上記実施の形態 1〜8においては、 軸ずれ検出において q軸電 流指令 i qc*またはトルク電流変動 i qm を利用した例について述べた が、 これらは速度フィードバックに基づく諸量であればよいので、 条件 によってはそれらの代わりに、 速度偏差 A co mや Q軸電流指令の比例項 もしくは積分項を利用しても同様の動作が得られることはいうまでもな い。 上記モータ制御装置の制御対象である同期モータとしては、 リニアモ 一夕/回転型モータ等いずれの形式も使用可能である。 産業上の利用可能性
以上のように、 本発明のモータ制御装置においては、 同期モータの軸 ずれを精度よく検出できるので、 同期モー夕をベクトル制御する用途に 適している。

Claims

請 求 の 範 囲
1 . 検出器で検出したモータまたはモータに接続された負荷の位置であ る検出位置から実速度を演算する速度演算部と、
この実速度が速度指令に追従するように速度制御を行い、 Q軸電流指令 を出力する速度制御部と、
ィンバータ内で検出した三相電流を入力し、 u v w三相静止座標系から d Q同期回転座標系への座標変換を行って、 d軸電流と Q軸電流とを出 力する u v wZ d Q座標変換部と、
d軸電流指令と前記 q軸電流指令と前記 d軸電流フィ一ドバックと前記 q軸電流フィードバックとを入力し、 d q軸実電流が d q軸電流指令に 一致するように電流制御を行い、 d軸電圧指令と d軸電圧指令とを出力 する電流制御部と、
前記 d軸電圧指令と前記 Q軸電圧指令と検出位置とを入力し、 d q同期 回転座標系から U V W三相静止座標系への座標変換を行って、 三相電圧 指令を出力する d Q Z U v w座標変換部と、
この三相電圧指令を入力し、 実際の三相電圧をモー夕に与えて、 このモ 一夕を可変速駆動するィンバ一夕と、
を有するモ一タ制御装置において、
三角波または正弦波等の繰り返し波形の重畳信号を出力する重畳信号生 成部と、
d軸電流指令に、 前記重畳信号生成部で生成した重畳信号を加算して、 d軸電流指令を出力する d軸電流指令生成部と、
この d軸電流指令と前記 Q軸電流指令とを入力して、 軸ずれ角推定値を 出力する軸ずれ検出部と、 を備えたことを特徴とするモータ制御装置。
2 . 位置指令と前記検出器で検出した検出位置とを入力し、 検出位置が 位置指令に追従するように位置制御を行い、 速度指令を前記速度制御部 に出力する位置制御部を備え、
前記重畳信号生成部は三角波または正弦波等の繰り返し波形の重畳信号 を出力するようにしたことを特徴とする請求の範囲第 1項に記載のモー タ制御装置。
3 . 検出器で検出したモータまたはモータに接続された負荷の位置であ る検出位置から実速度を演算する速度演算部と、
ィンバ一夕内で検出した三相電流を入力し、 U V W三相静止座標系から d q同期回転座標系への座標変換を行って、 d軸電流と Q軸電流とを出 力する u v wZ d q座標変換部と、
d軸電流指令と Q軸電流指令と前記 d軸電流フィードバックと前記 Q軸 電流フィードバックとを入力し、 d Q軸実電流が d q軸電流指令に一致 するように電流制御を行い、 d軸電圧指令と Q軸電圧指令とを出力する 電流制御部と、
前記 d軸電圧指令と前記 (1軸電圧指令と検出位置とを入力し、 d q同期 回転座標系から u v w三相静止座標系への座標変換を行って、 三相電圧 指令を出力する d q Z u v w座標変換部と、
この三相電圧指令を入力し、 実際の三相電圧をモータに与えて、 このモ 一夕を可変速駆動するィンバ一夕と、
を有するモータ制御装置において、
三角波または正弦波等の繰り返し波形の重畳信号を出力する重畳信号生 成部と、
d軸電流指令に、 重畳信号生成部で生成した重畳信号 i dh を加算して、 d軸電流指令を出力する d軸電流指令生成部と、
