WO2005066625A1 - パッシブ型放散フラックスサンプラ及びフラックス測定装置 - Google Patents

パッシブ型放散フラックスサンプラ及びフラックス測定装置 Download PDF

Info

Publication number
WO2005066625A1
WO2005066625A1 PCT/JP2004/014930 JP2004014930W WO2005066625A1 WO 2005066625 A1 WO2005066625 A1 WO 2005066625A1 JP 2004014930 W JP2004014930 W JP 2004014930W WO 2005066625 A1 WO2005066625 A1 WO 2005066625A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
test piece
case
chemical substance
opening
Prior art date
Application number
PCT/JP2004/014930
Other languages
English (en)
French (fr)
Inventor
Yukio Yanagisawa
Tomio Uchi
Shaobu Cai
Kazukiyo Kumagai
Minoru Fujii
Original Assignee
Fukuwauchi Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuwauchi Technologies Inc. filed Critical Fukuwauchi Technologies Inc.
Priority to JP2005516795A priority Critical patent/JP3839039B2/ja
Priority to US10/597,041 priority patent/US20070190655A1/en
Publication of WO2005066625A1 publication Critical patent/WO2005066625A1/ja
Priority to US11/779,688 priority patent/US20080014116A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2241Sampling from a closed space, e.g. food package, head space purpose-built sampling enclosure for emissions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference

Definitions

  • the present invention relates to a method for measuring the emission flux (emission amount per unit area, per unit time) of harmful chemical substances such as formaldehyde emitted into the air from inspection objects such as furniture and building materials.
  • the present invention relates to a passive radiation sampler that can be easily measured without requiring a power supply, and a flux measuring device that more accurately measures the radiation flux using the sampler.
  • the method of measuring the emission amount of volatile organic chemical substances specified in JIS is a desiccator method in which a test piece of a building material is measured by placing it in a small desiccator.
  • a small chamber method that uses a small chamber of 20-1000 liters that can be measured with a large chamber
  • a large chamber method that uses a large chamber that can be measured with furniture and fittings. It is not possible to measure the radiation flux of building materials installed on the building.
  • Patent Document 1 JP-A-2002-162322
  • FIG. 5 shows such a conventional measuring device 41, in which a box-shaped attachment 42 has a bottom surface formed in an opening 43, and a clean air introduction port 45 provided with a filter or the like on a side surface 44. Is formed, and an air outlet 46 is formed on the upper surface.
  • a concentration measuring device 47 for automatically sucking air and measuring the concentration of a chemical substance contained in the air is connected to the air outlet 46.
  • the concentration measuring device 47 measures the concentration of the harmful chemicals radiated from the wall surface or the like. The substance is measured by the concentration measuring device 47.
  • the opening 43 of the attachment 42 is as large as 20 cm x 20 cm, it cannot be measured unless there is at least a plane having the size, and since the height is as large as 30 cm, it is narrow due to the structure of the building. There was a problem that the part could not be measured.
  • attachment 42 is heavy and the inside is stainless steel, it is extremely difficult to fix the attachment 42 to the ceiling or wall surface. In practice, only the floor surface can be measured. With a structure that takes in outside air (indoor air) from the clean air inlet port 45 formed in 44, if indoor air is already contaminated with chemical substances, the chemical substances cannot be removed by the filter. There is also a problem that the reliability of the measurement results is low, because they can enter the attachment.
  • this method is based on the so-called active method of measuring the concentration by automatically sucking air from the outlet 46, the inspection of the wall surface, the ceiling surface, the floor surface, etc., with which the opening 43 is in contact.
  • the air flow state on the surface of the target part is different from the normal state.
  • the air flow velocity on the surface of the inspection target is faster than in normal use, so the diffusion mechanism of harmful chemical substances changes to the dominance of gas diffusion near the surface of the inspection target, and the diffusion control inside the inspection target. .
  • the measurement result may differ from the emission flux in the normal use condition.
  • the air flow condition on the surface of the inspection target has been maintained in the normal condition.
  • a passive method that allows measurement as is is recommended. Disclosure of the invention
  • the present invention provides a method for measuring the power of a part to be measured on a floor, a ceiling, a wall, or a narrow place, and the flow rate (radiation flux) of the dissipated material is influenced by the outside air (indoor air). It is an object of the present invention to provide a passive type diffusion flux sampler which can easily and accurately measure without subjecting the sample to flow or disturbing the flow state of the measurement site surface. Means for solving the problem
  • a passive-type radiation flux sampler is provided on a bottom surface of a hollow case to measure a radiation flux of a specific chemical substance radiated from a test object into the air.
  • An opening is formed in the case where the bottom surface is adhered to the inspection object and a chemical substance radiated from the inspection object is taken into the case, and the inner surface of the case discolors with the chemical substance in a humid environment.
  • a test piece exhibiting a reaction is provided so as to face the opening, and the hollow case has a gas-nolia property.
  • the emission flux measuring apparatus uses a passive emission flux sampler that uses a test piece that exhibits a discoloration reaction under a humid environment with a specific chemical substance.
  • a passive emission flux sampler that uses a test piece that exhibits a discoloration reaction under a humid environment with a specific chemical substance.
  • an opening is formed on the bottom surface of the hollow case to take in the chemical substance to be dissipated in the test object with the bottom surface attached to the test object in the case
  • a test piece exhibiting a discoloration reaction with the chemical substance in a humid environment is provided on the inner surface of the case so as to face the opening, and a shading chamber in which a setting stage for positioning a flux sampler reacted for a predetermined time is formed.
  • a light source for irradiating the test piece of the flux sampler with measurement light and an optical sensor for detecting the intensity of light reflected from the test piece of the flux sampler are arranged, and based on the reflected light intensity detected by the optical sensor. It is characterized by having an arithmetic processing unit for calculating the radiation flux.
  • the passive diffusion flux sampler According to the passive diffusion flux sampler according to the present invention, after the test piece is wetted by dripping water into the case, the bottom surface of the case is moved to an arbitrary inspection object such as a wall surface, a ceiling surface, or a floor surface. If the test object contains harmful substances such as formaldehyde and volatile organic compounds (VOCs), the harmful substances can be introduced into the measurement chamber through the opening. Since the test piece penetrates and reaches the test piece, the test piece changes color according to the emission flux of the harmful substance.
  • VOCs volatile organic compounds
  • the color of the test piece after a predetermined time with the color chart created in advance according to the emission flux, it is possible to measure the emission flux of the harmful substance of the inspection site power, and Based on the ratio of the opening area of the part to the area of the entire building material, the total emission of the entire building material can be calculated.
  • the hollow case has a gas-nolia property, and the bottom surface having the opening formed thereon is attached to an object to be inspected and the inside of the case is shut off from outside air, so that indoor air is contaminated with harmful substances. Even if it is not affected, it is possible to accurately detect only the emission flux of the harmful substance that has been dissipated without being affected.
  • the active method of transporting the target harmful substance to the test piece by suction of air using power is not a natural method. Since the passive method of transporting harmful substances is used, it is possible to accurately measure the radiation flux under normal use conditions without disturbing the flow state of the surface by measurement
  • a gas nolia film such as a DLC film is formed on one of the inner surface and the outer surface of the case, so that the transmittance of harmful substances is reduced. It can be kept lower.
  • each sampler since the structure of each sampler is extremely simple and its manufacturing cost is low, the radiation flux can be measured at the same time by attaching and fixing a plurality of samplers to the respective measurement points.
  • the emission flux is calculated not only when the color of the test piece is measured by comparing the color of the test piece with a color chart after a predetermined time has elapsed, but also by optically measuring the color of the test piece. Then, more accurate measurement can be performed.
  • the measuring light irradiated from the light source is irradiated on the observation unit, and the reflected light intensity is measured by the optical sensor. Is detected by
  • the reflected light intensity corresponds to the color of the test piece, and the color of the test piece corresponds to the emission flux. Therefore, if the relationship between the radiated flux and the reflected light intensity is determined in advance, the detected reflected light intensity force radiated flux can be accurately calculated.
  • An object of the present invention is to solve the problem of making it possible to easily and accurately measure the flow rate of a substance to be measured in which the force of a part to be measured is also dissipated without being affected by outside air (indoor air). This was achieved by using a sampler that had a very simple structure without using a measuring device.
  • FIG. 1 is a cross-sectional view showing an example of a passive type diffusion flux sampler according to the present invention.
  • the passive type radiation flux sampler 1 of this example measures a radiation flux (radiation flow rate) when formaldehyde (chemical substance) contained in an inspection object 3 such as a building material is released into the air.
  • An opening 4 is formed in the bottom surface 2a of the flat hollow case 2 having a gas barrier property to take formaldehyde emitted from the inspection object 3 into the case 2, and the inner surface of the case 2 is wetted with formaldehyde.
  • a test piece 5 that exhibits a discoloration reaction under an environment is provided to face the opening 4.
  • the surface opposite to the bottom surface 2a is an observation portion 2b for observing the color change of the test piece 5 from outside.
  • the test piece 5 is composed of, for example, INT (p-iodonitrotetrazolium violet) as a coloring agent, a dehydrogenase and a reaction catalyst on a paper base sheet having a size of about lcm x 1cm. Two types of enzymes, diafolase, are supported.
  • INT p-iodonitrotetrazolium violet
  • a fixed distance between the surface of the test object 3 and the test piece 5 is provided between the opening 4 and the test piece 5.
  • lmm is provided with a permeable spacer 6 of a predetermined thickness to ensure that formaldehyde emitted from the test object 3 can reach the test piece 5, It is made of metal or plastic with a large number of ventilation holes.
