WO2005056998A1 - 内燃機関システム - Google Patents

内燃機関システム Download PDF

Info

Publication number
WO2005056998A1
WO2005056998A1 PCT/JP2004/017484 JP2004017484W WO2005056998A1 WO 2005056998 A1 WO2005056998 A1 WO 2005056998A1 JP 2004017484 W JP2004017484 W JP 2004017484W WO 2005056998 A1 WO2005056998 A1 WO 2005056998A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
filter
internal combustion
combustion engine
engine system
Prior art date
Application number
PCT/JP2004/017484
Other languages
English (en)
French (fr)
Inventor
Hirofumi Sakamoto
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Publication of WO2005056998A1 publication Critical patent/WO2005056998A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine system having an exhaust system with a filter for trapping particulates in exhaust gas exhausted from the internal combustion engine, and more particularly, to an internal combustion engine having a function of preventing damage to the filter About the system.
  • Diesel engines which are a type of internal combustion engine, emit a large amount of particulate matter (PM) during combustion. Therefore, various filters (DPF: Diesel Particulate Filter) that capture emitted PM are used. Is being developed.
  • DPF Diesel Particulate Filter
  • a type called a wall flow type in which the flow holes of a filter having a honeycomb structure are alternately plugged, is becoming the mainstream, and among the wall flow types, silicon carbide cordierite or the like is used. Ceramic filters are becoming mainstream.
  • the present invention has been made in view of such conventional problems. Particularly, in a DPF coated with a catalyst, the inflow of high concentrations of CO and HC is suppressed, and It is an object of the present invention to provide an internal combustion engine system capable of preventing occurrence of cracks and melting damage.
  • the present invention detects and controls CO and HC in the exhaust gas flowing into the filter.Especially, when the concentration of CO or HC exceeds the allowable value, the evacuation is performed. This is to prevent cracks and erosion of the filter by performing effective control. As a result of repeated studies, it was found that the above objectives could be achieved by the following means.
  • an engine a filter arranged in a flow path of the exhaust gas of the engine to trap fine particles in the exhaust gas, and a portion of the exhaust gas of the engine to the intake side.
  • An exhaust gas recirculation device (EGR device) and a Z or a supercharger wherein the exhaust gas recirculation device is disposed upstream of a filter in an exhaust gas flow path, and is configured to supply exhaust gas to the filter.
  • Gas detection means for detecting the specific gas component in the gas, and the valve lift and Z or supercharger of the turbocharger that constitute the exhaust gas recirculation system according to the increase or decrease of the specific gas component detected by the gas detection means And a controller capable of adjusting the pressure.
  • the gas detection means detects a specific gas component in the exhaust gas such as CO or HC, and the controller performs control in accordance with an increase or decrease in the gas having the characteristic detected by the gas detection means. I do.
  • This control adjusts the exhaust gas recirculation amount (EGR amount) by controlling the lift amount of a valve (EGR valve) constituting the exhaust gas recirculation device in accordance with the increase or decrease of a specific gas.
  • the supercharging pressure of the supercharger is adjusted.
  • the EGR device includes at least a flow path (EGR pipe) for recirculating exhaust gas and an EGR valve provided therein. There may be other ancillary equipment for cooling the circulating gas.
  • the present invention is referred to as an internal combustion engine system
  • the present invention as represented by a supercharged engine, includes a filter, an exhaust gas recirculation device (EGR device), and a Z or supercharger. And an internal combustion engine with gas detection means and a controller (synonymous).
  • the controller when the specific gas component exceeds an allowable value, the controller closes a valve (EGR valve) constituting the exhaust gas recirculation device and performs Z or supercharging. It is preferable to reduce the supercharging pressure of the machine. Further, in the internal combustion engine system of the present invention, it is preferable that the controller reduces the fuel injection amount when a specific gas component exceeds an allowable value.
  • EGR valve a valve constituting the exhaust gas recirculation device and performs Z or supercharging. It is preferable to reduce the supercharging pressure of the machine.
  • a preferred embodiment of the internal combustion engine system of the present invention is control when a specific gas such as CO or HC exceeds an allowable value.
  • the EGR valve is closed and Z or Control to reduce the supercharging pressure of the feeder is performed.
  • the exhaust gas does not recirculate to the engine, so that certain gases do not enter the filter due to their high concentration.
  • the supercharging pressure of the turbocharger by reducing the supercharging pressure of the turbocharger, the total amount of exhaust gas is reduced, and specific Does not flow into the filter in a high concentration state. With these, cracks and erosion of the filter can be prevented from occurring. Also, filter damage can be prevented by reducing the fuel injection amount and the exhaust gas temperature.
  • the controller when the specific gas component exceeds the allowable value, the controller turns on the warning light on the driver's seat side to put the filter in a dangerous state. Is preferably notified. At this time, it is more preferable to simultaneously close the EGR valve and decrease the supercharging pressure of the Z or the supercharger.
