WO2005067079A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2005067079A1
WO2005067079A1 PCT/JP2004/016986 JP2004016986W WO2005067079A1 WO 2005067079 A1 WO2005067079 A1 WO 2005067079A1 JP 2004016986 W JP2004016986 W JP 2004016986W WO 2005067079 A1 WO2005067079 A1 WO 2005067079A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
negative electrode
positive electrode
secondary battery
lithium secondary
Prior art date
Application number
PCT/JP2004/016986
Other languages
English (en)
French (fr)
Inventor
Akiko Fujino
Tsumoru Ohata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/555,447 priority Critical patent/US20060281006A1/en
Priority to JP2005516805A priority patent/JP4694968B2/ja
Publication of WO2005067079A1 publication Critical patent/WO2005067079A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention comprises a positive electrode composed of a composite lithium oxide, a negative electrode composed of a material capable of inserting and extracting lithium, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, and has a cycle life of
  • the present invention relates to an inexpensive lithium secondary battery having excellent short-circuit suppression capability and safety and being inexpensive.
  • a separator having a role of electrically insulating between a positive electrode and a negative electrode and holding a nonaqueous electrolyte is interposed. .
  • a microporous film made of a polyolefin resin such as polyethylene or polypropylene is used as a separator.
  • the microporous film is usually produced by stretching a sheet obtained by a molding method such as extrusion.
  • the microporous film generally has a low porosity and a low non-aqueous electrolyte retention property, so that the internal resistance of the battery tends to increase.
  • the electrode becomes thick due to expansion and contraction of the active material, a sufficient amount of non-aqueous electrolyte cannot be supplied to the electrode due to the low liquid retention of the microporous film, and the electrode becomes dry. ⁇ .
  • a lithium secondary battery using a separator which is inexpensive and has a high non-aqueous electrolyte retention property and also has a nonwoven fabric has been proposed.
  • Nonwoven fabrics are usually manufactured by assembling fibers without weaving them.
  • the nonwoven fabric has low mechanical strength, and dendrites generated by repeated charge and discharge easily penetrate the nonwoven fabric and short-circuit between the positive electrode and the negative electrode. Therefore, a long cycle life cannot be expected.
  • a nonwoven fabric when using a nonwoven fabric, there is a higher possibility that an electrode mixture or foreign matter that has fallen off during the manufacturing process will adhere to the electrode surface and cause a short circuit when using a nonwoven fabric, as compared to using a microporous film. Production yield is reduced.
  • the microporous film and the nonwoven fabric have the following common features.
  • the microporous film and the nonwoven fabric may be damaged by short-circuit reaction heat that is instantaneously generated when an internal short circuit occurs or when a sharp-shaped protrusion such as a nail penetrates the battery. Such damage will enlarge the short circuit, generate more heat of reaction, and promote abnormal overheating of the battery.
  • the microporous film / nonwoven fabric shrinks or melts, causing distortion in the electrode group (especially wound electrode group), and There is a possibility that a short circuit occurs between the negative electrodes, resulting in abnormal overheating.
  • PVDF polyvinylidene fluoride
  • the PVDF layer swells at a high temperature with a non-aqueous electrolyte or elutes into the non-aqueous electrolyte. For this reason, at a high temperature at which the separator thermally contracts, the PVDF layer is eluted into the electrolyte, and a short circuit occurs between the electrodes, so that thermal runaway cannot be avoided.
  • the PVDF layer has no pores, which causes poor liquid retention and increases the internal resistance of the battery.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-176497
  • Patent Document 2 JP-A-7-220759
  • the present invention provides a positive electrode composed of a composite lithium oxide, a negative electrode composed of a material capable of occluding and releasing lithium, a separator interposed between the positive electrode and the negative electrode, and a lithium composed of a nonaqueous electrolyte.
  • the secondary battery has the following features.
  • the separator is made of a nonwoven fabric. Since the nonwoven fabric has a high non-aqueous electrolyte retention property, shortage of electrolyte (drainage) due to charge and discharge is suppressed, and the cycle life of the battery is improved. In addition, since nonwoven fabrics are inexpensive, batteries can be produced at low cost.
  • the non-woven fabric is a sheet-like material manufactured by assembling fibers without weaving each other.
  • the thickness of the nonwoven fabric used as the separator is preferably from 15 m to 50 m. By setting the thickness of the nonwoven fabric to 15 m or more, a sufficient amount of the nonaqueous electrolyte held by the nonwoven fabric can be secured. Also, by setting the thickness of the nonwoven fabric to 50 m or less, the battery design capacity and battery characteristics can be maintained in a well-balanced manner.
  • the nonwoven fabric used as the separator preferably has a meltdown temperature of 150 ° C or more.
  • the meltdown temperature is a temperature at which fibers constituting the nonwoven fabric are fused together. If the meltdown temperature is 150 ° C or higher, the probability that the separator will be deformed when the battery is exposed to high temperatures is reduced, and the safety of the battery is improved.
  • the nonwoven fabric preferably has at least one force selected from the group consisting of polypropylene, polyamide, polyimide, and polyethylene terephthalate for reasons such as excellent thermal stability.
  • the porous film is made of an inorganic oxide filler and a binder. It becomes.
  • the positive electrode and the negative electrode has a porous film adhered to the surface thereof, even if foreign matter or a falling-off agent adheres to the electrode surface during production and passes through a separator made of non-woven cloth. , Short circuit can be avoided. Therefore, even when a nonwoven fabric having a smaller size than a microporous film is used as the separator, a decrease in production yield due to occurrence of a short circuit during production can be suppressed. In addition, even if a sharp protrusion such as a nail penetrates the battery and generates short-circuit reaction heat of several hundred degrees Celsius and the separator is damaged, the porous membrane maintains its shape. Expansion can be suppressed and thermal runaway can be avoided.
  • the porous film is bonded only to the positive electrode surface, the porous film is bonded only to the negative electrode surface, and the porous film is bonded to the positive electrode surface and the negative electrode surface, respectively.
  • a form in which the porous film is adhered only to the negative electrode surface is preferable.
  • the positive electrode has a band-shaped positive electrode current collector having a positive electrode mixture layer supported on both sides
  • the negative electrode has a band-shaped negative electrode current collector having both sides supported with a negative electrode mixture layer. Therefore, when the porous film is bonded to the negative electrode surface, it is desirable that the porous film is formed so as to completely cover each of the negative electrode mixture layers 1S carried on both surfaces of the negative electrode current collector. Also, when the porous film is adhered to the surface of the positive electrode, it is desirable that the porous film be formed so as to completely cover the positive electrode mixture layers supported on both surfaces of the positive electrode current collector.
  • the thickness of the porous membrane be 0.5 m or more and 20 ⁇ m or less.
  • the binder for the porous film contains at least a polymer containing an acrylonitrile group.
  • alumina for the inorganic iris filter it is preferable to use.
  • a polymer containing an acrylonitrile group is advantageous in maintaining the structure of the porous film because the decomposition is suppressed even at a high temperature where the heat resistance is high.
  • a polymer containing an acrylonitrile group is excellent in binding force, a high strength and porous film can be formed even when the amount of the polymer relative to the inorganic oxide film is small.
  • the content of the inorganic oxide film in the porous membrane is preferably 50% by weight or more and 99% by weight or less, more preferably 90% by weight or more and 99% by weight or less.
  • the present invention in a lithium secondary battery, by using a nonwoven fabric as a separator, the internal resistance is reduced, the cycle life is improved, and a predetermined porous film is adhered to the electrode surface. As a result, it is possible to prevent abnormal overheating and the occurrence of an internal short circuit mainly due to the incorporation of foreign substances or falling-off agents during production. Also, the materials of the porous membrane and the nonwoven fabric are inexpensive. Therefore, according to the present invention, a lithium secondary battery having excellent cycle life, short-circuit suppressing ability, and safety can be provided at low cost.
  • FIG. 1 is a cross-sectional view schematically showing an electrode configuration of a lithium secondary battery of the present invention.
  • FIG. 1 is an arrangement diagram of a positive electrode 10, a negative electrode 20, a porous film 5, and a separator 6 in an electrode plate group of a lithium secondary battery (lithium ion secondary battery) according to one embodiment of the present invention.
  • the porous membrane 5 is a force that is bonded only to the surface of the negative electrode 20.
  • the porous film 5 can be bonded to only the surface of the positive electrode 10, or can be bonded to both surfaces of the positive electrode 10 and the negative electrode 20.
  • the positive electrode 10 includes a positive electrode current collector 1 and a positive electrode mixture layer 2 supported on the current collector.
  • Positive electrode mixture layer 2 contains a positive electrode active material composed of a composite lithium oxide.
  • the negative electrode 20 is composed of a negative electrode current collector 3 and a negative electrode mixture layer 4 carried on the current collector 3.
  • Negative electrode mixture layer 4 contains a material capable of occluding and releasing lithium.
  • a separator 6 is interposed between the positive electrode 10 and the negative electrode 20.
  • the present invention has one feature in that a nonwoven fabric is used as the separator 6.
  • the nonwoven fabric separator has a higher non-aqueous electrolyte retention property than the microporous film separator. Therefore, shortage of electrolyte due to charge and discharge is suppressed, and the cycle characteristics of the battery are improved.
