WO2005062319A1 - 電気化学キャパシタ用電極及びその製造方法並びに電気化学キャパシタ用電極の製造装置 - Google Patents

電気化学キャパシタ用電極及びその製造方法並びに電気化学キャパシタ用電極の製造装置 Download PDF

Info

Publication number
WO2005062319A1
WO2005062319A1 PCT/JP2004/019711 JP2004019711W WO2005062319A1 WO 2005062319 A1 WO2005062319 A1 WO 2005062319A1 JP 2004019711 W JP2004019711 W JP 2004019711W WO 2005062319 A1 WO2005062319 A1 WO 2005062319A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
electrochemical capacitor
current collector
polarizable electrode
electrode
Prior art date
Application number
PCT/JP2004/019711
Other languages
English (en)
French (fr)
Inventor
Kiyonori Hinoki
Kazuo Katai
Yosuke Miyaki
Hideki Tanaka
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003432272A external-priority patent/JP2005191357A/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to CN2004800355291A priority Critical patent/CN1886812B/zh
Priority to EP04808061A priority patent/EP1699061B1/en
Publication of WO2005062319A1 publication Critical patent/WO2005062319A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Electrode for electrochemical capacitor Description Electrode for electrochemical capacitor, method for manufacturing the same, and apparatus for manufacturing electrode for electrochemical capacitor
  • the present invention relates to an electrode for an electrochemical capacitor, a method for manufacturing the same, and an apparatus for manufacturing an electrode for an electrochemical capacitor. More particularly, the present invention relates to an electrode for an electrochemical capacitor having a high volume capacity, a method for manufacturing the same, and a method for manufacturing an electrode for an electrochemical capacitor. About equipment.
  • Electrochemical capacitors such as electric double layer capacitors can be easily reduced in size and weight.
  • power supplies for backing up power supplies for portable equipment (small electronic equipment), electric vehicles and hybrid vehicles It is expected to be used as an auxiliary power source, etc., and various studies are being made to improve its performance.
  • volume capacity an electrostatic capacity per unit volume of an electrode
  • the electrode used in such an electrochemical capacitor has a laminated structure including a current collector and a polarizable electrode layer, and a solution serving as a material for the polarizable electrode layer is formed on the surface of the sheet-like current collector. It can be manufactured by applying and drying (see Patent Document 1). However, simply applying such a solution to the surface of the current collector and drying the solution cannot provide a sufficient volumetric capacity due to the low density of the formed polarizable electrode layer. Therefore, in order to obtain a higher volume capacity, it is necessary to form the polarizable electrode layer by coating and then compress the polarizable electrode layer by a roll press or the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-1006 332 [Disclosure of the Invention]
  • the compression of the polarizable electrode layer is insufficient with only a roll press using a roller having a substantially smooth surface, which is required for a large-capacity electrochemical capacitor. It was found to be difficult to achieve volumetric capacity (1 7 F / cm 3 or higher) that are.
  • an object of the present invention is to provide a method and apparatus for manufacturing an electrode for an electrochemical capacitor having a higher volume capacity.
  • the method for manufacturing an electrode for an electrochemical capacitor according to the present invention includes a first step of forming a polarizable electrode layer on a current collector, and embossing a surface of the polarizable electrode layer formed on the current collector. And a third step of flattening the surface of the pre-embossed polarizable electrode layer.
  • embossing the surface of the polarizable electrode layer means forming a concavo-convex pattern on the surface of the polarizable electrode layer by compressing the polarizable electrode layer.
  • the concavo-convex pattern to be formed may be regular or random.
  • flattening the surface of the embossed polarizable electrode layer means reducing the height of the concave pattern formed on the surface of the polarizable electrode layer by compression. Therefore, it is not always necessary to completely remove the emboss, and it is sufficient if the height of the uneven pattern is reduced. In this case, a new embossment may be formed as long as the height of the uneven pattern is reduced as a whole.
  • the “height of the concavo-convex pattern” refers to the vertical distance between the convex portion and the concave portion.
  • the polarizable electrode layer is embossed, the polarizable electrode layer is effectively compressed, and as a result, the polarizable electrode layer is as high as 17 FZ cm 3 or more. Volume capacity can be achieved.
  • the emboss is flattened after the embossing, the drop of the porous particles contained in the polarizable electrode layer is prevented, and high reliability can be secured.
  • a coating liquid containing porous particles having electron conductivity, a binder capable of binding the porous particles, and a liquid capable of dissolving or dispersing the binder is provided by the current collector. It is preferable to carry out by applying on the body. According to this, it is possible to easily form the polarizable electrode layer on the current collector. In this case, it is preferable that the coating liquid further contains a conductive auxiliary. The use of the conductive additive can promote the transfer of charges between the current collector and the polarizable electrode layer.
  • the second step is performed by a jaw press using a roller provided with an uneven pattern on the surface.
  • the surface of the polarizable electrode layer can be reliably embossed.
  • the height of the concavo-convex pattern is preferably 20% or more and 70% or less of the thickness of the polarizable electrode layer before performing the second step. This is because, if the concavo-convex pattern is too low, the polarizable electrode layer is not effectively compressed, while if the concavo-convex pattern is too high, damage to the current collector is increased.
  • the third step is preferably performed by a stirrup press using a roller having a substantially smooth surface. According to this, it is possible to reliably flatten the emboss formed on the surface of the polarizable electrode layer.
  • the third step may be performed, or the third step may be performed a plurality of times. According to this, the polarizable electrode layer is further compressed, and the drop of the porous particles contained in the polarizable electrode layer is more reliably prevented.
  • An apparatus for manufacturing an electrode for an electrochemical capacitor according to the present invention is an electrode for an electrochemical capacitor for manufacturing an electrode for an electrochemical capacitor by roll-pressing at least a laminate in which a current collector and a polarizable electrode layer are stacked.
  • Production equipment A first roll press section for embossing the surface of the polarizable electrode layer; and a first roll press section provided downstream of the first roll press section for flattening the surface of the embossed polarizable electrode layer. And a second roll press section.
  • the polarizable electrode layer can be effectively compressed, and the porous particles contained in the polarizable electrode layer are prevented from falling off, thereby ensuring high reliability. Becomes possible. Also, contamination of the device due to the dropped porous particles is prevented.
  • the first roll press section includes first and second rollers for roll-pressing the laminate, and an uneven pattern is provided on at least one surface of the first and second rollers. It is preferable that the height of the concave-convex pattern is not less than 20% and not more than 70% of the thickness of the polarizable electrode layer before performing the knurling by the first knurling unit. Is more preferred. Further, the concave-convex pattern is provided in an area having a width substantially equal to the width of the polarizable electrode layer, and an area adjacent to the area may be substantially smooth. If such a roller is used, the current collector that is not covered with the polarizing electrode layer is not embossed, so that damage to the current collector can be reduced.
  • the second roll press section has third and fourth rollers for roll-pressing the laminate, and the surfaces of the third and fourth rollers are both substantially smooth. Is preferred.
  • the electrode for an electrochemical capacitor according to the present invention includes a sheet-shaped current collector, and a polarizable electrode layer provided on the current collector except for a predetermined exposed portion, wherein the polarizable electrode layer is The current collector is characterized in that at least a part of the exposed portion is not embossed.
  • the polarizable electrode layer since the surface of the polarizable electrode layer is embossed, the polarizable electrode layer is effectively compressed, and as a result, a high volume capacity of 17 FZ cm 3 or more is achieved. It is possible to do. Moreover, at least the exposed part of the current collector Since some of them have not been embossed, damage to the current collector is reduced, and high reliability can be ensured. In this case, it is preferable that substantially the entire exposed portion of the current collector is not embossed.
  • the polarizable electrode layer preferably contains porous particles having electron conductivity and a binder capable of binding the porous particles, and further contains a conductive additive. More preferred.
  • the use of the conductive additive makes it possible to promote the transfer of electric charge between the current collector and the polarizable electrode layer.
  • the method of manufacturing an electrode for an electrochemical capacitor according to the present invention includes a first step of applying a polarizable electrode layer on the current collector so that an exposed portion is left on a part of the current collector; A second step of embossing a surface of the polarizable electrode layer formed on the current collector without embossing at least a part of the exposed portion of the body.
  • the effective compression of the polarizable electrode layer an electric with a 1 7 FZ cm 3 higher than the body volume capacity It becomes possible to manufacture an electrode for a chemical capacitor. Also in this case, it is preferable not to emboss substantially the entire exposed portion of the current collector.
  • the exposed portion is left on at least one end in the width direction of the current collector on the belt-shaped current collector conveyed in the length direction,
  • a polarizable electrode layer is applied. According to this, the polarizable electrode layer is continuously formed on the current collector, so that high productivity can be obtained.
  • a coating liquid containing porous particles having electron conductivity, a binder capable of binding the porous particles, and a liquid capable of dissolving or dispersing the binder is prepared by the method comprising: It is preferable to carry out by applying on an electric body. According to this, it is possible to easily form the polarizable electrode layer on the current collector. In this case, it is preferable that the coating liquid further contains a conductive auxiliary. The use of the conductive additive makes it possible to promote the transfer of electric charge between the current collector and the polarizable electrode layer, as described above. It is preferable that the second step is performed by roll pressing using a roller provided with an uneven pattern partially. In the second step, another part may be embossed while leaving a part of the surface of the polarizable electrode layer formed on the current collector.
  • An apparatus for manufacturing an electrode for an electrochemical capacitor according to the present invention is an electrode for an electrochemical capacitor for manufacturing an electrode for an electrochemical capacitor by subjecting at least a current collector and a polarizable electrode layer to a laminate press.
  • the apparatus for manufacturing an electrochemical capacitor electrode according to the present invention while enhancing the reliability of the product by reducing the damage to the current collector, the effective compression of the polarizable electrode layer, 1 7 FZ cm 3 It is possible to manufacture an electrode for an electrochemical capacitor having a high volume capacity as described above.
  • the concavo-convex pattern is provided in an area having substantially the same width as the width of the polarizable electrode layer, and an area adjacent to the area is substantially smooth.
  • the polarizable electrode layer is embossed, the polarizable electrode layer is effectively compressed, and as a result, a high volume of 17 F / cra 3 or more is obtained. It is possible to achieve capacity. Moreover, since the emboss is flattened after the embossing, the porous particles contained in the polarizable electrode layer are prevented from falling off, and high reliability can be secured. This makes it possible to manufacture a large-capacity and highly reliable electrochemical capacitor.
  • the surface of the polarizable electrode layer and a this being embossed the polarizable electrode layer is effectively compressed, as a result, 1 7 FZ C m 3 or more high have volumetric capacity Can be achieved.
  • embossing is not performed, which not only reduces damage to the current collector due to embossing, but also reduces winding around the roller used in the roll press during manufacturing. Work efficiency can be improved.
  • FIG. 1 is a view showing a structure of an electrode for an electrochemical capacitor manufactured by a manufacturing method according to a preferred embodiment of the present invention, wherein (a) is a schematic sectional view and (b) is a schematic perspective view.
  • FIG. 2 is a flowchart illustrating a method for manufacturing an electrode for an electrochemical capacitor according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method for preparing a coating solution (step S1).
  • FIG. 4 is a schematic view showing a structure of an apparatus for manufacturing an electrode for an electrochemical capacitor according to a preferred embodiment of the present invention.
  • FIG. 5 is a diagram showing an example in which a concavo-convex pattern is provided on almost the entire surface 13 a of the first roller 13 1.
  • FIG. 6 An example in which an uneven pattern is provided only in an area 13 1a of the surface 13 1a of the first roller 13 1 having substantially the same width W1 as the polarizable electrode layer 18 is shown.
  • FIG. 6 An example in which an uneven pattern is provided only in an area 13 1a of the surface 13 1a of the first roller 13 1 having substantially the same width W1 as the polarizable electrode layer 18 is shown.
  • FIG. 7 is an enlarged view of a concavo-convex pattern provided on the surface 13a of the first roller 131, (a) is a schematic sectional view, and (b) is a schematic plan view.
  • FIG. 8 is an enlarged view showing the surface of a polarizable electrode layer 18 embossed by a first roll press section 130, wherein FIG. 8A is a schematic cross-sectional view, and FIG. It is.
  • FIG. 9 is a view for explaining a step (Step S 6) of cutting out electrodes for electrochemical capacitors 10 from a laminate 20 (step S 6), wherein (a) is a view of a laminate 20 cut to a predetermined size. It is a schematic plan view, (b) is a schematic plan view of the laminated body 20 from which the electrode 10 for an electrochemical capacitor was cut out, and (c) is a cut-out electrode for an electrochemical capacitor. 10 is a schematic plan view of FIG.
  • FIG. 10 is a schematic diagram for explaining a method for producing an electrochemical capacitor using the electrode for electrochemical capacitor 10.
  • FIG. 11 is a view showing an example in which a plurality of first roll press sections 130 are provided.
  • FIG. 12 is a diagram showing an example in which a surface of a third roller 141 included in a second roll press section 140 is provided with a concave-convex pattern having a low height on a surface 141 a thereof.
  • FIG. 13 is a diagram showing an example in which an uneven pattern is also provided on the surface 13 a of the second roller 13 2 included in the first roll press section 130.
  • FIG. 4 is a diagram showing an example in which a concavo-convex pattern is provided on each of the two surfaces 132-2a.
  • FIG. 15 is a flowchart for explaining a method of manufacturing an electrode for an electrochemical capacitor according to a second embodiment of the present invention.
  • FIG. 16 is a schematic perspective view showing, on an enlarged scale, a first roll press section 130 (and a second roll press section 140) according to a second embodiment. ⁇
  • FIG. 17 An example in which an irregular pattern is also provided on an area 141 ai of a surface 141 a of a third roller 141 included in a second roll press section 140 according to the second embodiment.
  • FIG. 17 An example in which an irregular pattern is also provided on an area 141 ai of a surface 141 a of a third roller 141 included in a second roll press section 140 according to the second embodiment.
  • FIG. 18 An example in which a concavo-convex pattern is also provided on the area 13 2a of the surface 13 2a of the second roller 13 2 included in the first roll press section 130 according to the second embodiment.
  • FIG. 18 An example in which a concavo-convex pattern is also provided on the area 13 2a of the surface 13 2a of the second roller 13 2 included in the first roll press section 130 according to the second embodiment.
  • FIG. 19 An example in which a concavo-convex pattern is also provided on an area 142 a of a surface 144 a of a fourth roller 144 included in a second roll press section 140 according to the second embodiment.
  • FIG. 19 An example in which a concavo-convex pattern is also provided on an area 142 a of a surface 144 a of a fourth roller 144 included in a second roll press section 140 according to the second embodiment.
  • FIGS. 1A and 1B are a schematic sectional view and a schematic perspective view showing a structure of an electrode for an electrochemical capacitor manufactured by a manufacturing method according to a preferred embodiment of the present invention.
  • the electrode 10 for an electrochemical capacitor includes a current collector 16 having electron conductivity and a component having electron conductivity formed on the current collector 16. It is constituted by the polar electrode layer 18.
  • the material of the current collector 16 is not particularly limited as long as it is a good conductor that can sufficiently transfer charges to the polarizable electrode layer 18, and the current collector 16 used for a known electrode for an electrochemical capacitor can be used.
  • An electric conductor material for example, aluminum (A 1) can be used.
  • the thickness of the current collector 16 is not particularly limited. However, in order to further reduce the size of the electrochemical capacitor, it is preferable to set the thickness as thin as possible as long as the mechanical strength is sufficiently ensured.
  • the thickness is preferably set to 20 ⁇ or more and 50 ⁇ or less. More preferably, it is set to 30 ⁇ or less. If the thickness of the current collector 16 made of aluminum (A 1) is set in this range, it is possible to achieve a reduction in the size of the electrochemical capacitor while securing sufficient mechanical strength.
  • the current collector 16 has an exposed portion 12 not covered by the polarizable electrode layer 18, and the exposed portion 12 is used as a lead electrode.
  • the polarizable electrode layer 18 is a layer formed on the current collector 16 and contributes to charge storage and discharge.
  • the polarizable electrode layer 18 contains at least porous particles having electron conductivity as a constituent material thereof and a binder capable of binding the porous particles.
  • the content of the porous particles in the polarizable electrode layer 18 Is preferably 84 to 92% by mass based on the total amount of the polarizable electrode layer 18, and the binder content is 6.5 to 16% by mass based on the entirety of the polarizable electrode layer 18.
  • 84 to 92% by mass of porous particles 6.5 to 16% by mass based on the total amount of the polarizable electrode layer 18.