  • a preferred aspect of the internal combustion engine system of the present invention is to turn on a warning light. If specific gases such as CO and HC exceed the allowable values, there are factors such as sticking of the nozzle of the variable capacity turbo, which is not limited to sticking of the EGR valve, and failure of forced regeneration of PM deposited on the filter. In the case of these abnormalities, it is possible to reliably notify of the abnormalities by turning on a power warning lamp that requires maintenance of the vehicle.
  • the internal combustion engine system of the present invention is suitably used when the specific gas component power is one or both of CO and HC.
  • the internal combustion engine system of the present invention uses the specific gas of one or both of CO and HC, and based on the detection of one or both of CO and HC, Control takes place.
  • the filter preferably carries a catalyst having an oxidation function!
  • a specific gas component in exhaust gas such as CO or HC is detected, and control is performed in accordance with an increase or decrease in the detected gas.
  • the internal combustion engine system of the present invention when a specific gas such as CO or HC exceeds an allowable value, control for closing the EGR valve and / or reducing the supercharging pressure of the supercharger is performed. Therefore, cracks and erosion of the filter can be prevented from occurring.
  • the abnormality notification such as the EGR valve sticking, the variable capacity turbo nozzle sticking, and the forced regeneration failure of the PM deposited on the filter is performed. Can be performed reliably.
  • measures can be taken for either or both of CO and HC.
  • FIG. 1 is a schematic diagram showing a configuration in an embodiment of an internal combustion engine system of the present invention.
  • FIG. 2 is a flowchart showing an example of control.
  • FIG. 3 is a timing chart of an example of control.
  • FIG. 4 is a perspective view of a filter.
  • FIG. 5 is a perspective view of a honeycomb segment constituting the filter.
  • FIG. 6 is a cross-sectional view of a honeycomb segment.
  • FIG. 1 is a schematic diagram showing the overall configuration of an embodiment of the internal combustion engine system of the present invention.
  • the present invention is applied to a diesel engine 11 which is an example of an internal combustion engine.
  • the diesel engine 11 includes an intake-side pipe (intake pipe) 13 that takes in air to the cylinder 12 and an exhaust-side pipe (exhaust pipe) 14 that takes out air.
  • An EGR pipe 15 is disposed between the intake pipe 13 and the exhaust pipe 14, and an EGR valve 16 is inserted into the EGR pipe 15.
  • An exhaust pipe 17 is connected to the exhaust pipe 14 as an exhaust gas flow path (exhaust gas flow path) for discharging exhaust gas.
  • the filter 1 is disposed inside the exhaust pipe 17. Te ru. The filter 1 captures PM in the exhaust gas, and the exhaust gas passing through the filter 1 is discharged to the outside of the vehicle through a muffler (not shown).
  • FIG. 4 is a perspective view showing the filter 1 used in this embodiment.
  • the filter 1 for example, a ceramic filter can be adopted.
  • the filter 1 is formed by joining a plurality of honeycomb segments 2 in the vertical and horizontal directions via a joining material 9. After the joining of 2, the workpiece is ground so as to have a circular cross section, an elliptical cross section, a triangular cross section and other cross sections, and the outer peripheral surface is covered with the coating material 4.
  • each of the honeycomb segments 2 has a large number of flow holes 5 partitioned by a porous partition wall 6.
  • the flow holes 5 pass through the honeycomb segment 2 in the axial direction, and one ends of the adjacent flow holes 5 are alternately plugged with the filler 7. That is, in one of the flow holes 5, the left end is open, while the right end is plugged with the filler 7, and in the other flow hole 5 adjacent thereto, the left end is open. Force plugged by filler 7 The right end is open. Due to such plugging, as shown in FIG. 5, the end face of the honeycomb segment 2 has a pine pattern.
  • the filter 1 on which such a honeycomb segment 2 is assembled is arranged in an exhaust pipe 17 as shown in FIG. 1, the exhaust gas flows from each honeycomb segment 2 from the left side in FIG. It flows into the circulation hole 5 and moves to the right. That is, in FIG. 6, the left side of the two-cam segment 2 serves as an exhaust gas inlet, and the exhaust gas flows from the communication hole 5 which is opened without being plugged into the hard cam segment. Inflow into 2.
  • the exhaust gas that has flowed into the flow holes 5 passes through the porous partition walls 6, and flows out of the other flow holes. And through partition 6 When passing through, PM including soot in the exhaust gas is captured by the partition walls 6, and the exhaust gas is purified.
  • the honeycomb segment 2 shown in FIG. 6 can have an appropriate cross-sectional shape such as a triangular cross section or a hexagonal cross section having a square cross section. Also, the cross-sectional shape of the flow hole 5 can be triangular, hexagonal, circular, oval, or any other shape.
  • the material of the honeycomb segment 2 is silicon carbide, silicon carbide based composite material, silicon nitride, cordierite, mullite, alumina, spinel, silicon carbide cordierite based composite material, A group consisting of silicon carbide composite material, lithium aluminum silicate, aluminum titanate, and FeCrA1-based metal. It is preferable to use a material selected from one or a combination of two or more.