  • the present invention also has one feature in that the porous film is adhered to the surfaces of the positive electrode and the Z or negative electrode.
  • the porous film also has an inorganic oxide film filler and a binder power. inorganic
  • inorganic The porous film is inherently difficult to deform even at a high temperature because of the high heat resistance.
  • the separator is deformed due to a large amount of heat generated by an internal short circuit, and the porous film is also shrunk at the same time. Therefore, the function of the porous film to suppress a short circuit is not fulfilled.
  • the thickness of the sheet needs to be considerably increased from the viewpoint of maintaining the strength of the sheet. Therefore, a large amount of binder is required, and it becomes difficult to maintain battery characteristics and design capacity.
  • Various resin materials can be used for the binder of the porous film, and among them, a resin material having high heat resistance is preferable. Therefore, it is desirable that the thermal decomposition onset temperature of the resin material observed by thermal analysis be 250 ° C or higher.
  • the binder since it is desirable that the binder does not deform at a high temperature, it is desirable that the binder be amorphous or non-crystalline.
  • its heat distortion temperature is desirably 250 ° C or more! /.
  • the thermal decomposition onset temperature and the thermal deformation onset temperature of the binder are measured by differential scanning calorimetry (DSC) or thermogravimetric differential thermal analysis (TG-DTA:
  • thermogravimetry differential thermal analysis
  • the binder When a wound electrode group is produced, a stress is applied to the porous film, so that the binder preferably has rubber elasticity.
  • Various rubbery polymers can be used as the binder. However, rubbery polymers containing an acrylonitrile group are preferred because they are particularly excellent in binding power and heat resistance. Unlike a porous membrane containing a crystalline binder, a porous membrane containing a rubber-like polymer as a binder is unlikely to cause damage such as cracks when winding the electrode plate, so the production yield Can be kept high.
  • the filler of the porous film is required to have heat resistance and to be electrochemically stable in an environment in the lithium secondary battery. Therefore, inorganic oxides satisfying these requirements are preferred. It is used well.
  • the porous film is formed by preparing a paint containing a filler and a binder, and applying the paint to the electrode surface. Therefore, it is required that the inorganic iris object filler is suitable for paint siding. Examples of materials satisfying the above requirements include alumina, titanium, zircona, and magnesia. Of these, from the viewpoints of stability, cost, ease of handling, etc., ⁇ -alumina is particularly preferred, particularly alumina.
  • a plurality of kinds of inorganic acidified object filters may be used in combination. For example, when mixing the same type of inorganic oxide film having different median diameters, a dense porous film can be obtained. Further, a plurality of porous films including different inorganic oxide films may be laminated.
  • the content of the inorganic oxide film in the porous film is preferably from 50% by weight to 99% by weight, and more preferably from 90% by weight to 99% by weight. If the content of the inorganic oxide filler is less than 50% by weight, the amount of the binder is excessive, and it may be difficult to control the pore structure formed by the gaps between the filler particles. On the other hand, when the content of the inorganic oxide filler is more than 99% by weight, the amount of the binder is too small, and the strength of the porous film and the adhesion to the electrode surface may be reduced. When the porous membrane falls off, the function of the porous membrane itself is impaired, and the battery characteristics are impaired.
  • the median diameter (D50: average particle diameter) of the inorganic oxidized film filler is not particularly limited, but is generally in the range of 0.1-, and is 0.2 to 1.5 m. Desirably.
  • the thickness of the porous film is not particularly limited, but is preferably 0.5-20 / zm from the viewpoint of sufficiently securing the short-circuit suppressing function by the porous film and maintaining the design capacity. Especially preferred is 10 m.
  • the total force of the thickness of the nonwoven fabric used as the separator and the thickness of the porous film is preferably about 15 to 30 ⁇ m.
  • the nonwoven fabric is a sheet-like material manufactured by assembling fibers without weaving each other.
  • the length and thickness of the fibers constituting the nonwoven fabric are not particularly limited.
  • the thickness (fiber diameter) of the fibers should be within a range of 0.5 to 30 m. Is more preferably in the range of 0.5 to 10 ⁇ m, and particularly preferably in the range of 0.5 to 5 ⁇ m.
  • the thickness of the nonwoven fabric is preferably 15 m or more and 50 m or less, which is desirable for cycle characteristics and volume. From the viewpoint of the balance with the amount, it is particularly preferably from 15 ⁇ m to 30 ⁇ m.
  • the thickness of the nonwoven fabric is set to 15 ⁇ m or more, a sufficient amount of the nonaqueous electrolyte held by the nonwoven fabric can be secured.
  • the thickness of the nonwoven fabric is set to 50 m or less, the battery design capacity and battery characteristics can be maintained in a well-balanced manner.
  • the basis weight density of the nonwoven fabric (per unit area weight: Basis Weight) is force are not limited to generally 10- 200gZm 2.
  • the nonwoven fabric used as the separator is preferably a nonwoven fabric that has high heat resistance and does not easily undergo heat shrinkage or melting even at high temperatures.
  • the heat resistance of a general polyethylene microporous film is less than 150 ° C.
  • the meltdown temperature of a nonwoven fabric can be set to 150 ° C or more.
  • the nonwoven fabric preferably has at least one force selected from the group consisting of polypropylene, polyamide, polyimide and polyethylene terephthalate. These may be used alone or in combination of two or more. These materials are less likely to melt or deform even at high temperatures, where the melting point and thermal stability are high. Also, since the separator is unlikely to melt even at a high temperature, deterioration of the battery characteristics due to clogging of the separator hardly occurs in the battery after storage at a high temperature.
  • the positive electrode generally includes a positive electrode active material composed of a composite lithium oxide, a positive electrode binder, and a conductive agent.
  • Examples of the composite lithium oxide include lithium cobalt oxide (LiCoO) and lithium cobalt oxide.
  • lithium nickelate LiNiO
  • lithium nickelate lithium nickelate
  • lithium manganate lithium nickelate
  • LiMn O modified form of lithium manganate, Co, Mn or N of these oxides
  • modified products contain elements such as aluminum and magnesium. Some contain at least two species: conoreto, nickel and manganese. Mn-based lithium-containing transition gold such as LiMn O
  • Group oxides are particularly promising in that they are abundant on the earth and low in price.
  • the positive electrode binder is not particularly limited, and polytetrafluoroethylene (PTFE), modified Atari mouth-tolyl rubber particles (such as BM-500B manufactured by Zeon Corporation), and polyvinylidene fluoride ( PV DF) can be used.
  • PTFE and BM-500B should be used in combination with CMC, polyethylene oxide (PEO), modified acrylonitrile rubber (BM-720H, manufactured by Zeon Corporation) that is a thickener for the raw material paste for the positive electrode mixture layer.
  • PEO polyethylene oxide
  • BM-720H modified acrylonitrile rubber
  • PVDF has a single function as a positive electrode binder and a function as a thickener.
  • acetylene black, Ketjen black, various graphites, and the like can be used as the conductive agent. These may be used alone or in combination of two or more.
  • the negative electrode generally includes a negative electrode active material capable of entering and exiting lithium ions, a negative electrode binder, and a thickener.
  • Examples of the negative electrode active material include various natural graphites, various artificial graphites, carbon materials such as petroleum coats, carbon fibers, organic polymer fired products, silicon-containing composite materials such as oxides and silicides, and various metals or alloy materials. Can be used.
  • the negative electrode binder is not particularly limited, and like the positive electrode binder, is preferably a rubber-like polymer in which PTFE, modified Atari nitrile rubber particles, PVDF, CMC, or the like can be used. Used.
  • a rubbery polymer those containing a styrene unit and a butadiene unit are preferably used.
  • SBR styrene-butadiene copolymer
  • SBR styrene-butadiene copolymer
  • non-aqueous electrolyte it is preferable to use a non-aqueous solvent that dissolves a lithium salt as a solute.
  • lithium salts lithium hexafluorophosphate (LiPF), lithium perchlorate (LiCIO)
  • Non-aqueous solvents such as lithium borofluoride (LiBF), are preferred.
  • EC carbonate
  • PC propylene carbonate
  • DMC dimethinolecarbonate
  • DEC getyl carbonate
  • MEC methylethyl carbonate
  • the concentration of the solute dissolved in the non-aqueous solvent is generally 0.5 to 2 mol / L.
  • bi-lene carbonate (VC), cyclohexylbenzene (CHB), VC A modified form of CHB can also be used.
  • LiCoO lithium cobaltate
  • PVDF N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • the mixture was kneaded with a mixer to prepare a positive electrode mixture paste.
  • the obtained positive electrode mixture paste was applied to both sides of a 15-m-thick aluminum foil (positive electrode current collector), dried, and rolled to form a positive electrode mixture layer.
  • the total thickness of the current collector and the positive electrode mixture layers carried on both surfaces thereof was 160 m. Then, it was slit into a width that can be inserted into the cylindrical battery case of model number 18650, and a strip-shaped positive electrode hoop was obtained.
  • BM-400B aqueous dispersion containing 40% by weight of rubber particles made of styrene-butadiene copolymer made by Zeon Corporation and 30 g of carboxymethyl cellulose (CMC) And an appropriate amount of water, and kneaded with a double-arm kneader to prepare a negative electrode mixture paste.
  • the obtained negative electrode mixture paste was applied to both sides of a thick copper foil (negative electrode current collector), dried, and rolled to form a negative electrode mixture layer.
  • the total thickness of the current collector and the negative electrode mixture layers supported on both surfaces was 180 m. Then, it was slit into a width that can be inserted into a cylindrical battery case of model number 18650, and a strip-shaped negative electrode hoop was obtained.