  • Preferably consists of a binder and 0 to 1.5 mass 0/0 conductive additive having electron conductivity.
  • the porous particles contained in the polarizable electrode layer 18 are not particularly limited as long as they are porous particles having electron conductivity that contributes to charge storage and discharge.For example, a granular or fibrous activation treatment is performed. Activated carbon and the like. As these activated carbons, phenol-based activated carbon, coconut palm activated carbon, or the like can be used.
  • the average particle size of the porous particles is preferably. 3 to 20 mu m, BET specific surface area of nitrogen adsorption isotherm determined using the BET adsorption isotherm equation, preferably 1 500 meters 2 Zg or more, more preferably 2000-250 It is. By using such porous particles, a high volume capacity can be obtained.
  • the binder contained in the polarizable electrode layer 18 is not particularly limited as long as it is a binder capable of binding the porous particles.
  • a binder capable of binding the porous particles For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF;), polyethylene (PE), polypropylene (PP), fluororubber and the like can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PE polyethylene
  • PP polypropylene
  • fluororubber fluorine rubber. This is because the use of fluororubber makes it possible to sufficiently bind the porous particles even with a small content, thereby improving the coating strength of the polarizable electrode layer 18 and improving the interface of the double layer. This is because the size can be improved and the volume capacity can be improved.
  • fluorine rubber examples include vinylidene fluoride hexafluoropropylene rubber (VDF-HFP fluorine rubber) and vinylidene fluoride hexafluoropropylene-tetrafluoroethylene fluorine rubber (VDF
  • VDF-P FP-TFE-based fluoro rubber vinylidenef / leoride-perfluoromethylvinyl ether-tetrafnoroloethylene-based fluoro rubber
  • VDF-P FMVE-T FE-based fluoro rubber vinylidene fluorid-dochloro trifrenole Ethylene-based fluororubber
  • VDF—CTFE-based fluororubber fluororubber obtained by copolymerizing at least two kinds selected from the group consisting of VDF, HFP and TFE is preferable. Since the chemical resistance tends to be further improved, a VDF-HF
  • the above-mentioned conductive auxiliary agent contained as necessary in the polarizable electrode layer 18 can sufficiently promote the transfer of electric charge between the current collector 16 and the polarizable electrode layer 18.
  • the above-mentioned conductive auxiliary agent contained as necessary in the polarizable electrode layer 18 can sufficiently promote the transfer of electric charge between the current collector 16 and the polarizable electrode layer 18.
  • Examples of the carbon black include acetylene black, keffene black, and furnace black. In the present invention, acetylene black is preferably used.
  • the average particle size of the carbon black is preferable properly a 2 5 to 5 0 nm, as the B ET specific surface area, preferably 5 0 m 2 Z g or more, more preferably 5 0: is L 40 m 2 Zg .
  • the thickness of the polarizable electrode layer 18 is preferably 50 to 200 im from the viewpoint of reducing the size and weight of the electrode 10 for an electrochemical capacitor, and is preferably 80 to 150 ⁇ m. More preferably, m.
  • the above thickness means the maximum film thickness.
  • the total thickness (maximum film thickness) of the electrode 10 for an electrochemical capacitor formed by laminating the current collector 16 and the polarizable electrode layer 18 is preferably 70 to 250 ⁇ . It is more preferably 100 to 18 ⁇ . With such a thickness, the size and weight of the electrochemical capacitor can be reduced.
  • FIG. 2 is a flowchart illustrating a method for manufacturing an electrode for an electrochemical capacitor according to a preferred embodiment of the present invention.
  • the method of manufacturing the electrode for an electrochemical capacitor according to the present embodiment will be described with reference to the flowchart.
  • a coating liquid to be a material for the polarizable electrode layer 18 is prepared (Step S 1).
  • the adjustment of the coating solution can be performed as follows. First, as shown in FIG. 3, the above-described porous particles Pl, the above-mentioned binder P2, the above-mentioned liquid S1, and the above-mentioned Add the conductive additive P 3 and stir. Thereby, the coating liquid L1 can be prepared.
  • the preparation of the coating liquid preferably includes a kneading operation and a Z or dilution mixing operation.
  • kneading means kneading the materials by stirring the liquid in a relatively high-viscosity state
  • “diluting mixing” means adding a solvent or the like to the kneaded liquid to relatively mix. It means to mix under low viscosity.
  • the operation time and temperature during the operation are not particularly limited, but the kneading time is about 30 minutes to 2 hours and the temperature during the kneading is 40 to 80 ° C in order to obtain a uniform dispersion state.
  • the dilution and mixing time is preferably about 1 to 5 hours, and the temperature during dilution and mixing is preferably about 20 to 50 ° C.
  • the liquid S 1 shown in FIG. 3 is not particularly limited as long as it can dissolve or disperse the binder P 2.
  • ketone solvents such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) are used. Can be used.
  • the blending amount of the liquid S1 in the coating liquid L1 is preferably 200 to 400 parts by mass with respect to 100 parts by mass of the total solid content in the coating solution L1.
  • the content of the porous particles P1 in the coating liquid L1 is preferably set so that the content of the porous particles P1 after forming the polarizable electrode layer 18 is in the range described above.
  • the coating liquid L1 is then coated on the surface of the current collector 16 to form a coating film (step S2), and the coating is dried. film The liquid S1 contained in the water is removed (step S3). As a result, an uncompressed polarizable electrode layer 18 is formed on the current collector 16.
  • various known coating methods can be used without any particular limitation. For example, methods such as an eta-strusion lamination method, a doctor blade method, a gravure coating method, a reverse coating method, an applicator coating method, and a screen printing method can be employed. Further, drying of the coating film can be performed by heating for a predetermined time. Specifically, drying is preferably performed at 70 to 130 ° C. for 0.1 to 10 minutes.
  • the surface of the polarizable electrode layer 18 is embossed (step S4).
  • the surface of the boss-processed polarizable electrode layer 18 is flattened (step S5).
  • the reason why the surface of the polarizable electrode layer 18 is embossed is to effectively compress the polarizable electrode layer 18 and thereby increase the volume capacity.
  • the purpose of flattening the surface of the embossed polarizable electrode layer 18 is to prevent the porous particles P1 from falling off the surface of the embossed polarizable electrode layer 18.
  • the transfer member such as a roller having an uneven pattern on the surface against the surface of the polarizable electrode layer 18.
  • the height of the concavo-convex pattern provided on the surface of the transfer member is preferably set to 20% or more and 70% or less of the thickness of the polarizable electrode layer 18 before embossing. More preferably, it is set to 0% or more and 60% or less. This is because the polarizable electrode layer 18 is not effectively compressed when the height of the uneven pattern is too low, while the current collector 16 is greatly damaged when the height of the uneven pattern is too high.
  • the “height of the concavo-convex pattern” refers to a vertical distance between the convex portion and the concave portion.
  • the polarizable electrode layer 18 which is effectively compressed and in which the porous particles are prevented from falling off is formed on the current collector 16. Therefore, if this is cut out to the required size (shape) (step S6), the electrode 10 for an electrochemical capacitor is completed.
  • FIG. 4 is a schematic view showing the structure of an apparatus (an apparatus for manufacturing an electrode for an electrochemical capacitor) capable of performing the above-described steps S2 to S5.
  • the manufacturing apparatus 100 for an electrode for an electrochemical capacitor shown in FIG. 4 includes a supply roll 101 on which a sheet-like current collector 16 is wound, and a current collector 16 which is rotated at a predetermined speed. And a take-up roll 10 2 provided between the supply roll 101 and the take-up roll 102. , A drying unit 120, a first roll press unit 130, and a second roll press unit 140.
  • the coating section 110, the drying section 120, the first roll press section 130 and the second roll press section 140 are formed. It has a configuration arranged in order from the upstream (supply roll 101) to the downstream (winding roll 102).
  • the application section 110 is a section for performing a step of applying the application liquid L1 onto the surface of the current collector 16 (step S2).
  • the coating section 1 110 includes a container 1 1 1 for storing the coating liquid L 1, and a coating liquid supply roll (gravure roll) 1 1 2 for supplying the coating liquid L 1 in the container 1 1 1 to the current collector 16. And a backup roll 113 that rotates in conjunction with the coating liquid supply roll 112.
  • the current collector 16 supplied from the supply roll 101 is conveyed while being sandwiched between the rotating application liquid supply roll 112 and the backup roll 113.
  • a coating L 2 to be a material of the polarizable electrode layer 18 is formed on one surface of the body 16.
  • the current collector 16 on which the coating film L2 is formed moves to the drying section 120 by the guide roll 103.
  • the drying unit 120 includes a step (step) for removing the liquid S1 contained in the coating film L2. This is the part for performing S 3).
  • the manufacturing apparatus 100 for electrodes for electrochemical capacitors shown in FIG. 4 comprises two dryers 1 2 1 and 1 2 2 arranged so as to sandwich the current collector 16.
  • the liquid S 1 contained in the coating film L 2 is removed by the heating by 1 2 1 and 1 2 2 to form the polarizable electrode layer 18.
  • the polarizable electrode layer 18 is formed on the surface of the current collector 16.
  • the density of the polarizable electrode layer 18 is low, and a high volume capacity cannot be obtained in this state.
  • the first roll press section 130 is a section for performing a step of embossing the surface of the polarizable electrode layer 18 (step S 4).
  • a first roller 13 1 disposed on the polarizer electrode layer 18 side and a second roller 13 1 disposed on the current collector 16 side are provided.
  • the rollers 13 1 and 13 2 are used to roll-press the laminate 20 to compress the polarizing electrode layer 18 included in the laminate 20.
  • the surface 13 a of the first roller 13 1 is provided with a concavo-convex pattern, whereby the polarizable electrode layer 18 that has passed through the first roll press section 130 is provided.
  • a concave and convex pattern is transferred to the surface of. That is, the surface of the polarizable electrode layer 18 is embossed.
  • the surface 13a of the second roller 1332 is substantially smooth.
  • first roller 13 1 included in the first roll press section 130 can emboss almost the entire surface of the polarizable electrode layer 18, as shown in FIG.
  • An uneven pattern may be provided on almost the entire surface of a, and as shown in FIG. 6, a concave-convex pattern is formed only in the area 13 1 a having a width substantially equal to the width W 1 of the polarizable electrode layer 18.
  • the other areas 13 1 a 2 provided may be substantially smooth. If the first roller 13 1 is of the type shown in FIG. 5, even if the laminate 20 is displaced in the axial direction with respect to the first roller 13 1, the polarization electrode layer 1 The embossing of the entire surface of No. 8 can be ensured. On the other hand, if the first roller 13 1 is of the type shown in FIG. 6, the current collector 16 that is not covered with the polarizable electrode layer 18 is not embossed, so that the current collector 16 Damage to Can be reduced.
  • FIGS. 7A and 7B are diagrams showing, in an enlarged manner, a concavo-convex pattern provided on the surface 13a of the first roller 131, wherein FIG. 7A is a schematic cross-sectional view and FIG.
  • a concave portion 90 a and a convex portion 90 b are formed on the surface 13 1 a of the first roller 13 1, and the concave portion 90 a Have a pyramidal shape and are provided regularly at equal intervals.
  • the convex portion 9 Ob is located between the concave portions 90a.
  • the distance N 3 between the concave portion 90 a and the convex portion 90 b in the vertical direction, that is, the height of the concave-convex pattern is, as described above, 20% of the thickness of the polarizable electrode layer 18 before embossing. It is preferably set to 70% or less, more preferably 30% or more and 60% or less.
  • the convex portions 9 O b has a flat portion 9 0 c, it is good preferable to set the width N 5 is. 5 to 1 5 mu m of the flat portion 9 0 c.
  • the inclination ⁇ of the concave portion 90a is preferably set to 35 ° to 75 °, and more preferably set to 45 ° to 65 °.
  • FIGS. 8A and 8B are enlarged views of the surface of the polarizable electrode layer 18 embossed by the first roll press section 130.
  • FIG. 8A is a schematic cross-sectional view, and FIG. It is.
  • the surface of the polarizing electrode layer 18 that has passed through the first roll press section 130 has a surface 13 1a of the first roller 13 1
  • the concavo-convex pattern provided on the substrate is transferred. That is, a concave portion 91a is formed in a region corresponding to the convex portion 90b of the first roller 131, and a convex portion is formed in a region corresponding to the concave portion 90a of the first roller 1331. 9 1b is formed. Further, a region corresponding to the flat portion 90c of the first roller 1331 becomes the flat portion 91c. As a result, the polarizable electrode layer 18 is most strongly compressed, particularly in the flat portion 91c, whereby the density of the polarizable electrode layer 18 is effectively increased.
  • the density of the projections 9 1 b of the polarizable electrode layer 18 is not sufficient, particularly at the tip, and further, the porous particles P 1 may fall off from the projections 9 1 b due to the shape. .
  • Such a problem occurs downstream of the first roll press section 130.
  • the problem is solved by the roll press by the second roll press unit 140 located.
  • the second roll press section 140 is a section for performing the step of flattening the surface of the embossed polarizable electrode layer 18 (step S5), and the electrode for the electrochemical capacitor shown in FIG.
  • the manufacturing apparatus 100 includes a third roller 141 disposed on the polarizable electrode layer 18 side and a fourth roller 142 disposed on the current collector 16 side.
  • the surfaces 141 a and 142 a of the third and fourth rollers 141 and 142 are substantially smooth, and the roller 20 is roll-pressed by the rollers 141 and 142 to obtain the polarities.
  • the emboss formed on the surface of the electrode layer 18 is flattened. That is, the protrusions 91b of the polarizable electrode layer 18 are crushed, thereby further increasing the density and preventing the porous particles P1 from falling off from the protrusions 9lb.
  • the laminate 20 having been subjected to such roll pressing is guided by a guide roll 104 and wound around a take-up roll 102.
  • the laminated body 20 wound around the take-up roll 102 is cut into a predetermined size, and as shown in FIG.
  • the electrode 10 for an electrochemical capacitor is completed as shown in FIG. 9 (c).
  • FIG. 9 (c) if a part of the current collector 16 not covered by the polarizable electrode layer 18 is simultaneously taken out, this can be used as the extraction electrode 12 .
  • the electrode 10 for an electrochemical capacitor manufactured as described above is flattened after the surface of the polarizable electrode layer 18 is embossed (step S4) (step S5).
  • the porous particles P 1 are prevented from falling off, and high reliability can be ensured.
  • contamination of the device due to the dropped porous particles P1 is also prevented.
  • at least two electrodes 10 for electrochemical capacitors manufactured as shown in FIG. 10 are prepared, and the separator 10 is separated by the two electrodes 10 for electrochemical capacitors so that the polarizable electrode layer 18 faces each other. After sandwiching 40, it is housed in a case (not shown), and the case is filled with an electrolyte solution to complete the electrochemical capacitor.
  • the separator 40 is preferably formed of an insulating porous material.
  • a laminate of a film made of polyethylene, polypropylene, or polyolefin, a stretched film of a mixture of the above resins, or cellulose, polyester, or A fibrous nonwoven fabric made of at least one kind of constituent material selected from the group consisting of polypropylene can be used.
  • an electrolyte solution (an aqueous electrolyte solution or an electrolyte solution using an organic solvent) used in a known electrochemical capacitor such as an electric double layer capacitor can be used.
  • the electrolytic solution is electrochemically low in decomposition voltage and the withstand voltage of the capacitor is limited to a low level. Therefore, an electrolytic solution using an organic solvent (a non-aqueous electrolyte solution) is used. ) Is preferable.
  • the type of the specific electrolyte solution is not particularly limited, it is preferable to select in consideration of the solubility of the solute, the degree of dissociation, and the viscosity of the solution, and the electrolyte having a high conductivity and a high potential window (high decomposition starting voltage). Particularly desirable is a solution.
  • a typical example is a solution in which a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate is dissolved in an organic solvent such as propylene carbonate, diethylene carbonate, or acetonitrile. In this case, it is necessary to strictly control the water content.
  • the embossing is performed only once on the surface of the polarizable electrode layer 18, but the embossing is performed only once by providing a plurality of first roll press sections 130 as shown in FIG. Embossing may be performed twice.
  • the upstream row ⁇ / press section 13 0—1 and the downstream roll press section 13 0—2 The roller 13 included in the upstream roll press section 13 0—1 has a surface 13 1—1a of the roller 13 1—1 and the roller 13 included in the downstream roll press section 13 0—2.
  • An uneven pattern is provided on each of the surfaces 1 3 1-2 a.
  • the concavo-convex pattern provided on the surface 131-1-1a of the roller 131-1-1 and the concavo-convex pattern provided on the surface 131-1-2a of the roller 1311-1a must have the same shape.
  • the upstream of the polarizing electrode layer 18 can be obtained.
  • a deep emboss is formed by the side roll press section 130-1, and the emboss is flattened by the downstream roll press section 130-2 to form a new shallow emboss. Then, the shallow emboss formed by the downstream roll press section 130-2 is further flattened by the second roll press section 140.
  • the height of the concavo-convex pattern of the roller 131-2 located downstream of the roller 131-1 located upstream may be set higher.
  • a relatively shallow emboss is formed on the polarized electrode layer 18 by the upstream roll press section 130-1, and a deep emboss is formed by the downstream roll press section 130-2. Will be.
  • the deep emboss formed by the downstream roll press section 130-2 is flattened by the second roll press section 140.
  • Embosses having different shapes may be formed by making the inclination ⁇ of the convex portions 90b different from each other (see FIG. 7).
  • emboss flattening may be performed a plurality of times by providing a plurality of second roll press sections 140.
  • an uneven pattern having a low height may be provided on the surface 141 a of the third roller 141 included in the second roll press section 140.