  • the plugging with the filler 7 is performed by immersing the end face of the honeycomb segment 2 into the slurry-like filler 7 and filling the opening of the distribution hole 5 with the flow hole 5 that is not plugged masked. This is done by The filling of the filler 7 may be performed before firing after forming the honeycomb segment 2 or after firing, but is preferably performed before firing because the firing step is completed once.
  • the filter 1 can carry the oxidation catalyst.
  • an oxidation catalyst a white metal metal, an alkaline earth metal, or another catalyst is used, and the Sarkame segment 2 is immersed in the slurry, or the Slurry is applied to the outer surface of the Sarkame segment 2. After that, drying is carried out, so that the catalyst can be supported.
  • the honeycomb segment 2 is manufactured as described above, the outer surface of the A slurry-like joining material 9 is applied, a plurality of honeycomb segments 2 are assembled so as to have a predetermined three-dimensional shape, and the assembly is heated and dried while being pressed under pressure. As a result, a joined body in which the plurality of honeycomb segments 2 are joined is produced. Thereafter, the joined body is ground, the outer peripheral surface is covered with the coating material 4, and dried by heating, whereby the filter 1 shown in FIG. 4 can be manufactured.
  • the oxidation catalyst after the final filter 1 was prepared as described above, the obtained filter 1 was carried by performing the same treatment as that for the honeycomb segment 2 described above. May be.
  • gas detection means 18 is disposed in the exhaust gas passage 21 (exhaust pipe 17), and detects a specific gas in the exhaust gas.
  • the gas detecting means 18 is disposed upstream of the filter 1 in the exhaust pipe 17 and detects a specific gas in the exhaust gas before the exhaust gas flows into the filter 1.
  • the gas detecting means 18 detects CO and HC in the exhaust gas.
  • a catalyst for oxidizing CO and HC is disposed in the exhaust pipe 17, and a temperature sensor for detecting a temperature of the catalyst which is changed by an oxidation reaction with these CO and HC is connected to the catalyst.
  • the catalyst a catalyst whose temperature changes substantially in proportion to the amounts of CO and HC is selected.
  • Pt, Pd, Ni or the like can be used.
  • the controller 19 is connected to the gas detection means 18.
  • the controller 19 detects the amounts of CO and HC in the exhaust gas by receiving a signal from the gas detecting means 18 and controls the EGR valve 16 according to the detected amount.
  • the controller 19 is provided with the EGR valve 16 or the supercharger. It acts to control one or both of the machines.
  • the control by the controller 19 is performed by adjusting the lift amount and the Z of the EGR valve 16 or the supercharging pressure of the supercharger in accordance with the increase or decrease of CO and HC detected by the gas detecting means 18.
  • the amount of CO and HC in the exhaust gas flowing through the exhaust gas passage 21 increases, the amount of exhaust gas to be recirculated is reduced by decreasing the lift amount of the EGR valve 16 to reduce the amount of exhaust gas. Reduce the concentration of CO and HC in the exhaust gas flowing into 1.
  • the concentration of CO and HC in the exhaust gas flowing into the filter 1 is reduced. I do.
  • cracks and erosion of the filter 1 caused by abnormal heat generation due to high concentrations of CO and HC are prevented.
  • FIG. 2 is a flowchart illustrating an example of control by the controller 19.
  • the controller 19 determines whether the concentration of CO and HC is normal or not, and if normal, controls the EGR valve 16 normally (step S2).
  • step S3 the lift amount of the EGR valve 16 is reduced.
  • step S3 the controller 19 continues to determine whether the concentrations of CO and HC are normal (step S4).
  • step S4 a determination is made based on whether or not the forces of CO and HC exceed these allowable values, and if not, control is performed so that the EGR valve 16 is closed and the lift amount becomes zero.
  • the warning light is turned on (step S5).
  • the controller 19 determines whether or not the concentrations of CO and HC are normal (step S7). If the concentrations are normal, the controller 19 performs control with a fixed turbine capacity and the like and control with a reduced fuel injection amount. Continue (step S8). If it is not normal, that is, if the concentrations of CO and HC do not return to normal values in step S6, the vehicle shifts to a so-called evacuation mode in which the vehicle travels only at an extremely low speed (step S9).
  • FIG. 3 is a timing chart showing an example of control based on the flowchart of FIG. 2, and is a timing chart after the EGR valve 16 is fixed for some reason during traveling of the vehicle.
  • the controller 19 turns on the warning light and closes the EGR valve 16 to reduce the lift to zero. .
  • the controller 19 decreases the supercharging pressure of the supercharger to reduce the fuel injection amount. Thereby, thereafter, the concentrations of CO and HC are reduced and returned to the normal level.
  • the present invention provides, in addition to the engine, a filter disposed in the flow path of the exhaust gas of the engine, an exhaust gas recirculation device that sends a part of the exhaust gas of the engine to the intake side, and a z or supercharger.
  • the filter can be used for an internal combustion engine system having the following, and the filter can be prevented from being damaged. In particular, it is suitably used when the engine is a diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 本発明の内燃機関システムは、ディーゼルエンジン11と、そのディーゼルエンジン11の排気ガスの流路(排気ガス流路21)に配置されるフィルタ1と、そのディーゼルエンジン11の排気ガスの一部を吸気側に送る排気ガス再循環装置と、を有する内燃機関システムである。フィルタ1の上流側にはガス検知手段18が配置され、フィルタ1に供給される排気ガスの中の特定ガス成分を検知する。又、コントローラ19が備わり、検知されたその特定ガス成分の増減に応じて、排気ガス再循環装置のEGRバルブ16のリフト量を制御して、排気ガス再循環量を調整する。この内燃機関システムは、組み込まれたフィルタに高濃度のCO、HCが流入することを抑制し得るものであり、フィルタが破損し難いという優れた効果を発現する。