  • lithium hexafluorophosphate LiPF
  • ethylene carbonate ethylene carbonate
  • ethyl methyl carbonate ethyl methyl carbonate
  • dimethyl carbonate a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate in a volume ratio of 1: 1: 1 to a concentration of ImolZ liter.
  • the dissolved one was used.
  • the nitrate was added to the non-aqueous electrolyte.
  • a positive electrode and a negative electrode each having a predetermined length were cut out.
  • the positive electrode and the negative electrode were wound around a 20 / zm-thick polypropylene nonwoven fabric separator, which was also strong, and inserted into the battery case.
  • a separator made of a nonwoven fabric made of polypropylene having a thickness of 20 ⁇ m is prepared by rolling P010SW-OOX (Grade name) manufactured by Tonen Tapils Co., Ltd. to a thickness of 20 / zm. Was used.
  • P010SW—OOX has a basis weight (Basis Weight) of 10 g / m 2 .
  • meltdown temperature of the above nonwoven fabric was measured in the following manner.
  • a cylinder was prepared in the same manner as in Comparative Example 1, except that a polyethylene microporous film (thickness: 20 / ⁇ , Hipore manufactured by Asahi Kasei Corporation) was used instead of the polypropylene nonwoven fabric having a thickness of 20 ⁇ m.
  • a lithium secondary battery of type 18650 was fabricated.
  • melt-down temperature of the microporous film was measured in the same manner as in the nonwoven fabric of Comparative Example 1, and was found to be 140 ° C.
  • a cylindrical 18650 lithium secondary battery was produced in the same manner as in Comparative Example 1, except that the following operation was performed.
  • a cylindrical 18650 lithium secondary battery was produced in the same manner as in Comparative Example 1, except that the following operation was performed.
  • a cylindrical 18650 lithium secondary battery was produced in the same manner as in Comparative Example 1, except that the following operation was performed.
  • a cylindrical 18650 lithium secondary battery was produced in the same manner as in Comparative Example 1, except that the following operation was performed.
  • a battery in which the thickness of the porous film per one side of the positive electrode was 0.3 ⁇ m, and the total thickness of the positive electrode and the porous films supported on both surfaces thereof was 160.6 ⁇ m was set as Example 2.
  • a cylindrical 18650 lithium secondary battery was produced in the same manner as in Example 5, except that a polypropylene nonwoven fabric having the following thickness was used instead of the polypropylene nonwoven fabric having a thickness of 20 ⁇ m.
  • the thickness of the nonwoven fabric was adjusted by changing the rolling conditions of P010SW-OX.
  • Example 9 A battery using a 10-m-thick polypropylene nonwoven fabric was used as Example 9.
  • Example 10 A battery using a 15-m-thick polypropylene nonwoven fabric was used as Example 10.
  • Example 11 A battery using a nonwoven fabric made of polypropylene having a thickness of 25 ⁇ m was used as Example 11.
  • Example 12 A battery using a 30-m-thick polypropylene nonwoven fabric was used as Example 12.
  • Example 13 A battery using a 40-m-thick polypropylene nonwoven fabric was used as Example 13.
  • Example 14 A battery using a 50- ⁇ m-thick polypropylene nonwoven fabric was used as Example 14.
  • Example 15 A battery using a 60-m-thick polypropylene nonwoven fabric was used as Example 15.
  • Example 5 As shown in Table 1, in the same manner as in Example 5, except that the content (% by weight) of the inorganic oxide film filler (alumina) occupying the porous membrane was changed to a cylindrical 18650 lithium secondary battery. A battery was made.
  • the content (% by weight) of the inorganic oxide film filler (alumina) occupying the porous membrane was changed to a cylindrical 18650 lithium secondary battery. A battery was made.
  • Example 16 A battery in which the content of the inorganic oxide film was 30% by weight was used as Example 16.
  • Example 17 A battery in which the content of the inorganic oxide film was 50% by weight was used as Example 17.
  • Example 18 A battery in which the content of the inorganic oxide film was 70% by weight was used as Example 18.
  • Example 19 A battery in which the content of the inorganic oxide film was 90% by weight was used as Example 19. A battery in which the content of the inorganic oxide film was 95% by weight was used as Example 20.
  • Example 21 A battery in which the content of the inorganic oxide film was 99% by weight was used as Example 21.
  • Example 22 A battery in which the content of the inorganic oxide filler was 99.5% by weight was used as Example 22.
  • Example 5 was repeated except that polyethylene beads having a median diameter of 0.3 ⁇ m were used instead of anoremina having a median diameter of 0.3 ⁇ m as an inorganic oxide film filler in the preparation of the raw material paste for the porous membrane. In the same manner as described above, a cylindrical 18650 lithium secondary battery was produced.
  • Example 5 In the same manner as in Example 5, except that a 20 ⁇ m-thick polypropylene nonwoven fabric was replaced with a nonwoven fabric in which a polypropylene fiber and a polyamide fiber were mixed at a weight ratio of 1: 1. A lithium secondary battery was manufactured. The basis weight of the nonwoven fabric was the same as that of Comparative Example 1 (Example 5).
  • melt-down temperature of the nonwoven fabric used in this example was measured in the same manner as in the nonwoven fabric of Comparative Example 1, and was found to be 205 ° C.
  • Table 1 shows main configurations of the porous membrane and the separator in the above Examples and Comparative Examples.
  • Negative electrode 5 Alumina 97 20 PP non-woven fabric 175
  • Negative electrode 10 Alumina 97 20 PP non-woven fabric 175
  • Negative electrode 30 Alumina 97 20 PP non-woven fabric 175
  • Negative electrode 5 Alumina 97 10 PP non-woven fabric 175
  • Negative electrode 5 Alumina 97 15 PP non-woven fabric 175
  • Negative electrode 5 Alumina 97 25 PP non-woven fabric 175
  • Negative electrode 5 Alumina 97 30 PP non-woven fabric 175
  • Negative electrode 5 Alumina 97 40 PP non-woven fabric 175
  • Negative electrode 5 Alumina 97 50 PP non-woven fabric 175
  • Negative electrode 5 Alumina 97 60 PP non-woven fabric 175
  • Negative electrode 5 Alumina 90 20 PP non-woven fabric 175
  • Negative electrode 5 Alumina 95 20 PP non-woven fabric 175
  • Negative electrode 5 Alumina 99.5 20 PP non-woven fabric 175
  • Negative electrode 5 Titer ⁇ 97 20 PP non-woven fabric 175
  • PE Bis' * "Li Ichirenhi's", PP non-woven fabric: Rif 'Lohi' non-woven fabric,
  • PP-PA non-woven fabric * "Rif 'Dt * Len-polyamide non-woven fabric, PE film: * ° R
  • the battery design capacity was determined from the weight of the positive electrode, assuming that the capacity per lg of the positive electrode active material was 142 mAh.
  • the completed battery provided with the electrode group without chipping, cracking or falling off of the porous membrane was subjected to twice preliminary charging and discharging, and stored at 45 ° C for 7 days. Then, the following two patterns of charge and discharge were performed in a 20 ° C environment, one cycle each. Table 2 shows the discharge capacity obtained in each cycle.
  • the battery after the evaluation of the charge / discharge characteristics was subjected to the following charging in a 20 ° C environment.
  • Constant voltage charging 4.25V (final current 100mA) A 2.7 mm-diameter iron round nail was penetrated from the side of the charged battery at a speed of 5 mmZ seconds or 180 mmZ seconds under an environment of 20 ° C. from the side surface, and a heat generation state at that time was observed. Table 2 shows the temperatures reached after 1 and 90 seconds at the battery penetration point.
  • the battery after the evaluation of the charge / discharge characteristics was subjected to the following charging in a 20 ° C environment.
  • the battery after charging was heated to 150 ° C at a heating rate of 5 ° CZ, and left at 150 ° C for 3 hours. Subsequently, the voltage and surface temperature of the battery were measured. Table 2 shows the results.
  • the defective rate increases, and it is common knowledge of those skilled in the art to use a microporous film.
  • the porous film adhered to the electrode surface and the nonwoven fabric are used in combination, the occurrence of a defective rate is suppressed remarkably so that a person skilled in the art cannot predict.
  • the nonwoven fabric is used as the separator, the charge / discharge characteristics and the cycle characteristics of the battery are improved as compared with the case where the microporous film is used. This is probably because the presence of the nonwoven fabric facilitates the movement of the electrolyte in the battery.
  • the thickness of the porous membrane is 0.5 to 20 m.
  • the thickness of the separator is too large, the length of the electrode plates constituting the electrode group will be shortened. In addition, the design capacity and the capacity at high rate discharge are reduced. On the other hand, if the thickness of the separator is too small, the effect of improving the liquid retention of the electrolyte is small, and the effect of improving the cycle characteristics is also reduced. Therefore, in order to sufficiently obtain the effects of the present invention, it is desirable that the thickness of the separator be 15 to 50 m.
  • the content of the inorganic filler in the total of the inorganic filler and the binder was small (the amount of the binder was large), a decrease in capacity at high-rate discharge was observed. This is presumably because the excess amount of the binder reduces the gap between the filler particles and lowers the ionic conductivity of the porous film.
  • the content of the inorganic filler is desirably set to 50 to 99% by weight.
  • the effect of suppressing heat generation when the nail penetration speed is reduced is greater.
  • the polymer containing nitrile nitrile group is considered to be hardly deformed even at high temperature because it is amorphous and has high heat resistance.
  • the failure rate was 0%, indicating that the porous film after winding has sufficient strength and function. .
  • the present invention is particularly useful for providing a high-performance lithium secondary battery that requires both excellent safety and charge / discharge characteristics. More specifically, the present invention provides a composite lithium oxide positive electrode, a negative electrode capable of occluding and releasing lithium, and a negative electrode between the positive electrode and the negative electrode.
  • the present invention is applied to a lithium secondary battery which is constituted by a non-aqueous electrolytic solution and a separator interposed in a non-aqueous electrolyte, and has excellent cycle life, in which the separator is made of non-woven fabric. Since the lithium secondary battery of the present invention has high safety, it is particularly useful as a power source for portable equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Description