  • the deep emboss formed by the first roll press section 130 is removed. While flattening, a new shallow emboss will be formed.
  • the uneven pattern provided on the surface 14 a of the third roller 14 1 The height is preferably set to 15% or less, more preferably 10% or less, of the thickness of the polarizable electrode layer 18 after being roll-pressed by the first roll press section 130. More preferred.
  • the polarizable electrode layer 18 is formed only on one surface of the current collector 16, but the polarizable electrode layer 18 may be formed on both surfaces of the current collector 16. In this case, as shown in FIG. 13, it is possible to provide an uneven pattern on the surface 13 2a of the second roller 13 2 included in the first roll press section 130 as well. Good. According to this, the polarizable electrode layers 18 formed on both surfaces of the current collector 16 can be simultaneously embossed.
  • the first roll press section 130 is divided into an upstream roll press section 130-1 and a downstream roll press section 130-2, and Surface 1 3 1—1a of roller 1 3 1—1a included in side roll press section 1 3 0—1 and surface 1 of roller 1 3 2—2 included in downstream roll press section 1 3 0—2 It is preferable to provide an uneven pattern on each of the 32-2a. According to this, the above-mentioned problem occurs because the surfaces 13 2 1-1 a and 13 1-2 a of the other rollers 13 2-1 and 13 1-12 are substantially smooth, respectively. None.
  • the apparatus for manufacturing an electrode for an electrochemical capacitor according to the present invention comprises a coating section 110, a drying section 120, a first roll pressing section 130, and a second
  • the roll press section 140 need not be continuously and integrally arranged, and may be an aggregate of two or more devices as long as the above order is secured.
  • the sheet-shaped current collector 16 that has passed through the drying unit 120 is once wound up, and is then separated by another device including a first roll press unit 130 and a second roll press unit 140.
  • the first roll press section 1 3 0 and the second roll press section 1 4 0 may be a respective separate devices.
  • the electrode for an electrochemical capacitor manufactured according to the present invention can be used as an electrode for various types of electrochemical capacitors such as a pseudo-capacitance capacitor, a pseudo capacitor, a redox capacitor, etc., in addition to an electrode for an electric double layer capacitor. It is possible to use.
  • the polarizable electrode layer 18 is embossed, whereby the volume capacity of the polarizable electrode layer 18 is increased.
  • the details will be described later, after forming the polarizable electrode layer 18, it is only necessary to roll-press this using a roller having a substantially smooth surface, and then the polarizable electrode layer 18 is formed.
  • the electrode 10 for an electrochemical capacitor according to the present embodiment substantially the entire exposed portion 12 of the current collector 16 is not embossed. This is because the current collector 16 itself does not need to be embossed, but rather, if the current collector 16 is strongly embossed, the current collector 16 may be damaged. In consideration of this point, in the electrode 10 for an electrochemical capacitor according to the present embodiment, only the polarizing electrode layer 18 is embossed. A method of embossing only the polarizable electrode layer 18 will be described later.
  • FIG. 15 is a flowchart for explaining a method of manufacturing an electrode for an electrochemical capacitor according to a preferred embodiment of the present invention. Below, this flowchart The method of manufacturing the electrode for an electrochemical capacitor according to the present embodiment will be described with reference to FIG.
  • a coating liquid L1 to be a material of the polarizable electrode layer 18 is prepared (Step S1), and the coating liquid L1 is applied on the surface of the current collector 16 to form a coating film. Then, the liquid S 1 contained in the coating film is removed by drying (Step S 2), and the uncompressed polarizable electrode layer 18 is formed on the current collector 16 by drying (Step S 3). State. At this time, the polarizable electrode layer 18 is formed with a predetermined width so that the exposed portions 12 of the current collector 16 are left at both ends in the width direction of the current collector 16. Up to this point, the process is the same as in the first embodiment, and a detailed description is omitted.
  • the exposed portion 12 of the current collector 16 is substantially not embossed, and the polarizable electrode layer 1 8 is embossed (step S 4).
  • the reason why the surface of the polarizable electrode layer 18 is embossed is to effectively compress the polarizable electrode layer 18 and thereby increase the volume capacity.
  • embossing is performed strongly (for example, when the height of the concave / convex pattern described later is large), the porous particles P 1 are likely to fall off, which may reduce the reliability of the product or contaminate the manufacturing equipment. Because there is. However, in this embodiment, it is not essential to flatten the emboss.
  • the height of the concavo-convex pattern provided on the surface of the transfer member is preferably set to 20% or more and 70% or less of the thickness of the polarizable electrode layer 18 before embossing. More preferably, it is set to 0% or more and 60% or less. This is because if the height of the uneven pattern is too low, the polarizable electrode layer 18 is not effectively compressed, while if the height of the uneven pattern is too high, the current collector 16 This is because the damage of is increased.
  • the surface 13 1 a of the first roller 13 1 is partially uneven as described later. A pattern is provided, whereby an uneven pattern is transferred to the surface of the polarizable electrode layer 18 that has passed through the first roll press section 130. That is, the surface of the polarizable electrode layer 18 is embossed.
  • the surface 13a of the second roller 1332 is substantially smooth.
  • FIG. 16 is a schematic perspective view showing the first roll press section 130 (and the second roll press section 140) in an enlarged manner.
  • the first roller 13 1 included in the first roll press section 130 has an area 13 having substantially the same width as the width W 1 of the polarizing electrode layer 18.
  • the uneven pattern is provided only on 1a, and the other areas 1 3 1a 2 are substantially smooth.
  • the laminated body 20 that has passed through the first roll press section 130 is The possibility of winding around the roller 13 1 is reduced, and work efficiency is improved.
  • the area 13 1a of the surface 13 1a of the first roller 13 1 has concave portions 90a and The convex portion 90b is formed, and the concave portion 90a has a conical shape and is provided in plural at regular intervals. Detailed description is omitted here.
  • the surface of the polarizable electrode layer 18 that has passed through the first roll press section 130 is provided with the first roller.
  • the concave / convex pattern provided on the area 1 3 1 a of the surface 1 3 1 a of the 1 3 1 is transferred.
  • the exposed portion 12 of the current collector 16 has such a shape. Emboss is formed None.
  • a small amount of embossment may be formed in a region near the polarizable electrode layer 18 due to processing accuracy. Therefore, "substantially the entire surface of the exposed portion 12 of the current collector 16 is not embossed" means that a small region along the polarizing electrode layer 18 is embossed due to processing accuracy. It is meant to include the case where
  • the second roll press section 140 is a useless part for flattening the surface of the embossed polarizable electrode layer 18.
  • the apparatus 100 for manufacturing an electrode for an electrochemical capacitor shown in FIG. It is constituted by a third roller 141 arranged on the layer 18 side and a fourth roller 142 arranged on the current collector 16 side.
  • the surfaces 141 & 142a of the third and fourth rollers 141 and 142 are substantially smooth, and when the laminate 20 is roll-pressed by the rollers 141 and 142, the polarizable electrode is formed.
  • the emboss formed on the surface of the layer 18 is planarized.
  • the manufacturing apparatus according to the present embodiment includes the second roll press section for flattening the emboss.
  • the pressure of the roll press for embossing and flattening is preferably set to 4900 N / cm (500 kgf / cm) to 24500 N / cm (2500 kgfm). ⁇
  • the laminate 20 having been subjected to such roll pressing is guided by the guide roll 104 and wound around the winding roll 102.
  • steps S2 to S4 described above can be performed continuously.
  • the laminated body 20 wound around the winding roll 102 is cut into a predetermined size, and as shown in FIG.
  • the electrode 10 for the electrochemical capacitor is completed as shown in FIG. 9 (c).
  • this is used as an extraction electrode. It can be used.
  • the electrode 10 for an electrochemical capacitor manufactured as described above has a high volume of 17 F / cm 3 or more because the surface of the polarizable electrode layer 18 is embossed (step S 4).
  • the exposed portion 12 of the current collector 16 is not substantially embossed, so that the damage to the current collector 16 and the first roller 1 31 It becomes possible to reduce the winding around.
  • the porous particles P1 are prevented from falling off, and high reliability is achieved. It can be secured. In addition, contamination of the device due to the dropped porous particles P1 is also prevented.
  • At least two electrodes 10 for electrochemical capacitors manufactured as shown in FIG. 10 are prepared, and the separator 10 is separated by the two electrodes 10 for electrochemical capacitors so that the polarizable electrode layer 18 faces each other. After sandwiching 40, it is housed in a case (not shown), and the case is filled with an electrolyte solution to complete the electrochemical capacitor.
  • the embossing is performed only once on the surface of the polarizable electrode layer 18, but as shown in FIG. 17, the third embossed portion included in the second roll press section 140 is included.
  • an uneven pattern is provided in the area 14 1 ai having the same width as the width W 1 of the polarizable electrode layer 18 and the other areas 14 1 a.
  • the Embossing the surface of the polarizable electrode layer 18 may be performed a plurality of times by making it substantially smooth. In this case, the unevenness pattern provided on the surface 13 1 ai of the surface 13 1 of the first roller 13 1 and the area 14 1 a of the surface 14 1 of the third roller 14 1 are provided.
  • the convex pattern has the same shape as the convex pattern.
  • the height of the concave / convex pattern of the first roller 13 1 located upstream is higher than the third roller 14 1 located downstream. If set, a deep emboss is formed on the polarizable electrode layer 18 by the first roll press section 130, and the emboss is flattened by the second roll press section 140 and a new shallow An emboss will be formed.
  • the height of the concavo-convex pattern of the third roller 141 located downstream of the first roller 131 located upstream may be set higher.
  • a relatively shallow emboss is formed on the polarizable electrode layer 18 by the first roll press section 130, and a deeper emboss is formed by the second roll press section 140. become.
  • the height of the concavo-convex pattern is made substantially equal between the first roller 13 1 and the third roller '14 1, while the pitch N 4 ⁇ of the convex portions 90 b and the inclination of the convex portions 90 b are set. (See Fig. 7 for each) to form embosses with different shapes.
  • the area 13 1 a 2 corresponding to the exposed portion 12 of the current collector 16 If the area 14 1 a 2 is made substantially smooth, the exposed portion 12 of the current collector 16 is not substantially embossed, so that the current collector 16 may be damaged or the first port may be damaged. It becomes possible to reduce the wrapping around the la 13 1.
  • the polarizable electrode layer 18 is formed only on one surface of the current collector 16, but the polarizable electrode layer 18 may be formed on both surfaces of the current collector 16. In this case, as shown in FIG. 18, it is possible to provide an uneven pattern also on the surface 13 2 a of the second roller 13 2 included in the first roll press section 130.
  • the polarizable electrode layers 18 formed on both surfaces of the current collector 16 can be simultaneously embossed.
  • an uneven pattern is provided on an area 14 2 a having substantially the same width as the width W 1 of the polarizing electrode layer 18, and the other areas 14 2 if the 2 a 2 a substantially smooth, it is possible to reduce the winding of the current collector 1 to 6 damage or fourth roller 1 4 2.
  • the surfaces 13 2a and 14 1a of the other rollers 13 2 and 14 1 are substantially the same in both the first rono press section 130 and the second row / rebless section 140. Therefore, the above problem does not occur.
  • the apparatus for manufacturing an electrode for an electrochemical capacitor according to the present invention comprises a coating section 110, a drying section 120, a first roll pressing section 130, and a second
  • the roll press section 140 need not be continuously and integrally arranged, and may be an aggregate of two or more devices as long as the above order is secured.
  • the sheet-shaped current collector 16 that has passed through the drying unit 120 is rolled up once, and another device having a first roll press unit 130 and a second roll press unit 140 is used. You can also roll press.
  • the first roll press section 130 and the second roll press section 140 may be separate devices.
  • the manufacturing apparatus according to the present invention can be used to flatten the emboss and use the second port It is not essential to have a hardware part.
  • embossing is performed only on the polarizable electrode layer 18, and substantially the entire surface of the exposed portion 12 of the current collector 16 is not embossed.
  • a part of the exposed portion 12 of the current collector 16 near the polarizable electrode layer 18 may be embossed.
  • the width of the area 13 1 ai of the first roller 13 1 may be set to be wider, and thereby the exposed portion 12 near the polarizable electrode layer 18 may be embossed.
  • the current collector 16 may be damaged in the embossed portion depending on the height of the uneven pattern, but the entire surface of the polarizable electrode layer 18 can be surely embossed. It becomes.
  • the polarizable electrode layer 18 is embossed (and flattened) by a mouth press.
  • a plate-shaped press device such as a hot press is used. Embossing (and flattening) may be performed.
  • embossing of the polarizable electrode layer 18 is sufficient to be performed in a region to be cut out as an electrode for an electrochemical capacitor, the embossing need not be performed in other regions.
  • embossing may not be performed on portions other than the portion cut out as the electrode 10 for electrochemical capacitor. Therefore, there is a substantially smooth area at a constant interval (interval larger than the size of the cut-out electrode) in the circumferential direction of the area 13 1 a of the first roller 13 1 shown in FIG. It does not matter.
  • the polarizable electrode layer 18 is applied so that the exposed portions 12 are formed on both ends in the width direction of the current collector 16.
  • the polarizable electrode layer 18 and the exposed portion are provided at regular intervals in the length direction of the conductor 16. 1 and 2 may be formed alternately.
  • the exposed portion 12 may be formed by previously attaching a masking tape to the current collector 16 at the above-described fixed intervals, and then applying and drying the polarizable electrode layer 18. If the masking tape is peeled off after the embossing process is performed with the masking tape attached, the current collector 16 is exposed at this portion, and the exposed portion 12 that is not embossed can be obtained.
  • the electrode for an electrochemical capacitor according to the present invention can be used not only as an electrode for an electric double layer capacitor but also as an electrode for various electrochemical capacitors such as a pseudo capacitance capacitor, a pseudo capacitor, and a redox capacitor. It is possible.
  • the above coating solution is uniformly applied on one side of an aluminum foil (thickness: 20 ⁇ ) as a current collector by a gravure coating method, and MI MI is applied in a drying oven at 100 ° C. After removal, a laminated sheet was obtained. Then, the laminated sheet is passed through the first roll press section 130 and the second roll press section 140 shown in FIG. Therefore, a laminated sheet having a thickness of 150 / m was produced.
  • the height (N 3 ) of the concave / convex pattern provided on the surface 13 1 a of the first roller 13 1 is 75 5 ⁇
  • the pitch (N 4 ) of the concave portions 90 a is 97 ⁇ m
  • the width (N 5 ) of the flat portion 90 c was 10 im.
  • the inclination ( ⁇ ) of the concave portion 90a was set to 60 °.
  • the press pressures of the first roll press section 130 and the second roll press section 140 were both set to a pressure of 9800 N / cm 2 (100 kgf / cm 2 ). .
  • a laminated sheet was produced in the same manner as in Example 1, except that the same roll press unit as the first roll press unit 140 was used instead of the second roll press unit 140.
  • a laminated sheet was produced in the same manner as in Example 1, except that the same roll press unit as the second roll press unit 140 was used instead of the first Lono press unit 130.
  • a laminated sheet was produced in the same manner as in Example 1 except that the positions of the first roll press section 130 and the second roll press section 140 were reversed.
  • a laminated sheet was produced in the same manner as in Example 1 except that no roll pressing was performed. That is, the process was completed when the aluminum foil-shaped coating solution as the current collector was dried.
  • the polarizable electrode layer-side surface of the laminated sheet prepared by the method of Example 1 and Comparative Examples 1 to 4 was rubbed with a finger to evaluate how much the porous particles fell off.
  • each laminated sheet was punched into a size of 2 OmmX 40 mm, and further subjected to vacuum drying at a temperature of 150 ° C to 175 ° C for 12 hours or more to remove moisture adsorbed on the porous material layer. This was removed to produce an electrode for an electrochemical capacitor. Then, the volume capacity of the electrode for an electrochemical capacitor manufactured in this manner is obtained as follows. It was. First, two prepared electrodes for an electrochemical capacitor were prepared for an anode and a force source. Next, the anode and the force sword are opposed to each other, and a separator (21 mm ⁇ 41 mm, thickness: 0.1 mm) made of regenerated cellulose nonwoven fabric is placed between them.
  • a measurement cell for test evaluation was prepared using this laminated body and an electrolyte solution (a 1.2 mol / l ZL propylene carbonate solution of triethylmethylammonium borofluoride).
  • the test was performed in an environment of 5 ° C and a relative humidity of 60%.
  • Table 1 shows the results of the evaluation.
  • the laminated sheet prepared by the method of Example 1 had almost no dropout of the porous particles, and a very high volume capacity of 18 FZ cm 3 was obtained.
  • the laminated sheets prepared by the methods of Comparative Examples 1 and 3 in which the emboss was not flattened had a high volume capacity but had a large amount of detachment of the porous particles.
  • the laminated sheet prepared by the method of Comparative Example 2 in which embossing was not performed had almost no dropout of the porous particles, but did not have a sufficient volume capacity.
  • the laminated sheet prepared by the method of Comparative Example 4 in which the roll pressing was not performed had a low volume capacity, and some of the porous particles fell off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明による電気化学キャパシタ用電極の製造方法は、集電体上に分極性電極層を形成する第1の工程(ステップS1~S3)と、集電体上に形成された分極性電極層の表面をエンボス加工する第2の工程(ステップS4)と、エンボス加工された分極性電極層の表面を平坦化する第3の工程(ステップS5)とを備えている。このように、本発明では分極性電極層の表面をエンボス加工していることから、分極性電極層が効果的に圧縮され、その結果、17F/cm3以上の高い体積容量を達成することが可能となる。しかも、エンボス加工した後、このエンボスを平坦化していることから、分極性電極層に含まれる多孔体粒子の脱落が防止され、高い信頼性を確保することが可能となる。