Description

内燃機関システム
技術分野
[0001] 本発明は、内燃機関から排出される排気ガスの中の微粒子を捕捉するフィルタを排 気系に有した内燃機関システムに関し、特に、そのフィルタの破損を防止する機能を 備えた内燃機関システムに関する。
背景技術
[0002] 内燃機関の一種であるディーゼルエンジンは、燃焼の際に多くの粒子状物質 (PM : Particulate Matter)を排出するため、排出された PMを捕捉する各種のフィルタ (DPF: Diesel Particulate Filter)が開発されている。この DPFでは、ウォールフ ロータイプと呼ばれる、ハ-カム構造を呈するフィルタの流通孔を交互に目封じした タイプが主流になりつつあり、更に、ウォールフロータイプの中でも、炭化珪素ゃコー ジェライト等を用いたセラミック製のフィルタが主流となりつつある。
[0003] DPFは、 PMを捕捉するため、その捕捉を継続すると目詰まりを起こす。このため、 ある程度捕捉された状態で PMを取り除して再生する操作が必要となる。 DPFの再 生に際し、乗用車のようにメンテナンスフリーが要求される車両では、ポスト噴射のよ うな排気ガス温度を上昇させる手段を講じて、微粒子を燃焼させて除去することが行 われる。
[0004] DPFの再生に際して、 PMが大量に堆積した状態で行うと、その燃焼時に発生する 熱量が増大し、 DPFの耐熱許容限界を超えた場合には、クラックや溶損といった不 具合を生じさせることが分力つている。又、酸ィ匕触媒をコーティングしたタイプの DPF にお ヽては、 DPFの耐熱限界を超える現象は過大な PMを燃焼させた場合だけでな く、高濃度の一酸化炭素 (CO)やハイド口カーボン (HC)が流入した場合にも発生す る。酸化触媒は COや HCを酸化し、この酸ィ匕反応によって異常発熱するためである
[0005] 以上のことから、従来より、空燃比制御等の手法を用いて、燃料噴射量、過給圧、 排気ガス再循環(EGR: Exhaust Gas Recirculation)装置を構成するバルブ(E GRバルブ)のリフト量、等を制御して、 CO、 HCが高濃度にならないようにしている。 このため、通常状態においては、高濃度の CO、 HCが発生することはない。
発明の開示
[0006] しかしながら、 EGRバルブや可変容量ターボのノズルに、排気ガスの中の煤が付 着して固着した場合には、これらの制御が出来なくなる。即ち、 EGRバルブを開くと、 排気ガスの一部がエンジンの吸気側に流れる力 DPFに PMが堆積すると、 EGRバ ルブへの排気ガスの量が上昇して再循環のガス量 (EGR量)が増加する。このとき、 EGRバルブが固着した状態では、 EGR率の上昇を防止出来ず、 EGR率が加速度 的にアップする。そして、 EGR率が異常上昇すると燃焼効率が悪ィ匕し、 CO、 HCの 異常上昇を招く。そして、 DPFに酸ィ匕触媒がコーティングされている場合には、 CO、 HCが酸化されて異常発熱を生じ、 DPFが過度の高温となるため、クラックや溶損等 の破損を早期に招くものである。
[0007] 本発明は、このような従来の問題点を考慮してなされたものであり、特に触媒がコー ティングされた DPFにおいて、高濃度の COや HCの流入を抑制して、これらに起因 したクラックや溶損が発生することを防止することが可能な内燃機関システムを提供 することを目的とする。この目的を達成するため、本発明は、フィルタに流入する排気 ガス中の CO、 HCを検知して制御を行うものであり、特に、 COや HCの濃度が許容 値を超えた場合に、退避的な制御を行って、フィルタのクラック、溶損を防止するもの である。研究が重ねられた結果、以下の手段により、上記目的が達成出来ることが見 出された。
[0008] 即ち、本発明によれば、エンジンと、そのエンジンの排気ガスの流路に配置され排 気ガスの中の微粒子を捕捉するフィルタと、エンジンの排気ガスの一部を吸気側に送 る排気ガス再循環装置 (EGR装置)及び Z又は過給機と、を有する内燃機関システ ムであって、排気ガスの流路においてフィルタの上流側に配置され、フィルタに供給 される排気ガスの中の特定ガス成分を検知するガス検知手段と、そのガス検知手段 が検知した特定ガス成分の増減に応じて、排気ガス再循環装置を構成するバルブの リフト量及び Z又は過給機の過給圧を調整し得るコントローラと、を具備する内燃機 関システムが提供される。 [0009] 本発明の内燃機関システムは、ガス検知手段が COや HC等の排気ガス中の特定 のガス成分を検知し、コントローラはガス検知手段が検知した特性のガスの増減に応 じて制御を行う。この制御は、特定のガスの増減に応じて、排気ガス再循環装置を構 成するバルブ (EGRバルブ)のリフト量を制御して排気ガス再循環量 (EGR量)を調 整し、及び Z又は、過給機の過給圧を調整するものである。
[0010] 例えば、特定のガスが増加した場合には、 EGRバルブのリフト量を減少させる。こ れにより、再循環する排気ガスの量が少なくなり、結果としてフィルタに流入する CO や HCの濃度が小さくなる。他方、過給機に対しては、過給圧を減少させる。これによ り、排気ガスの量が少なくなり、結果としてフィルタに流入する COや HCの濃度が小 さくなる。これらにより、高濃度の特定ガスに起因したフィルタのクラックや溶損の発生 を防止することが出来る。尚、本発明の内燃機関システムにおいて、 EGR装置は、少 なくとも排気ガスを再循環させるための流路 (EGRパイプ)とその中に設けられる EG Rバルブとで構成されるものである。他に循環ガスを冷却するための付帯機器があつ てもよい。又、本発明は内燃機関システムと称しているが、過給機付きエンジンと表 現されるが如ぐ本発明は、フィルタと、排気ガス再循環装置 (EGR装置)及び Z又 は過給機と、ガス検知手段と、コントローラとが付帯した内燃機関ということも出来る( 同義である)。