リチウム二次電池
技術分野
[0001] 本発明は、複合リチウム酸化物からなる正極、リチウムを吸蔵および放出し得る材 料からなる負極、正極と負極との間に介在するセパレータ、および非水電解液により 構成され、サイクル寿命、短絡抑制能力および安全性に優れ、かつ安価なリチウム 二次電池に関する。
背景技術
[0002] リチウム二次電池(リチウムイオン二次電池)などの化学電池では、正極と負極との 間を電気的に絶縁し、さらに非水電解液を保持する役目をもつセパレータが介在し ている。
[0003] 現在、リチウム二次電池では、ポリエチレン、ポリプロピレン等のポリオレフイン系榭 脂からなる微多孔フィルムがセパレータとして用いられている。微多孔フィルムは、通 常、押出成形等の成形方法で得られたシートを延伸加工して製造される。
[0004] ただし、微多孔フィルムは、一般に空孔率が低ぐ非水電解液の保液性も低 、ため 、電池の内部抵抗が高くなりやすい。特に電池の充放電を繰り返した場合に活物質 の膨張および収縮により電極が厚くなると、微多孔フィルムの保液性が低いために、 電極に十分量の非水電解液を供給できず、液涸れによる容量低下が起こりやす ヽ。
[0005] 微多孔フィルム力 なるセパレータの代わりに、安価で非水電解液の保液性が高 ヽ 不織布力もなるセパレータを用いたリチウム二次電池も提案されて 、る。不織布は、 通常、繊維同士を織らずに集合させて製造される。
[0006] ただし、不織布は機械強度が弱ぐ充放電の繰り返しで生成するデンドライトが容易 に不織布を貫通し、正負極間が短絡するため、長いサイクル寿命を期待できない。ま た、微多孔フィルムを用いる場合に比べて、不織布を用いる場合には、製造工程で 脱落した電極合剤や混入する異物が電極表面に付着して、短絡を生じさせる可能性 も高くなり、生産歩留まりが低くなる。
[0007] また、微多孔フィルムおよび不織布には、以下のような共通点がある。 [0008] 微多孔フィルムおよび不織布は、内部短絡の発生時や、釘のような鋭利な形状の 突起物が電池を貫いた時に、瞬時に発生する短絡反応熱により破損する可能性が ある。このような破損は短絡部を拡大させ、さらなる反応熱を発生させ、電池の異常 過熱を促進する。さらに、 150°C以上の高温下に電池が置かれた場合、微多孔フィ ルムゃ不織布は、収縮もしくは溶融するため、極板群 (特に捲回型の極板群)に歪み が生じ、正負極間が短絡し、異常過熱に陥る可能性がある。
[0009] 次に、不織布をセパレータとして用いるとともに、ポリフッ化ビ-リデン (以下、 PVD F)層を電極表面に形成する技術 (関連技術 1)も提案されて ヽる (特許文献 1)。関連 技術 1は、非水電解液の保持性を高めるとともに、内部短絡を防止することを目的と している。
[0010] しかし、 PVDF層は、高温下で、非水電解液で膨潤したり、非水電解液に溶出した りする。そのため、セパレータが熱収縮する程度の高温下では、 PVDF層が電解液 に溶出してしまい、極板間が短絡するため、熱暴走は回避できない。さらに、 PVDF 層は、空孔を有さないため、保液性が低ぐ電池の内部抵抗を大きくする原因となる
[0011] 次に、微多孔フィルムをセパレータとして用いた電池において、固体粒子および結 着剤力もなる多孔膜を電極表面の保護膜として用いる技術 (関連技術 2)や、不織布 を電極表面の保護膜として用いる技術 (関連技術 3)が提案されている (特許文献 2)
[0012] しかし、関連技術 2の場合、非水電解液の保液性の低い微多孔フィルムをセパレー タに用いて 、るため、内部抵抗を低減したりサイクル寿命を改善できるものではな ヽ 。また、関連技術 3の場合、実質上、セパレータを 2枚重ねて使用するのと同じことに なる。しかし、極めて薄いセパレータを重ねて使用することは製造工程上困難である ため、結局厚いセパレータを用いる必要があり、電池容量の低下は免れない。
特許文献 1:特開 2001— 176497号公報
特許文献 2:特開平 7 - 220759号公報
発明の開示
発明が解決しょうとする課題 [0013] 本発明は、リチウム二次電池において、内部抵抗を低減し、サイクル寿命を改善す るとともに、異常過熱や、主に生産時に発生する内部短絡を抑制することを目的とす る。
課題を解決するための手段
[0014] 本発明は、リチウム二次電池において、セパレータとして不織布を用いることにより 、内部抵抗を低減し、サイクル寿命を改善するとともに、所定の多孔膜を電極表面に 接着することにより、異常過熱や、主に生産時における内部短絡の発生を防止するも のである。
[0015] すなわち、本発明は、複合リチウム酸化物からなる正極、リチウムを吸蔵および放出 し得る材料からなる負極、正極と負極との間に介在するセパレータ、および非水電解 液より構成されるリチウム二次電池であり、以下の特徴を有する。
[0016] まず、セパレータは、不織布からなる。不織布は、非水電解液の保液性が高 、ため 、充放電に伴う電解液不足 (液涸れ)が抑制され、電池のサイクル寿命が向上する。 また、不織布は、安価であるため、電池を低コストで生産できるようになる。なお、不 織布とは、繊維同士を織らずに集合させて製造されるシート状物である。
[0017] セパレータとして用いる不織布の厚みは、 15 m以上 50 m以下であることが望 ましい。不織布の厚みを 15 m以上にすることで、不織布が保持する非水電解液の 量を十分に確保することができる。また、不織布の厚みを 50 m以下にすることで、 電池設計容量および電池特性をバランスよく維持できる。
[0018] セパレータとして用いる不織布は、 150°C以上のメルトダウン温度を有することが望 ましい。メルトダウン温度とは、不織布を構成する繊維同士が融着する温度である。メ ルトダウン温度が 150°C以上であれば、電池が高温に曝されたときに、セパレータが 変形する確率が低くなり、電池の安全性が高められる。
[0019] 不織布は、熱的安定性に優れる等の理由から、ポリプロピレン、ポリアミド、ポリイミド およびポリエチレンテレフタレートよりなる群力 選択される少なくとも 1種力 なること が望ましい。
[0020] 次に、正極および負極の少なくとも一方は、少なくともその対極と対向する表面に 接着された多孔膜を有する。ここで、多孔膜は、無機酸化物フィラーおよび結着剤か らなる。
[0021] 正極および負極の少なくとも一方が、その表面に接着された多孔膜を有する場合、 生産時に異物や脱落合剤が電極表面に付着し、それが不織布カゝらなるセパレータを 貫通しても、短絡は回避できる。従って、セパレータとして、微多孔フィルムよりも目の ヽ不織布を用いる場合であっても、生産時の短絡発生による生産歩留まりの低下 を抑制できる。また、釘のような鋭利な形状の突起物が電池を貫き、数百 °cの短絡反 応熱が発生し、セパレータが破損した場合でも、多孔膜が形状を維持するため、短 絡部の拡大を抑止でき、熱暴走を回避できる。
[0022] 本発明は、多孔膜が正極表面のみに接着されている場合、多孔膜が負極表面の みに接着されている場合、および多孔膜が正極表面と負極表面にそれぞれ接着さ れている場合を含むが、なかでも多孔膜が負極表面のみに接着されている形態が好 ましい。
[0023] 一般に、正極は、正極合剤層を両面に担持した帯状の正極集電体力 なり、負極 は、負極合剤層を両面に担持した帯状の負極集電体からなる。よって、多孔膜が負 極表面に接着される場合、多孔膜は、負極集電体の両面に担持された負極合剤層 1S それぞれ完全に覆われるように形成されることが望ましい。また、多孔膜が正極 表面に接着される場合も、多孔膜は、正極集電体の両面に担持された正極合剤層 力 それぞれ完全に覆われるように形成されることが望ま ヽ。
[0024] 異常過熱や内部短絡を抑制する観点力もは、多孔膜は厚みが大きいほど好ましい
1S 厚くなりすぎると、電池特性が劣化する。よって、電池の安全性と性能とのバラン スを考慮すると、多孔膜の厚みは、 0. 5 m以上 20 μ m以下であることが望ましい。
[0025] 多孔膜の結着剤は、アクリロニトリル基を含む高分子を少なくとも含むことが望まし い。また、無機酸ィ匕物フイラ一には、アルミナを用いることが好ましい。
[0026] アクリロニトリル基を含む高分子は、耐熱性が高ぐ高温下でも分解が抑制されるた め、多孔膜の構造維持において有利である。また、アクリロニトリル基を含む高分子 は、結着力に優れているため、無機酸ィ匕物フイラ一に対する量が少ない場合でも、強 度の高 、多孔膜の形成が可能である。
[0027] 多孔膜の強度と非水電解液の保持性とのバランスを良好に維持する観点から、多 孔膜に占める無機酸ィ匕物フイラ一の含有率は、 50重量%以上 99重量%以下、さら には 90重量%以上 99重量%以下が好ましい。
発明の効果
[0028] 本発明によれば、リチウム二次電池にお!、て、セパレータとして不織布を用いること により、内部抵抗を低減し、サイクル寿命を改善するとともに、所定の多孔膜を電極 表面に接着することにより、異常過熱や、主に生産時における異物または脱落合剤 の混入による内部短絡の発生を防止することができる。また、多孔膜ゃ不織布の材 料は安価である。従って、本発明によれば、サイクル寿命、短絡抑制能力および安全 性に優れたリチウム二次電池を安価で提供することができる。
図面の簡単な説明
[0029] [図 1]本発明のリチウム二次電池の極板構成を模式的に示した断面図である。
発明を実施するための最良の形態
[0030] 以下、本発明の実施形態を、図面を参照しながら説明する。
[0031] 図 1は、本発明の一実施形態に係るリチウム二次電池(リチウムイオン二次電池)の 極板群における、正極 10、負極 20、多孔膜 5およびセパレータ 6の配置図である。こ の実施形態では、多孔膜 5は負極 20の表面のみに接着されている力 正極 10の表 面のみに接着することもでき、正極 10と負極 20の両方の表面に接着することもできる
[0032] 正極 10は、正極集電体 1とそれに担持された正極合剤層 2からなる。正極合剤層 2 は、複合リチウム酸化物からなる正極活物質を含む。また、負極 20は、負極集電体 3 とそれに担持された負極合剤層 4からなる。負極合剤層 4は、リチウムを吸蔵および 放出し得る材料を含む。正極 10と負極 20との間には、セパレータ 6が介在している。
[0033] 本発明は、セパレータ 6として不織布を用いる点に一つの特徴を有する。不織布か らなるセパレータは、微多孔フィルムからなるセパレータに比べて、非水電解液の保 液性が高い。よって、充放電による電解液不足が抑制され、電池のサイクル特性が 向上する。
[0034] また、本発明は、多孔膜が正極および Zまたは負極の表面に接着されている点に も一つの特徴を有する。多孔膜は、無機酸ィ匕物フイラ一および結着剤力もなる。無機 酸ィ匕物フイラ一は、耐熱性が高いため、多孔膜は、本来的に、高温でも変形しにくい ものである。しかし、多孔膜をセパレータ上に接着した場合、たとえ多孔膜自身の耐 熱性が高くても、内部短絡に伴う多大な発熱により、セパレータが変形し、それと同時 に多孔膜も収縮してしまう。よって、短絡を抑制するという多孔膜の機能が果たされな い。また、多孔膜を単独でシート状に成形し、シート状物をセパレータとして用いる場 合、シート状物の強度を保持する観点から、その厚みを相当に大きくする必要がある 。よって、多量の結着剤が必要となり、電池特性および設計容量の維持が困難にな る。
[0035] 以下、多孔膜の構成について説明する。
[0036] 多孔膜の結着剤には、様々な榭脂材料を用いることができるが、なかでも耐熱性の 高い榭脂材料を用いることが望ましい。よって、熱分析で観測される榭脂材料の熱分 解開始温度は、 250°C以上であることが望ま U、。