速度演算部から出力される実速度と Q軸電流指令とを入力し、 実際にモ 一夕で発生しているトルク電流誤差を推定するトルク電流誤差演算部と、 前記 d軸電流指令と前記トルク電流誤差とを入力して、 軸ずれ角推定値 を出力する軸ずれ検出部と、
を備えたことを特徴とするモータ制御装置。
4 . 実速度が速度指令に追従するように速度制御を行い、 q軸電流指令 を出力する速度制御部を備え、
前記重畳信号生成部は三角波または正弦波等の繰り返し波形の重畳信号 を出力するようにしたことを特徴とする請求の範囲第 3項に記載のモ一 夕制御装置。
5 . 前記軸ずれ検出部から出力された軸ずれ角推定値と前記検出器で検 出した検出位置とを入力して、 補正後の位置を演算し、 前記 d Q / u v w座標変換部および前記 u v wZ d Q座標変換部に出力する軸ずれ補正 部を備え、
前記 d q Z u v w座標変換部および前記 u v wZ d Q座標変換部は補正 後の位置に基づき座標変換を行うようにしたことを特徴とする請求の範 囲第 1項から請求の範囲第 4項のいずれかに記載のモー夕制御装置。
6 . 前記軸ずれ検出部は、
d軸電流指令をフィルタ処理を行い、 軸ずれ検出用 d軸信号を出力する 第 1の入力フィルタと、
Q軸電流指令または、 トルク電流誤差をフィルタ処理を行い、 軸ずれ検 出用 Q軸信号を出力する第 2の入力フィル夕と、 前記軸ずれ検出用 d軸信号と前記軸ずれ検出用 d軸信号とを乗算して適 応入力を演算する適応入力演算部と、
この適応入力にゲインを掛けて積分入力を生成するゲイン部と、 この積分入力を積分して軸ずれ角推定値を出力する積分器と、 を備えたことを特徴とする請求の範囲第 1項から請求の範囲第 5項のい ずれかに記載のモータ制御装置。
7 . 前記軸ずれ検出部は、
d軸電流指令をフィル夕処理を行い、 軸ずれ検出用 d軸信号を出力する 第 1の入力フィルタと、
この軸ずれ検出用 d軸信号の関数を演算する可変ゲイン演算部と、 i軸電流指令または、 トルク電流誤差をフィルタ処理を行い、 軸ずれ検 出用 QL軸信号を出力する第 2の入力フィル夕と、
前記軸ずれ検出用 d軸信号の関数と前記軸ずれ検出用 q軸信号とを乗算 して適応入力を演算する適応入力演算部と、
この積分入力を積分して軸ずれ角推定値を出力する積分器と、 を備えたことを特徴とする請求の範囲第 1項から請求の範囲第 5項のい ずれかに記載のモータ制御装置。
8 . 前記軸ずれ検出部は、
d軸電流指令をフィルタ処理を行い、 軸ずれ検出用 d軸信号を出力する 第 1の入力フィルタと、
この軸ずれ検出用 d軸信号の符号を検出し、 符号付きの軸ずれ検出用 d 軸信号を出力する第 1の符号検出器と、
ci軸電流指令または、 トルク電流誤差をフィルタ処理を行い、 軸ずれ検 出用 i軸信号を出力する第 2の入力フィルタと、 この軸ずれ検出用 Q軸信号の符号を検出し、 符号付きの軸ずれ検出用 q 軸信号を出力する第 2の符号検出器と、
前記符号付きの軸ずれ検出用 d軸信号と前記符号付きの軸ずれ検出用 q 軸信号とを乗算して符号付きの適応入力を演算する適応入力演算部と、 この符号付きの適応入力にゲインを掛けて積分入力を生成するゲイン部 と、
この積分入力を積分して軸ずれ角推定値を出力する積分器と、 を備えたことを特徴とする請求の範囲第 1項から請求の範囲第 5項のい ずれかに記載のモータ制御装置。
9 . 前記軸ずれ検出部は、
d軸電流指令をフィルタ処理を行い、 軸ずれ検出用 d軸信号を出力する 第 1の入力フィル夕と、
q軸電流指令または、 トルク電流誤差をフィルタ処理を行い、 軸ずれ検 出用 Q軸信号を出力する第 2の入力フィルタと、
前記入力フィルタでフィルタ処理を行った軸ずれ検出用 d軸信号と後述 の軸ずれ角推定値とを乗算し、 推定出力を出力する推定出力演算部と、 前記入力フィルタでフィルタ処理を行った軸ずれ検出用 q軸信号と前記 推定出力演算部から出力された推定出力との差を取って軸ずれ誤差を出 力する軸ずれ誤差演算部と、