[0011] 本発明の内燃機関システムにおいては、上記コントローラは、特定のガス成分が許 容値を超えたとき、排気ガス再循環装置を構成するバルブ (EGRバルブ)の閉鎖及 び Z又は過給機の過給圧を減少させることが好ましい。又、本発明の内燃機関シス テムにおいては、上記コントローラは、特定のガス成分が許容値を超えたとき、燃料 噴射量の減量を行うことが好まし 、。
[0012] この本発明の内燃機関システムにおける好ましい態様は、 COや HC等の特定のガ スが許容値を超えた場合の制御であり、この場合には、 EGRバルブの閉鎖及び Z又 は過給機の過給圧を減少させる制御を行う。 EGRバルブを閉鎖することにより、排気 ガスがエンジンに再循環することがないため、特定のガスが高濃度状態となってフィ ルタへ流入することがなくなる。他方、過給機の過給圧を減少させることにより、排気 ガスの総量が減少し、特定のガスが高濃度となって発生することがなぐ特定のガス が高濃度状態でフィルタに流入することがなくなる。これらにより、フィルタのクラック や溶損の発生を防止することが出来る。又、燃料噴射量を低減させて排気ガス温度 を低下させることでもフィルタの破損を防止出来る。
[0013] 又、本発明の内燃機関システムにおいては、上記コントローラは、特定のガス成分 が許容値を超えたとき、運転席側の警告灯の点灯を行うことによりフィルタが危険状 態にあることを知らせることが好ましい。このとき、 EGRバルブの閉鎖及び Z又は過 給機の過給圧の減少を同時に行うことが、より好ましい。
[0014] この本発明の内燃機関システムにおける好ましい態様は、警告灯の点灯を行うもの である。 COや HC等の特定のガスが許容値を超える状況では、 EGRバルブの固着 だけでなぐ可変容量ターボのノズル固着やフィルタに堆積した PMの強制再生不良 等の要因もある。これらの異常の場合には、車両のメンテナンスを行う必要がある力 警告灯を点灯させることにより、その異常の告知を確実に行うことが出来る。
[0015] 本発明の内燃機関システムは、上記特定のガス成分力 CO、 HCの何れか又は双 方である場合に好適に用いられる。
[0016] この場合、本発明の内燃機関システムは、特定のガスを CO、 HCの何れか又は双 方とするものであり、 CO、 HCの何れか又は双方の検知に基づいて、上記した各制 御が行われる。
[0017] 本発明の内燃機関システムは、上記フィルタが、酸化機能を有した触媒を担持して 、ることが好まし!/、。
[0018] この本発明の内燃機関システムにおける好ましい態様では、フィルタが酸ィ匕触媒を 担持している場合にも、クラックの発生や溶損を防止することが可能となる。
[0019] 本発明の内燃機関システムによれば、 COや HC等の排気ガス中の特定のガス成 分を検知し、検知したガスの増減に応じて制御を行うため、特定のガスが高濃度の状 態でフィルタに流入することがなぐ高濃度の特定ガスに起因したフィルタのクラック や溶損の発生を防止することが出来る。
[0020] 本発明の内燃機関システムにおける好ましい態様によれば、 COや HC等の特定の ガスが許容値を超えたとき、 EGRバルブの閉鎖及び/又は過給機の過給圧を減少 させる制御を行うため、フィルタのクラックや溶損の発生を防止することが出来る。 [0021] 本発明の内燃機関システムにおける好ましい態様によれば、警告灯を点灯させる ため、 EGRバルブの固着、可変容量ターボのノズル固着、フィルタに堆積した PMの 強制再生不良等の異常の告知を、確実に行うことが出来る。
[0022] 本発明の内燃機関システムにおける好ましい態様によれば、 CO、 HCの何れか又 は双方に対しての対策を行うことが出来る。
[0023] 本発明の内燃機関システムにおける好ましい態様によれば、フィルタが酸ィ匕触媒を 担持している場合にも、クラックの発生や溶損を防止することが可能となる。
図面の簡単な説明
[0024] [図 1]本発明の内燃機関システムの一実施形態における構成を示す概略図である。
[図 2]制御の一例を示すフローチャートである。
[図 3]制御の一例のタイミングチャートである。
[図 4]フィルタの斜視図である。
[図 5]フィルタを構成するハ-カムセグメントの斜視図である。
[図 6]ハニカムセグメントの断面図である。
符号の説明
[0025] 1· ··フィルタ、 11· ··ディーゼルエンジン、 12· ··シリンダ、 13· ··吸気側配管、 14· ··排 気側配管、 15"'EGRパイプ、 16"'EGRバルブ、 17· ··排気管、 18· ··ガス検知手段 、 19· ··コントローラ、 21· ··排気ガス流路、 22…吸入ガス流路。
発明を実施するための最良の形態
[0026] 以下、本発明の実施の形態について、適宜、図面を参酌しながら説明するが、本 発明はこれらに限定されて解釈されるべきものではなぐ本発明の範囲を逸脱しない 限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るもの である。例えば、図面は、好適な本発明の実施の形態を表すものであるが、本発明 は図面に表される態様や図面に示される情報により制限されない。本発明を実施し 又は検証する上では、本明細書中に記述されたものと同様の手段若しくは均等な手 段が適用され得る力 好適な手段は以下に記述される手段である。
[0027] 図 1は、本発明の内燃機関システムの一実施形態における全体構成を示す概略図 である。この実施形態では、内燃機関の一例であるディーゼルエンジン 11に適用す るものであり、ディーゼルエンジン 11は、シリンダ 12に対して吸気を行う吸気側配管( インテークパイプ) 13と、排気を行う排気側配管 (ェキゾーストパイプ) 14とを備えてい る。これらの吸気側配管 13及び排気側配管 14にかけて EGRパイプ 15が配置されて おり、 EGRパイプ 15には EGRバルブ 16が挿入されている。