[0037] また、結着剤は、高温で変形しないことが望ましいため、非晶質もしくは非結晶性で あることが望ましい。また、結着剤が結晶性である場合には、その熱変形温度は、 25 0°C以上であることが望まし!/、。
[0038] なお、結着剤の熱分解開始温度や熱変形開始温度は、示差走査熱量測定 (DSC : differential scanning calorimetry)や、熱重量測定 示差熱分析(TG—DTA:
thermogravimetry— differential thermal analysis)により孭 U定す oこと; 0できる。 ί列 X_は、 TG— DTA測定における重量変化の始点は、熱分解開始温度に相当し、 DSC測定 における変曲点は、熱変形温度に相当する。
[0039] 捲回型極板群を作製する際、多孔膜に応力が印加されるため、結着剤は、ゴム弾 性を有することが好ましい。様々なゴム性状高分子を結着剤に用いることができるが 、特に結着力に優れ、耐熱性にも優れる等の点から、アクリロニトリル基を含むゴム性 状高分子が好ましい。ゴム性状高分子を結着剤として含む多孔膜は、結晶性の結着 剤を含む硬い多孔膜と異なり、極板を捲回する際に、ひび割れなどの損傷を生じにく いため、生産歩留を高く維持できる。
[0040] 多孔膜のフィラーには、耐熱性が要求される上に、リチウム二次電池内の環境で電 気化学的に安定である必要がある。よって、これらの要求を満たす無機酸化物が好 ましく用いられる。また、多孔膜は、フィラーと結着剤とを含む塗料を調製し、その塗 料を電極表面に塗工することで形成される。よって、無機酸ィ匕物フイラ一は、塗料ィ匕 に適することも要求される。以上の要件を満たすものとして、例えばアルミナ、チタ- ァ、ジルコ-ァ、マグネシア等が挙げられる。これらのうちでは、安定性、コスト、取り 扱いの容易さ等の観点から、特にアルミナが好ましぐなかでも α—アルミナが好まし い。
[0041] 無機酸ィ匕物フイラ一は、複数種を混合して用いてもよい。例えば、メディアン径の異 なる同一種の無機酸ィ匕物フイラ一を混合する場合、緻密な多孔膜を得ることができる 。また、異なる無機酸ィ匕物フイラ一を含む複数の多孔膜を、積層してもよい。
[0042] 多孔膜に占める無機酸ィ匕物フイラ一の含有率は、 50重量%以上 99重量%以下で あることが好ましぐ 90重量%以上 99重量%以下であることが更に好ましい。無機酸 化物フィラーの含有率が 50重量%を下回ると、結着剤が過多となり、フィラー粒子間 の隙間で構成される細孔構造の制御が困難になることがある。一方、無機酸化物フィ ラーの含有率が 99重量%を上回ると、結着剤が過少となり、多孔膜の強度や電極表 面に対する密着性が低下する場合がある。多孔膜が脱落すると、多孔膜自身の機能 が損なわれ、電池特性も損なわれる。
[0043] 無機酸ィ匕物フイラ一のメディアン径 (D50:平均粒径)は、特に限定されな ヽが、一 般に 0. 1— の範囲であり、 0. 2- 1. 5 mであることが望ましい。
[0044] 多孔膜の厚みは、特に限定されないものの、多孔膜による短絡抑制機能を十分に 確保し、かつ設計容量を維持する観点から、 0. 5— 20 /z mであることが好ましぐ 3 一 10 mであることが特に好ましい。また、セパレータとして用いる不織布の厚みと 多孔膜の厚みとの総和力 15— 30 μ m程度であることが望ましい。
[0045] 次に、不織布の構成について説明する。
[0046] 不織布は、繊維同士を織らずに集合させて製造されるシート状物である。不織布を 構成する繊維の長さ、太さは特に限定されないが、電解液の保液性を確保する観点 から、繊維の太さ(繊維直径)は、 0. 5— 30 mの範囲であることが望ましぐ 0. 5— 10 μ mの範囲であることが更に望ましぐ 0. 5— 5 μ mの範囲が特に望ましい。
[0047] 不織布の厚みは、 15 m以上 50 μ m以下であることが望ましぐサイクル特性と容 量とのバランスの観点から 15 μ m以上 30 μ m以下が特に好ましい。不織布の厚みを 15 μ m以上にすることで、不織布が保持する非水電解液の量を十分に確保すること ができる。また、不織布の厚みを 50 m以下にすることで、電池設計容量および電 池特性をバランスよく維持できる。なお、不織布の目付密度 (単位面積あたりの重量: Basis Weight)は、一般に 10— 200gZm2である力 これに限定されない。
[0048] セパレータとして用いる不織布は、耐熱性が高ぐ高温下でも熱収縮や溶融を生じ にくいものが望ましい。不織布の耐熱性が高いほど、高温時における極板群の歪み が抑制され、内部短絡の発生確率も小さくなる。一般的なポリエチレン製微多孔フィ ルムの耐熱性は 150°C未満である力 不織布のメルトダウン温度は 150°C以上に設 定することが可能である。
[0049] 不織布は、ポリプロピレン、ポリアミド、ポリイミドおよびポリエチレンテレフタレートより なる群力 選択される少なくとも 1種力 なることが望ましい。これらは単独で用いても よぐ複数種を組み合わせて用いてもよい。これらの材料は、融点および熱的安定性 が高ぐ高温下でも溶融や変形を生じにくい。また、高温下でもセパレータの溶融が 起こりにく 、ため、高温保存後の電池にぉ 、てセパレータの目詰まりによる電池特性 の低下が起こりにくい。
[0050] 以下、正極および負極の構成について説明する。
[0051] 正極は、一般に複合リチウム酸化物からなる正極活物質と、正極結着剤と、導電剤 とを含む。
[0052] 複合リチウム酸化物としては、コバルト酸リチウム(LiCoO )、コバルト酸リチウムの
2
変性体、ニッケル酸リチウム(LiNiO )、ニッケル酸リチウムの変性体、マンガン酸リチ
2
ゥム(LiMn O )、マンガン酸リチウムの変性体、これらの酸化物の Co、 Mnもしくは N
2 4
iの一部を他の遷移金属元素で置換したものなどが好ましい。各変性体には、アルミ 二ゥム、マグネシウムなどの元素を含むものがある。また、コノ レト、ニッケルおよびマ ンガンの少なくとも 2種を含むものもある。 LiMn Oなどの Mn系リチウム含有遷移金
2 4
属酸化物は、特に、地球上に豊富に存在し、低価格である点で有望である。
[0053] 正極結着剤は、特に限定されず、ポリテトラフルォロエチレン (PTFE)、変性アタリ 口-トリルゴム粒子(日本ゼオン (株)製の BM— 500Bなど)、ポリフッ化ビ-リデン(PV DF)などを用いることができる。 PTFEや BM— 500Bは、正極合剤層の原料ペースト の増粘剤となる CMC、ポリエチレンォキシド(PEO)、変性アクリロニトリルゴム(日本 ゼオン (株)製 BM— 720Hなど)などと組み合わせて用いることが好まし 、。 PVDFは 、単一で、正極結着剤としての機能と、増粘剤としての機能とを有する。
[0054] 導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いること ができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0055] 負極は、一般にリチウムイオンが出入り可能な材料力 なる負極活物質と、負極結 着剤と、増粘剤とを含む。
[0056] 負極活物質としては、各種天然黒鉛、各種人造黒鉛、石油コータス、炭素繊維、有 機高分子焼成物などの炭素材料、酸化物、シリサイドなどのシリコン含有複合材料、 各種金属もしくは合金材料を用いることができる。
[0057] 負極結着剤としては、特に限定されず、正極結着剤と同様に、 PTFE、変性アタリ口 二トリルゴム粒子、 PVDF、 CMCなどを用いることができる力 ゴム性状高分子が好 ましく用いられる。このようなゴム性状高分子としては、スチレン単位およびブタジエン 単位を含むものが好ましく用いられる。例えばスチレン ブタジエン共重合体 (SBR) 、 SBRの変性体などを用いることができる力 これらに限定されない。
[0058] 非水電解液には、リチウム塩を溶質として溶解する非水溶媒を用いることが好まし い。リチウム塩としては、 6フッ化リン酸リチウム(LiPF )、過塩素酸リチウム(LiCIO )
6 4
、ホウフッ化リチウム (LiBF )などを用いることが好ましぐ非水溶媒としては、ェチレ
4
ンカーボネート (EC)、プロピレンカーボネート (PC)、ジメチノレカーボネート (DMC) 、ジェチルカーボネート(DEC)、メチルェチルカーボネート(MEC)などを用いること が好ましい。非水溶媒は、 1種を単独で用いることもできる力 2種以上を組み合わせ て用いることが好ましい。非水溶媒に溶解する溶質濃度は、一般に 0. 5-2mol/L である。
[0059] 正極および Zまたは負極上に、良好な皮膜を形成させ、過充電時の安定性等を確 保するために、ビ-レンカーボネート(VC)、シクロへキシルベンゼン(CHB)、 VCや CHBの変性体などを用いることもできる。
[0060] 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。
[比較例 1]
(i)正極の作製
コバルト酸リチウム (LiCoO ) 3kgに対し、呉羽化学工業 (株)製のポリフッ化ビ-リ
2
デン(PVDF) # 1320 (PVDFを 12重量%含む N—メチルー 2—ピロリドン(NMP)溶 液) 1kgと、導電剤としてアセチレンブラック 90gと、適量の NMPとをカ卩え、双腕式練 合機で混練し、正極合剤ペーストを調製した。得られた正極合剤ペーストを、厚さ 15 mのアルミニウム箔 (正極集電体)の両面に塗布し、乾燥し、圧延して、正極合剤 層を形成した。集電体とその両面に担持された正極合剤層との総厚は 160 mとし た。その後、型番 18650の円筒型電池用ケースに挿入可能な幅にスリットし、帯状の 正極フープを得た。
(ii)負極の作製
人造黒鉛 3kgに対し、 日本ゼオン (株)製の BM-400B (スチレン-ブタジエン共重 合体カゝらなるゴム粒子を 40重量%含む水分散液) 75gと、カルボキシメチルセルロー ス(CMC) 30gと、適量の水とを加え、双腕式練合機で混練し、負極合剤ペーストを 調製した。得られた負極合剤ペーストを、厚さ の銅箔 (負極集電体)の両面に 塗布し、乾燥し、圧延して、負極合剤層を形成した。集電体とその両面に担持された 負極合剤層との総厚は 180 mとした。その後、型番 18650の円筒型電池用ケース に挿入可能な幅にスリットし、帯状の負極フープを得た。
(iii)非水電解液の調製
非水電解液には、エチレンカーボネートとェチルメチルカーボネートとジメチルカ一 ボネートとの体積比 1: 1: 1の混合溶媒に、 ImolZリットルの濃度になるように六フッ 化リン酸リチウム (LiPF )を溶解したものを用いた。また、 3重量0 /0のビ-レンカーボ
6
ネートを非水電解液に添加した。
(iv)電池の組立
上述の正極フープおよび負極フープから、それぞれ所定の長さの正極および負極 を切り出した。次いで、正極と負極とを、厚さ 20 /z mのポリプロピレン製不織布力もな るセパレータを介して捲回し、電池ケース内に挿入した。 [0061] ここで、厚さ 20 μ mのポリプロピレン製不織布からなるセパレータには、東燃タピル ス(株)製の P010SW— OOX(Grade名)を圧延して厚さを 20 /z mに調整したものを用 いた。 P010SW—OOXの目付密度(Basis Weight)は 10g/m2である。
[0062] 次いで、上記の非水電解液を 5. 5g秤量して、電池ケース内に注液し、ケースの開 口部を封口した。こうして、円筒型 18650のリチウム二次電池を作製した。