この軸ずれ誤差演算部から出力された軸ずれ誤差にゲインを掛けて積分 入力を出力する可変ゲイン部と、
この可変ゲイン部から出力された積分入力を積分して軸ずれ角推定値を 得る積分器と、
を備えたことを特徴とする請求の範囲第 1項から請求の範囲第 5項のい ずれかに記載のモータ制御装置。
1 0 . 検出器で検出したモ一夕またはモータに接続された負荷の位置で ある検出位置から実速度を演算する速度演算部と、
ィンバ一夕内で検出した三相電流を入力し、 U V W三相静止座標系から d q同期回転座標系への座標変換を行って、 d軸電流と Q軸電流とを出 力する u v w/ d Q座標変換部と、
d軸電流指令と q軸電流指令と前記 d軸電流フィ一ドバックと前記 q軸 電流フィードバックとを入力し、 d q軸実電流が d q軸電流指令に一致 するように電流制御を行い、 d軸電圧指令と Q軸電圧指令とを出力する 電流制御部と、
前記 d軸電圧指令と前記 q軸電圧指令と検出位置とを入力し、 d q同期 回転座標系から u v w三相静止座標系への座標変換を行って、 三相電圧 指令を出力する d Q Z U v w座標変換部と、
この三相電圧指令を入力し、 実際の三相電圧をモータに与えて、 このモ 一夕を可変速駆動するインバー夕と、
を有するモー夕制御装置において、
Q軸電流指令を零に設定するとともに三角波または正弦波等の繰り返し 波形の重畳信号を出力する重畳信号生成部と、
d軸電流指令に、 重畳信号生成部で生成した重畳信号を加算して、 d軸 電流指令を出力する d軸電流指令生成部と、
この d軸電流指令と前記 Q軸電流指令とを入力して、 軸ずれ角推定値を 出力する軸ずれ検出部と、
この軸ずれ角推定値を表示する表示部と、
この軸ずれ角推定値を格納するメモリと、
このメモリに格納された軸ずれ角推定値と前記検出位置とを入力して、 補正後の位置を出力する軸ずれ補正部と、 えたことを特徴とするモータ制御装置。
PCT/JP2004/000028 2004-01-07 2004-01-07 モータ制御装置 WO2005067137A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB0615648A GB2428144B (en) 2004-01-07 2004-01-07 Motor Controller
CNB2004800401124A CN100477483C (zh) 2004-01-07 2004-01-07 电动机控制装置
PCT/JP2004/000028 WO2005067137A1 (ja) 2004-01-07 2004-01-07 モータ制御装置
JP2005516772A JP4496410B2 (ja) 2004-01-07 2004-01-07 モータ制御装置
DE112004002619T DE112004002619T5 (de) 2004-01-07 2004-01-07 Motorregelanordnung
US10/585,416 US7511448B2 (en) 2004-01-07 2004-01-07 Motor control device
TW093104053A TWI234340B (en) 2004-01-07 2004-02-19 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/000028 WO2005067137A1 (ja) 2004-01-07 2004-01-07 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2005067137A1 true WO2005067137A1 (ja) 2005-07-21

Family

ID=34746926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000028 WO2005067137A1 (ja) 2004-01-07 2004-01-07 モータ制御装置

Country Status (7)

Country Link
US (1) US7511448B2 (ja)
JP (1) JP4496410B2 (ja)
CN (1) CN100477483C (ja)
DE (1) DE112004002619T5 (ja)
GB (1) GB2428144B (ja)
TW (1) TWI234340B (ja)
WO (1) WO2005067137A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160997A (ja) * 2006-12-25 2008-07-10 Denso Corp モータの制御方法およびその装置
JP2010022188A (ja) * 2009-09-18 2010-01-28 Sanyo Electric Co Ltd モータの位置センサレス制御装置
JP2014514900A (ja) * 2011-03-18 2014-06-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 電子整流式電気機械に対する整流を適合化するための方法および装置
US8816617B2 (en) 2009-03-09 2014-08-26 Nec Corporation Three-phase motor controller, three-phase motor system, three-phase motor control method and program
CN105375846A (zh) * 2014-08-11 2016-03-02 马涅蒂-马瑞利公司 用于诊断电机旋转变压器偏移的方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029082A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 回転電機制御装置、回転電機制御方法及び回転電機制御プログラム
JP5177133B2 (ja) * 2007-03-28 2013-04-03 株式会社安川電機 モータ制御装置
CN101174811B (zh) * 2007-10-19 2011-05-11 奇瑞汽车股份有限公司 一种采用空间矢量脉冲宽度调制的电机控制方法和装置
JP5194838B2 (ja) * 2008-01-29 2013-05-08 三菱電機株式会社 交流同期モータの磁極位置推定方法
DE102009035998A1 (de) * 2009-07-27 2011-02-03 Pilz Gmbh & Co. Kg Verfahren und Vorrichtung zum fehlersicheren Überwachen einer Bewegungsgröße an einem elektrischen Antrieb
US8339081B2 (en) * 2009-09-11 2012-12-25 GM Global Technology Operations LLC Method and apparatus for low speed permanent magnet motor operation
US8378603B2 (en) * 2010-01-14 2013-02-19 GM Global Technology Operations LLC Method and system for controlling an electric motor using zero current offset value cancellation
DE102010000991A1 (de) * 2010-01-19 2011-07-21 ZF Friedrichshafen AG, 88046 Verfahren zur Phasenabrisserkennung an einer an einem Stromrichter betriebenen Drehfeldmaschine
JP5435282B2 (ja) * 2010-03-26 2014-03-05 アイシン・エィ・ダブリュ株式会社 モータ制御装置
EP2555420B1 (en) * 2011-08-01 2019-10-23 ABB Schweiz AG Self-commissioning procedure for inductance estimation in an electrical machine
JP5916342B2 (ja) * 2011-10-21 2016-05-11 三菱重工業株式会社 モータ制御装置、モータ制御方法
DE102012102898B4 (de) * 2012-04-03 2022-02-10 Keba Industrial Automation Germany Gmbh Verfahren und System zur Bestimmung einer Rotorlage eines Synchronmotors
DE102012205540B4 (de) * 2012-04-04 2023-08-17 Vitesco Technologies GmbH Verfahren und Vorrichtung zur sensorlosen Regelung einer fremderregten Synchronmaschine
JP5667153B2 (ja) 2012-12-03 2015-02-12 ファナック株式会社 同期電動機の磁極位置検出装置
JP5761243B2 (ja) * 2013-03-29 2015-08-12 株式会社安川電機 モータ制御装置および磁極位置推定方法
CN104518714A (zh) 2013-10-08 2015-04-15 英飞凌科技股份有限公司 用于永磁同步电机的旋转变压器校准
CN103684184B (zh) * 2013-11-21 2016-06-29 清华大学 一种直线电机初始相位确定方法
WO2016051740A1 (ja) * 2014-09-30 2016-04-07 パナソニックIpマネジメント株式会社 モータ制御装置、モータ制御方法およびモータ制御システム
DE102015211363A1 (de) * 2015-06-19 2016-12-22 Lenze Automation Gmbh Verfahren zum Betreiben einer Anlage und Frequenzumrichter
EP3223422B1 (en) * 2016-03-24 2023-06-14 Siemens Gamesa Renewable Energy A/S Control arrangement of a multi-stator machine
US10084399B2 (en) * 2016-06-22 2018-09-25 Faraday & Future Inc. Detecting position measurement errors in an electric motor system
JP6316481B1 (ja) * 2017-04-21 2018-04-25 三菱電機株式会社 電動機の制御装置
CN111293930B (zh) * 2018-12-07 2023-07-11 施耐德电气工业公司 用于控制电机的方法和装置
CN111371359A (zh) * 2018-12-24 2020-07-03 深圳市优必选科技有限公司 一种电机矢量控制方法、装置、终端设备及可读存储介质
CN109586635B (zh) * 2019-01-01 2020-09-29 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种永磁同步电机无位置传感器控制方法
US11378597B2 (en) * 2019-11-29 2022-07-05 Steering Solutions Ip Holding Corporation Closed-loop compensation of current measurement offset errors in alternating current motor drives
JP2024076788A (ja) * 2022-11-25 2024-06-06 オムロン株式会社 サーボシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102299A (ja) * 1998-09-28 2000-04-07 Hitachi Ltd モータ制御装置および電気車用制御装置およびハイブリッド車用制御装置
JP2001069799A (ja) * 1999-08-25 2001-03-16 Yaskawa Electric Corp 誘導電動機のベクトル制御装置
JP2003348896A (ja) * 2002-05-24 2003-12-05 Meidensha Corp Pmモータの制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047083A (en) * 1976-03-08 1977-09-06 General Electric Company Adjustable speed A-C motor drive with smooth transition between operational modes and with reduced harmonic distortion
JPS60148394A (ja) 1984-01-09 1985-08-05 Yaskawa Electric Mfg Co Ltd 同期電動機の界磁極検出位置補正方法
US5038090A (en) * 1988-10-05 1991-08-06 Toyota Jidosha Kabushiki Kaisha Servo motor control apparatus
US5124625A (en) * 1990-05-11 1992-06-23 Matsushita Electric Industrial Co., Ltd. Position control system
CA2129761A1 (en) * 1993-08-11 1995-02-12 David G. Taylor Self-tuning tracking controller for permanent-magnet synchronous motors
DE19703248B4 (de) * 1997-01-29 2006-01-26 Siemens Ag Verfahren und Vorrichtung zur Bestimmung einer Rotorwinkelgeschwindigkeit einer geberlosen, feldorientiert betriebenen Drehfeldmaschine
JP3282541B2 (ja) 1997-05-21 2002-05-13 株式会社日立製作所 モータ制御装置
JPH11275900A (ja) * 1998-03-24 1999-10-08 Fuji Electric Co Ltd 同期電動機の制御装置
WO2000074228A1 (fr) * 1999-05-28 2000-12-07 Kabushiki Kaisha Yaskawa Denki Procede de commande de regime pour moteur synchrone et procede d'identification de constante
JP2001204190A (ja) 2000-01-17 2001-07-27 Yaskawa Electric Corp 初期磁極位置推定装置その誤差調整方法
JP3653437B2 (ja) * 2000-02-07 2005-05-25 株式会社日立製作所 永久磁石式同期モータの制御方式
JP3979561B2 (ja) * 2000-08-30 2007-09-19 株式会社日立製作所 交流電動機の駆動システム
EP1198059A3 (en) 2000-10-11 2004-03-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for position-sensorless motor control
JP4596200B2 (ja) * 2000-11-27 2010-12-08 富士電機システムズ株式会社 永久磁石形同期電動機の制御装置
US6737828B2 (en) * 2001-07-19 2004-05-18 Matsushita Electric Industrial Co., Ltd. Washing machine motor drive device
JP3687590B2 (ja) 2001-11-14 2005-08-24 株式会社明電舎 Pmモータの制御方法、および制御装置
US6794839B1 (en) * 2002-11-08 2004-09-21 Wavecrest Laboratories, Llc Precision motor control with selective current waveform profiles in separate stator core segments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102299A (ja) * 1998-09-28 2000-04-07 Hitachi Ltd モータ制御装置および電気車用制御装置およびハイブリッド車用制御装置
JP2001069799A (ja) * 1999-08-25 2001-03-16 Yaskawa Electric Corp 誘導電動機のベクトル制御装置
JP2003348896A (ja) * 2002-05-24 2003-12-05 Meidensha Corp Pmモータの制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160997A (ja) * 2006-12-25 2008-07-10 Denso Corp モータの制御方法およびその装置
US8816617B2 (en) 2009-03-09 2014-08-26 Nec Corporation Three-phase motor controller, three-phase motor system, three-phase motor control method and program
JP2010022188A (ja) * 2009-09-18 2010-01-28 Sanyo Electric Co Ltd モータの位置センサレス制御装置
JP2014514900A (ja) * 2011-03-18 2014-06-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 電子整流式電気機械に対する整流を適合化するための方法および装置
US9537439B2 (en) 2011-03-18 2017-01-03 Robert Bosch Gmbh Method and apparatus for adapting commutation for an electronically commutated electrical machine
CN105375846A (zh) * 2014-08-11 2016-03-02 马涅蒂-马瑞利公司 用于诊断电机旋转变压器偏移的方法
JP2016038390A (ja) * 2014-08-11 2016-03-22 マニェティ・マレリ・ソシエタ・ペル・アチオニMAGNETI MARELLI S.p.A. 電気機械のレゾルバのオフセットを診断する方法
CN105375846B (zh) * 2014-08-11 2019-10-11 马涅蒂-马瑞利公司 用于诊断电机旋转变压器偏移的方法

Also Published As

Publication number Publication date
TWI234340B (en) 2005-06-11
DE112004002619T5 (de) 2006-10-26
CN1902813A (zh) 2007-01-24
US7511448B2 (en) 2009-03-31
GB0615648D0 (en) 2006-09-13
CN100477483C (zh) 2009-04-08
US20080309265A1 (en) 2008-12-18
JPWO2005067137A1 (ja) 2007-07-26
TW200524264A (en) 2005-07-16
JP4496410B2 (ja) 2010-07-07
GB2428144A (en) 2007-01-17
GB2428144B (en) 2007-09-19

Similar Documents

Publication Publication Date Title
WO2005067137A1 (ja) モータ制御装置
EP0944164B1 (en) Sensorless control method and apparatus of permanent magnet synchronous motor
US8384322B2 (en) Motor control device and motor drive system
US10543868B2 (en) Device for controlling AC rotary machine and device for controlling electric power steering
JP4989075B2 (ja) 電動機駆動制御装置及び電動機駆動システム
WO2014034291A1 (ja) 電動機制御装置
JP5510842B2 (ja) 3相モータ制御装置、3相モータシステム、3相モータ制御方法及びプログラム
JP2006191737A (ja) モータ制御装置及びこれを有するモータ駆動システム
JP3755582B2 (ja) 電動機制御装置
WO2021171679A1 (ja) モータ駆動装置およびそれを用いた空気調和機の室外機、モータ駆動制御方法
JP2013179753A (ja) 電動モータの制御装置
JP2001309697A (ja) 電動機制御装置
EP2493067B1 (en) Method and apparatus for estimating rotor angle of synchronous reluctance motor
JP2014150644A (ja) モータ制御装置
JP3832443B2 (ja) 交流電動機の制御装置
EP1681762B1 (en) Synchronous motor driving system and method
EP1755211B1 (en) Resistance estimation of an AC electrical motor
JP5648310B2 (ja) 同期モータの制御装置、及び同期モータの制御方法
JP2006230200A (ja) 交流電動機の制御装置
JP2014057512A (ja) 電動機制御装置
JP2010259255A (ja) Dcブラシレスモータの制御装置
WO2022154027A1 (ja) モータ制御装置およびそれを備えた駆動システム
JP2008005629A (ja) モータ制御装置
JP2006288083A (ja) 同期モータの制御方法
TW202247573A (zh) 馬達控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480040112.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516772

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120040026199

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 0615648.3

Country of ref document: GB

Ref document number: 0615648

Country of ref document: GB

RET De translation (de og part 6b)

Ref document number: 112004002619

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004002619

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10585416

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607