[0028] 排気側配管 14には、排気ガスの排出を行う排気ガスの流路 (排気ガス流路)として の排気管 17が接続されており、この排気管 17の内部にフィルタ 1が配置されて 、る。 フィルタ 1は、排気ガス中の PMを捕捉するものであり、フィルタ 1を通過した排気ガス はマフラー(図示省略)を通じて車両外部に放出される。
[0029] 図 4は、この実施形態に用いられるフィルタ 1を示す斜視図である。フィルタ 1として 、例えばセラミック製のフィルタが採用出来る。フィルタ 1は、図 4に示されるように、複 数のハ-カムセグメント 2が接合材 9を介して縦横方向に接合されることにより形成さ れるものであり、接合材 9によるハ-カムセグメント 2の接合の後、円形断面、楕円断 面、三角断面その他の断面となるように研削加工され、外周面がコーティング材 4に よって被覆される。
[0030] それぞれのハ-カムセグメント 2は、図 5及び図 6に示されるように、多孔質の隔壁 6 によって仕切られた多数の流通孔 5を有して 、る。流通孔 5はハ-カムセグメント 2を 軸方向に貫通しており、隣接している流通孔 5における一端部が充填材 7によって交 互に目封じされている。即ち、一の流通孔 5においては、左端部が開放されている一 方、右端部が充填材 7によって目封じされており、これと隣接する他の流通孔 5にお いては、左端部が充填材 7によって目封じされる力 右端部が開放されている。このよ うな目封じにより、図 5に示されるように、ハ-カムセグメント 2の端面が巿松模様状を 呈するようになる。
[0031] このようなハニカムセグメント 2が組み付けられたフィルタ 1を、図 1に示されるように、 排気管 17内に配置した場合、排気ガスは、図 6の左側から各ハ-カムセグメント 2の 流通孔 5内に流入して、右側に移動する。即ち、図 6においては、ノ、二カムセグメント 2の左側が排気ガスの入口となるものであり、排気ガスは、 目封じされることなく開放さ れている流通孔 5から、ハ-カムセグメント 2内に流入する。流通孔 5に流入した排気 ガスは、多孔質の隔壁 6を通過して、他の流通孔カも流出する。そして、隔壁 6を通 過する際に、排気ガス中のスートを含む PMが隔壁 6に捕捉され、排気ガスの浄ィ匕が 行われる。
[0032] 尚、図 6に示されるハ-カムセグメント 2は、正方形断面となっている力 三角形断 面、六角形断面等の適宜の断面形状とすることが可能である。又、流通孔 5の断面 形状においても、三角形、六角形、円形、楕円形、その他の形状とすることが出来る
[0033] ハ-カムセグメント 2の材料としては強度、耐熱性の観点から、炭化珪素、珪素 炭 化珪素系複合材料、窒化珪素、コージヱライト、ムライト、アルミナ、スピネル、炭化珪 素 コージエライト系複合材、珪素 炭化珪素複合材、リチウムアルミニウムシリケート 、チタン酸アルミニウム、 Fe Cr A1系金属からなる群力 選択される 1種若しくは複 数種を組み合わせた材料を使用することが好ま ヽ。
[0034] ノ、二カムセグメント 2の製造は、上述した中力も選択された材料にメチルセルロース 、ヒドロキシプロポキシノレセノレロース、ヒドロキシェチノレセノレロース、カノレボキシメチノレ セルロース、ポリビュルアルコール等のバインダ、界面活性剤や水等を添加して、可 塑性の坏土とし、この坏土を押出成形することにより、隔壁 6によって仕切られた軸方 向に貫通する多数の流通孔 5を有するハ-カム形状とする。そして、これをマイクロ波 、熱風等によって乾燥した後、焼結することによりハ-カムセグメント 2とする。充填材 7による目封じは、 目封じをしない流通孔 5をマスキングした状態で、ハ-カムセグメン ト 2の端面をスラリー状の充填材 7に浸漬し、開口している流通孔 5に充填することに より行う。充填材 7の充填は、ハニカムセグメント 2の成形後における焼成前に行って も、焼成後に行っても良いが、焼成前に行うことにより、焼成工程が 1回で終了するた め好ましい。
[0035] このようなハ-カムセグメント 2の状態に対し酸ィ匕触媒をコーティングすることにより、 フィルタ 1に酸ィ匕触媒を担持させることが可能である。酸化触媒としては、白金属金属 、アルカリ土類金属、その他の触媒が用いられ、これらのスラリー中にハ-カムセグメ ント 2を浸漬したり、ハ-カムセグメント 2の外面にこれらのスラリーを塗布し、その後、 乾燥することにより酸ィ匕触媒を担持させることが出来る。
[0036] 以上のようにして、ハ-カムセグメント 2を作製した後、ハ-カムセグメント 2の外面に スラリー状の接合材 9を塗布し、所定の立体形状となるように複数のハ-カムセグメン ト 2を組み付け、この組み付け状態で圧着しながら加熱乾燥する。これにより、複数の ハ-カムセグメント 2が接合された接合体を作製する。その後、接合体を研削加工し、 外周面をコーティング材 4によって被覆し、加熱乾燥し、これにより、図 4に示されるフ ィルタ 1を作製することが出来る。尚、酸化触媒については、以上によって最終のフィ ルタ 1を作製した後、得られたフィルタ 1に対して、上述のハ-カムセグメント 2への処 理と同様な処理を行うことにより、担持させても良い。
[0037] 図 1において、実線矢印は排気ガス (排出ガス)の流れ (排気ガス流路 21)を示して おり、破線矢印は EGRバルブ 16を開としたときの EGR分を含む吸入ガスの流れ(吸 入ガス流路 22)である。
[0038] 図 1に示されるように、排気ガス流路 21 (排気管 17)には、ガス検知手段 18が配置 され、これが排気ガス中の特定のガスの検知を行う。ガス検知手段 18は、排気管 17 におけるフィルタ 1よりも上流側に配置されており、排気ガスがフィルタ 1に流入する前 に排気ガス中の特定のガスの検知を行うようになって 、る。