[0063] 上記不織布のメルトダウン温度を以下の要領で測定した。
[0064] 別途に用意した上記と同じ正極、負極およびセパレータ (不織布)を、それぞれ直 径 15mm、 16mmおよび 17mmの円形に打ち抜き、これらを用いて 2016サイズのコ イン型電池を作製した。この電池を 4. 2Vまで充電した後、 0. 5°CZ分で昇温し、電 圧が急降下する温度を測定し、その温度をメルトダウン温度とした。上記条件で測定 した不織布のメルトダウン温度は 175°Cであった。
[比較例 2]
厚さ 20 μ mのポリプロピレン製不織布の代わりに、ポリエチレン製微多孔フィルム( 厚さ 20 /ζ πι、旭化成 (株)製の Hipore)を用いたこと以外、比較例 1と同様にして、円 筒型 18650のリチウム二次電池を作製した。
[0065] なお、上記微多孔フィルムのメルトダウン温度を、比較例 1の不織布と同様に測定し たところ、 140°Cであった。
[比較例 3]
以下の操作を行ったこと以外、比較例 1と同様にして、円筒型 18650のリチウム二 次電池を作製した。
[0066] 無機酸化物フィラーとしてのメディアン径 0. 3 μ mのアルミナ 970gと、 日本ゼオン( 株)製の BM— 720H (アクリロニトリル基を含む高分子を 8重量%含む NMP溶液) 37 5gと、適量の NMPとを、双腕式練合機で攪拌し、多孔膜の原料ペーストを調製した 。この原料ペーストを厚さ 20 /z mのポリプロピレン製不織布の両面に塗布し、乾燥し 、不織布の両面に接着された多孔膜を形成した。不織布片面あたりの多孔膜の厚さ は 5 μ mとし、不織布とその両面に担持された多孔膜との総厚を 30 μ mとした。
[0067] なお、多孔膜に占める無機酸化物フィラーの含有率 (重量%)は、
{970/ (970 + 375 X 0. 08) } X 100 = (970/1000) X 100 = 97重量0 /0となる。
[比較例 4]
以下の操作を行ったこと以外、比較例 1と同様にして、円筒型 18650のリチウム二 次電池を作製した。
[0068] 比較例 3で用いたのと同じ多孔膜の原料ペーストを、負極フープの両面に塗布し、 乾燥し、負極フープの両面に接着された多孔膜を形成した。負極フープ片面あたり の多孔膜の厚さは 5 μ mとし、負極フープとその両面に担持された多孔膜との総厚を 190 /z mとした。
[0069] また、厚さ 20 mのポリプロピレン製不織布の代わりに、比較例 2で用いたのと同じ ポリエチレン製微多孔フィルム (厚さ 20 μ m)を用いた。
[実施例 1]
以下の操作を行ったこと以外、比較例 1と同様にして、円筒型 18650のリチウム二 次電池を作製した。
[0070] 比較例 3で用いたのと同じ多孔膜の原料ペーストを、正極フープの両面に塗布し、 乾燥し、正極フープの両面に接着された多孔膜を形成した。正極フープ片面あたり の多孔膜の厚さは 5 μ mとし、正極フープとその両面に担持された多孔膜との総厚を 170 /z mとした。
[実施例 2— 8]
以下の操作を行ったこと以外、比較例 1と同様にして、円筒型 18650のリチウム二 次電池を作製した。
[0071] 比較例 3で用いたのと同じ多孔膜の原料ペーストを、負極フープの両面に塗布し、 乾燥し、負極フープの両面に接着された多孔膜を形成した。
[0072] 正極片面あたりの多孔膜の厚さを 0. 3 μ mとし、正極とその両面に担持された多孔 膜との総厚を 160. 6 μ mとした電池を実施例 2とした。
[0073] 正極片面あたりの多孔膜の厚さを 0. 5 μ mとし、正極とその両面に担持された多孔 膜との総厚を 161 μ mとした電池を実施例 3とした。
[0074] 正極片面あたりの多孔膜の厚さを 1 μ mとし、正極とその両面に担持された多孔膜 との総厚を 162 μ mとした電池を実施例 4とした。 [0075] 正極片面あたりの多孔膜の厚さを 5 μ mとし、正極とその両面に担持された多孔膜 との総厚を 170 μ mとした電池を実施例 5とした。
[0076] 正極片面あたりの多孔膜の厚さを 10 μ mとし、正極とその両面に担持された多孔 膜との総厚を 180 μ mとした電池を実施例 6とした。
[0077] 正極片面あたりの多孔膜の厚さを 20 μ mとし、正極とその両面に担持された多孔 膜との総厚を 200 μ mとした電池を実施例 7とした。
[0078] 正極片面あたりの多孔膜の厚さを 30 μ mとし、正極とその両面に担持された多孔 膜との総厚を 220 μ mとした電池を実施例 8とした。
[実施例 9一 15]
厚さ 20 μ mのポリプロピレン製不織布の代わりに、下記の厚さのポリプロピレン製不 織布を用いたこと以外、実施例 5と同様にして、円筒型 18650のリチウム二次電池を 作製した。なお、不織布の厚さは、 P010SW— OOXの圧延条件を変えることで調整し た。
[0079] 厚さ 10 mのポリプロピレン製不織布を用いた電池を実施例 9とした。
[0080] 厚さ 15 mのポリプロピレン製不織布を用いた電池を実施例 10とした。
[0081] 厚さ 25 μ mのポリプロピレン製不織布を用いた電池を実施例 11とした。
[0082] 厚さ 30 mのポリプロピレン製不織布を用いた電池を実施例 12とした。
[0083] 厚さ 40 mのポリプロピレン製不織布を用いた電池を実施例 13とした。
[0084] 厚さ 50 μ mのポリプロピレン製不織布を用いた電池を実施例 14とした。
[0085] 厚さ 60 mのポリプロピレン製不織布を用いた電池を実施例 15とした。
[実施例 16— 22]
表 1記載のように、多孔膜に占める無機酸ィ匕物フイラ一 (アルミナ)の含有率 (重量 %)を変化させたこと以外、実施例 5と同様にして、円筒型 18650のリチウム二次電 池を作製した。
[0086] 無機酸ィ匕物フイラ一の含有率を 30重量%とした電池を実施例 16とした。
[0087] 無機酸ィ匕物フイラ一の含有率を 50重量%とした電池を実施例 17とした。
[0088] 無機酸ィ匕物フイラ一の含有率を 70重量%とした電池を実施例 18とした。
[0089] 無機酸ィ匕物フイラ一の含有率を 90重量%とした電池を実施例 19とした。 [0090] 無機酸ィ匕物フイラ一の含有率を 95重量%とした電池を実施例 20とした。
[0091] 無機酸ィ匕物フイラ一の含有率を 99重量%とした電池を実施例 21とした。
[0092] 無機酸化物フィラーの含有率を 99. 5重量%とした電池を実施例 22とした。
[実施例 23]
多孔膜の原料ペーストの調製において、無機酸ィ匕物フイラ一として、メディアン径 0 . 3 μ mのァノレミナの代わりに、メディアン径 0. 3 μ mのチタ-ァを用いたこと以外、実 施例 5と同様にして、円筒型 18650のリチウム二次電池を作製した。
[比較例 5]
多孔膜の原料ペーストの調製において、無機酸ィ匕物フイラ一として、メディアン径 0 . 3 μ mのァノレミナの代わりに、メディアン径 0. 3 μ mのポリエチレンビーズを用いたこ と以外、実施例 5と同様にして、円筒型 18650のリチウム二次電池を作製した。
[実施例 24]
厚さ 20 μ mのポリプロピレン製不織布の代わりに、ポリプロピレン繊維とポリアミド繊 維とを重量比 1 : 1で混在させた不織布を用いたこと以外、実施例 5と同様にして、円 筒型 18650のリチウム二次電池を作製した。なお、不織布の目付密度は、比較例 1 ( 実施例 5)と同じとした。
[0093] なお、本実施例で用いた不織布のメルトダウン温度を、比較例 1の不織布と同様に 測定したところ、 205°Cであった。
[0094] 表 1に、上記実施例および比較例における多孔膜とセパレータの主な構成を示す。
[0095] [表 1]
多子し膜 セ Λ'レ-タ
実施例 フ - 厚み 厚み メルトダゥン
No. 接着箇所 含有率 種類
( i m) 種類 (M m) 温度 CC)
(wt¾)
1 正極 5 アルミナ 97 20 PP不織布 175
2 負極 0. 3 アルミナ 97 20 PP不織布 175
3 負極 0. 5 アルミナ 97 20 PP不織布 175
4 負極 1 アルミナ 97 20 PP不織布 175
5 負極 5 アルミナ 97 20 PP不織布 175
6 負極 10 アルミナ 97 20 PP不織布 175
7 負極 20 アルミナ 97 20 PP不織布 175
8 負極 30 アルミナ 97 20 PP不織布 175
9 負極 5 アルミナ 97 10 PP不織布 175
10 負極 5 アルミナ 97 15 PP不織布 175
1 1 負極 5 アルミナ 97 25 PP不織布 175
12 負極 5 アルミナ 97 30 PP不織布 175
13 負極 5 アルミナ 97 40 PP不織布 175
14 負極 5 アルミナ 97 50 PP不織布 175
15 負極 5 アルミナ 97 60 PP不織布 175
16 負極 5 アルミナ 30 20 PP不織布 175
17 負極 5 アルミナ 50 20 PP不織布 175
18 負極 5 アルミナ 70 20 PP不織布 175
19 負極 5 アルミナ 90 20 PP不織布 175
20 負極 5 アルミナ 95 20 PP不織布 175
21 負極 5 アルミナ 99 20 PP不織布 175
22 負極 5 アルミナ 99. 5 20 PP不織布 175
23 負極 5 チタ:ァ 97 20 PP不織布 175
PP-PA
24 負極 5 ^ミナ 97 20 205 不織布
比較例 1 なし - - - 20 PP不織布 175 比較例 2 なし - - - 20 PEフイルム 140 比較例 3 セ Λ'レ-タ 5 アルミナ 97 20 PP不織布 175 比較例 4 負極 5 アルミナ 97 20 PEフィルム 140 比較例 5 負極 5 PEビ -ス' 97 20 PP不織布 175
PEビ -ス' : *"リ Iチレンヒ' -ス'、 PP不織布: リフ'ロヒ'レン製不織布、
PP-PA不織布: *"リフ' Dt*レン-ホ'リアミド製不織布、 PEフイルム: *°リ Iチレン製微多孔フィルム
上記実施例および比較例の電池を以下に示す方法で評価した。結果を表 2に記す
(不良率)
正極と負極とをセパレータを介して卷芯に対して捲回する操作により、実施例およ び比較例毎にそれぞれ 10個ずつ極板群を構成した。その後、捲回を解いて、主に 卷芯近くの多孔膜の状態を目視観察した。多孔膜に欠け、クラックもしくは脱落による 短絡が生じていた仕掛品の数量を表 2に示した。 (電池設計容量)
電池ケースの直径 18mmに対し、捲回された極板群の直径は、挿入性を重視して 16. 5mmとした。この場合において、正極活物質 lgあたりの容量を 142mAhとして 、正極重量から電池設計容量を求め、表 2に示した。
(充放電特性)
多孔膜の欠け、クラックもしくは脱落のな ヽ極板群を具備する完成した電池に対し、 2度の予備充放電を行い、 45°C環境下で 7日間保存した。その後、 20°C環境下で、 以下の 2パターンの充放電をそれぞれ 1サイクルずつ行った。各サイクルで得られた 放電容量を表 2に示す。
(1)第 1パターン
定電流充電: 1400mA (終止電圧 4. 2V)
定電圧充電: 4. 2V (終止電流 100mA)
定電流放電: 400mA (終止電圧 3V)
(2)第 2パターン
定電流充電: 1400mA (終止電圧 4. 2V)
定電圧充電: 4. 2V (終止電流 100mA)
定電流放電: 4000mA (終止電圧 3V)