Description

明細書 電気化学キャパシタ用電極及びその製造方法並びに 電気化学キャパシタ用電極の製造装置
[技術分野]
本発明は、電気化学キャパシタ用電極及びその製造方法並びに電気化学キ ャパシタ用電極の製造装置に関し、 特に、 高い体積容量を有する電気化学キャパ シタ用電極及びその製造方法並びに電気化学キャパシタ用電極の製造装置に関す る。
[背景技術]
電気二重層キャパシタをはじめとする電気化学キャパシタは、小型化、軽 量化が容易に可能であるため、 例えば、 携帯機器 (小型電子機器) 等の電源のバ ックアップ用電源、 電気自動車やハイプリッド車向けの補助電源等として期待さ れており、 その性能向上のための様々な検討がなされている。 特に、 電気自動車 用電源のように大容量を必要とされる場合には、 電極の単位体積当たりの静電容 量 (以下、 「体積容量」という)が高い電気化学キャパシタの開発が望まれている。
このような電気化学キャパシタに用いられている電極は、集電体と分極性 電極層を含む積層構造を有しており、 シート状の集電体の表面に分極性電極層の 材料となる溶液を塗布し、 乾燥させることよって作製することができる (特許文 献 1参照)。 しかしながら、集電体の表面にこのような溶液を塗布し乾燥させただ けでは、 形成される分極性電極層の密度が低いため十分な体積容量を得ることは できない。 このため、 より高い体積容量を得るためには、 塗布により分極性電極 層を形成した後、 ロールプレス等によって分極性電極層を圧縮する必要がある。
[特許文献 1 ]特開 2 0 0 0— 1 0 6 3 3 2号公報 [発明の開示]
[発明が解決しょうとする課題]
しかしながら、本発明者らの研究によれば、表面が実質的に平滑なローラ を用いたロールプレスのみでは分極性電極層の圧縮が不十分であり、 大容量の電 気化学キャパシタに要求されている体積容量 (1 7 F / c m 3以上) を達成する ことが困難であることが明らかとなった。
したがって、本発明の目的は、 より高い体積容量を有する電気化学キャパ シタ用電極の製造方法及ぴ製造装置を提供することである。
また、 本発明の他の目的は、 1 7 F / c m 3以上の体積容量を有する電気 化学キャパシタ用電極の製造方法及び製造装置を提供することである。
[課題を解決するための手段]
本発明による電気化学キャパシタ用電極の製造方法は、集電体上に分極性 電極層を形成する第 1の工程と、 前記集電体上に形成された前記分極性電極層の 表面をエンボス加工する第 2の工程と、 前^エンボス加工された前記分極性電極 層の表面を平坦化する第 3の工程とを備えることを特徴とする。
ここで、 「分極性電極層の表面をエンボス加工する」 とは、 分極性電極層 を圧縮することによりその表面に凹凸パターンを形成することをいう。 形成する 凹凸パターンは、 規則的であっても構わないし、 ランダムであっても構わない。 また、 「エンボス加工された記分極性電極層の表面を平坦化する」 とは、分極性電 極層の表面に形成された凹 ώパターンの高さを圧縮により低くすることをいう。 したがって、 必ずしもエンボスを完全に除去する必要はなく、 凹凸パターンの高 さが低くなれば足りる。 この場合、 全体として凹凸パターンの高さを低くする限 りにおいて、新たなエンボスが形成されても構わない。 「凹凸パターンの高さ」 と は、 凸部と凹部の垂直方向における距離を指す。
このように、本発明では分極性電極層の表面をエンボス加工していること から、 分極性電極層が効果的に圧縮され、 その結果、 1 7 FZ c m3以上の高い 体積容量を達成することが可能となる。 しかも、 エンボス加工した後、 このェン ボスを平坦化していることから、 分極性電極層に含まれる多孔体粒子の脱落が防 止され、 高い信頼性を確保することが可能となる。
前記第 1の工程は、電子伝導性を有する多孔体粒子と、前記多孔体粒子を 結着可能なバインダーと、 前記バインダーを溶解又は分散可能な液体とを含有す る塗布液を、 前記集電体上に塗布することにより行うことが好ましい。 これによ れば、 集電体上に分極性電極層を簡単に形成することが可能となる。 この場合、 前記塗布液には、 導電助剤がさらに含まれていることが好ましい。 導電助剤を用 いれば、 集電体と分極性電極層との間における電荷の移動を促進させることが可 能となる。
前記第 2の工程は、表面に凹凸パターンが設けられたローラによる口ール プレスによって行うことが好ましい。 これによれば、 分極性電極層の表面を確実 にエンボス加工することが可能となる。 この場合、 凹凸パターンの高さは、 前記 第 2の工程を行う前における前記分極性電極層の厚さの 2 0 %以上、 7 0 %以下 とすることが好ましい。 これは、 凹凸パターンが低すぎると分極性電極層が効果 的に圧縮されない一方、 凹凸パターンが高すぎると集電体へのダメージが大きく なるからである。
前記第 3の工程は、表面が実質的に平滑なローラによる口ールプレスによ つて行う.ことが好ましい。 これによれば、 分極性電極層の表面に形成されたェン ボスを確実に平坦化することが可能となる。
また、前記第 2の工程を複数回行った後、前記第 3の工程を行っても構わ ないし、 第 3の工程を複数回行っても構わない。 これによれば、 分極性電極層が よりいっそう圧縮されるとともに、 分極性電極層に含まれる多孔体粒子の脱落が より確実に防止される。
本発明による電気化学キャパシタ用電極の製造装置は、少なくとも集電体 及び分極性電極層が積層されてなる積層体をロールプレスすることによって電気 化学キャパシタ用電極を製造するための電気化学キャパシタ用電極の製造装置で あって、 前記分極性電極層の表面をエンボス加工する第 1のロールプレス部と、 前記第 1のロールプレス部の下流側に設けられ、 前記エンボス加工された前記分 極性電極層の表面を平坦化する第 2のロールプレス部とを備えることを特徴とす る。
本発明による製造装置を用いれば、分極性電極層を効果的に圧縮すること ができるとともに、 分極性電極層に含まれる多孔体粒子の脱落が防止されること から、 高い信頼性を確保することが可能となる。 また、 脱落した多孔体粒子によ る装置の汚染も防止される。
前記第 1のロールプレス部は、'前記積層体をロールプレスする第 1及び第 2のローラを有しており、 前記第 1及び第 2のローラの少なくとも一方の表面に は、凹凸パターンが設けられていることが好ましく、前記凹凸パターンの高さは、 前記第 1の口ールプレス部による口ールプレスを行う前における前記分極性電極 層の厚さの 2 0 %以上、 7 0 %以下であることがより好ましい。 さらに、 前記凹 凸パターンは分極性電極層の幅とほぼ同じ幅を持ったエリアに設けられ、 前記ェ リアと隣り合うエリアは実質的に平滑であっても構わない。 このようなローラを 用いれば、 分極性電極層に覆われていない集電体はエンボス加工されないことか ら、 集電体へのダメージを低減することが可能となる。
前記第 2のロールプレス部は、前記積層体をロールプレスする第 3及び第 4のローラを有しており、 前記第 3及び第 4のローラの表面は、 いずれも実質的 に平滑であることが好ましい。
さらに、本発明による電気化学キャパシタ用電極は、シート状の集電体と、 所定の露出部分を残して前記集電体上に設けられた分極性電極層とを備え、 前記 分極性電極層はエンボス加工されており、 前記集電体の前記露出部分の少なくと も一部はエンボス加工されていないことを特徴とする。
このように、本発明では分極性電極層の表面がエンボス加工されているこ とから、 分極性電極層が効果的に圧縮され、 その結果、 1 7 F Z c m 3以上の高 い体積容量を達成することが可能となる。 しかも、 集電体の露出部分の少なくと も一部がエンボス加工されていないことから、 集電体へのダメージが低減されて おり、 これにより高い信頼性を確保することが可能となる。 この場合、 前記集電 体の前記露出部分の実質的に全面がエンボス加工されていないことが好ましい。
前記分極性電極層には、電子伝導性を有する多孔体粒子と、前記多孔体粒 子を結着可能なバインダ一が含まれていることが好ましく、 導電助剤がさらに含 まれていることがより好ましい。 導電助剤を用いれば、 集電体と分極性電極層と の間における電荷の移動を促進させることが可能となる。
本発明による電気化学キャパシタ用電極の製造方法は、集電体の一部に露 出部分が残されるよう、 前記集電体上に分極性電極層を塗布する第 1の工程と、 前記集電体の前記露出部分の少なくとも一部をエンボス加工することなく、 前記 集電体上に形成された前記分極性電極層の表面をエンボス加工する第 2の工程と を備えることを特徴とする。
本発明によれば、集電体へのダメージを低減することにより製品の信頼性 を高めつつ、 分極性電極層の効果的な圧縮により、 1 7 F Z c m3以上の高い体 積容量をもつ電気化学キャパシタ用電極を製造することが可能となる。 この場合 も、 集電体の露出部分の実質的に全面をエンボス加工しないことが好ましい。
前記第 1の工程においては、長さ方向に搬送される帯状の集電体上に、前 記集電体の幅方向における少なくとも一方の端部に前記露出部分が残されるよう、 所定幅の前記分極性電極層を塗布することが好ましい。 これによれば、 集電体上 に分極性電極層が連続的に形成されるので、高い生産性を得ることが可能となる。
前記第 1の工程は、電子伝導性を有する多孔体粒子と、前記多孔体粒子を 結着可能なバインダ一と、 前記バインダーを溶解又は分散可能な液体とを含有す る塗布液を、 前記集電体上に塗布することにより行うことが好ましい。 これによ れば、 集電体上に分極性電極層を簡単に形成することが可能となる。 この場合、 前記塗布液には、 導電助剤がさらに含まれていることが好ましい。 導電助剤を用 いれば、 上述の通り、 集電体と分極性電極層との間における電荷の移動を促進さ せることが可能となる。 前記第 2の工程は、部分的に凹凸パターンが設けられたローラによるロー ルプレスによって行うことが好ましい。 また、 前記第 2の工程においては、 前記 集電体上に形成された前記分極性電極層の表面の一部を残して、 他の部分をェン ボス加工しても構わない。
本発明による電気化学キャパシタ用電極の製造装置は、少なくとも集電体 及び分極性電極層が積層されてなる積層体を口ールプレスすることによって電気 化学キャパシタ用電極を製造するための電気化学キャパシタ用電極の製造装置で あって、 前記分極性電極層の表面をエンボス加工するためのロールプレス部を備 え、 前記ロールプレス部は、 部分的に凹凸パターンが設けられたローラを含んで いることを特徴とする。
本発明による電気化学キャパシタ用電極の製造装置を用いれば、集電体へ のダメージを低減することにより製品の信頼性を高めつつ、 分極性電極層の効果 的な圧縮により、 1 7 F Z c m 3以上の高い体積容量をもつ電気化学キャパシタ 用電極を製造することが可能となる。 この場合、 前記凹凸パターンは分極性電極 層の幅とほぼ同じ幅を持ったエリアに設けられ、 前記エリアと隣り合うエリアは 実質的に平滑であることが好ましい。
[発明の効果]
このように、本発明によれば、分極性電極層の表面をエンボス加工してい ることから、 分極性電極層が効果的に圧縮され、 その結果、 1 7 F / c ra 3以上 の高い体積容量を達成することが可能となる。 しかも、 エンボス加工した後、 こ のエンボスを平坦化していることから、 分極性電極層に含まれる多孔体粒子の脱 落が防止され、 高い信頼性を確保することが可能となる。 これにより、 大容量で 且つ信頼性の高い電気化学キャパシタを作製することが可能となる。
さらに、本発明によれば、分極性電極層の表面をエンボス加工しているこ とから、 分極性電極層が効果的に圧縮され、 その結果、 1 7 F Z C m 3以上の高 い体積容量を達成することが可能となる。 さらに、 集電体の露出部分の少なくと も一部にはエンボス加工を行わないことから、 エンボス加工による集電体へのダ メージが低減されるばかりでなく、 製造時においては、 ロールプレスに用いる口 ーラへの巻き付きが低減され、 作業効率を向上させることが可能となる。
[図面の簡単な説明]
[図 1]本発明の好ましい実施形態による製造方法によって作製される電 気化学キャパシタ用電極の構造を示す図であり、 (a) は略断面図、 (b) は略斜 視図である。
[図 2]本発明の好ましい実施の形態による電気化学キャパシタ用電極の 製造方法を説明するためのフローチャートである。
[図 3]塗布液の調製方法(ステップ S 1)を説明するための模式図である。
[図 4]本発明の好ましい実施の形態による電気化学キャパシタ用電極の 製造装置の構造を示す概略図である。
[図 5]第 1のローラ 1 3 1の表面 1 3 1 aのほぼ全面に凹凸パターンを 設けた例を示す図である。
[図 6]第 1のローラ 1 3 1の表面 1 3 1 aのうち、分極性電極層 1 8の幅 W1とほぼ同じを持ったエリア 1 3 1 a にのみ凹凸パターンを設けた例を示す 図である。
[図 7]第 1のローラ 1 3 1の表面 1 3 1 aに設けられた凹凸パターンを 拡大して示す図であり、 (a) は略断面図、 (b) は略平面図である。
[図 8]第 1のロールプレス部 1 3 0によってエンボス加工された分極性 電極層 1 8の表面を拡大して示す図であり、 (a) は略断面図、 (b) は略平面図 である。
[図 9]積層体 2 0から電気化学キャパシタ用電極 1 0を切り出す工程(ス テツプ S 6)を説明するための図であり、 (a) は所定の大きさに切断された積層 体 20の略平面図であり、 (b)は、電気化学キャパシタ用電極 1 0が切り出され た積層体 20の略平面図であり、 (c)は、切り出した電気化学キャパシタ用電極 1 0の略平面図である。
[図 1 0]電気化学キャパシタ用電極 1 0を用いて電気化学キャパシタを 作成する方法を説明するための模式図である。
[図 1 1]第 1のロールプレス部 1 3 0を複数設けた例を示す図である。
[図 1 2]第 2のロールプレス部 1 40に含まれる第 3のローラ 1 4 1の 表面 1 4 1 aに高さの低い凹凸パターンを設けた例を示す図である。
[図 1 3]第 1のロールプレス部 1 3 0に含まれる第 2のローラ 1 3 2の 表面 1 3 2 aにも凹凸パターンを設けた例を示す図である。
[図 1 4]上流側ロールプレス部 1 3 0— 1に含まれるローラ 1 3 1— 1 の表面 1 3 1— 1 aと、 下流側ロールプレス部 1 3 0— 2に含まれるローラ 1 3 2一 2の表面 1 3 2— 2 aにそれぞれ凹凸パターンを設けた例を示す図である。
[図 1 5]本発明の第 2実施の形態による電気化学キャパシタ用電極の製 造方法を説明するためのフローチヤ一トである。
[図 1 6]第 2実施形態による第 1のロールプレス部 1 3 0 (及び第 2の口 ールプレス部 1 40) を拡大して示す略斜視図である。 \
[図 1 7]第 2実施形態による第 2のロールプレス部 1 4 0に含まれる第 3のローラ 1 4 1の表面 1 4 1 aのエリア 1 4 1 a iにも凹凸パターンを設けた 例を示す図である。
[図 1 8]第 2実施形態による第 1のロールプレス部 1 3 0に含まれる第 2のローラ 1 3 2の表面 1 3 2 aのエリア 1 3 2 a にも凹凸パターンを設けた 例を示す図である。
[図 1 9]第 2実施形態による第 2のロールプレス部 1 4 0に含まれる第 4のローラ 1 4 2の表面 1 4 2 aのエリア 1 4 2 a にも凹凸パターンを設けた 例を示す図である。
[発明を実施するための最良の形態]
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳 細に説明する。 以下の説明においては、 まず、 本実施形態による製造方法によつ て作製される電気化学キャパシタ用電極の構成を説明し、 その後、 本実施形態に よる製造方法について詳細に説明する。
(第 1実施例)
図 1 ( a )および (b ) は、本発明の好ましい実施形態による製造方法によ つて作製される電気化学キャパシタ用電極の構造を示す略断面図および略斜視図 である。
図 1に示すように、 実施の形態による電気化学キャパシタ用電極 1 0は、 電子伝導性を有する集電体 1 6と、 集電体 1 6上に形成された電子伝導性を有す る分極性電極層 1 8によつて構成される。
集電体 1 6は、分極性電極層 1 8への電荷の移動を十分に行うことができ る良導体であればその材料としては特に制限されず、 公知の電気化学キャパシタ 用電極に用いられる集電体材料、 例えばアルミユウム (A 1 ) を用いることがで きる。 集電体 1 6の厚さについても特に限定されないが、 電気化学キャパシタを より小型化するためには、 機械的強度が十分に確保される限度においてできる限 り薄く設定することが好ましい。 具体的には、 集電体 1 6の材料としてアルミ二 ゥム (A 1 ) を用いた場合、 その厚さを 2 0 μ πι以上、 5 0 μ πι以下に設定する ことが好ましく、 以上、 3 0 μ πι以下に設定することがより好ましい。 アルミニウム (A 1 ) からなる集電体 1 6の厚さをこの範囲に設定すれば、 十分 な機械的強度を確保しつつ、 電気化学キャパシタの小型化を達成することが可能 となる。
また、集電体 1 6は、分極性電極層 1 8に覆われていない露出部分 1 2を 備えており、 この露出部分 1 2は引き出し電極として用いられる。
分極性電極層 1 8は、集電体 1 6上に形成される層であり、電荷の蓄電と 放電に寄与する。 分極性電極層 1 8は、 その構成材料として電子伝導性を有する 多孔体粒子と、多孔体粒子を結着可能なバインダ一とを少なくとも含有している。 特に限定されるものではないが、 分極性電極層 1 8における多孔体粒子の含有量 は、分極性電極層 1 8全量を基準として 84〜92質量%とすることが好ましく、 バインダーの含有量は、 分極性電極層 1 8全量を基準として 6. 5〜1 6質量% とすることが好ましい。 特に、 分極性電極層 1 8全量を基準として、 84〜9 2 質量%の多孔体粒子、 6. 5〜1 6質量。 /。のバインダー及び 0〜1. 5質量0 /0の 電子伝導性を有する導電助剤からなることが好ましい。
分極性電極層 18に含有される多孔体粒子は、電荷の蓄電と放電に寄与す る電子伝導性を有する多孔体粒子であれば特に制限はなく、 例えば、 粒状又は繊 維状の賦活処理済みの活性炭等が挙げられる。 これら活性炭としては、 フエノー ル系活性炭や、 椰子ガラ活性炭等を用いることができる。 この多孔体粒子の平均 粒径は、 好ましくは 3〜 20 μ mであり、 窒素吸着等温線から B E T等温吸着式 を用いて求められる BET比表面積は、 好ましくは 1 500m2Zg以上、 より 好ましくは 2000~250
Figure imgf000012_0001
である。 このような多孔体粒子を用いれ ば、 高い体積容量を得ることが可能となる。
また、分極性電極層 1 8に含有されるバインダ一は、上記多孔体粒子を結 着可能なバインダーであれば特に制限されず、 例えば、 ポリテトラフルォロェチ レン (PTFE)、 ポリフッ化ビニリデン (PVDF;)、 ポリエチレン (P E)、 ポ リプロピレン (P P)、 フッ素ゴム等を用いることができる。 これらの中でも、 フ ッ素ゴムを用いることが特に好ましい。 これは、 フッ素ゴムを用いれば少ない含 有量であっても多孔体粒子を十分に結着することが可能となり、 これにより分極 性電極層 18の塗膜強度が向上するとともに、 二重層界面の大きさが向上し、 体 積容量を向上させることができるからである。
フッ素ゴムとしては、例えば、 ビニリデンフルオラィ ドーへキサフルォロ プロピレン系フッ素ゴム(VDF— HF P系フッ素ゴム)、 ビユリデンフルオラィ ドーへキサフルォロプロピレン—テトラフルォロエチレン系フッ素ゴム (VD F
— HF P— TFE系フッ素ゴム)、ビ-リデンフルオラィドーペンタフルォロプロ ピレン系フッ素ゴム (¥0 ー? ?系フッ素ゴム)、 ビニリデンフルオラィ ド一 ペンタフルォロプロピレン一テトラフルォロエチレン系フッ素ゴム (VDF— P F P— T F E系フッ素ゴム)、ビニリデンフ /レオライ ド一パーフルォロメチルビ二 ルエーテルーテトラフノレォロエチレン系フッ素ゴム (VDF— P FMVE-T F E系フッ素ゴム)、ビニリデンフレオライ ドークロロ トリフノレオ口エチレン系フッ 素ゴム (VDF— CTFE系フッ素ゴム) 等が挙げられるが、 VDF、 HF P及 び T F Eからなる群から選択される少なくとも二種が共重合してなるフッ素ゴム が好ましく、 密着性ゃ耐薬品性がより向上する傾向があることから、 上記群の三 種が共重合してなる VD F— HF P _T F E系フッ素ゴムが特に好ましい。
更に、分極性電極層 1 8に必要に応じて含有される上記導電助剤は、集電 体 1 6と分極性電極層 1 8との間での電荷の移動を十分に進行させることが可能 な電子伝導性を有するものであれば特に制限はなく、 例えば、 カーボンブラック 等が挙げられる。
上記カーボンブラックとしては、 例えば、 アセチレンブラック、 ケッフエ ンブラック、 ファーネスブラック等が挙げられるが、 本発明においてはァセチレ ンブラックが好ましく用いられる。 カーボンブラックの平均粒径としては、 好ま しくは 2 5〜5 0 nmであり、 B ET比表面積としては、 好ましくは 5 0m2Z g以上、 より好ましくは 5 0〜: L 40m2Zgである。
また、分極性電極層 1 8の厚さは、電気化学キャパシタ用電極 1 0の小型 化及び軽量化を図る観点から、 5 0〜20 0 imであることが好ましく、 8 0〜 1 5 0 μ mであることがより好ましい。 なお、 分極性電極層 1 8の厚さが均一で ない場合(例えば、表面にエンボスが残存している場合)、上記厚さは最大膜厚を 意味するものとする。 分極性電極層 1 8の厚さを上記範囲とすることにより、 電 気化学キャパシタの小型化及び軽量化が可能となる。
集電体 1 6及び分極性電極層 1 8を積層してなる電気化学キャパシタ用 電極 1 0全体としての厚さ (最大膜厚) は、 7 0〜2 5 0 μιηであることが好ま しく、 1 0 0〜1 8 Ο μπιであることがより好ましい。 このような厚さとするこ とによって、 電気化学キャパシタの小型化及び軽量化が可能となる。
以上が、本発明の好ましい実施形態による製造方法によって作製される電 気化学キャパシタ用電極 1 oの構成である。 次に、 本発明の好ましい実施形態に よる製造方法について詳細に説明する。
図 2は、本発明の好ましい実施の形態による電気化学キャパシタ用電極の 製造方法を説明するためのフローチャートである。 以下、 このフローチャートを 参照しながら、 本実施形態による電気化学キャパシタ用電極の製造方法について 説明を進める。
まず、分極性電極層 1 8の材料となる塗布液を調製する(ステップ S 1 )。 塗布液の調整は次のようにして行うことができる。 まず、 図 3に示すように、 撹 拌部 S B 1を備える混合装置 C 1中に、 上述した多孔体粒子 P l、 上述したバイ ンダー P 2、 後述する液体 S 1及び必要に応じて上記の導電助剤 P 3を投入し、 撹拌する。 これにより、 塗布液 L 1を調製することができる。 塗布液の調製は、 混練操作及び Z又は希釈混合操作を含むことが好ましい。 ここで 「混練」 とは、 液が比較的高粘度の状態で撹拌することにより材料を練り合わせることを意味し、 「希釈混合」 とは混練された液にさらに溶剤等を添加して比較的低粘度の状態で 混ぜ合わせることを意味する。 これら操作の時間や操作時の温度としては特に制 限されないが、 均一な分散状態とする点で、 混練時間は 3 0分〜 2時間程度、 混 練時の温度は 4 0〜 8 0 °C程度とすることが好ましく、 希釈混合時間は 1〜 5時 間程度、 希釈混合時の温度は 2 0〜5 0 °C程度とすることが好ましい。
図 3に示す液体 S 1としては、バインダー P 2を溶解又は分散可能なもの であれば特に制限はなく、 例えば、 メチルェチルケトン (M E K) やメチルイソ プチルケトン (M I B K) 等のケトン系溶剤等を用いることができる。 また、 塗 布液 L 1における液体 S 1の配合量は、 塗布液 L 1中の固形分全量 1 0 0質量部 に対して 2 0 0〜4 0 0質量部とすることが好ましい。 塗布液 L 1における多孔 体粒子 P 1の含有量は、 分極性電極層 1 8を形成した後における多孔体粒子 P 1 の含有量が先に説明した範囲となるように設定することが好ましい。
このようにして塗布液 L 1を調製した後、次にこの塗布液 L 1を集電体 1 6の面上に塗布することによつて塗膜を形成し(ステップ S 2 )、乾燥により塗膜 に含まれる液体 S 1を除去する (ステップ S 3 )。 これにより、未圧縮の分極性電 極層 1 8が集電体 1 6上に形成された状態となる。 塗布液 L 1を集電体 1 6の面 上に塗布する方法としては、 公知である種々の塗布方法を特に制限なく使用する ことができる。 例えば、 エタストルージョンラミネーシヨン法、 ドクターブレー ド法、 グラビアコート法、 リバースコート法、 アプリケーターコート法、 スクリ ーン印刷法等の方法を採用することができる。 また、 塗膜の乾燥は所定時間の加 熱によって行うことができる。 具体的には、 7 0〜1 3 0 °C、 0 . 1 ~ 1 0分間 の条件で乾燥を行うことが好ましい。
このようにして未圧縮の分極性電極層 1 8を集電体 1 6上に形成した後、 次に、 分極性電極層 1 8の表面をエンボス加工し (ステップ S 4 )、 さらに、 ェン ボス加工された分極性電極層 1 8の表面を平坦化する (ステップ S 5 )。 ここで、 分極性電極層 1 8の表面をエンボス加工するのは、 分極性電極層 1 8を効果的に 圧縮し、 これによつて体積容量を高めるためである。 一方、 エンボス加工された 分極性電極層 1 8の表面を平坦化するのは、 エンボス加工された分極性電極層 1 8の表面から多孔体粒子 P 1が脱落するのを防止するためである。 つまり、 強く エンボス加工を行うと (例えば、後述する凹凸パターンの高さが大きい場合)、 多 孔体粒子 P 1が脱落しやすいため、 製品の信頼性を低下させたり、 製造装置を汚 染するおそれがあるからである。
分極性電極層 1 8の表面にエンボス加工する方法としては、例えば、表面 に凹凸パターンが設けられたローラ等の転写部材を分極性電極層 1 8の表面に押 しっけることによって行うことができる。 この場合、 転写部材の表面に設けられ た凹凸パターンの高さは、 エンボス加工前の分極性電極層 1 8の厚さの 2 0 %以 上、 7 0 %以下に設定することが好ましく、 3 0 %以上、 6 0 %以下に設定する ことがより好ましい。 これは、 凹凸パターンの高さが低すぎると分極性電極層 1 8が効果的に圧縮されない一方、 凹凸パターンの高さが高すぎると集電体 1 6へ のダメージが大きくなるからである。 尚、 「凹凸パターンの高さ」 とは、凸部と凹 部の垂直方向における距離を指す。 また、エンボス加工された分極性電極層 1 8の表面を平坦化する方法とし ては、 例えば、 表面が実質的に平滑なローラ等の平坦化部材を分極性電極層 1 8 の表面に押しつけることによって行うことができる。
以上により、効果的に圧縮され且つ多孔体粒子の脱落が防止された分極性 電極層 1 8が集電体 1 6上に形成される。 したがって、 これを必要な大きさ '形 状に切り出せば (ステップ S 6 )、 電気化学キャパシタ用電極 1 0が完成する。
図 4は、上述したステップ S 2〜S 5を実施可能な装置(電気化学キャパ シタ用電極の製造装置) の構造を示す概略図である。
図 4に示す電気化学キャパシタ用電極の製造装置 1 0 0は、シート状の集 電体 1 6が卷回された供給ロール 1 0 1と、 所定の速度で回転することによって 集電体 1 6と分極性電極層 1 8の積層体 2 0を卷回する巻き取りロール 1 0 2と、 供給ロール 1 0 1と巻き取りロール 1 0 2との間にこの順に設けられた塗布部 1 1 0、 乾燥部 1 2 0、 第 1のロールプレス部 1 3 0及ぴ第 2のロールプレス部 1 4 0とを備えている。 このように、 電気化学キャパシタ用電極の製造装置 1 0◦ では、 塗布部 1 1 0、 乾燥部 1 2 0、 第 1のロールプレス部 1 3 0及ぴ第 2の口 ールプレス部 1 4 0が上流 (供給ロール 1 0 1 ) から下流 (卷き取りロール 1 0 2 ) へと順に配置された構成を有している。
塗布部 1 1 0は、塗布液 L 1を集電体 1 6の面上に塗布する工程(ステツ プ S 2 ) を行うための部分である。 塗布部 1 1 0は、 塗布液 L 1を貯留する容器 1 1 1と、 容器 1 1 1内の塗布液 L 1を集電体 1 6へ供給する塗布液供給ロール (グラビアロール) 1 1 2と、 塗布液供給ロール 1 1 2と連動して回転するバッ クアップロール 1 1 3とを備える。 図 4に示すように、 供給ロール 1 0 1より供 給された集電体 1 6は、 回転する塗布液供給ロール 1 1 2とバックアップロール 1 1 3に挟まれながら搬送され、 これにより集電体 1 6の一方の面上には分極性 電極層 1 8の材料となる塗膜 L 2が形成される。 塗膜 L 2が形成された集電体 1 6は、 ガイドロール 1 0 3によって乾燥部 1 2 0へと移動する。
乾燥部 1 2 0は、塗膜 L 2に含まれる液体 S 1を除去する工程(ステップ S 3 ) を行うための部分である。 図 4に示す電気化学キャパシタ用電極の製造装 置 1 0 0では、 集電体 1 6を挟むように配置された 2つの乾燥機 1 2 1、 1 2 2 によって構成されており、 これら乾燥機 1 2 1、 1 2 2による加熱によって塗膜 L 2に含まれる液体 S 1が除去され、 分極性電極層 1 8となる。 これにより、 集 電体 1 6の面上に分極性電極層 1 8が形成された状態となる。 伹し、 この状態で は分極性電極層 1 8の密度は低く、 このままの状態では高い体積容量を得ること はできない。
第 1のロールプレス部 1 3 0は、分極性電極層 1 8の表面をエンボス加工 する工程 (ステップ S 4 ) を行うための部分である。 図 4に示す電気化学キャパ シタ用電極の製造装置 1 0 0では、 分極性電極層 1 8側に配置された第 1のロー ラ 1 3 1と集電体 1 6側に配置された第 2のローラ 1 3 2を備え、 これらローラ 1 3 1、 1 3 2によって積層体 2 0をロールプレスし、 積層体 2 0に含まれる分 極性電極層 1 8を圧縮する。 ここで、 第 1のローラ 1 3 1の表面 1 3 1 aには、 凹凸パターンが設けられており、 これによつて第 1のロールプレス部 1 3 0を通 過した分極性電極層 1 8の表面には凹凸パターンが転写される。 つまり、 分極性 電極層 1 8の表面がエンボス加工される。 一方、 第 2のローラ 1 3 2の表面 1 3 2 aは実質的に平滑である。
第 1のロールプレス部 1 3 0に含まれる第 1のローラ 1 3 1は、分極性電 極層 1 8のほぼ全表面をエンボス加工可能である限り、 図 5に示すように表面 1 3 1 aのほぼ全面に凹凸パターンが設けられていても構わないし、 図 6に示すよ うに分極性電極層 1 8の幅 W 1とほぼ同じ幅を持ったエリア 1 3 1 a にのみ凹 凸パターンが設けられ、 その他のエリア 1 3 1 a 2は実質的に平滑であっても構 わない。 第 1のローラ 1 3 1として図 5に示すタイプのものを用いれば、 積層体 2 0が第 1のローラ 1 3 1に対して軸方向にずれた場合であっても、 分極性電極 層 1 8の全表面を確実にエンボス加工することが可能となる。 一方、 第 1のロー ラ 1 3 1として図 6に示すタイプのものを用いれば、 分極性電極層 1 8に覆われ ていない集電体 1 6はエンボス加工されないことから、 集電体 1 6へのダメージ を低減することが可能となる。
図 7は、第 1のローラ 1 3 1の表面 1 3 1 aに設けられた凹凸パターンを 拡大して示す図であり、 (a) は略断面図、 (b) は略平面図である。
図 7 (a)、 (b)に示すように、第 1のローラ 1 3 1の表面 1 3 1 aには、 凹部 9 0 a及び凸部 9 0 bが形成されており、 凹部 9 0 aは、 錐体形状を有し等 間隔で規則的に複数設けられている。 そして、 凸部 9 O bは、 凹部 9 0 aの間に 位置している。 凹部 9 0 aと凸部 9 0 bの垂直方向における距離 N 3、 つまり凹 凸パターンの高さは、 既に説明したように、 エンボス加工前の分極性電極層 1 8 の厚さの 2 0 %以上、 70 %以下に設定することが好ましく、 3 0 %以上、 6 0 % 以下に設定することがより好ましい。 また、 本例では、 凸部 9 O bは平坦部 9 0 cを有しており、 この平坦部 9 0 cの幅 N5は 5〜 1 5 μ mに設定することが好 ましい。 また、 凹部 9 0 aの傾き αについては、 3 5° 〜7 5° に設定すること が好ましく、 4 5° 〜6 5° に設定することがより好ましい。
図 8は、第 1のロールプレス部 1 3 0によってエンボス加工された分極性 電極層 1 8の表面を拡大して示す図であり、 (a) は略断面図、 (b) は略平面図 である。
図 8 (a)、 (b) に示すように、 第 1のロールプレス部 1 3 0を通過した 分極性電極層 1 8の表面には、 第 1のローラ 1 3 1の表面 1 3 1 aに設けられた 凹凸パターンが転写される。 つまり、 第 1のローラ 1 3 1の凸部 9 0 bに対応す る領域には凹部 9 1 aが形成され、 第 1のローラ 1 3 1の凹部 9 0 aに対応する 領域には凸部 9 1 bが形成される。 また、 第 1のローラ 1 3 1の平坦部 9 0 cに 対応する領域は平坦部 9 1 cとなる。 これにより、 分極性電極層 1 8は特に平坦 部 9 1 cにおいて最も強く圧縮され、 これにより分極性電極層 1 8の密度が効果 的に高められる。
但し、この状態では分極性電極層 1 8の凸部 9 1 bの特に先端部における 密度が十分でなく、 さらに、 その形状ゆえ凸部 9 1 bから多孔体粒子 P 1が脱落 するおそれがある。 このような問題は、 第 1のロールプレス部 1 3 0の下流側に 位置する第 2のロールプレス部 140によるロールプレスによって解決される。 つまり、第 2のロールプレス部 140は、エンボス加工された分極性電極 層 1 8の表面を平坦化する工程 (ステップ S 5) を行うための部分であり、 図 4 に示す電気化学キャパシタ用電極の製造装置 1 00では、 分極性電極層 1 8側に 配置された第 3のローラ 141と集電体 1 6側に配置された第 4のローラ 142 によって構成される。 これら第 3及び第 4のローラ 14 1、 142の表面 14 1 a、 142 aはいずれも実質的に平滑であり、 このようなローラ 141、 142 によって積層体 20をロールプレスすることにより、 分極性電極層 18の表面に 形成されたエンボスが平坦化される。 つまり、 分極性電極層 1 8の凸部 9 1 bが 潰され、 これにより、 密度がさらに高められるとともに、 凸部 9 l bからの多孔 体粒子 P 1の脱落が防止される。
このようなロールプレスが完了した積層体 20は、ガイドロール 104に より導かれて巻き取りロール 102に卷回される。
このように、図 4に示す電気化学キャパシタ用電極の製造装置 1 00を用 いれば、 上述したステップ S 2〜S 5を連続的に実施することが可能となる。
そして、 図 9 (a) に示すように、 巻き取りロール 102に巻回された積 層体 20を所定の大きさに切断し、 図 9 (b) に示すように、 作製する電気化学 キャパシタのスケールに合わせて積層体 20を打ち抜けば、 図 9 (c) に示すよ うに電気化学キャパシタ用電極 10が完成する。 このとき、 図 9 (c) に示すよ うに分極性電極層 1 8に覆われていない集電体 1 6の一部を同時に取り出せば、 これを引き出し電極 1 2として利用することが可能となる。
以上のようにして製造された電気化学キャパシタ用電極 10は、分極性電 極層 1 8の表面がエンボス加工された後(ステップ S 4)、 これが平坦化されてい ることから (ステップ S 5)、 1 7 FZ cm3以上の高い体積容量を達成すること ができるのみならず、 多孔体粒子 P 1の脱落が防止され、 高い信頼性を確保する ことが可能となる。 また、 脱落した多孔体粒子 P 1による装置の汚染も防止され る。 そして、図 1 0に示すように作製した電気化学キャパシタ用電極 1 0を少 なくとも 2枚用意し、 分極性電極層 1 8が向き合うよう、 これら 2枚の電気化学 キャパシタ用電極 1 0によってセパレータ 4 0を挟んだ後、 図示しないケースに 収容し、 ケース内に電解質溶液を充填すれば、 電気化学キャパシタが完成する。
セパレータ 4 0としては、絶縁性の多孔体から形成されていることが好ま しく、 例えば、 ポリエチレン、 ポリプロピレン又はポリオレフインからなるフィ ルムの積層体や上記樹脂の混合物の延伸膜、 或いは、 セルロース、 ポリエステル 及びポリプロピレンからなる群より選択される少なくとも 1種の構成材料からな る繊維不織布等を用いることができる。
また電解質溶液としては、公知の電気二重層キャパシタ等の電気化学キヤ パシタに用いられている電解質溶液 (電解質水溶液、 有機溶媒を使用する電解質 溶液) を使用することができる。 ただし、 電気化学キャパシタが電気二重層キヤ パシタである場合、 電解質水溶液は電気化学的に分解電圧が低いためキャパシタ の耐用電圧が低く制限されるので、 有機溶媒を使用する電解質溶液 (非水電解質 溶液)であることが好ましい。具体的な電解質溶液の種類は特に限定されないが、 溶質の溶解度、 解離度、 液の粘性を考慮して選択することが好ましく、 高導電率 でかつ高電位窓(分解開始電圧が高い)の電解質溶液であることが特に望ましい。 代表的な例としては、 テトラェチルアンモユウムテトラフルォロボレイ トのよう な 4級アンモニゥム塩を、 プロピレンカーボネート、 ジエチレンカーボネイト、 ァセトニトリル等の有機溶媒に溶解したものが使用される。 なお、 この場合、 混 入水分を厳重に管理する必要がある。
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記 実施形態に限定されるものではない。
例えば、上記実施形態では、分極性電極層 1 8の表面に対するエンボス加 ェを 1回のみ行っているが、 図 1 1に示すように第 1のロールプレス部 1 3 0を 複数設けることによって複数回のエンボス加工を行っても構わない。 図 1 1に示 す例では、 上流側ロー^/プレス部 1 3 0— 1と下流側ロールプレス部 1 3 0— 2 を備えており、 上流側ロールプレス部 1 3 0— 1に含まれるローラ 1 3 1— 1の 表面 1 3 1— 1 aと、 下流側ロールプレス部 1 3 0— 2に含まれるローラ 1 3 1 一 2の表面 1 3 1— 2 aのそれぞれに凹凸パターンが設けられている。この場合、 ローラ 1 3 1— 1の表面 1 3 1— 1 aに設けられた凹凸パターンとローラ 1 3 1 一 2の表面 1 3 1— 2 aに設けられた凹凸パターンが同じ形状である必要はなく、 例えば、 下流側に位置するローラ 1 3 1— 2よりも上流側に位置するローラ 1 3 1 - 1の凹凸パターンの高さを高く設定すれば、 分極性電極層 1 8には上流側口 ールプレス部 1 3 0— 1によって深いエンボスが形成され、 さらに、 下流側ロー ルプレス部 1 3 0— 2によってこのエンボスが平坦化され且つ新たな浅いェンポ スが形成されることになる。 そして、 下流側ロールプレス部 1 3 0— 2によって 形成された浅いエンボスは、 第 2のロールプレス部 1 4 0によってさらに平坦化 される。
逆に、上流側に位置するローラ 1 3 1— 1よりも下流側に位置するローラ 1 3 1— 2の凹凸パターンの高さを高く設定しても構わない。 この場合、 分極性 電極層 1 8には上流側ロールプレス部 1 3 0— 1によって比較的浅いエンボスが 形成され、 さらに、 下流側ロールプレス部 1 3 0— 2によって深いエンボスが形 成されることになる。 この場合も、 下流側ロールプレス部 1 3 0— 2によって形 成された深いエンボスは、 第 2のロールプレス部 1 4 0によって平坦化される。
また、凹凸パターンの高さについては上流側に位置するローラ 1 3 1— 1 と下流側に位置するローラ 1 3 1— 2とをほぼ等しくする一方、 凸部 9 0 bのピ ツチ N 4ゃ凸部 9 0 bの傾き α (いずれも図 7参照)を互いに異ならせることで、 形状の異なるエンボスを形成しても構わない。
尚、図示しないが、第 2のロールプレス部 1 4 0を複数設けることによつ てエンボスの平坦化を複数回行っても構わない。
さらに、図 1 2に示すように第 2のロールプレス部 1 4 0に含まれる第 3 のローラ 1 4 1の表面 1 4 1 aに高さの低い凹凸パターンを設けても構わない。 これによれば、 第 1のロールプレス部 1 3 0によって形成された深いエンボスを 平坦化しつつ、 新たな浅いエンボスが形成されることになる。 伹しこの場合、 分 極性電極層 1 8の表面から多孔体粒子 P 1が脱落するのを十分に防止するために は、 第 3のローラ 1 4 1の表面 1 4 1 aに設ける凹凸パターンの高さとして、 第 1のロールプレス部 1 3 0によりロールプレスした後における分極性電極層 1 8 の厚さの 1 5 %以下に設定することが好ましく、 1 0 %以下に設定することがよ り好ましい。
さらに、上記実施形態では、集電体 1 6の一方の面にのみ分極性電極層 1 8が形成されているが、 集電体 1 6の両面に分極性電極層 1 8を形成することも 可能であり、 この場合には、 図 1 3に示すように、 第 1のロールプレス部 1 3 0 に含まれる第 2のローラ 1 3 2の表面 1 3 2 aにも凹凸パターンを設ければよい。 これによれば、 集電体 1 6の両面に形成された分極性電極層 1 8を同時にェンボ ス加工することが可能となる。
但し、第 1のローラ 1 3 1及び第 2のローラ 1 3 2の両方に凹凸パターン を設けると、 凹凸パターンの重なり方によっては分極性電極層 1 8を十分に圧縮 できなかったり、 逆に、 過度の圧縮により集電体 1 6へのダメージが大きくなつ たりする可能性がある。 これを避けるためには、 図 1 4に示すように、 第 1の口 ールプレス部 1 3 0を上流側ロールプレス部 1 3 0— 1と下流側ロールプレス部 1 3 0 - 2に分け、 上流側ロールプレス部 1 3 0— 1に含まれるローラ 1 3 1— 1の表面 1 3 1— 1 aと、 下流側ロールプレス部 1 3 0— 2に含まれるローラ 1 3 2— 2の表面 1 3 2— 2 aにそれぞれ凹凸パターンを設けることが好ましい。 これによれば、 それぞれ他方のローラ 1 3 2— 1、 1 3 1一 2の表面 1 3 2— 1 a、 1 3 1 _ 2 aは実質的に平滑であることから、 上記の問題が生じることはな い。
また、本発明による電気化学キャパシタ用電極の製造装置は、図 4に示し た装置のように、 塗布部 1 1 0、 乾燥部 1 2 0、 第 1のロールプレス部 1 3 0及 ぴ第 2のロールプレス部 1 4 0が連続的且つ一体的に配置された構成である必要 はなく、上記の順が確保される限り、 2以上の装置の集合体であっても構わない。 例えば、 乾燥部 1 2 0を通過したシート状の集電体 1 6を一旦卷き取り、 第 1の ロールプレス部 1 3 0及び第 2のロールプレス部 1 4 0を備える別の装置によつ てロールプレスしても構わない q さらに、 第 1のロールプレス部 1 3 0と第 2の ロールプレス部 1 4 0がそれぞれ別個の装置であっても構わない。
尚、本発明により製造される電気化学キャパシタ用電極は、電気二重層キ ャパシタ用の電極として用いることができる他、 擬似容量キャパシタ、 シユード キャパシタ、 レドックスキャパシタ等の種々の電気化学キャパシタ用の電極とし て利用することが可能である。
(第 2実施例) '
本実施形態による電気化学キャパシタ用電極 1 0では、分極性電極層 1 8 がエンボス加工されており、 これにより分極性電極層 1 8の体積容量の増大が図 られている。 詳細については後述するが、 分極性電極層 1 8を形成した後、 表面 が実質的に平滑なローラを用いてこれをロールプレスするのみでは分極性電極層
1 8の圧縮が不十分であり、 1 7 F Z c m 3以上の体積容量を得ることは困難で あるが、 表面に凹凸パターンが設けられたローラを用いてロールプレスすれば分 極性電極層 1 8が効果的に圧縮され、 これにより 1 7 F Z c m 3以上の体積容量 を得ることが可能となる。
一方、本実施形態による電気化学キャパシタ用電極 1 0では、集電体 1 6 の露出部分 1 2の実質的に全面がエンボス加工されていない。 これは、 集電体 1 6自体をエンボス加工する必要がなく、 むしろ、 集電体 1 6を強くエンボス加工 すると集電体 1 6がダメージを受ける可能性があるからである。 この点を考慮し て、 本実施形態による電気化学キャパシタ用電極 1 0では、 分極性電極層 1 8に のみエンボス加工がされているのである。 分極性電極層 1 8にのみエンボス加工 する方法については後述する。
' 図 1 5は、本発明の好ましい実施の形態による電気化学キャパシタ用電極 の製造方法を説明するためのフローチャートである。 以下、 このフローチャート を参照しながら、 本実施形態による電気化学キャパシタ用電極の製造方法につい て説明を進める。
まず、分極性電極層 1 8の材料となる塗布液 L 1を調製し(ステップ S 1 )、 この塗布液 L 1を集電体 1 6の面上に塗布することによつて塗膜を形成し (ステ ップ S 2 )、乾燥により塗膜に含まれる液体 S 1を除去する (ステップ S 3 ) こと で、 未圧縮の分極性電極層 1 8が集電体 1 6上に形成された状態とする。 このと き、 分極性電極層 1 8は、 集電体 1 6の幅方向における両方の端部に集電体 1 6 の露出部分 1 2が残されるよう、 所定の幅をもって形成される。 ここまでは、 第 1実施例と同様であるため、 詳細な説明は省略する。
このようにして未圧縮の分極性電極層 1 8を集電体 1 6上に形成した後、 集電体 1 6の露出部分 1 2を実質的にエンボス加工することなく、 分極性電極層 1 8の表面をエンボス加工する (ステップ S 4 )。 上述の通り、分極性電極層 1 8 の表面をエンボス加工するのは、 分極性電極層 1 8を効果的に圧縮し、 これによ つて体積容量を高めるためである。 この場合、 分極性電極層 1 8の表面をェンポ ス加工した後、 これをさらに平坦化することが子ましい。 このような平坦化を行 えば、 エンボス加工された分極性電極層 1 8の表面から多孔体粒子 P 1が脱落す るのを効果的に防止することが可能となる。 つまり、 強くエンボス加工を行うと (例えば、後述する凹凸パターンの高さが大きい場合)、多孔体粒子 P 1が脱落し やすいため、 製品の信頼性を低下させたり、 製造装置を汚染するおそれがあるか らである。但し、本実施態様においてエンボスの平坦化を行うことは必須でない。
分極性電極層 1 8の表面にエンボス加工する方法としては、例えば、表面 に凹凸パターンが設けられたローラ等の転写部材を分極性電極層 1 8の表面に押 しっけることによって行うことができる。 この場合、 転写部材の表面に設けられ た凹凸パターンの高さは、 エンボス加工前の分極性電極層 1 8の厚さの 2 0 %以 上、 7 0 %以下に設定することが好ましく、 3 0 %以上、 6 0 %以下に設定する ことがより好ましい。 これは、 凹凸パターンの高さが低すぎると分極性電極層 1 8が効果的に圧縮されない一方、 凹凸パターンの高さが高すぎると集電体 1 6へ のダメージが大きくなるからである。
第 2実施例によれば、図 4に示す電気化学キャパシタ用電極の製造装置に 1 00おいて、 第 1のローラ 1 3 1の表面 1 3 1 aには、 後述するように部分的 に凹凸パターンが設けられており、 これによつて第 1のロールプレス部 1 3 0を 通過した分極性電極層 1 8の表面には凹凸パターンが転写される。 つまり、 分極 性電極層 1 8の表面がエンボス加工される。 一方、 第 2のローラ 1 3 2の表面 1 3 2 aは実質的に平滑である。
図 1 6は、第 1のロールプレス部 1 3 0 (及ぴ第 2のロールプレス部 1 4 0) を拡大して示す略斜視図である。
図 1 6に示すように、第 1のロールプレス部 1 3 0に含まれる第 1のロー ラ 1 3 1は、 分極性電極層 1 8の幅 W 1とほぼ同じ幅を持ったェリア 1 3 1 a にのみ凹凸パターンが設けられ、 その他のエリア 1 3 1 a 2は実質的に平滑であ る。 これにより、 集電体 1 6の露出部分 1 2を実質的にエンボス加工することな く、 分極性電極層 1 8の表面のみをエンボス加工することができる。 その結果、 分極性電極層 1 8を効果的に圧縮しつつ、 集電体 1 6へのダメージを低減するこ とが可能となる。 しかも、 集電体 1 6の露出部分 1 2に対応するエリア 1 3 1 a 2が実質的に平滑であることから、 第 1のロールプレス部 1 3 0を通過した積層 体 2 0が第 1のローラ 1 3 1に巻き付く可能性が低くなり、作業効率も向上する。
第 1実施例と同様に、 図 7 (a)、 (b) に示されるように、 第 1のローラ 1 3 1の表面 1 3 1 aのエリア 1 3 1 a には、 凹部 9 0 a及び凸部 9 0 bが形 成されており、 凹部 9 0 aは、 錐体形状を有し等間隔で規則的に複数設けられて いる。 詳細な説明はここでは省略する。
同じく、 第 1実施例同様に、 図 8 (a)、 (b) に示すように、 第 1のロー ルプレス部 1 3 0を通過した分極性電極層 1 8の表面には、 第 1のローラ 1 3 1 の表面 1 3 1 aのエリア 1 3 1 a に設けられた凹凸パターンが転写される。 上 述の通り、 第 1のローラ 1 3 1の表面 1 3 1 aのエリア 1 3 1 a 2は実質的に平 滑であることから、 集電体 1 6の露出部分 1 2にこのようなエンボスが形成され ることはない。 伹し、 集電体 16の露出部分 1 2のうち、 分極性電極層 1 8に近 い領域については、加工精度の関係上、多少のエンボスが形成されても構わない。 したがって、 「集電体 1 6の露出部分 1 2の実質的に全面がエンボス加工されて いない」 とは、 加工精度上、 分極性電極層 1 8に沿った僅かな領域がエンボス加 ェされている場合を含む意である。
但し、この状態では分極性電極層 1 8の凸部 9 1 bの特に先端部における 密度が十分でない可能性があり、 この場合には、 その形状ゆえ凸部 9 1 bから多 孔体粒子 P 1が脱落するおそれがある。 このような問題は、 第 1のロールプレス 部 1 30の下流側に位置する第 2のロールプレス部 140によるロールプレスに よって解決される。
つまり、第 2のロールプレス部 140は、エンボス加工された分極性電極 層 18の表面を平坦化するだめの部分であり、 図 4に示す電気化学キャパシタ用 電極の製造装置 100では、 分極性電極層 1 8側に配置された第 3のローラ 14 1と集電体 1 6側に配置された第 4のローラ 142によって構成される。 これら 第 3及び第 4のローラ 141、 142の表面14 1 &、 142 aはいずれも実質 的に平滑であり、 このようなローラ 141、 142によって積層体 20をロール プレスすることにより、 分極性電極層 1 8の表面に形成されたエンボスが平坦化 される。 つまり、 分極性電極層 1 8の凸部 9 1 bが潰され、 これにより、 密度が さらに高められるとともに、 凸部 9 1 bからの多孔体粒子 P 1の脱落が防止され る。 但し、 本実施態様による製造装置がエンボスを平坦化する第 2のロールプレ ス部を備えることは必須でない。
尚、エンボス加工や平坦化のためのロールプレスの圧力は 4900 N/c m (500 k g f /cm) 〜 24500 N/ cm (2500 k g f m) とす ることが好ましい。 ■
このようなロールプレスが完了した積層体 20は、ガイドロール 104に より導かれて卷き取りロール 102に卷回される。
このように、図 4に示す電気化学キャパシタ用電極の製造装置 1 00を用 いれば、 上述したステップ S 2〜S 4を連続的に実施することが可能となる。 そして、 図 9 ( a ) に示すように、 巻き取りロール 1 0 2に巻回された積 層体 2 0を所定の大きさに切断し、 図 9 ( b ) に示すように、 作製する電気化学 キャパシタのスケールに合わせて積層体 2 0を打ち抜けば、 図 9 ( c ) に示すよ うに電気化学キャパシタ用電極 1 0が完成する。 このとき、 図 9 ( c ) に示すよ うに分極性電極層 1 8に覆われていない集電体 1 6の一部、 すなわち露出部分 1 2の一部を同時に取り出せば、 これを引き出し電極として利用することが可能と なる。
以上のようにして製造された電気化学キャパシタ用電極 1 0は、分極性電 極層 1 8の表面がエンボス加工されていることから (ステップ S 4 )、 1 7 F / c m 3以上の高い体積容量を達成することができるのみならず、 集電体 1 6の露出 部分 1 2には実質的にエンボス加工がされていないことから、 集電体 1 6へのダ メージや第 1のローラ 1 3 1への巻き付きを低減することが可能となる。 また、 第 2のロールプレス部 1 4 0を用いて分極性電極層 1 8の表面に形成されたェン ボスを平坦化すれば、 多孔体粒子 P 1の脱落が防止され、 高い信頼性を確保する ことが可能となる。 また、 脱落した多孔体粒子 P 1による装置の汚染も防止され る。
そして、図 1 0に示すように作製した電気化学キャパシタ用電極 1 0を少 なくとも 2枚用意し、 分極性電極層 1 8が向き合うよう、 これら 2枚の電気化学 キャパシタ用電極 1 0によってセパレータ 4 0を挟んだ後、 図示しないケースに 収容し、 ケース内に電解質溶液を充填すれば、 電気化学キャパシタが完成する。
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記 実施形態に限定されるものではない。
例えば、上記実施形態では、分極性電極層 1 8の表面に対するエンボス加 ェを 1回のみ行っているが、 図 1 7に示すように第 2のロールプレス部 1 4 0に 含まれる第 3のローラ 1 4 1についても、 分極性電極層 1 8の幅 W 1とほぼ同じ 幅を持ったエリア 1 4 1 a iに凹凸パターンを設け、その他のエリア 1 4 1 a。を 実質的に平滑とすることにより、 分極性電極層 1 8の表面へのエンボス加工を複 数回行っても構わない。 この場合、 第 1のローラ 1 3 1の表面 1 3 1のエリア 1 3 1 a iに設けられた凹凸パターンと、 第 3のローラ 1 4 1の表面 1 4 1のエリ ァ 1 4 1 a に設けられた 凸パターンとが同じ形状である必要はなく、 例えば、 下流側に位置する第 3のローラ 1 4 1よりも上流側に位置する第 1のローラ 1 3 1の凹凸パターンの高さを高く設定すれば、 分極性電極層 1 8には第 1のロール プレス部 1 3 0によって深いエンボスが形成され、 さらに、 第 2のロールプレス 部 1 4 0によってこのエンボスが平坦化され且つ新たな浅いエンボスが形成され ることになる。
逆に、上流側に位置する第 1のローラ 1 3 1よりも下流側に位置する第 3 のローラ 1 4 1の凹凸パターンの高さを高く設定しても構わない。 この場合、 分 極性電極層 1 8には第 1のロールプレス部 1 3 0によって比較的浅いエンボスが 形成され、 さらに、 第 2のロールプレス部 1 4 0によってより深いエンボスが形 成されることになる。
また、凹凸パターンの高さについては第 1のローラ 1 3 1と第 3のローラ' 1 4 1とをほぼ等しくする一方、 凸部 9 0 bのピッチ N 4ゃ凸部 9 0 bの傾きひ (いずれも図 7参照) を互いに異ならせることで、 形状の異なるエンボスを形成 しても構わない。
このように分極性電極層 1 8に対するエンボス加工を複数回行う場合で あっても、 図 1 7に示すように、 集電体 1 6の露出部分 1 2に対応するエリア 1 3 1 a 2やエリア 1 4 1 a 2を実質的に平滑とすれば、集電体 1 6の露出部分 1 2 には実質的にエンボス加工がされないので、 集電体 1 6へのダメージや第 1の口 ーラ 1 3 1への巻き付きを低減することが可能となる。
さらに、上記実施形態では、集電体 1 6の一方の面にのみ分極性電極層 1 8が形成されているが、 集電体 1 6の両面に分極性電極層 1 8を形成することも 可能であり、 この場合には、 図 1 8に示すように、 第 1のロールプレス部 1 3 0 に含まれる第 2のローラ 1 3 2の表面 1 3 2 aにも凹凸パターンを設ければよレ、。 これによれば、 集電体 1 6の両面に形成された分極性電極層 1 8を同時にェンボ ス加工することが可能となる。 この場合も、 分極性電極層 1 8の幅 W 1とほぼ同 じ幅を持ったエリア 1 3 2 a iに凹凸パターンを設け、その他のエリア 1 3 2 a 2 を実質的に平滑とすれば、 集電体 1 6へのダメージや第 2のローラ 1 3 2への巻 き付きを低減することが可能となる。
但し、第 1のローラ 1 3 1及び第 2のローラ 1 3 2の両方に凹凸パターン を設けると、 凹凸パターンの重なり方によっては分極性電極層 1 8を十分に圧縮 できなかったり、 逆に、 過度の圧縮により集電体 1 6へのダメージが大きくなつ たりする可能性がある。 これを避けるためには、 図 1 9に示すように、 第 2の口 ールプレス部 1 4 0に含まれる第 4のローラ 1 4 2の表面に凹凸パターンを設け、 第 1のロールプレス部 1 3 0に含まれる第 2のローラ 1 3 2の表面を実質的に平 滑とすればよい。 この場合も、 第 4のローラ 1 4 2の表面には、 分極性電極層 1 8の幅 W 1とほぼ同じ幅を持ったエリァ 1 4 2 a に凹凸パターンを設け、 その 他のエリア 1 4 2 a 2を実質的に平滑とすれば、 集電体 1 6へのダメージや第 4 のローラ 1 4 2への巻き付きを低減することが可能となる。 これによれば、 第 1 のローノレプレス部 1 3 0及び第 2のロー/レブレス部 1 4 0とも、 他方のローラ 1 3 2及び 1 4 1の表面 1 3 2 a、 1 4 1 aが実質的に平滑であることから、 上記 の問題が生じることはない。
また、本発明による電気化学キャパシタ用電極の製造装置は、図 4に示し た装置のように、 塗布部 1 1 0、 乾燥部 1 2 0、 第 1のロールプレス部 1 3 0及 び第 2のロールプレス部 1 4 0が連続的且つ一体的に配置された構成である必要 はなく、上記の順が確保される限り、 2以上の装置の集合体であっても構わない。 例えば、 乾燥部 1 2 0を通過したシート状の集電体 1 6を一且巻き取り、 第 1の ロールプレス部 1 3 0及び第 2のロールプレス部 1 4 0を備える別の装置によつ てロールプレスしても構わない。 さらに、 第 1のロールプレス部 1 3 0と第 2の ロールプレス部 1 4 0がそれぞれ別個の装置であっても構わない。 但し、 既に説 明したとおり、 本発明による製造装置がェンボスを平坦化する第 2の口ールプレ ス部を備えることは必須でない。
さらに、上記実施形態では、分極性電極層 1 8に対してのみエンボス加工 を行い、 集電体 1 6の露出部分 1 2については実質的に全面をエンボス加工して いないが、 本発明の上記効果を達成可能な限度において、 集電体 1 6の露出部分 1 2のうち、分極性電極層 1 8に近い領域の一部をエンボス加工しても構わない。 例えば、 第 1のローラ 1 3 1のエリア 1 3 1 a iの幅を広めに設定し、 これによ り分極性電極層 1 8近傍の露出部分 1 2をエンボス加工しても構わない。 この場 合、 凹凸パターンの高さによってはエンボス加工された部分において集電体 1 6 がダメージを受けるおそれがあるが、 分極性電極層 1 8の全表面を確実にェンボ ス加工することが可能となる。
さらに、上記実施形態では、 口ールプレスによつて分極性電極層 1 8への エンボス加工 (及び平坦化) を行っているが、 これに限らず、 ホットプレス等、 プレート状のプレス装置を用いてエンボス加工 (及び平坦化) を行っても構わな い。
また、分極性電極層 1 8のエンボス加工は電気化学キャパシタ用電極とし て切り出すべき領域において行えば十分であるので、 それ以外の領域に対しては エンボス加工を行わなくても構わない。 例えば、 図 9において、 電気化学キャパ シタ用電極 1 0として切り出された箇所以外はエンボス加工がなされていなくて もよい。 従って、 図 1 4に示す第 1のローラ 1 3 1のエリア 1 3 1 a の周方向 に一定の間隔 (切り出される電極の寸法よりも大きい間隔) で実質的に平滑なェ リアが存在していても構わない。 また、 切り出される電気化学キャパシタ用電極 の形状と分極性電極層 1 8の塗布幅によっては、 第 1のローラ 1 3 1の幅方向略 中央部に実質的に平滑なエリアが存在していても構わない。 更には、 これら平滑 なエリアを組み合わせても構わない。
また、上記実施形態では、集電体 1 6の幅方向における両方の端部に露出 部分 1 2が形成されるよう分極性電極層 1 8を塗布しているが、 これに限定され ず、 集電体 1 6の長さ方向において一定の間隔毎に分極性電極層 1 8と露出部分 1 2を交互に形成しても構わない。 この場合、 露出部分 1 2の形成は、 マスキン グテープを前記一定間隔毎に集電体 1 6に予め貼り付けておき、 その後、 分極性 電極層 1 8を塗布 '乾燥することにより行えばよい。 そして、 マスキングテープ を付けたままエンボス加工を行った後、 マスキングテープを剥離すれば、 この部 分において集電体 1 6が露出し、 エンボス加工されていない露出部分 1 2を得る ことができる。
尚、本発明による電気化学キャパシタ用電極は、電気二重層キャパシタ用 の電極として用いることができる他、擬似容量キャパシタ、シユードキャパシタ、 レドックスキャパシタ等の種々の電気化学キャパシタ用の電極として利用するこ とが可能である。
[実施例]
以下、本発明の実施例について説明するが、本発明はこの実施例に何ら限 定されるものではない。
[実施例 1 ]
粒状の活性炭 (クラレケミカル社製、 商品名: R P— 2 0 ) 及びァセチレ ンブラック (電気化学工業社製、 商品名 :デンカブラック) を、 プラネタリーミ キサーを用いて 1 5分間混合したものと、 フッ素ゴム (デュポン社製、 商品名 : V i t o n - G F ) とを M I B 1 5 0質量部に投入し、 プラネタリーミキサー を用いて 4 5分間混練した。 このとき、 活性炭、 アセチレンブラック及びフッ素 ゴムの配合量は、 それぞれ 9 0 . 0質量部、 1 . 0質量部及び 9 . 0質量部とし た。 得られた混練物に M I B Kを更に 1 5 0質量部加えて 1時間撹拌することに より、 塗布液を調製した。
上記塗布液を、 グラビアコート法により集電体であるアルミニウム箔(厚 さ : 2 0 μ ιη) の一方の面上に均一に塗布し、 1 0 0 °Cの乾燥炉内で M I Β Κを 除去して積層シートを得た。 その後、 この積層シートを図 5に示した第 1のロー ルプレス部 1 3 0及ぴ第 2のロールプレス部 1 4 0をこの順で通過させ、 これに よって厚さ 1 5 0 / mの積層シートを作製した。
ここで、第 1のローラ 1 3 1の表面 1 3 1 aに設けられた凹凸バタ ンの 高さ (N3) は 7 5 ίπι、 凹部 9 0 aのピッチ (N4) は 9 7 μ m、 平坦部 9 0 c の幅 (N5) は 1 0 imとした。 また、 凹部 9 0 aの傾き ( α ) については、 6 0° に設定した。 また、 第 1のロールプレス部 1 3 0及び第 2のロールプレス部 1 4 0によるプレス圧力は、 いずれも圧力 9 8 0 0 N/c m2 ( 1 0 0 0 k g f /c m2) に設定した。
[比較例 1 ]
第 2のロールプレス部 1 4 0の代わりに、第 1のロールプレス部 1 3 0と 同じロールプレス部を用いた他は、実施例 1と同様にして積層シートを作製した。
[比較例 2 ]
第 1のローノレプレス部 1 3 0の代わりに、第 2のロールプレス部 1 4 0と 同じロールプレス部を用いた他は、実施例 1と同様にして積層シートを作製した。
[比較例 3 ]
第 1のロールプレス部 1 3 0と第 2のロールプレス部 1 4 0の位置を逆 にした他は、 実施例 1と同様にして積層シートを作製した。
[比較例 4]
ロールプレスを全く行わなかった他は、実施例 1と同様にして積層シート を作製した。 つまり、 集電体であるアルミニウム箔状の塗布液を乾燥させた時点 で工程を終了した。
[評価]
まず、実施例 1及び比較例 1〜4の方法により作製した積層シートの分極 性電極層側表面を指で擦過し、 多孔体粒子がどの程度脱落するかを評価した。
さらに、各積層シートを 2 OmmX 4 0 mmのサイズに打ち抜き、更に 1 5 0°C〜1 7 5 °Cの温度で真空乾燥を 1 2時間以上行うことにより、 多孔体層に 吸着した水分を除去し、 電気化学キャパシタ用電極を作製した。 そして、 このよ うにして作製した電気化学キャパシタ用電極の体積容量を以下のようにして求め た。 先ず、 作製した電気化学キャパシタ用電極を、 アノード用及び力ソード用と して 2つ用意した。 次に、 このアノード及び力ソードを互いに対向させ、 その間 に再生セルロース不織布からなるセパレータ (2 1 mmX 4 1 mm, 厚さ : 0.
05 mm, 二ツボン高度紙工業製、商品名: TF 4050) を配置し、アノード、 セパレータ及ぴ力ソードがこの順で接触した状態 (非接合の状態) で積層された 積層素体を作製した。 そして、 この積層素体と電解質溶液 (1. 2mo 1ZLの ホウフッ化トリエチルメチルアンモニゥムのプロピレンカーボネート溶液) とを 用 、て試験評価用測定セルを作製した。
次に、作製した試験評価用測定セルに充放電試験装置(北斗電工社製 H
J - 10 1 SM6) を用いて 2. 5mAの定電流で充電を行い、 電気二重層キヤ パシ夕に電荷が蓄積していくにしたがって電圧が上昇する様子をモニタし、 電圧 が 2. 5 Vに達したのち定電圧充電 (緩和充電) に移行し、 電流が充電電流の 1 /1 Qとなった時点で充電を終了させた。 そして、 放電は 2. 5mAの定電流で 行い、 終止電圧を 0Vとした。 この試験後、 5 mAの定電流で充電を行い、 電圧 が 2.' 5 Vに達したのち定電圧充電に移行し、 電流が充電電流の 1/10となつ た時点で充電を終了させた。 そして、 放電も 5mAの定電流で行い、 終止電圧を
0Vとした。 このような定電流定電圧充放電操作を 1セットとして、 これを 1 0 セット繰り返し行った。 これにより得られた放電曲線 (放電電圧一放電時間) か ら放電エネルギー (放電電圧 X電流(= 5mA)) の時間積分として合計放電エネ ルギー [W . s] を求め、 静電容量 [F] = 2 X合計放電エネルギー [W . s] / (放電開始電圧 [V]) 2の関係式を用いて静電容量を求め、 この静電容量を両 極 (アノード及ぴカソード) の体積で除した値を単位体積当たりの静電容量 (体 積容量) [FZcm3] とした。 尚、 単位体積当たりの静電容量の測定は、 温度 2
5°C、 相対湿度 60%の環境下において行った。
評価の結果を表 1に示す。
[表 1] 第 1のロールプレス部 第 2のロールプレス部 多孔体粒子の脱落 体積容量 実施例 1 凹凸パター -ン有り 凹凸バタ-ーン無し o 18 F/cm3 比較例 1 凹凸パター -ン有り 凹凸バタ-一ン有リ X 18 F/cm3 比較例 2 凹凸パター -ン無し 凹凸パタ-ーン無し 〇 16 F/cm3 ' 比較例 3 凹凸パタ- -ン無し 凹凸パタ-一ン有リ X 18 F/cm3 比較例 4 ― ー 厶 13 F/cm3
O…ほとんど脱落が無い Δ…多少の脱落有り X…脱落が多い
表 1に示すように、実施例 1の方法により作成した積層シートは多孔体粒 子の脱落がほとんど無く、 しかも、 1 8 F Z c m 3という非常に高い体積容量が 得られた。
これに対し、エンボスの平坦化を行わない比較例 1及び 3の方法により作 成した積層シートは、 高い体積容量が得られたものの、 多孔体粒子の脱落が多か つた。 また、 エンボス加工を行わない比較例 2の方法により作成した積層シート は、 多孔体粒子の脱落がほとんど無かったものの、 十分な体積容量が得られなか つた。 さらに、 ロールプレスを行わない比較例 4の方法により作成した積層シー トは、 体積容量が低く、 且つ、 多孔体粒子の脱落もある程度見られた。
以上より、エンボス加工を行った後このエンボスを平坦化することによつ て、高い体積容量が得られ且つ多孔体粒子の脱落が防止されることが確認された。
[産業上の利用可能性]
本発明によれば、高い体積容量を有する電気化学キャパシタ用電極の製造 方法及び製造装置を提供することが可能となる。

Claims

請求の範囲
[請求項 1 ] 集電体上に分極性電極層を形成する第 1の工程と、
前記集電体上に形成された前記分極性電極層の表面をエンボス加工する 第 2の工程と、
前記エンボス加工された前記分極性電極層の表面を平坦化する第 3のェ 程とを備えることを特徴とする電気化学キャパシタ用電極の製造方法。
[請求項 2 ] 前記第 1の工程は、 電子伝導性を有する多孔体粒子と、 前記多孔体 粒子を結着可能なバインダーと、 前記バインダーを溶解又は分散可能な液体とを 含有する塗布液を、 前記集電体上に塗布することにより行うことを特徴とする請 求項 1に記載の電気化学キャパシタ用電極の製造方法。
[請求項 3 ] 前記塗布液には、 導電助剤がさらに含まれていることを特徴とする 請求項 2に記載の電気化学キャパシタ用電極の製造方法。
[請求項 4 ] 前記第 2の工程は、 表面に凹凸パターンが設けられたローラによる ロールプレスによって行うことを特徴とする請求項 1に記載の電気化学キャパシ タ用電極の製造方法。
[請求項 5 ] 前記凹凸パターンの高さは、 前記第 2の工程を行う前における前記 分極性電極層の厚さの 2 0 %以上、 7 0 %以下であることを特徴とする請求項 4 に記載の電気化学キャパシタ用電極の製造方法。
[請求項 6 ] 前記第 3の工程は、 表面が実質的に平滑なローラによるロールプレ スによって行うことを特徴とする請求項 1に記載の電気化学キヤパシタ用電極の 製造方法。
[請求項 7 ] 前記第 2の工程を複数回行った後、 前記第 3の工程を行うことを特 徴とする請求項 1に記載の電気化学キャパシタ用電極の製造方法。
[請求項 8 ] 前記第 3の工程を複数回行うことを特徴とする請求項 1に記載の電 気化学キヤパシタ用電極の製造方法。
[請求項 9 ] 少なくとも集電体及び分極性電極層が積層されてなる積層体をロー ルプレスすることによって電気化学キャパシタ用電極を製造するための電気化学 キャパシタ用電極の製造装置であって、
前記分極性電極層の表面をエンボス加工する第 1のロールプレス部と、 前記第 1の口ールプレス部の下流側に設けられ、前記ェンポス加工された 前記分極性電極層の表面を平坦化する第 2のロールプレス部とを備えることを特 徴とする電気化学キャパシタ用電極の製造装置。
[請求項 1 0 ] 前記第 1のロールプレス部は、 前記積層体をロールプレスする第 1及び第 2のローラを有しており、 前記第 1及び第 2のローラの少なくとも一方 の表面には、 凹凸パターンが設けられていることを特徴とする請求項 9に記載の 電気化学キヤパシタ用電極の製造装置。
[請求項 1 1 ] 前記凹凸パターンの高さは、 前記第 1のロールプレス部による口 ールプレスを行う前における前記分極性電極層の厚さの 2 0 %以上、 7 0 %以下 であることを特徴とする請求項 1 0に記載の電気化学キャパシタ用電極の製造装 置。
[請求項 1 2 ] 前記凹凸パターンは分極性電極層の幅とほぼ同じ幅を持ったェリ ァに設けられ、 前記ェリアと隣り合うエリアは実質的に平滑であることを特徴と する請求項 1 0に記載の電気化学キャパシタ用電極の製造装置。
[請求項 1 3 ] 前記第 2のロールプレス部は、 前記積層体をロールプレスする第 3及び第 4のローラを有しており、 前記第 3及び第 4のローラの表面は、 いずれ も実質的に平滑であることを特徴とする請求項 9に記載の電気化学キャパシタ用 電極の製造装置。
[請求項 1 4 ] シート状の集電体と、 所定の露出部分を残して前記集電体上に設 けられた分極性電極層とを備え、 前記分極性電極層はエンボス加工されており、 前記集電体の前記露出部分の少なくとも一部はエンボス加工されていないことを 特徴とする電気化学キャパシタ用電極。
[請求項 1 5 ] 前記集電体の前記露出部分の実質的に全面がエンボス加工されて いないことを特徴とする請求項 1 4に記載の電気化学キャパシタ用電極
[請求項 1 6 ] 前記分極性電極層には、 電子伝導性を有する多孔体粒子と、 前記 多孔体粒子を結着可能なバインダ一が含まれていることを特徴とする請求項 1 4 に記載の電気化学キャパシタ用電極。
[請求項 1 7 ] 前記分極性電極層には、 導電助剤がさらに含まれていることを特 徴とする請求項 3に記載の電気化学キャパシタ用電極。
[請求項 1 8 ] 集電体の一部に露出部分が残されるよう、 前記集電体上に分極性 電極層を塗布する第 1の工程と、
前記集電体の前記露出部分の少なくとも一部をエンボス加工することな く、 前記集電体上に形成された前記分極性電極層の表面をエンボス加工する第 2 の工程とを備えることを特徴とする電気化学キャパシタ用電極の製造方法。
[請求項 1 9 ] 前記第 1の工程においては、 長さ方向に搬送される帯状の集電体 上に、 前記集電体の幅方向における少なくとも一方の端部に前記露出部分が残さ れるよう、 所定幅の前記分極性電極層を塗布することを特徴とする請求項 1 8に 記載の電気化学キャパシタ用電極の製造方法。
[請求項 2 0 ] 前記第 1の工程は、 電子伝導性を有する多孔体粒子と、 前記多孔 体粒子を結着可能なバインダーと、 前記バインダーを溶解又は分散可能な液体と を含有する塗布液を、 前記集電体上に塗布することにより行うことを特徴とする 請求項 1 8に記載の電気化学キャパシタ用電極の製造方法。
[請求項 2 1 ] 前記塗布液には、 導電助剤がさらに含まれていることを特徴とす る請求項 2 0に記載の電気化学キャパシタ用電極の製造方法。
[請求項 2 2 ] 前記第 2の工程は、 部分的に凹凸パターンが設けられたローラに よるロールプレスによって行うことを特徴とする請求項 1 8に記載の電気化学キ ャパシタ用電極の製造方法。
[請求項 2 3 ] 前記第 2の工程においては、 前記集電体上に形成された前記分極 性電極層の表面の一部を残して、 他の部分をエンボス加工することを特徴とする 請求項 1 8に記載の電気化学キャパシタ用電極の製造方法。
[請求項 2 4 ] 少なくとも集電体及び分極性電極層が積層されてなる積層体を口 ールプレスすることによって電気化学キャパシタ用電極を製造するための電気化 学キャパシタ用電極の製造装置であって、 前記分極性電極層の表面をエンボス加 ェするためのロールプレス部を備え、 前記ロールプレス部は、 部分的に回凸パタ ーンが設けられたローラを含んでいることを特徴とする電気化学キャパシタ用電 極の製造装置。
[請求項 2 5 ] 前記凹凸パターンは分極性電極層の幅とほぼ同じ幅を持ったエリ ァに設けられ、 前記ェリアと隣り合うエリァは実質的に平滑であることを特徴と する請求項 2 4に記載の電気化学キヤパシタ用電極の製造装置。
PCT/JP2004/019711 2003-12-22 2004-12-22 電気化学キャパシタ用電極及びその製造方法並びに電気化学キャパシタ用電極の製造装置 WO2005062319A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2004800355291A CN1886812B (zh) 2003-12-22 2004-12-22 电化学电容器的电极、制造这种电极的方法、和制造电化学电容器的电极的设备
EP04808061A EP1699061B1 (en) 2003-12-22 2004-12-22 Method and apparatus for producing an electrode for an electrochemical capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003423969 2003-12-22
JP2003-423969 2003-12-22
JP2003432272A JP2005191357A (ja) 2003-12-26 2003-12-26 電気化学キャパシタ用電極及びその製造方法並びに電気化学キャパシタ用電極の製造装置
JP2003-432272 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005062319A1 true WO2005062319A1 (ja) 2005-07-07

Family

ID=34712964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019711 WO2005062319A1 (ja) 2003-12-22 2004-12-22 電気化学キャパシタ用電極及びその製造方法並びに電気化学キャパシタ用電極の製造装置

Country Status (4)

Country Link
US (2) US7173806B2 (ja)
EP (1) EP1699061B1 (ja)
CN (1) CN1886812B (ja)
WO (1) WO2005062319A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037445A2 (en) 2010-09-17 2012-03-22 Drexel University Novel applications for alliform carbon
CN101847516A (zh) * 2010-02-26 2010-09-29 上海奥威科技开发有限公司 一种高比能量有机体系的电容电池
US20110267740A1 (en) * 2010-04-29 2011-11-03 Shrisudersan Jayaraman Packaging for electrochemically active materials, devices made therefrom, and methods of making the same
WO2012112481A1 (en) 2011-02-16 2012-08-23 Drexel University Electrochemical flow capacitors
JP6019747B2 (ja) * 2012-05-22 2016-11-02 株式会社ジェイテクト 電極製造システム
KR102635455B1 (ko) 2016-05-20 2024-02-13 교세라 에이브이엑스 컴포넌츠 코포레이션 고온용 울트라커패시터
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
KR102319539B1 (ko) * 2018-11-02 2021-10-28 주식회사 엘지에너지솔루션 전고체 전지의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468517A (ja) * 1990-07-10 1992-03-04 Elna Co Ltd 電気二重層コンデンサの製造方法
JP2000012390A (ja) * 1998-06-22 2000-01-14 Asahi Glass Co Ltd 電気化学素子及びその製造方法と製造装置
JP2000106332A (ja) * 1998-09-28 2000-04-11 Honda Motor Co Ltd 電極シートおよびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525371B2 (ja) 1986-08-02 1996-08-21 株式会社アイジー技術研究所 金属薄板材成形ロ−ル装置
JPH01152714A (ja) 1987-12-10 1989-06-15 Elna Co Ltd 電極の製造方法
US6893772B2 (en) * 1993-11-19 2005-05-17 Medtronic, Inc. Current collector for lithium electrode
US5439760A (en) * 1993-11-19 1995-08-08 Medtronic, Inc. High reliability electrochemical cell and electrode assembly therefor
JPH1016048A (ja) 1996-06-27 1998-01-20 Idemitsu Petrochem Co Ltd エンボスパターン加工方法、その加工装置及びエンボス面状熱可塑性樹脂
JP3791180B2 (ja) * 1998-04-23 2006-06-28 旭硝子株式会社 電気二重層キャパシタ用電極及び該電極を有する電気二重層キャパシタ
US7232601B2 (en) * 2001-05-31 2007-06-19 Advanced Energy Technology Inc. Method for preparing composite flexible graphite material
US20030014859A1 (en) * 2001-07-23 2003-01-23 Kejha Joseph B. Method of automated hybrid lithium-ion cells production and method of the cell assembly and construction
JP2003059486A (ja) 2001-08-10 2003-02-28 Matsushita Electric Ind Co Ltd 積層型電池およびその製造方法
JP2003100286A (ja) * 2001-09-19 2003-04-04 Toyota Motor Corp 帯状電極の製造方法と製造装置
US6985352B2 (en) * 2003-05-30 2006-01-10 Medtronic, Inc. Capacitors including track-etched separator materials
US7251122B2 (en) * 2003-12-22 2007-07-31 Tdk Corporation Electric chemical capacitor, and method and apparatus for manufacturing electrode for electric chemical capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468517A (ja) * 1990-07-10 1992-03-04 Elna Co Ltd 電気二重層コンデンサの製造方法
JP2000012390A (ja) * 1998-06-22 2000-01-14 Asahi Glass Co Ltd 電気化学素子及びその製造方法と製造装置
JP2000106332A (ja) * 1998-09-28 2000-04-11 Honda Motor Co Ltd 電極シートおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1699061A4 *

Also Published As

Publication number Publication date
US7708787B2 (en) 2010-05-04
US7173806B2 (en) 2007-02-06
EP1699061A4 (en) 2009-04-22
EP1699061A1 (en) 2006-09-06
CN1886812A (zh) 2006-12-27
EP1699061B1 (en) 2013-02-27
US20070059869A1 (en) 2007-03-15
CN1886812B (zh) 2012-05-30
US20050201043A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4904807B2 (ja) 電気化学キャパシタ用電極の製造方法及び電気化学キャパシタ用電極の製造装置
US7303974B2 (en) Method for producing electrochemical capacitor electrode
JP4347759B2 (ja) 電極の製造方法
US7486497B2 (en) Electrode for electric double layer capacitor, method for manufacturing same, electric double layer capacitor, and conductive adhesive
JP2006324288A (ja) 電気化学キャパシタ用電極の製造方法
KR100740021B1 (ko) 전기화학 디바이스의 제조방법 및 전기화학 디바이스
US7708787B2 (en) Electrode for electric chemical capacitor, manufacturing method and apparatus thereof
KR100752942B1 (ko) 전기화학 커패시터용 전극 및 그 제조방법과, 전기화학커패시터 및 그 제조방법
WO2005062320A1 (ja) 電気化学キャパシタ、電気化学キャパシタ用電極の製造方法及び電気化学キャパシタ用電極の製造装置
JP2009278135A (ja) 分極性電極とそれを用いたキャパシタ、分極性電極の製造方法
US7303975B2 (en) Method for producing electrochemical capacitor electrode
JP4839834B2 (ja) 電気化学キャパシタ用電極の製造方法及び電気化学キャパシタ用電極の製造装置
KR100744965B1 (ko) 전기화학 캐패시터용 전극의 제조 방법 및 전기화학 캐패시터용 전극 및 전기화학 캐패시터 및 그 제조 방법
JP2006324285A (ja) 電気化学キャパシタ用電極の製造方法
WO2004095480A1 (ja) 電気化学キャパシタ用電極の製造方法、電気化学キャパシタの製造方法及びこれらに用いる溶媒付き多孔体粒子
JP2005209665A (ja) 電気化学キャパシタ用電極の製造方法及び電気化学キャパシタ用電極の製造装置
JP2004296863A (ja) 電気化学キャパシタ用電極及びその製造方法、並びに電気化学キャパシタ及びその製造方法
JP2005191357A (ja) 電気化学キャパシタ用電極及びその製造方法並びに電気化学キャパシタ用電極の製造装置
JP2005191070A (ja) 電気化学キャパシタ用電極の製造方法及び電気化学キャパシタ用電極の製造装置
JP2005033066A (ja) 電気化学キャパシタ用電極及びその製造方法、並びに電気化学キャパシタ及びその製造方法。

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035529.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004808061

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004808061

Country of ref document: EP