[0039] この実施形態において、ガス検知手段 18は排気ガス中の CO、 HCを検知するもの である。このガス検知手段 18としては、 CO、 HCを酸化する触媒を排気管 17内に配 置するとともに、これらの CO、 HCとの酸化反応によって変化する触媒の温度を検知 する温度センサを触媒に接続することにより、構成することが出来る。触媒としては、 CO、 HCの量に略比例して温度が変化する触媒が選択される。このような触媒として は、例えば、 Pt、 Pd、 Ni等を用いることが出来る。このようなガス検知手段 18により、 CO、 HCの何れか一方の量を検知しても良ぐ CO、 HCの双方の量を検知しても良 ぐ後者の方が確実性、正確性の点から好ましい。
[0040] ガス検知手段 18には、コントローラ 19が接続されている。コントローラ 19は、ガス検 知手段 18からの信号を受け取ることにより、排気ガス中の CO、 HCの量を検出し、検 出量に応じて EGRバルブ 16を制御するものである。尚、この実施形態では、 EGRパ イブ 15とともに EGR装置を構成する EGRバルブ 16だけを配置している力 過給機 が組み込まれた内燃機関システムの場合、コントローラ 19は、 EGRバルブ 16又は過 給機の何れか一方、あるいは双方を制御するように作用するものである。 [0041] コントローラ 19による制御は、ガス検知手段 18が検知した CO、 HCの増減に応じて EGRバルブ 16のリフト量及び Z又は過給機の過給圧を調整することにより行うもの である。即ち、排気ガス流路 21を流れる排気ガス中の CO、 HCの量が増加した場合 には、 EGRバルブ 16のリフト量を減少させることにより、再循環する排気ガスの量を 少なくして、フィルタ 1に流入する排気ガス中の COや HCの濃度を小さくする。過給 機に対しては、その過給圧を減少させることにより、ディーゼルエンジン 11からの排 気ガスの量を減少させて、フィルタ 1に流入する排気ガス中の COや HCの濃度を小 さくする。これらにより、高濃度の CO、 HCの酸ィ匕による異常発熱に起因したフィルタ 1のクラックや溶損の発生を防止する。
[0042] 以上にカ卩え、この実施形態におけるコントローラ 19は、 CO、 HCの量に基づき、警 告灯の点灯を行うようにも制御を行うものである。
[0043] 図 2は、コントローラ 19の制御の一例を示すフローチャートである。ステップ S1にお いて、コントローラ 19は CO、 HCの濃度が正常である力否かを判断し、正常な場合に は、 EGRバルブ 16の通常の制御を行う(ステップ S 2)。
[0044] 一方、正常でない場合には、 EGRバルブ 16のリフト量を減少させる(ステップ S3)。
ステップ S3に続き、コントローラ 19は CO、 HCの濃度が正常であるか否かの判断を 継続する(ステップ S4)。ステップ S4においては、 CO、 HCがこれらの許容値を超え る力否かにより判断を行い、許容値以内の場合には、 EGRバルブ 16を閉じて、その リフト量がゼロとなるように制御するとともに、警告灯を点灯させる (ステップ S5)。
[0045] ステップ S4にお 、て、 CO、 HCが許容値を超えた場合には、過給機の過給圧を減 少させる(ステップ S6)。即ち、ステップ S6においては、例えばタービン容量のアップ 及び燃料噴射量の減量を行う。このときにおいても、警告灯を点灯させる。
[0046] その後、コントローラ 19は、 CO、 HCの濃度が正常力否かを判断し (ステップ S 7)、 正常な場合には、タービン容量等を固定した制御及び燃料噴射量を減量した制御を 継続する (ステップ S8)。正常でない場合、即ち、ステップ S6により CO、 HCの濃度 が正常値に回復しない場合には、車両を極低速のみで走行させる、いわゆる退避走 行モードに移行する (ステップ S9)。
[0047] このような制御により、高濃度の CO、 HCがフィルタ 1に流入することを防止出来る ため、これらに基づいた異常発熱が抑制され、フィルタ 1のクラックや溶損の発生を防 止することが出来る。
[0048] 図 3は、図 2のフローチャートに基づいた制御の一例を示すタイミングチャートであり 、車両走行途中に何らかの原因で EGRバルブ 16が固着した後のタイミングチャート である。 EGRバルブ 16の固着により、 CO、 HCの濃度が異常判定レベル (許容値) を超えたとき、コントローラ 19は警告灯を点灯するとともに、 EGRバルブ 16を閉鎖し て、そのリフト量をゼロとする。その後においても、 CO、 HCの濃度が減少しないとき、 コントローラ 19は過給機の過給圧を減少させて燃料噴射量を減量させる。これにより 、その後においては、 CO、 HCの濃度が低減して正常レベルに戻っている。
[0049] 尚、その後においても、 CO、 HCの濃度が正常レベルとならない場合には、図 2の フローチャートで示されるように、燃料噴射量を減量させて退避走行モードとするもの である。
[0050] 本発明は、既に述べたように、以上の実施形態に限定されることなぐ種々変形が 可能である。例えば、上記実施形態では、 EGR装置及び過給機が備わる場合には、 CO、 HCの濃度に応じて、 EGRバルブ 16に続いて過給機の制御を行っている力 E GRバルブ 16に対しての制御によって CO、 HCの濃度が正常レベルに戻った場合 には、過給機への制御は不要である。又、 EGRバルブ 16の制御を行うことなぐ過給 機への制御に移行しても良!、。
産業上の利用可能性
[0051] 本発明は、エンジンの他に、エンジンの排気ガスの流路に配置されるフィルタと、ェ ンジンの排気ガスの一部を吸気側に送る排気ガス再循環装置及び z又は過給機と、 を有する内燃機関システムに利用することが出来、当該フィルタの破損防止が図れる 。特に、エンジンがディーゼルエンジンである場合に、好適に利用される。