(サイクル特性)
充放電特性を評価後の電池について、 20°C環境で、以下のパターンの充放電を 繰り返し、 300サイクル目の放電容量の初期放電容量に対する割合を求めた。百分 率で求めた割合を容量維持率として表 2に示す。
[0097] 定電流充電: 1400mA (終止電圧 4. 2V)
定電圧充電: 4. 2V (終止電流 100mA)
定電流放電: 2000mA (終止電圧 3V)
(釘刺し安全性)
充放電特性を評価後の電池について、 20°C環境下で、以下の充電を行った。
[0098] 定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA) 充電後の電池に対して、その側面から、 2. 7mm径の鉄製丸釘を、 20°C環境下で 、 5mmZ秒または 180mmZ秒の速度で貫通させ、そのときの発熱状態を観測した 。電池の貫通箇所における 1秒後および 90秒後の到達温度を表 2に示す。
(高温安全性)
充放電特性を評価後の電池について、 20°C環境下で、以下の充電を行った。
[0099] 定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA)
充電後の電池を、 5°CZ分の昇温速度で 150°Cまで昇温し、 150°Cで 3時間放置し た。続いて、その電池の電圧と表面温度を測定した。結果を表 2に示す。
[0100] [表 2]
サイクル
充放電特性 釘刺し安全性 も ±.14
特性
設計
実施例 不良率 容量
訂速度 釘速度
No. «) 容量 放髦容量 (mAh) 維持率 表面
(5mm/s) (180調/ s)
(mAh) (» 電圧
戲度
300 Is後 90s後 Is後 90s後 (V)
400mA 4000mA ra
サ C) ) CC) ra
1 0 2011 2010 1819 94 72 91 70 88 152 4.1
2 0 2010 2008 1887 94 78 139 77 136 163 3.5
3 0 2021 2020 1879 94 76 89 69 93 152 4.1
4 0 2070 2069 1895 95 71 92 74 94 151 4.1
5 0 2015 2012 1821 95 74 94 72 89 152 4.2
6 0 1890 1883 1759 94 68 88 76 90 151 4.2
7 0 1729 1728 1545 93 77 90 70 91 151 4.1
8 3 1684 1682 1470 93 73 94 75 96 151 4.1
9 0 2094 2086 1962 91 70 97 74 95 152 4.0
10 0 2020 2012 1871 93 71 91 73 94 151 4.1
11 0 1968 1965 1827 93 71 90 73 94 151 4.1
12 0 1800 1792 1654 94 71 89 73 94 151 4.1
13 0 1656 1649 1488 93 70 87 71 90 151 4.1
14 0 1520 1509 1312 93 70 87 71 91 151 4.1
15 0 1380 1371 998 91 70 86 70 90 151 4.1
16 0 2017 1822 1472 93 71 95 73 94 151 4.1
17 0 2016 1961 1737 93 66 88 69 91 151 4.1
18 0 2015 1989 1811 94 70 96 72 89 151 4.1
19 0 2017 2015 1893 94 70 94 68 89 151 4.1
20 0 2014 2009 1883 93 73 91 73 88 151 4.1
21 1 2015 2010 1886 93 69 88 74 92 151 4.1
22 6 2015 2010 1890 91 72 90 75 90 151 4.1
23 0 2014 2005 1880 92 72 90 71 93 152 4.1
24 0 2015 2011 1889 93 65 93 72 95 151 4.2 比 β例
1971
1 18 2017 2012 95 139 - 135 - 165 2.5 比較例
2 0 2015 2003 1888 90 146 - 138 - 170 0 比較例
3 0 1944 1935 1812 94 81 151 69 93 168 2.8 比較例
4 0 2010 2008 1789 88 80 149 77 91 160 3.9 比較例
0 2014 2014 1901
5 95 146 - 142 - 160 3.8
[0101] 以下、順を追って評価結果について記す。
(1)多孔膜の有無について
多孔膜が存在しない比較例では、釘刺し速度の如何に関わらず、 1秒後の発熱が 顕著である。これに対し、多孔膜を正極または負極上に形成した各実施例では、釘 刺し後の発熱が大幅に抑制されている。
[0102] 全ての釘刺し試験後の電池を分解して調べたところ、全ての電池においてセパレ ータが広範囲に及んで溶融していた。ただし、各実施例については、多孔膜がその 原形を留めていた。このことから、多孔膜は、釘刺し後の発熱によっては破壊されず 、短絡箇所の拡大を抑止し、過剰な発熱を防げるものと考えられる。
[0103] また、高温安全性の評価でも、多孔膜が存在しな!、比較例では、セパレータの収 縮による短絡が発生するため、電池温度が高くなつている。さらに、多孔膜が存在し ない比較例のなかでも、不織布をセパレータに用いた電池の不良率は高くなつてい る。これは、製造工程の際に内部短絡が発生しやすいことを示している。このことは、 多孔膜を用いずに、不織布だけをセパレータに用いて電池を生産することは困難で ある。
(2)多孔膜の接着箇所につ!、て
多孔膜をセパレータ表面に接着した比較例では、釘刺し速度が遅い場合に発熱が 促進されていることがわかる。比較例の電池を分解して調べたところ、前述したセパレ ータの溶融に伴い、多孔膜も変形していることが確認できた。如何に多孔膜自身に 耐熱性があっても、多孔膜と接着したセパレータが収縮もしくは溶融を起こすとき、セ パレータの形状変化に多孔膜が追従し、多孔膜が破損するものと考えられる。高温 安全性の評価でも、同様の理由で、短絡が発生し、電池温度が高くなつていると考え られる。
(3)セパレータの種類につ ヽて
通常、不織布をセパレータとして用いると、不良率が高くなるため、微多孔フィルム を用いるのが当業者の常識である。しかし、電極表面に接着された多孔膜と不織布と を併用する場合には、通常の当業者が予測し得ないほど顕著に、不良率の発生が 抑制される。し力も、不織布をセパレータとして用いた場合、微多孔フィルムを用いる 場合に比べて、電池の充放電特性やサイクル特性も向上している。これは、不織布 の存在により、電解液の電池内移動がスムーズになるためと考えられる。
[0104] 表 1、 2において、多孔膜を負極表面に接着し、セパレータとしてポリエチレン製微 多孔フィルムを用いた比較例に比べて、ポリプロピレン製不織布を用いた実施例で は、サイクル特性が向上している。これは、ポリオレフイン系の微多孔フィルムに比べ て、不織布の電解液保持性が高いため、充放電に伴う電解液不足が抑えられたこと によると考えられる。
[0105] さらに、不織布を用いた場合、微多孔フィルムを用いた場合よりも高い安全性が得 られている。これは、不織布は、一般に微多孔フィルムよりも電池短絡時において変 形しにくいためと考えられる。特に、不織布の材質としてポリプロピレンを用いた場合 、 150°Cまで電池温度を上昇させても、不織布の熱収縮は起こらないため、極板群 の歪みによる短絡も起こらないと考えられる。不織布の材質としてポリアミドとポリプロ ピレンとを併用した場合には、さらに耐熱性が向上すると考えられる。
(4)釘刺し試験について
釘刺しにより、正極と負極とが接触 (短絡)すると、ジュール熱が発生する。そして、 ジュール熱によって耐熱性の低い材料 (セパレータ)が溶融し、強固な短絡部を形成 する。その結果、ジュール熱の発生が継続し、正極が熱的に不安定となる温度領域( 160°C以上)にまで昇温される。こうして熱暴走が引き起こされる。一般に、釘刺し速 度を減じた場合、局部的な発熱が促進される。釘刺し速度を減じて、単位時間当りの 短絡面積を限定した場合、相当の熱量が限定箇所に集中することになる。そのため 、正極が熱的に不安定になる温度領域に到達するのが早まるものと考えられる。一 方、釘刺し速度を増して、単位時間当りの短絡面積を拡大した場合、熱が大面積に 分散されることになる。そのため、正極が熱的に不安定になる温度領域に達しにくく なると考免られる。
[0106] 上記の一般的な傾向に対し、不織布と多孔膜とを併用した実施例では、釘刺し速 度に関わらず、熱暴走を抑止できている。よって、本発明の実用性は非常に高いとい える。
(5)多孔膜の厚みについて
多孔膜の厚みが大きすぎると、極板群を構成する極板の長さが短くなることから、設 計容量や高率放電での容量に低下が見られる。一方、多孔膜の厚みが薄すぎると、 発熱を抑止する効果力 、さくなる。よって、本発明の効果を十分に得るためには、多 孔膜の厚みを 0. 5— 20 mとすることが望ましい。
(6)セパレータの厚みにつ 、て
セパレータの厚みが大きすぎると、極板群を構成する極板の長さが短くなることから 、設計容量や高率放電での容量に低下が見られる。一方、セパレータの厚みが薄す ぎると、電解液の保液性を向上させる効果が小さぐサイクル特性を改善する効果も 小さくなる。よって、本発明の効果を十分に得るには、セパレータの厚みを 15— 50 mとすることが望ましい。
(7)多孔膜における無機フィラーの含有率につ!、て
無機フィラーと結着剤との合計に占める無機フィラーの含有率が少な 、 (結着剤が 多い)実施例では、高率放電での容量の低下が見られる。これは、結着剤が過剰な ため、フィラー粒子の隙間が少なくなり、多孔膜のイオン導電性が低下するためと考 えられる。ただし、無機フィラーの含有率が多くなりすぎると、不良率が高くなる傾向 がある。よって、本発明の効果を十分に得るするには、無機フィラーの含有率を 50— 99重量%とすることが望ましい。
(8)多孔膜中の結着剤の種類について
結着剤として、 CMCや PVDFを用いた場合に比べて、アクリロニトリル基を含む高 分子を用いた場合には、釘刺し速度を減じたときの発熱抑止効果が大きい。アタリ口 二トリル基を含む高分子は、非晶質で耐熱性が高いため、高温でもほとんど変形しな いものと考えられる。結着剤がアクリロニトリル基を含む高分子である実施例では、不 良率が 0%となっており、捲回後の多孔膜が強度と機能を十分に保持していることが ゎカゝる。
(9)フィラーの種類につ!、て
無機フイラ一として、アルミナの代わりにチタ-ァを用いた実施例より、チタ-ァがァ ルミナとほぼ同様の諸機能を果たすことが確認できた。一方、フイラ一として有機材料 、すなわちポリエチレンビーズ (PEビーズ)を用いた場合、釘刺し安全性では、多孔 膜がない場合に等しい結果であった。よって、フィラーには無機酸ィ匕物を選択するこ とが必須であると考えられる。
産業上の利用可能性
本発明は、優れた安全性と充放電特性との両立が要求される高性能リチウム二次 電池の提供において特に有用である。具体的には、本発明は、複合リチウム酸化物 力 なる正極、リチウムを吸蔵および放出し得る材料力 なる負極、正極と負極との間 に介在するセパレータ、および非水電解液により構成され、セパレータが不織布から なるサイクル寿命に優れたリチウム二次電池に適用される。本発明のリチウム二次電 池は、安全性が高いため、ポータブル機器用の電源として特に有用である。

Claims

請求の範囲
[1] 複合リチウム酸ィ匕物力もなる正極、リチウムを吸蔵および放出し得る材料力もなる負 極、前記正極と負極との間に介在するセパレータ、および非水電解液より構成される リチウム二次電池であって、
前記セパレータは、不織布力 なり、前記正極および前記負極の少なくとも一方が 、その表面に接着された多孔膜を有し、前記多孔膜は、無機酸化物フィラーおよび 結着剤からなるリチウム二次電池。
[2] 前記不織布の厚みが、 15 m以上 50 m以下である請求項 1記載のリチウム二次 電池。
[3] 前記不織布が、 150°C以上のメルトダウン温度を有する請求項 1記載のリチウム二 次電池。
[4] 前記不織布が、ポリプロピレン、ポリアミド、ポリイミドおよびポリエチレンテレフタレー トよりなる群力 選択される少なくとも 1種力 なる請求項 1記載のリチウム二次電池。
[5] 前記多孔膜の厚みが、 0. 5 μ m以上 20 μ m以下である請求項 1記載のリチウム二 次電池。
[6] 前記結着剤が、アクリロニトリル基を含む高分子を少なくとも含む請求項 1記載のリ チウムニ次電池。
[7] 前記フィラーがアルミナ力 なり、前記多孔膜に占める前記フィラーの含有率が 50 重量%以上 99重量%以下である請求項 1記載のリチウム二次電池。
[8] 前記正極と前記負極とが、前記セパレータを介して捲回されている請求項 1記載の リチウム二次電池。
PCT/JP2004/016986 2004-01-05 2004-11-16 リチウム二次電池 WO2005067079A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/555,447 US20060281006A1 (en) 2004-01-05 2004-11-16 Lithium secondary battery
JP2005516805A JP4694968B2 (ja) 2004-01-05 2004-11-16 リチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004000082 2004-01-05
JP2004-000082 2004-01-05

Publications (1)

Publication Number Publication Date
WO2005067079A1 true WO2005067079A1 (ja) 2005-07-21

Family

ID=34746929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016986 WO2005067079A1 (ja) 2004-01-05 2004-11-16 リチウム二次電池

Country Status (5)

Country Link
US (1) US20060281006A1 (ja)
JP (1) JP4694968B2 (ja)
KR (1) KR20060056287A (ja)
CN (1) CN100386904C (ja)
WO (1) WO2005067079A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087690A (ja) * 2005-09-21 2007-04-05 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007242575A (ja) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008027879A (ja) * 2006-06-19 2008-02-07 Hitachi Maxell Ltd リチウム二次電池用電極およびリチウム二次電池
US8053101B2 (en) 2005-12-29 2011-11-08 Samsung Sdi Co., Ltd. Lithium ion rechargeable battery
JP2014060122A (ja) * 2012-09-19 2014-04-03 Asahi Kasei Corp リチウムイオン二次電池
US8771860B2 (en) 2010-06-11 2014-07-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for manufacturing same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400268B2 (ja) * 2006-01-26 2014-01-29 パナソニック株式会社 リチウム二次電池
JP2007200795A (ja) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP5137312B2 (ja) * 2006-03-17 2013-02-06 三洋電機株式会社 非水電解質電池
CN101276895B (zh) * 2007-03-27 2013-05-29 比亚迪股份有限公司 锂离子二次电池多孔隔膜层用组合物及锂离子二次电池
JP5339766B2 (ja) * 2007-04-12 2013-11-13 パナソニック株式会社 非水電解質二次電池
KR20080105853A (ko) * 2007-06-01 2008-12-04 삼성에스디아이 주식회사 세라믹층이 코팅된 양극 또는 음극을 포함하는리튬이차전지
EP2169756B1 (en) * 2007-07-18 2015-04-29 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
WO2009057232A1 (ja) * 2007-11-02 2009-05-07 Panasonic Corporation 非水電解質二次電池
DE102009017542A1 (de) * 2009-04-17 2010-10-28 Carl Freudenberg Kg Unsymmetrischer Separator
EP2469624A1 (en) * 2009-08-19 2012-06-27 Mitsubishi Chemical Corporation Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
MX2012011541A (es) * 2010-04-06 2012-11-16 Schlumberger Technology Bv Dispositivo electroquimicos para su uso en condiciones extremas.
CN101814590B (zh) * 2010-04-23 2011-12-14 湖南业翔晶科新能源有限公司 锂离子电池用多孔固态隔膜及其制备方法
ITPO20110013A1 (it) * 2011-06-29 2012-12-30 Stefano Ciapetti Nuovo sistema industiale per la realizzazione di celle in matrice polimerica termoplastica ad alta porosita' per batterie/pile per la produzione di energia elettrica attivate con addizione di acqua a ph neutro.
CN102299286B (zh) 2011-08-01 2014-09-03 华为技术有限公司 电池隔膜及其制备方法与锂离子电池
CN103633378B (zh) * 2013-12-04 2016-04-13 合肥国轩高科动力能源有限公司 一种卷绕式锂电池的制备方法
FR3071957B1 (fr) * 2017-10-02 2021-06-11 Accumulateurs Fixes Element electrochimique lithium ion fonctionnant a haute temperature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147916A (ja) * 1995-11-20 1997-06-06 Fuji Photo Film Co Ltd 非水二次電池
JP2003208918A (ja) * 2002-01-15 2003-07-25 Matsushita Electric Ind Co Ltd 電池の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2135012T3 (es) * 1994-05-30 1999-10-16 Canon Kk Baterias recargables.
KR100283901B1 (ko) * 1995-03-31 2001-03-02 온다 요시히로 비수 전해액 전지 세파레이터용 부직포 및 이것을 사용한 비수 전해액 전지
EP0848435B1 (en) * 1995-08-28 2007-05-16 Asahi Kasei EMD Corporation Lithium battery and production method thereof
JPH09245836A (ja) * 1996-03-08 1997-09-19 Fuji Photo Film Co Ltd 非水電解質二次電池
JP4449094B2 (ja) * 1999-02-22 2010-04-14 パナソニック株式会社 非水電解質二次電池
JP3728162B2 (ja) * 1999-12-15 2005-12-21 三洋電機株式会社 非水電解質二次電池
TW508861B (en) * 2000-08-08 2002-11-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and positive electrode for the same
JP3573102B2 (ja) * 2001-04-20 2004-10-06 ソニー株式会社 負極活物質及び非水電解質二次電池
US7087343B2 (en) * 2003-07-15 2006-08-08 Celgard, Inc. High melt integrity battery separator for lithium ion batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147916A (ja) * 1995-11-20 1997-06-06 Fuji Photo Film Co Ltd 非水二次電池
JP2003208918A (ja) * 2002-01-15 2003-07-25 Matsushita Electric Ind Co Ltd 電池の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087690A (ja) * 2005-09-21 2007-04-05 Matsushita Electric Ind Co Ltd 非水電解液二次電池
US8053101B2 (en) 2005-12-29 2011-11-08 Samsung Sdi Co., Ltd. Lithium ion rechargeable battery
JP2007242575A (ja) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2008027879A (ja) * 2006-06-19 2008-02-07 Hitachi Maxell Ltd リチウム二次電池用電極およびリチウム二次電池
US8771860B2 (en) 2010-06-11 2014-07-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for manufacturing same
JP2014060122A (ja) * 2012-09-19 2014-04-03 Asahi Kasei Corp リチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2005067079A1 (ja) 2007-12-20
CN1816923A (zh) 2006-08-09
US20060281006A1 (en) 2006-12-14
CN100386904C (zh) 2008-05-07
KR20060056287A (ko) 2006-05-24
JP4694968B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4739958B2 (ja) リチウムイオン二次電池
JP4920423B2 (ja) リチウムイオン二次電池
JP4694968B2 (ja) リチウム二次電池
US9287540B2 (en) Separators for a lithium ion battery
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
JP4454340B2 (ja) リチウムイオン二次電池
JP4961654B2 (ja) 非水電解質二次電池
JP2008041581A (ja) 巻回体電極群、角形二次電池およびラミネート形二次電池
JP2008027839A (ja) ライナー付き多孔質膜、多孔質膜の製造方法、およびリチウム二次電池の製造方法
WO2010131650A1 (ja) 非水電解液二次電池
JP2006302877A (ja) 非水電解質電池およびその製造方法
KR20150053176A (ko) 리튬 이차 전지
JP4952314B2 (ja) 非水系二次電池用セパレータおよびこれを備えた非水系二次電池
JPH11354162A (ja) ポリマー電解質二次電池及びその製造方法
JP2005190912A (ja) リチウム二次電池およびその製造方法
JP2005222780A (ja) リチウムイオン二次電池
JP3582823B2 (ja) 非水系二次電池用正極および非水系二次電池
JP4794820B2 (ja) リチウムイオン二次電池およびその製造方法
JP2008004441A (ja) リチウム二次電池、リチウム二次電池用セパレータ、リチウム二次電池用電極、リチウム二次電池用非水電解液およびリチウム二次電池用外装体
CN111033819B (zh) 电极及利用其的二次电池和电极的制备方法
JP4082103B2 (ja) 非水電解質二次電池の製造方法
JP2004087228A (ja) リチウムイオン二次電池
CN112216877B (zh) 锂离子电池重复单元、锂离子电池及其使用方法、电池模组和汽车
JP2008004440A (ja) リチウム二次電池、およびその使用方法
WO2020059873A1 (ja) 二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480018970.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006281006

Country of ref document: US

Ref document number: 10555447

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057025087

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005516805

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057025087

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10555447

Country of ref document: US

122 Ep: pct application non-entry in european phase