  • An adhesive layer 7 such as a double-sided tape is formed on the case bottom surface 2a.
  • the test piece 5 is adhered and fixed to the surface of the inspection object 3, the test piece 5 is pressed against the air-permeable spacer 6.
  • the thickness of the permeable spacer 6 is selected so that the permeable spacer 6 is pressed against the surface of the inspection object 3 so that no gap is formed between the case 2 and the inspection object 3. Being done.
  • a gas noria film 8 such as a film (diamond-like carbon film) and a silica vapor-deposited film is formed, and in this example, a DLC film is formed.
  • the DLC film has an extremely high gas barrier property against formaldehyde, even if the hollow case 2 is made of a low-priced plastic such as gas, which is low in gaseous properties, the formaldehyde contained in the room air penetrates the case 2 and the test piece 5 It is possible to accurately measure only the emission flux of formaldehyde emitted from the inspection object 3 that does not cause discoloration of the object.
  • the hollow case 2 is not limited to plastic, but may be made of glass or any other material. If a material having a high gaseous property such as glass is used, it is not necessary to form a gas barrier film.
  • test piece 5 is kept airtight, and the test piece 5 is wetted by dropping water on the air-permeable spacer 6 side of the passive-type diffused flux sampler 1.
  • the case 2 is attached and fixed to the inspection object 3 such as a wall surface, a floor surface, a ceiling surface, and a furniture surface with an adhesive tape or the like with the air-permeable spacer 6 facing the side.
  • the inspection object 3 such as a wall surface, a floor surface, a ceiling surface, and a furniture surface with an adhesive tape or the like with the air-permeable spacer 6 facing the side.
  • formaldehyde emitted from the test object 3 passes through the air-permeable spacer 6 and reaches the test piece 5 separated by a certain distance by molecular diffusion.
  • the test piece 5 exhibits a deep reddish purple
  • the test specimen 5 exhibits a light red purple due to the color development reaction.
  • the color of the test piece 5 is compared by comparing the color when a predetermined time has elapsed with a color chart created in advance according to the radiation flux.
  • the emission flux of harmful substances from the inspection site can be measured.
  • the radiation flux of other parts can be expected to be the same amount.Therefore, calculate the total radiation amount based on the ratio of the area of the air permeable spacer 6 to the surface area of the inspection object 3. I'm sorry.
  • the dissipative flux is measured by observing the color change of the test piece 5 using the color change reaction, so that all power and power supplies that do not need to inhale air for measurement are required. do not need.
  • test piece 5 and the air-permeable spacer 6 are covered by the case 2 in a laminated state, and are brought into contact with the inspection object in a state where the outside air force is shut off. Even if it is contaminated by, it is possible to accurately detect only harmful substances that have been dissipated without being affected.
  • the measurement can always be performed under the same conditions.
  • the DLC film 8 is formed on one or both of the outer surface and the inner surface, and the gas barrier property against formaldehyde is high, so that formaldehyde contained in room air permeates the case 2 and discolors the test piece 5.
  • the emission flux of formaldehyde emitted from the inspection object 3 can be accurately measured.
  • sampler 1 can be formed extremely small as described above, it can be easily stuck and fixed in any narrow place using an adhesive tape or the like.
  • each sampler 1 since the structure of each sampler 1 is extremely simple and its manufacturing cost is low, the radiation flux at many measurement points can be measured simultaneously by attaching and fixing a plurality of samplers 1 to each measurement point. You can also.
  • FIG. 2 is an explanatory view showing another embodiment of the passive type diffusion flux sampler according to the present invention.
  • the passive type diffusion flux sampler 11 of the present example is a hollow case 1 having gas nobility. 2 is formed in the shape of a hollow disk, and an opening 14 for taking in the chemical substance emitted from the inspection object 13 into the case 12 with the bottom surface 12a attached to the inspection object 13 on the bottom surface 12a. On the inner surface of the case 12, a test piece 15 exhibiting a discoloration reaction with the chemical substance in a humid environment is attached so as to face the opening 14.
  • the distance of the test object 13 to the surface force test piece 15 can be kept constant while the flux sampler 11 is attached to the test object 13.
  • the hollow case 12 is formed entirely transparent so that the color change of the test piece 15 can be observed with an external force while being attached to the inspection object 13, and the opposite side of the bottom surface 12 a is the test piece 15.
  • an annular water retention paper (water retention material) 16 is arranged so as to surround the flow path from the opening 14 to the test piece 15, and water droplets enter the case 12 from the opening 14 during measurement.
  • the test piece 15 is maintained in a moist environment.
  • the opening 14 is formed with an annular rib 17 extending from the end edge thereof to the inside of the case 12, and water droplets dropped from the opening 14 are guided to the water retaining paper 16 without being stopped by surface tension.
  • the chemical substance radiated from the inspection object 13 is led straight to the test piece 15 provided opposite to the opening 14 so that the discoloration reaction according to the radiated amount is more accurately generated. ing.
  • a transparent DLC film is formed on at least one of the outer surface and the inner surface of the case 12.
  • a gas noria film 18 such as a silica vapor-deposited film is deposited, and in this example, a DLC film is formed.
  • the formaldehyde contained in the room air does not permeate the case 12 through the case 12 and discolor the test object 15. Measured it can.
  • the hollow case 12 is not limited to plastic and may be made of glass or any other material. When glass is used, the gas barrier property is originally high, so there is no need to form a gas barrier film.
  • An annular adhesive layer 19 is formed on the bottom surface 12a of the hollow case 12 around the opening 14, and the adhesive layer 19 has a circular shape so that moisture does not enter the case 12 in a stored state.
  • the aluminum sheet 20 is attached, and the opening 14 is hermetically sealed.
  • the aluminum sheet 20 is peeled off, water drops are dropped into the case 12 with the opening 14 force, and the test piece 15 is wetted.
  • the water-retaining paper 16 is moistened so as to maintain the moist environment.
  • the case bottom surface 12a is attached to an arbitrary inspection object 13 such as a wall surface, a floor surface, a ceiling surface, and furniture.
  • the water droplets in the case 12 are blocked by the annular rib 17 formed in the opening portion 14 and do not flow out of the opening portion 14 even if the opening portion 14 is attached downward. .
  • test piece 15 When a predetermined time (30 minutes and 12 hours) elapses, the test piece 15 changes to dark red where there is a large amount of radiated flux, changes to light red where there is a small amount of flux, and Hardly change.
  • the radiation flux can be measured according to the color of the test piece 15.
  • FIG. 4 shows a radiation flux measuring device for calculating a radiation flux according to the present invention.
  • the measuring device 21 of the present example measures the radiated flux using the above-described flux sampler 11, and a light-shielding chamber 2 for optically measuring the color change of the test piece 15 inside a light-shielding lid 22. 3 is formed, and further comprises an arithmetic processing unit 24 for calculating a radiation flux based on the detected color change, and a liquid crystal display 25 for displaying the value.
  • An optical sensor 28 for detecting light intensity is provided.
  • the light source 27 is an LED that outputs green light having a complementary color relationship as measurement light.In this example, the center of the measurement light is used. The wavelength has been selected to be 555nm!
  • the optical sensor 28 a photodiode having a peak sensitivity at a wavelength of 500 to 600 nm is used.
  • the formaldehyde emission flux is large, the test piece 15 changes to a dark color and the measurement light is absorbed. Therefore, the intensity of the reflected light detected by the optical sensor 28 decreases, and when the radiated flux is small, the discoloration of the test piece 15 is small and the absorption of the measurement light is small, so the reflected light intensity is relatively high.
  • the arithmetic processing unit 24 calculates the absorbance associated with the color change based on the reflected light intensity, and calculates the amount of emission based on the absorbance.
  • absorbance P is calculated by the following equation.
  • the relationship between the emission amount Fn and the absorbance Pn is stored in the absorbance emission amount conversion table 29 based on the absorbance Pn of the sampler 11 measured at the known reference emission amount Fn, and the flux sampler after the reaction is stored. 11. Based on the calculated absorbance P, the emission amount F is determined by referring to the absorbance-emission amount conversion table 29.
  • the amount of radiation P can be output as a numerical value. Therefore, even when it is difficult to compare the slight color change of the test piece 15 with the color chart, the amount of radiation is accurately measured. The amount can be calculated.
  • the present invention is not limited to this, and the case may be opaque.
  • the test piece 15 may be irradiated with measurement light from the opening 14 side.
  • the present invention not only measures the formaldehyde emission flux, but the present invention is not limited to this.
  • the reagent to be impregnated into the test piece It can be applied to the measurement of the emission flux of chemical substances such as volatile organic compounds (VOC).
  • VOC volatile organic compounds
  • FIG. 1 is an explanatory view of a noisy-type diffusion flux sampler according to the present invention.
  • FIG. 2 is an explanatory view showing another embodiment.
  • FIG. 3 is an exploded configuration diagram thereof.
  • FIG. 5 is an explanatory view showing a conventional device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

【課題】  床面、天井、壁面、家具など、測定しようとする部位から放散された化学物質の流量(放散フラックス)を外気(室内空気)の影響を受けることなく、簡単且つ正確に測定できるようにする。 【解決手段】  検査対象物(13)に貼り付けられる中空ケース(12)の底面(12a)に、検査対象物(13)から放散される化学物質をケース(12)内に取り込む開口部(14)が形成され、ケース(12)の内面には、前記化学物質と湿潤環境下で変色反応を呈する試験片(15)が開口部(14)に対向して設けられ、ケース(12)には検査対象物(13)に貼り付けたまま試験片(15)の色変化を外部から観察する透明の観察部(12a)を形成した。  

Description

明 細 書
ノ、。ッシブ型放散フラックスサンブラ及びフラックス測定装置
技術分野
[0001] 本発明は、家具、建材などの検査対象物から空気中に放散するホルムアルデヒド 等の有害化学物質の放散フラックス (単位面積、単位時間当たりの放散量)を測定す るに際し一切の動力、電源を必要とせずに、簡易に測定できるパッシブ型放散フラッ タスサンブラと、このサンブラを使用して放散フラックスをより正確に測定するフラック ス測定装置に関する。
背景技術
[0002] 近年、新築住宅に住む居住者に、頭痛、喉の痛み、眼の痛み、鼻炎、嘔吐、呼吸 器障害、めまい、皮膚炎など様々な体調不良が生じている症例が数多く報告され、「 シックハウス症候群」と呼ばれて社会的問題となって 、る。
このシックハウス症候群の発症メカニズムは未解明なところもある力 主として、住宅 内で使用される建材、家具、調度品、カーペット、カーテンなどに含まれるホルムアル デヒドや揮発性有機化合物 (VOC)やなどの有害化学物質が放散されることによる室 内空気汚染であると考えられて 、る。
[0003] ところで、新築の家などの居住者がこのようなシックハウス症候群に罹ったとき、ある いは新築に限らず高濃度の室内汚染が発見されたとき、どの建材或いは家具力 原 因物質が放散されて 、るかがわかれば、その建材や家具を交換することによってシッ クハウス症候群の原因を取り去ることができる。
[0004] しかしながら、現在、 JISに規定される揮発性有機化学物質の放散量の測定方法は 、建材の試験片を小型デシケータに入れて測定するデシケータ法であり、また将来 的に、建材を入れて測定可能な 20— 1000リットルの小型チャンバを使用する小型 チャンバ法や、家具 ·建具を入れて測定可能な大型チャンバを用いる大型チャンバ 法の原案作成が急がれているが、何れも、家屋に建て付けられた建材力ゝらの放散フ ラックスを測定することはできな 、。
[0005] また、室内空気に含まれる有害化学物質の濃度測定装置は存在するが、この測定 装置では有害化学物質の放散フラックスを測定できないため発生源を特定すること ができない。
このため、最近では、このような濃度測定装置にアタッチメントを取り付けて、壁、天 井、床など任意の場所力 放散される化学物質放散量測定装置が提案されて 、る。 特許文献 1:特開 2002-162322号
[0006] 図 5はこのような従来の測定装置 41を示し、ボックス状に形成されたアタッチメント 4 2の底面が開口部 43に形成され、側面 44にフィルタなどを設けた清浄空気導入口 4 5が形成されると共に、上面に空気導出口 46が形成され、空気を自動吸引してその 空気中に含まれる化学物質の濃度を測定する濃度測定装置 47が空気導出口 46に 接続されている。
そして、アタッチメント 42の開口部 43を壁面、天井面、床面等の検査対象部位に当 接させた状態で、濃度測定装置 47により空気を吸引させれば、壁面などから放散さ れた有害化学物質が前記濃度測定装置 47により計測される。
[0007] し力しながら、濃度測定装置 47の空気吸引量との関係で、ボックス 41の縦 X横 X 高さ = 20cm X 20cm X 30cmと大型であるため、持ち運びに不便で、且つ、高価で あることから、通常は一台の測定装置 41で測定することとしている。
したがって、屋内において多数点での測定が必須となる発生源の特定には長時間 の調査を要する。
例えば、一つの部屋の中でィ匕学物質の発生源を特定しょうとすると、少なくとも、壁 、天井、床、室内ドア、クローゼット内など複数箇所について測定しなければならない 。この場合に、一台の測定装置 41で測定するには、順次測定していかなければなら ず、 1箇所の測定に最低 30分程度を要するため、一軒の新築家屋についてその全 部屋を隈なく測定しょうとすると、時間と手間が力かるという問題があった。
[0008] また、アタッチメント 42の開口部 43が 20cm X 20cmと大きいため、少なくともその 大きさの平面がある場所でなければ測定できず、高さが 30cmもあるため、建物の構 造上、狭くなつて!、る部分は測定することができな 、と 、う問題があった。
[0009] しかも、アタッチメント 42は内側がステンレス貼りで重いので、天井や壁面に固定す ることが極めて困難で、実際には、床面しか測定することができないだけでなぐ側面 44に形成された清浄空気導入口 45から外気 (室内空気)を取り入れる構造となって いるため、室内空気が化学物質で既に汚染されている場合に、その化学物質がフィ ルタで除去できずにアタッチメント内に侵入する可能性があるため、測定結果の信頼 性が低いという問題もある。
[0010] さらにこの方法では導出口 46から空気を自動吸引して濃度を測定するいわゆるァ クティブ法によるものであるから、開口部 43が当接されている壁面、天井面、床面等 の検査対象部位表面の空気流動状態が通常の状態とは異なる。
すなわち通常の使用状態に比べて、検査対象部位表面の空気の流速が早くなる ので、有害化学物質の拡散機構は検査対象物表面近傍のガス拡散支配力 検査対 象部位内部の拡散支配に変化する。
したがって、このようなアクティブ法で測定した場合、その測定結果は、通常使用状 態での放散フラックスと異なることがあるので、最近では、検査対象部位表面の空気 流動状態を通常の状態に維持したまま測定できるパッシブ法が推奨されている。 発明の開示
発明が解決しょうとする課題
[0011] そこで本発明は、床面はもちろん天井でも、壁面でも、狭い場所でも、測定しようと する部位力 放散されたィ匕学物質の放散流量 (放散フラックス)を外気 (室内空気)の 影響を受けたり、測定部位表面の流動状態を乱すことなぐ簡単且つ正確に測定で きるパッシブ型放散フラックスサンブラを提供することを技術的課題としている。 課題を解決するための手段
[0012] この課題を解決するために、本発明に係るパッシブ型放散フラックスサンブラは、検 查対象物から空気中に放散する特定の化学物質の放散フラックスを測定するために 、中空ケースの底面に、該底面を検査対象物に貼り付けた状態でその検査対象物か ら放散される化学物質を該ケース内に取り込む開口部が形成され、ケース内面には 、前記化学物質と湿潤環境下で変色反応を呈する試験片が前記開口部に対向して 設けられ、前記中空ケースがガスノリア性を有することを特徴としている。
[0013] また、本発明に係る放散フラックス測定装置は、特定の化学物質と湿潤環境下で変 色反応を呈する試験片を用いたパッシブ型放散フラックスサンブラを用いて放散フラ ックスを測定するもので、フラックスサンプラは、中空ケースの底面に、該底面を検査 対象物に貼り付けた状態でその検査対象物力 放散される化学物質を該ケース内 に取り込む開口部が形成され、ケース内面には、前記化学物質と湿潤環境下で変色 反応を呈する試験片が前記開口部に対向して設けられてなり、所定時間反応させた フラックスサンブラを位置決めするセッティングステージが形成された遮光室に、その フラックスサンブラの試験片に測定光を照射する光源と、前記フラックスサンブラの試 験片からの反射光強度を検出する光センサが配され、前記光センサで検出された反 射光強度に基づき放散フラックスを算出する演算処理装置を備えたことを特徴として いる。
発明の効果
[0014] 本発明に係るパッシブ型放散フラックスサンブラによれば、ケース内に水を滴下し て試験片を湿らせた後、ケースの底面を、壁面、天井面、床面など任意の検査対象 物の検査部位に貼付固定しておけば、検査対象物にホルムアルデヒドや揮発性有 機化合物 (VOC)などの有害物質が含まれて!/、る場合、その有害物質が開口部から 測定チャンバ内に侵入して試験片に達するので、有害物質の放散フラックス (放散流 量)に応じて試験片が変色する。
したがって、所定時間経過したときの試験片の色を、予め放散フラックスに応じて作 成したカラーチャートと比較することにより、その検査部位力 の有害物質の放散フラ ックスを測定することができ、開口部の開口面積と建材全体の面積の比に基づいて、 その建材全体力 排出される総放散量を算出することもできる。
この場合において、試験片の変色反応を利用して、その色変化を観察することによ り放散フラックスを測定しているので、測定に際し一切の動力、電源を必要としない。
[0015] このとき、中空ケースはガスノリア性を有し、開口部が形成された底面は検査対象 物に貼り付けられてケース内は外気力 遮断されているので、室内空気が有害物質 により汚染されていても、その影響を受けることなく検査対象物力 放散された有害 物質の放散フラックスのみを正確に検出することができる。
[0016] さらに、動力を用いた空気の吸引によって対象有害物質を試験片に輸送するァク ティブ法ではなぐ自然状態で生じる対象有害物質の分子拡散によって試験片まで 有害物質を輸送するパッシブ法を利用して 、るので、表面の流動状態を測定によつ て乱すことがなぐ通常の使用状態での放散フラックスを正確に測定することができる
[0017] なお、中空ケースをガスノリア性の低いプラスチック等で形成する場合は、ケースの 内面又は外面のいずれか一方に DLC膜などのガスノリア膜を形成しておくことにより 、有害物質の透過率をより低く抑えることができる。
また、サンブラの大きさは任意であるが、縦横 5mm— lcm程度の方形試験片を使 用する場合、中空ケース外形の大きさは、せ 、ぜ 、縦 X横 X厚さ = 2cm X 2cm X 3 mm程度で足り、どんな狭いところでも両面粘着テープなどを使用して簡単に貼付固 定することができる。
さらに、個々のサンブラの構造は極めて簡単で、その製造コストも安価であるので、 複数のサンブラを夫々の測定箇所に貼付固定することにより、同時に放散フラックス を測定することができる。
[0018] なお、放散フラックスは、所定時間経過したときの試験片の色をカラーチャートと比 較して測定する場合に限らず、試験片の色を光学的に測定し、これに基づいて算出 すれば、より正確に測定することができる。
この場合、所定時間反応させたフラックスサンブラを測定装置の遮光室に形成され たセッティングステージにセットすれば、光源カゝら照射された測定光が観察部に照射 され、その反射光強度が光センサで検出される。
反射光強度は試験片の色に対応し、試験片の色は放散フラックスに対応する。 したがって、予め放散フラックスと反射光強度の関係を求めておけば、検出された 反射光強度力 放散フラックスを正確に算出できる。
発明を実施するための最良の形態
[0019] 本発明は、測定しょうとする部位力も放散されたィ匕学物質の流量を外気 (室内空気 )の影響を受けることなぐ簡単且つ正確に測定できるようにするという課題を、電気 的な測定装置を使用することなぐ極めて簡単な構成のサンブラを用いることにより実 現した。
実施例 1 [0020] 以下、本発明を実施するための最良の形態を図面に基づいて具体的に説明する。 図 1は、本発明に係るパッシブ型放散フラックスサンブラの一例を示す断面図であ る。
[0021] 本例のパッシブ型放散フラックスサンブラ 1は、建材等の検査対象物 3に含まれるホ ルムアルデヒド (化学物質)が空気中に放散されるときの放散フラックス (放散流量)を 測定するものであって、ガスバリア性を有する偏平中空ケース 2の底面 2aに、検査対 象物 3から放散されるホルムアルデヒドをケース 2内に取り込む開口部 4が形成され、 ケース 2の内面には、ホルムアルデヒドと湿潤環境下で変色反応を呈する試験片 5が 前記開口部 4に対向して設けられている。
また、底面 2aに対して反対側の面が試験片 5の色変化を外部から観察する観察部 2bとなっている。
[0022] 試験片 5は、例えば lcm X 1cm程度の大きさの紙製基材シートに発色剤となる IN T(p—ョードニトロテトラゾリユウムバイオレット)と、反応触媒となるデヒドロゲナーゼ及 びジァフオラーゼの二種類の酵素が担持されて 、る。
これにより、水に濡らした試験片 5にホルムアルデヒドが接すると、デヒドロゲナーゼ によりホルムアルデヒドの水素が脱離されて、蟻酸と NADH (ニコチンアミドアデニン ジヌクレオチド)に分解され、その NADHと ΙΝΤがジァフオラーゼにより反応して ΙΝΤ が減ることにより発色する。
[0023] 開口部 4と試験片 5の間には、検査対象物 3の表面と試験片 5との間に一定の距離
(例えば lmm)を確保する所定厚さの通気性スぺーサ 6が設けられており、検査対象 物 3から放散されたホルムアルデヒドを試験片 5に到達させることができる多孔質材料 で形成されたり、多数の通気孔を穿設した金属及びプラスチックなどで形成されてい る。
[0024] また、ケース底面 2aには両面テープ等の粘着層 7が形成されており、検査対象物 3 の表面に貼付固定したときに、試験片 5が通気性スぺーサ 6に押し当てられ、且つ、 通気性スぺーサ 6が検査対象物 3の表面に押し当てられて、ケース 2と検査対象物 3 の間に隙間を生じな 、ように通気性スぺーサ 6の厚さが選定されて 、る。
[0025] そして、例えば、ケース 2全体の大きさが、縦 横 厚さ= 2«!1 2«11 3111111程 度に形成され、凹部 5の大きさが、縦 X横 X深さ = lcm X lcm X 1.5— 2mm程度に 形成されている。
この程度の厚さのプラスチック製ケース 2を用いた場合、ホルムアルデヒドはそのプ ラスチックを透過してしまうので、対ホルムアルデヒドのガスバリア性を高めるために、 ケース 2の外面又は内面の少なくとも一方に透明の DLC膜 (ダイヤモンドライクカー ボン膜)、シリカ蒸着膜などのガスノ リア膜 8が形成され、本例では DLC膜が形成さ れている。
DLC膜はホルムアルデヒドに対するガスバリア性が極めて高 、ので、安価でガス等 ノ リア性の低いプラスチックで中空ケース 2を形成しても、室内空気に含まれるホルム アルデヒドがケース 2を透過して試験片 5を変色させることがなぐ検査対象物 3から 放散されたホルムアルデヒドの放散フラックスのみを正確に測定できる。
なお、中空ケース 2はプラスチック製に限らずガラスその他任意の材料を使用するこ とができ、ガラスのようなガスノ リア性の高い材料を使用した場合は、ガスバリア膜を 形成する必要はない。
[0026] 以上が本発明の、一構成例であって、次にその作用について説明する。
まず、気密保存して 、たパッシブ型放散フラックスサンブラ 1の通気性スぺーサ 6側 力 水を滴下して試験片 5を濡らしておく。
次いで、壁面、床面、天井面、家具の表面など検査対象物 3に対し、通気性スぺー サ 6側を向けてケース 2を粘着テープなどにより貼付固定する。
そして、このまま所定時間放置すれば、検査対象物 3から放散されたホルムアルデ ヒドが通気性スぺーサ 6を透過して、一定距離隔てられた試験片 5に分子拡散によつ て到達する。
したがって、放散フラックスが多いときは発色反応が促進されて試験片 5は濃赤紫 色を呈し、放散フラックスが少ないときは発色反応により試験片 5は淡赤紫色を呈す る。
[0027] このように試験片 5の色が変化するので、所定時間経過したときの色を予め放散フ ラックスに応じて作成しておいたカラーチャートと比較することにより、その検査対象 物 3の検査部位からの有害物質の放散フラックスを測定することができる。 また、同一材料であれば、その他の部位の放散フラックスも同量と予想できるので、 通気性スぺーサ 6の面積と検査対象物 3の表面積との比に基づいて総放散量を算出 することちでさる。
この場合において、試験片 5の変色反応を利用して、その色変化を観察することに より放散フラックスを測定しているので、測定に際し空気を吸い込んだりする必要もな ぐ一切の動力、電源を必要としない。
[0028] このとき、試験片 5と通気性スぺーサ 6が積層状態でケース 2により覆われており、 外気力 遮断された状態で検査対象物に当接されるので、室内空気が有害物質に より汚染されていても、その影響を受けることなく検査対象物力も放散された有害物 質のみを正確に検出することができる。
また、通気性スぺーサ 6により、試験片 5と検査対象物 3との間に一定距離のスぺー スが確保されるので、常に同一条件で測定することができる。
さらに、対象有害物質を分子拡散によって試験片まで輸送しているので、測定部位 の表面の流動状態を測定によって乱すことがなぐ通常の使用状態での放散フラック スを正確に測定することができる。
ケース 2は、その外面又は内面の片方又は双方に DLC膜 8が形成されてホルムァ ルデヒドに対するガスバリア性が高 、ので、室内空気に含まれるホルムアルデヒドが ケース 2を透過して試験片 5を変色させることがなぐ検査対象物 3から放散されたホ ルムアルデヒドの放散フラックスを正確に測定できる。
[0029] さらに、サンブラ 1は上述したように極めて小型に形成できるので、どんな狭いところ でも粘着テープなどを使用して簡単に貼付固定することができる。
また、個々のサンブラ 1の構造は極めて簡単で、その製造コストも安価であるので、 複数のサンブラ 1を夫々の測定箇所に貼付固定することにより、多数の測定点におけ る放散フラックスを同時に測定することもできる。
実施例 2
[0030] 図 2は本発明に係るパッシブ型放散フラックスサンブラの他の実施形態を示す説明 図である。
本例のパッシブ型放散フラックスサンプラ 11は、ガスノ リア性を有する中空ケース 1 2が中空円板型に形成され、その底面 12aに、該底面 12aを検査対象物 13に貼り付 けた状態でその検査対象物 13から放散される化学物質をケース 12内に取り込む開 口部 14が形成され、ケース 12の内面には、前記化学物質と湿潤環境下で変色反応 を呈する試験片 15が前記開口部 14に対向して貼り付けられて 、る。
[0031] これによつて、フラックスサンブラ 11を検査対象物 13に貼り付けた状態で、検査対 象物 13の表面力 試験片 15までの距離を一定に維持できる。
また、中空ケース 12は、検査対象物 13に貼り付けたままの状態で試験片 15の色 変化を外部力 観察できるように全体が透明に形成されており、底面 12aの反対面 側が試験片 15を裏面から観察する観察部 12bとなっており、その外周縁には貼付け •取外しを容易に行 、得るようにフランジ 12cが形成されて 、る。
[0032] ケース 12内には、環状の保水紙 (保水材) 16力 開口部 14から試験片 15に至る流 路を囲むように配されており、測定時に開口部 14からケース 12内に水滴を滴下する ことによりその水滴を吸引し、試験片 15を湿潤環境に維持する。
また、開口部 14には、その端縁からケース 12の内側に延びる環状リブ 17が形成さ れており、開口部 14から滴下された水滴が表面張力で滞ることなく保水紙 16に案内 されると共に、検査対象物 13から放散される化学物質を開口部 14に対向して設けら れた試験片 15に真っ直ぐに導いてその放散量に応じた変色反応をより正確に生じさ せるようになっている。
[0033] 本例では、中空ケース 12が、厚さ 0.5mm程度のプラスチックで、直径 X厚さ = 2c m X 3mm程度、開口部 14の直径が 5mm程度に形成されている。
この程度の厚さのプラスチック製ケース 12を用いた場合、ホルムアルデヒドはその プラスチックを透過してしまうので、対ホルムアルデヒドのガスバリア性を高めるために 、ケース 12の外面又は内面の少なくとも一方に透明の DLC膜 (ダイヤモンドライク力 一ボン膜)、シリカ蒸着膜などのガスノリア膜 18が蒸着され、本例では DLC膜が形成 されている。
DLC膜はホルムアルデヒドに対するガスバリア性が極めて高いので、室内空気に 含まれるホルムアルデヒドがケース 12を透過して試験片 15を変色させることがなく、 検査対象物 13力も放散されたホルムアルデヒドの放散フラックスのみを正確に測定 できる。
なお、中空ケース 12はプラスチック製に限らずガラスその他任意の材料を使用する ことができ、ガラスを使用した場合はもともとガスノリア性が高いので、ガスバリア膜を 形成する必要はない。
[0034] そして、中空ケース 12の底面 12aには、開口部 14の周囲に環状の接着層 19が形 成され、保存状態でケース 12内に湿気が入らないように、その接着層 19に円形アル ミシート 20が貼り付けられて開口部 14が気密に封止されて ヽる。
[0035] このフラックスサンプラ 11を用いて測定する場合、アルミシート 20を剥がして、開口 部 14力もケース 12内に水滴を滴下し、試験片 15を湿潤させると共に、測定中に試 験片 15を湿潤環境に維持するように保水紙 16を湿らしておく。
このとき、開口部 14には環状リブ 17が形成されているので、水滴がその表面張力 により開口部 14の端縁に滞ることがなぐスムースにケース 12内に流入する。
[0036] 次いで、ケース底面 12aを壁面、床面、天井面、家具など任意の検査対象物 13に 貼り付ける。
この場合において、開口部 14が下向きになるように貼り付けても、ケース 12内の水 滴が開口部 14に形成された環状リブ 17に堰き止められるので、開口部 14から流れ 出すことがない。
[0037] この状態で、検査対象物 13から放散される化学物質が開口部 14を通り、ケース 12 内に取り込まれ、環状リブ 17で形成された流路に案内されて、その正面に配された 試験片 15に達する。
そして、予め設定された所定時間(30分一 2時間)経過すると、放散フラックスが多 いところは試験片 15が濃赤色に変化し、少ないところは淡赤色に変化し、 0に近いと ころはほとんど変化しない。
したがって、前述同様、試験片 15の色に応じて放散フラックスを測定することができ る。
[0038] 図 4は、本発明に係る放散フラックスを算出する放散フラックス測定装置を示す。
本例の測定装置 21は、上述したフラックスサンブラ 11を用 、て放散フラックスを測 定するもので、遮光蓋 22の内側に試験片 15の色変化を光学的に測定する遮光室 2 3が形成されると共に、検出された色変化に基づき放散フラックスを算出する演算処 理装置 24と、その値を表示する液晶ディスプレ 25を備えて 、る。
[0039] 遮光室 23内には、フラックスサンプラ 11を位置決めするセッティングステージ 26と 、そのフラックスサンブラ 11の観察部 12bに測定光を照射する光源 27と、前記フラッ タスサンブラ 11の観察部 12bからの反射光強度を検出する光センサ 28が配されてい る。
[0040] セッティングステージ 26にフラックスサンプラ 11をその観察部 12bを下向きにしてセ ットすると、セッティングステージ 26下方に配された光源 27から試験片 15の位置に 測定光が照射される。
試験片 15はホルムアルデヒドと反応して赤一赤紫系に変色するので、光源 27はそ の補色関係にある緑系の光を測定光として出力する LEDが用いられ、本例では測 定光の中心波長が 555nmに選定されて!、る。
[0041] また、光センサ 28としては、波長 500— 600nmにピーク感度を有するホトダイォー ドが使用されており、ホルムアルデヒドの放散フラックスが多いときは試験片 15が濃 色に変化して測定光が吸収されるので、光センサ 28で検出される反射光強度が低 下し、放散フラックスが少ないときは試験片 15の変色が少なく測定光の吸収が少な いので反射光強度が相対的に高くなる。
[0042] 演算処理装置 24では、反射光強度に基づき変色に伴う吸光度を算出し、吸光度 に基づき放散量を算出する。
まず、吸光度 Pは次式により算出する。
P= [l-V /V ] X 100 (%)
1 0
V:反応前の試験片 15若しくは基準白色の反射光強度
0
V:反応後の試験片 15についての反射光強度
[0043] そして、吸光度 放散量変換テーブル 29に、既知の基準放散量 Fnで測定された サンブラ 11の吸光度 Pnに基づき放散量 Fnと吸光度 Pnの関係を記憶させておき、反 応後のフラックスサンブラ 11っ 、て算出された吸光度 Pに基づ 、て、吸光度-放散量 変換テーブル 29を参照し放散量 Fが求められる。
ここで、吸光度 放散量変換テーブル 29は、 Fn=f (Pn)の関数で表わされる場合 であっても、その変換値を数表化して記憶して 、る場合であっても良 、。
[0044] このようにすれば、放散量 Pは数値として出力することができるので、試験片 15の微 妙な色変化について、カラーチャートとの比較が困難な場合であっても、正確に放散 量を算出することができる。
[0045] なお、ケース 12に透明の観察部 12bが形成されている場合について説明したが、 本発明はこれに限らず、不透明であってもよぐこの場合に測定装置 21を用いて光 学的に測定する場合は、開口部 14側から試験片 15に測定光を照射すればよい。 産業上の利用可能性
[0046] 以上述べたように、本発明は、ホルムアルデヒドの放散フラックスを測定することはも ちろんのこと、本発明はこれに限らず、試験片に含浸させる試薬を任意に選択するこ とにより、その他の揮発性有機化合物 (VOC)などの化学物質の放散フラックスを測 定する用途に適用できる。
図面の簡単な説明
[0047] [図 1]本発明に係るノッシブ型放散フラックスサンブラの説明図。
[図 2]他の実施形態を示す説明図。
[図 3]その分解構成図。
圆 4]本発明に係る放散フラックス測定装置を示す説明図。
[図 5]従来装置を示す説明図。
符号の説明
[0048] 1、 11 パッシブ型放散フラックスサンプラ
2、 12 ケース
2a、 12a 底面
2b、 12b 観察部
3、 13 検査対象物
4、 14 開口部
5、 15 試験片
6 通気性スぺーサ
7、 19 粘着層 DLC膜
保水材
環状リブ
放散フラックス測定装置 遮光蓋
遮光室
演算処理装置
液晶ディスプレイ
セッティングステージ 光源
光センサ
吸光度一放散量変換テーブル

Claims

請求の範囲
[1] 検査対象物力 空気中に放散する特定の化学物質の放散フラックスを測定するパ ッシブ型放散フラックスサンブラであって、
中空ケースの底面に、該底面を検査対象物に貼り付けた状態でその検査対象物か ら放散される化学物質を該ケース内に取り込む開口部が形成され、ケース内面には 、前記化学物質と湿潤環境下で変色反応を呈する試験片が前記開口部に対向して 設けられ、前記中空ケースがガスノリア性を有することを特徴とするパッシブ型放散 フラックスサンプラ。
[2] 検査対象物力 空気中に放散する特定の化学物質の放散フラックスを測定するパ ッシブ型放散フラックスサンブラであって、
中空ケースの底面に、該底面を検査対象物に貼り付けた状態でその検査対象物か ら放散される化学物質を該ケース内に取り込む開口部が形成され、ケース内面には 、前記化学物質と湿潤環境下で変色反応を呈する試験片が前記開口部に対向して 設けられ、前記ケースには、前記試験片の色変化を外部から観察する透明の観察部 が形成されていることを特徴とするパッシブ型放散フラックスサンブラ。
[3] 前記中空ケースがガスバリア性を有する請求項 2記載のパッシブ型放散フラックス サンプラ。
[4] 前記中空ケースの外面又は内面の少なくとも一方にガスバリア膜が形成されて、中 空ケースにガスノリア性を持たせた請求項 1又は 3記載のノ ッシブ型放散フラックス サンプラ。
[5] 前記中空ケース内に、前記試験片を湿潤環境に維持する保水材が配されて成る請 求項 1乃至 3記載のパッシブ型放散フラックスサンブラ。
[6] 前記開口部の端縁からケース内側に延びる環状リブが形成された請求項 1乃至 3 記載のノ ッシブ型放散フラックスサンブラ。
[7] 前記開口部と試験片の間に一定の距離を確保する所定厚さの通気性スぺーサが 設けられた請求項 1乃至 3記載のパッシブ型放散フラックスサンブラ。
[8] 特定の化学物質と湿潤環境下で変色反応を呈する試験片を用いたパッシブ型放 散フラックスサンブラの放散フラックス測定装置であって、 前記フラックスサンブラは、ガスバリア性を有する中空ケースの底面に、該底面を検 查対象物に貼り付けた状態でその検査対象物力 放散される化学物質を該ケース 内に取り込む開口部が形成され、ケース内面には、前記化学物質と湿潤環境下で変 色反応を呈する試験片が前記開口部に対向して設けられ、
所定時間反応させたフラックスサンブラを位置決めするセッティングステージが形成 された遮光室に、そのフラックスサンブラの試験片に測定光を照射する光源と、前記 フラックスサンブラの試験片カ の反射光強度を検出する光センサが配され、 前記光センサで検出された反射光強度に基づき放散フラックスを算出する演算処 理装置を備えたことを特徴とする放散フラックス測定装置。
特定の化学物質と湿潤環境下で変色反応を呈する試験片を用いたパッシブ型放 散フラックスサンブラの放散フラックス測定装置であって、
前記フラックスサンブラは、中空ケースの底面に、該底面を検査対象物に貼り付け た状態でその検査対象物から放散される化学物質を該ケース内に取り込む開口部 が形成され、ケース内面には、前記化学物質と湿潤環境下で変色反応を呈する試験 片が前記開口部に対向して設けられ、前記ケースには、前記試験片の色変化を外 部から観察する透明の観察部が形成され、
所定時間反応させたフラックスサンブラを位置決めするセッティングステージが形成 された遮光室に、そのフラックスサンブラの観察部を介して前記試験片に測定光を照 射する光源と、前記フラックスサンブラの試験片カ の反射光強度を検出する光セン サが配され、
前記光センサで検出された反射光強度に基づき放散フラックスを算出する演算処 理装置を備えたことを特徴とする放散フラックス測定装置。
PCT/JP2004/014930 2004-01-09 2004-10-08 パッシブ型放散フラックスサンプラ及びフラックス測定装置 WO2005066625A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005516795A JP3839039B2 (ja) 2004-01-09 2004-10-08 パッシブ型放散フラックスサンプラ及びフラックス測定装置
US10/597,041 US20070190655A1 (en) 2004-01-09 2004-10-08 Passive type emission flux sampler and flux measuring apparatus
US11/779,688 US20080014116A1 (en) 2004-01-09 2007-07-18 Passive type emission flux sampler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-003930 2004-01-09
JP2004003930 2004-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/779,688 Continuation US20080014116A1 (en) 2004-01-09 2007-07-18 Passive type emission flux sampler

Publications (1)

Publication Number Publication Date
WO2005066625A1 true WO2005066625A1 (ja) 2005-07-21

Family

ID=34747097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014930 WO2005066625A1 (ja) 2004-01-09 2004-10-08 パッシブ型放散フラックスサンプラ及びフラックス測定装置

Country Status (5)

Country Link
US (2) US20070190655A1 (ja)
JP (1) JP3839039B2 (ja)
KR (2) KR20070070257A (ja)
CN (2) CN1914508A (ja)
WO (1) WO2005066625A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214747A (ja) * 2005-02-01 2006-08-17 Tokai Univ 皮膚ガス捕集装置
JP2018087776A (ja) * 2016-11-29 2018-06-07 ジーエルサイエンス株式会社 酵素センサー
JP2018141711A (ja) * 2017-02-28 2018-09-13 株式会社ガステック 比色型皮膚ガス測定装置
JP2019128312A (ja) * 2018-01-26 2019-08-01 株式会社ガステック 放散ガスを利用したサイレージの品質評価方法とそのための装置
WO2022004685A1 (ja) * 2020-07-02 2022-01-06 パナソニックIpマネジメント株式会社 機能性部材とこれを備えた化学物質センサー
US11604189B2 (en) 2017-04-28 2023-03-14 Leadway (Hk) Limited Detection device capable of visual test results

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628548B2 (en) * 2007-10-01 2009-12-08 Corning Cable Systems Llc Index-matching gel for nanostructure optical fibers and mechanical splice assembly and connector using same
US8153959B1 (en) * 2007-10-10 2012-04-10 Rad Elec Inc. Measurement of undisturbed radon ground surface flux using a passive radon surface flux monitor
CN102439422B (zh) * 2009-03-30 2016-05-18 3M创新有限公司 用于检测被分析物的光电方法和装置
CN105424420B (zh) * 2015-12-24 2018-09-04 深圳市建筑科学研究院股份有限公司 一种被动式污染通量采样器
CN113030377A (zh) * 2019-12-25 2021-06-25 广州禾信仪器股份有限公司 VOCs溯源检测设备、系统及方法
CN112034125A (zh) * 2020-08-28 2020-12-04 上海应用技术大学 一种测定污水池挥发性有机物排放量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229889A (ja) * 1994-02-16 1995-08-29 Riken Keiki Co Ltd ホルムアルデヒド検知紙
JPH10185775A (ja) * 1996-12-25 1998-07-14 Ohbayashi Corp ガス捕集装置
JPH11118681A (ja) * 1997-10-14 1999-04-30 Ohbayashi Corp ガス発生量簡易試験方法
JP2003247989A (ja) * 2001-12-17 2003-09-05 Tomohiko Hashiba ガス中のホルムアルデヒド濃度の測定方法および測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540526A1 (de) * 1985-11-15 1987-05-27 Bayer Ag Transparentes teststreifensystem
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
EP0279574B1 (en) * 1987-02-17 1992-08-19 CMB Foodcan plc Analytical test strip
US4840919A (en) * 1987-03-03 1989-06-20 Perfect View, Inc. Gas dosimeter for colorimetrically indicating the presence of amides
AU720646B2 (en) * 1996-11-19 2000-06-08 Obayashi Corporation Gas collecting system
AU2003227215A1 (en) * 2002-04-24 2003-11-10 Bio Media Co., Ltd. Method of measuring formaldehyde concentration of gas and measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229889A (ja) * 1994-02-16 1995-08-29 Riken Keiki Co Ltd ホルムアルデヒド検知紙
JPH10185775A (ja) * 1996-12-25 1998-07-14 Ohbayashi Corp ガス捕集装置
JPH11118681A (ja) * 1997-10-14 1999-04-30 Ohbayashi Corp ガス発生量簡易試験方法
JP2003247989A (ja) * 2001-12-17 2003-09-05 Tomohiko Hashiba ガス中のホルムアルデヒド濃度の測定方法および測定装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214747A (ja) * 2005-02-01 2006-08-17 Tokai Univ 皮膚ガス捕集装置
JP4654045B2 (ja) * 2005-02-01 2011-03-16 学校法人東海大学 皮膚ガス捕集装置
JP2018087776A (ja) * 2016-11-29 2018-06-07 ジーエルサイエンス株式会社 酵素センサー
JP2018141711A (ja) * 2017-02-28 2018-09-13 株式会社ガステック 比色型皮膚ガス測定装置
US11604189B2 (en) 2017-04-28 2023-03-14 Leadway (Hk) Limited Detection device capable of visual test results
JP2019128312A (ja) * 2018-01-26 2019-08-01 株式会社ガステック 放散ガスを利用したサイレージの品質評価方法とそのための装置
JP7010432B2 (ja) 2018-01-26 2022-02-10 株式会社ガステック 放散ガスを利用したサイレージの品質評価方法
WO2022004685A1 (ja) * 2020-07-02 2022-01-06 パナソニックIpマネジメント株式会社 機能性部材とこれを備えた化学物質センサー

Also Published As

Publication number Publication date
JP3839039B2 (ja) 2006-11-01
US20070190655A1 (en) 2007-08-16
KR20070026353A (ko) 2007-03-08
KR20070070257A (ko) 2007-07-03
JPWO2005066625A1 (ja) 2007-07-26
US20080014116A1 (en) 2008-01-17
CN101101244A (zh) 2008-01-09
CN1914508A (zh) 2007-02-14

Similar Documents

Publication Publication Date Title
US20080014116A1 (en) Passive type emission flux sampler
US20070134129A1 (en) Ozone gas sensing element
US20090075389A1 (en) Method for determining an analyte in a fluid
ATE531018T1 (de) Rauchmelder mit verschmutzungsüberwachung
EP1500930A1 (en) Method of measuring formaldehyde concentration of gas and measuring instrument
Kudo et al. Fiber-optic biochemical gas sensor (bio-sniffer) for sub-ppb monitoring of formaldehyde vapor
JP4080512B2 (ja) パッシブ型放散フラックスサンプラ
JP3889989B2 (ja) ガス中のホルムアルデヒド濃度の測定方法および測定装置
Yamashita et al. A simple method for screening emission sources of carbonyl compounds in indoor air
JP2014505260A (ja) 過酸化水素検出のための装置及び方法
JP5022490B2 (ja) 光分解反応及び電気化学分解反応を検出するため光学特性値を判定する測定装置及び方法
Marć et al. Small-scale passive emission chamber for screening studies on monoterpene emission flux from the surface of wood-based indoor elements
US20080133148A1 (en) Method For Checking Indoor Environment
Maruo et al. Development and evaluation of ozone detection paper
JP2005345390A (ja) ガス中のホルムアルデヒド濃度の測定方法
JP2007298328A (ja) 光触媒活性度評価装置
JP4849546B2 (ja) パッシブ型放散量測定装置
CN106066293A (zh) 利用梯度润湿表面检测酒精浓度的方法
KR20150120249A (ko) 가스 중의 포름알데히드 농도의 측정방법 및 측정장치
JP7351462B2 (ja) 一酸化窒素ガス検知方法及び一酸化窒素ガス検知装置
Marć et al. Miniaturized passive emission chambers for in situ measurement of emissions of volatile organic compounds
JP3148570U (ja) ホルムアルデヒドセンサ
JP4476849B2 (ja) 汚染物質放散量の測定方法
JP2006118861A (ja) ガス中の被検物質検出器及びそのためのホルダー
Chatzidiakou et al. Indoor Air Quality and Ventilation Measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005516795

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067013784

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200480041486.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10597041

Country of ref document: US

Ref document number: 2007190655

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067013784

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10597041

Country of ref document: US