Claims

請求の範囲
[1] エンジンと、前記エンジンの排気ガスの流路に配置され排気ガスの中の微粒子を 捕捉するフィルタと、前記エンジンの排気ガスの一部を吸気側に送る排気ガス再循 環装置及び Z又は過給機と、を有する内燃機関システムであって、
前記排気ガスの流路にお 、て前記フィルタの上流側に配置され、フィルタに供給さ れる排気ガスの中の特定ガス成分を検知するガス検知手段と、
前記ガス検知手段が検知した特定ガス成分の増減に応じて、前記排気ガス再循環 装置を構成するバルブのリフト量及び Z又は前記過給機の過給圧を調整し得るコン 卜ローラと、
を具備する内燃機関システム。
[2] 前記コントローラは、前記特定のガス成分が許容値を超えたとき、前記排気ガス再 循環装置を構成するバルブの閉鎖及び Z又は過給機の過給圧の減少を行う請求項
1に記載の内燃機関システム。
[3] 前記コントローラは、前記特定のガス成分が許容値を超えたとき、燃料噴射量の減 量を行う請求項 1又は 2に記載の内燃機関システム。
[4] 前記コントローラは、前記特定のガス成分が許容値を超えたとき、運転席側の警告 灯の点灯を行うことによりフィルタが危険状態にあることを知らせる請求項 1一 3の何 れか一項に記載の内燃機関システム。
[5] 前記特定のガス成分は、 CO、 HCの何れか又は双方である請求項 1一 4の何れか 一項に記載の内燃機関システム。
[6] 前記フィルタが、酸化機能を有した触媒を担持している請求項 1一 5の何れか一項 に記載の内燃機関システム。
PCT/JP2004/017484 2003-12-11 2004-11-25 内燃機関システム WO2005056998A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003413084A JP2007085173A (ja) 2003-12-11 2003-12-11 内燃機関
JP2003-413084 2003-12-11

Publications (1)

Publication Number Publication Date
WO2005056998A1 true WO2005056998A1 (ja) 2005-06-23

Family

ID=34675045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017484 WO2005056998A1 (ja) 2003-12-11 2004-11-25 内燃機関システム

Country Status (2)

Country Link
JP (1) JP2007085173A (ja)
WO (1) WO2005056998A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181984A (ja) * 1997-09-01 1999-03-26 Isuzu Ceramics Kenkyusho:Kk ディーゼルパティキュレートフィルタの制御方法及びその制御装置
JP2002322910A (ja) * 2001-04-25 2002-11-08 Nissan Motor Co Ltd ディーゼルエンジンの排気浄化装置
JP2002371827A (ja) * 2001-06-18 2002-12-26 Denso Corp エンジン用排気浄化装置
JP2003247416A (ja) * 2002-02-22 2003-09-05 Toyota Motor Corp 排気ガス浄化装置及び排気ガス浄化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181984A (ja) * 1997-09-01 1999-03-26 Isuzu Ceramics Kenkyusho:Kk ディーゼルパティキュレートフィルタの制御方法及びその制御装置
JP2002322910A (ja) * 2001-04-25 2002-11-08 Nissan Motor Co Ltd ディーゼルエンジンの排気浄化装置
JP2002371827A (ja) * 2001-06-18 2002-12-26 Denso Corp エンジン用排気浄化装置
JP2003247416A (ja) * 2002-02-22 2003-09-05 Toyota Motor Corp 排気ガス浄化装置及び排気ガス浄化方法

Also Published As

Publication number Publication date
JP2007085173A (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
EP1582708B1 (en) Device for purifying the exhaust gases of diesel engines
JP3840923B2 (ja) ディーゼルエンジンの排気浄化装置
JP4665633B2 (ja) 内燃機関の排気浄化装置
US20040096372A1 (en) Exhaust gas purifying equipment for a diesel engine
JP2004019496A (ja) 内燃機関の排ガス浄化装置
JP2003184538A (ja) 排気浄化装置
KR101998456B1 (ko) 고체 물질들로 오염된 배기 시스템의 필터 요소를 재생하는 방법 및 배기 시스템
JP2007270705A (ja) エンジンのegr装置
JP2010031799A (ja) 内燃機関の排気浄化装置
JP4396383B2 (ja) ディーゼルエンジンの排気ガス後処理装置
EP1903200B1 (en) Exhaust gas purification system of internal combustion engine
JP2005299628A (ja) ディーゼル機関のフィルタ再生制御装置
KR101231408B1 (ko) 디젤매연 촉매여과필터의 재생 제어장치
JP4412049B2 (ja) ディーゼルエンジンの排気ガス後処理装置
JP2006132458A (ja) 内燃機関の排気浄化装置
JP4701622B2 (ja) ディーゼルエンジンの排気ガス後処理装置
WO2005056998A1 (ja) 内燃機関システム
JP2004353596A (ja) 排気浄化装置
JP5544758B2 (ja) ディーゼル機関の制御システム
JP2005163652A (ja) 排気浄化装置
JP2006214311A (ja) 排気浄化装置
JP6568372B2 (ja) 排気浄化装置
JP2004162612A (ja) 内燃機関の排気浄化装置
JP2006226121A (ja) 排気ガス浄化装置及び排気ガス浄化方法
JP2003035126A (ja) ディーゼルエンジンの排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP