WO2005050867A1 - 等化方法およびそれを利用した受信装置 - Google Patents

等化方法およびそれを利用した受信装置 Download PDF

Info

Publication number
WO2005050867A1
WO2005050867A1 PCT/JP2004/016758 JP2004016758W WO2005050867A1 WO 2005050867 A1 WO2005050867 A1 WO 2005050867A1 JP 2004016758 W JP2004016758 W JP 2004016758W WO 2005050867 A1 WO2005050867 A1 WO 2005050867A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
equalizer
signal
taps
delay
Prior art date
Application number
PCT/JP2004/016758
Other languages
English (en)
French (fr)
Inventor
Ryokan Yuasa
Original Assignee
Sanyo Electric Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd filed Critical Sanyo Electric Co., Ltd
Publication of WO2005050867A1 publication Critical patent/WO2005050867A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03535Variable structures
    • H04L2025/03547Switching between time domain structures
    • H04L2025/03566Switching between time domain structures between different tapped delay line structures
    • H04L2025/03573Switching between time domain structures between different tapped delay line structures between recursive and non-recursive

Definitions

  • the present invention relates to an equalization technique, and more particularly, to an equalization method for controlling taps to be used for equalization processing in accordance with the characteristics of a radio channel and a receiving device using the same.
  • an adaptive equalizer is one of the techniques for removing waveform distortion due to multipath fading in a wireless propagation path.
  • One of such adaptive equalizers is a transversal-type matched filter that inputs a received signal at the input terminal, a decision-feedback-type equalizer that removes intersymbol interference, and a demodulator that makes a decision at the output terminal. It is comprised including. Further, a plurality of tap coefficients respectively corresponding to a plurality of taps included in the matched filter are obtained by a correlator. Further, the output of the correlator is time-averaged by a loop filter for each tap coefficient, and is also input to a level detector.
  • the level detector determines the output level of the loop filter in units of tap coefficients, compares the output level with the value, and for a tap coefficient having an output level equal to or higher than the threshold, uses the matched filter to determine the tap corresponding to the tap coefficient. Controlled to use. On the other hand, for a tap coefficient having an output level smaller than the threshold value in the level detector, control is performed such that a tap corresponding to the tap coefficient is not used in the matched filter (for example, see Patent Document 1). o
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-168999
  • an adaptive equalizer of a type in which a transversal filter and a decision feedback equalizer are combined generally, the effect of multipath in a precursor part is mainly removed by a transversal equalizer.
  • the influence of delayed multipath in the postcursor part is mainly eliminated by a decision feedback type equalizer.
  • the number of taps generally required in an adaptive equalizer depends on the delay time of a delayed wave generated in a radio channel. In other words, as the delay time of the delayed wave increases, the number of taps should also increase with this.
  • the delay time is shortened, the number of taps used for adaptive processing is reduced, which leads to a reduction in processing amount and power consumption.
  • the delay detection becomes longer, the number of taps increases, so that deterioration of characteristics can be prevented.
  • the radio channel noise power changes with time, and the time when operation or stop is determined in tap units and the time when the equalization process is actually performed are performed. If there is a deviation, it is not always possible to improve the characteristics by the control described above. On the other hand, if the operation or stop is strictly controlled in tap units to improve the characteristics, the processing may be complicated. Furthermore, the determination of tap operation or stop may not be based on the power in tap units, but may be simplified if the power in multiple taps can be handled as one parameter by statistical processing or the like.
  • the present invention has been made in view of such a situation, and an object of the present invention is to simply and accurately perform processing for determining taps to be used for equalization processing in accordance with the characteristics of a wireless propagation path. And a receiving device using the same.
  • the apparatus includes a receiving unit that receives a signal via a propagation path, an equalization processing unit that inputs the received signal to a plurality of taps, and performs an equalization process on the signal input to the plurality of taps, An estimation unit for estimating a delay spread of a propagation path from the obtained signal, and a determination unit for determining a tap to be used for equalization processing among a plurality of taps based on the estimated delay spread.
  • taps to be used for the equalization processing are determined according to the estimated delay spread, so that the equalization capability according to the delay spread can be set.
  • the determining unit may compare the estimated delay spread with a predetermined threshold value, and determine a tap to be used for equalization processing among a plurality of taps based on a result of the comparison. Good.
  • the equalization processing unit inputs the received signal to some of the plurality of taps, and performs equalization processing on a signal input to the some taps from a pre-stage equalization unit and a pre-stage equalization unit. output A post-equalization unit that inputs the obtained signal to the remaining taps of the plurality of taps, and further performs a equalization process on the signal input to the remaining taps, and the determination unit uses the estimated delay spread based on the estimated delay spread.
  • the operation or stop of the post-equalization unit may be determined.
  • Some taps included in the pre-stage equalizer may form a linear filter
  • the remaining taps included in the post-stage equalizer may form a decision feedback equalizer.
  • the post-stage equalizer may include a linear filter as well as a decision feedback equalizer.
  • an equalizer that performs equalization processing on a signal received through a propagation path further equalizes a pre-stage equalizer that performs equalization processing on a received signal and a signal output from the pre-stage equalizer.
  • a delay equalizer for estimating the delay spread of the received signal power propagation path Based on the estimated delay spread, the operation of the latter equalizer is determined to stop.
  • FIG. 1 is a diagram showing a configuration of a receiving apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing a delay profile estimated by a delay spread estimating unit in FIG. 1.
  • FIG. 3 is a diagram showing a burst format of the communication system according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of the equalizer in FIG. 1.
  • FIG. 5 is a diagram showing a configuration of a linear filter unit in FIG. 4.
  • FIG. 6 is a diagram showing a configuration of a DFE unit in FIG. 4.
  • FIG. 7 is a diagram illustrating a configuration of an equalizer according to a second embodiment.
  • FIG. 8 is a diagram showing thresholds! / And values used in a determination unit in FIG. 7.
  • Embodiment 1 of the present invention relates to a wireless LAN receiver according to the IEEE802.11 standard.
  • the receiver includes a linear filter and a decision feedback equalizer (hereinafter referred to as "DFE (Decision Feedback Equalizer)") to perform the equalization process, and the signal output from the linear filter is input to the DFE.
  • DFE Decision Feedback Equalizer
  • Both the linear filter and DFE have a configuration in which multiple taps are arranged.For the power DFE, the number of taps of the linear filter and the DFE is set so that a delayed wave with a longer delay time than that of the linear filter can be removed. T!
  • the receiving apparatus When the receiving apparatus according to the present embodiment receives a burst signal from a transmitting apparatus via a radio channel, the receiving apparatus estimates a delay spread of the radio channel based on a head portion of the burst signal. Subsequently, the estimated delay spread is compared with a preset threshold, and if the delay spread is equal to or greater than the threshold, the DFE is activated. On the other hand, if the delay spread is smaller than the threshold V, which is smaller than the value, the DFE is stopped and an output signal having a linear filter power is output as an output signal of the entire equalizer.
  • DFE is also used to reduce the residual distortion component of the delay wave, and if the delay spread of the wireless channel is short, the power consumption is reduced. Stop the DFE to achieve The signal output from the linear filter or DFE is subjected to CCK demodulation and despreading.
  • CCK modulation unit 8 bits are defined as one unit (hereinafter, this unit is referred to as “CCK modulation unit”), and these 8 bits are named dl, d2,.
  • the lower 6 bits of the CCK unit are mapped to the signal point constellation of QPSK (Quadrature Phase Shift Keying) in units of [d3, d4], [d5, d6], [d7, d8].
  • the mapped phase is ( ⁇ 2, ⁇ 3, ⁇ 4).
  • eight kinds of spreading codes ⁇ 1 force such as phase ⁇ 2, ⁇ 3, and ⁇ 4 force also generate ⁇ 8 as follows.
  • the upper two bits [dl, d2] of the CCK modulation unit are mapped to a signal point of DQPSK (Differential encoding Quadrature Phase Shift Keying).
  • the mapped phase is ⁇ 1.
  • ⁇ 1 corresponds to the spread signal.
  • the following eight chip signals X 0 to X 7 are generated.
  • the transmitting apparatus transmits the chip signals XO and X7 in the order of X7 (hereinafter, chip signals X0 to X7).
  • the time-series unit composed of is also called "CCK modulation unit".
  • a signal obtained by modulating the phase of DBPSK or DQPSK is spread by a known spreading code and transmitted.
  • the reception signal shown in the present embodiment is assumed to be in the form of a chip signal in principle.
  • FIG. 1 shows a configuration of the receiving apparatus 100 according to the first embodiment.
  • Receiving device 100 has antenna 1
  • the signal includes a delay spread value 200, an equalizer input signal 202, and an equalizer output signal 204.
  • the antenna 10 receives a radio frequency burst signal transmitted from a transmitter (not shown).
  • the RF unit 12 converts the frequency of the received radio frequency burst signal into an intermediate frequency burst signal. In addition, it performs quadrature detection on the intermediate frequency burst signal and outputs a baseband burst signal.
  • a baseband burst signal is represented by a force represented by two components, an in-phase component and a quadrature component.
  • the AGC 14 automatically controls the gain so that the amplitude of the baseband burst signal falls within the dynamic range of an AD converter (not shown).
  • the AD conversion converts a baseband analog signal into a digital signal and outputs a signal composed of a plurality of bits.
  • the signal output from the AGC 14 is shown as an equalizer input signal 202.
  • Delay spread estimating section 16 estimates a delay spread from a baseband burst signal.
  • the leading portion of the burst signal is a known signal, and in the leading portion, a known signal power correlation process is performed with the received burst signal to estimate a delay profile. Further, the estimated delay profile force also estimates the delay spread.
  • FIG. 2 shows an example of estimating the delay spread from the delay profile.
  • FIG. 2 shows the delay profile estimated by the delay spread estimating unit 16, where the horizontal axis is the delay time and the vertical axis is the power.
  • the delay time corresponding to the delay component having the strongest power is set to “delay time 0”, and the delay time difference of the “delay time 0” is shown as “delay time T”, “delay time 2 ⁇ ”.
  • indicates the time resolution for estimating the delay component of the delay profile, and is usually set to the sampling period of the AZD conversion.
  • Delay time 0 The delay time difference corresponding to the preceding wave existing earlier is shown as “delay time T”, “delay time 2 ⁇ ”.
  • the power of the delay component for each delay time is indicated as “Li”, and for example, the power for “delay time 0” is “LO”.
  • the delay spread S estimated by the delay spread estimating unit 16 is shown as follows.
  • the delay spread S estimated as described above is output as a delay spread value of 200.
  • the equalizer 18 receives the equalizer input signal 202, performs an equalization process, and outputs an equalizer output signal 204.
  • the equalizer 18 includes a plurality of taps, and a plurality of tap coefficients corresponding thereto are estimated by an LMS (Least Mean Squares) algorithm. Further, of the plurality of taps, the tap actually used in the equalization process is determined based on the delay spread value 200.
  • LMS Least Mean Squares
  • Demodulation section 60 demodulates equalizer output signal 204. If the equalizer output signal 204 is a signal that has been phase-modulated and spread, despreading and delay detection are performed, and if the equalizer output signal 204 is a CCK-modulated signal, Walsh transform is performed. Performs CCK demodulation based on! / ⁇ .
  • the control unit 62 controls the timing and the like of the receiving device 100.
  • FIG. 3 shows a burst format of the communication system according to the first embodiment.
  • This burst format corresponds to ShortPLCP of the IEEE802.11b standard.
  • the burst signal includes a preamble, a header, and a data area as shown.
  • the preamble is transmitted at a transmission rate of 1 Mbps using the DBP SK modulation method
  • the header is transmitted at a transmission rate of 2 Mbps using the DQPSK modulation method
  • the data is transmitted at a transmission rate of 11 Mbps using the CCK modulation method.
  • the preamble includes 56-bit SYNC and 16-bit SFD
  • the header includes 8-bit SIGNAL, 8-bit SERVICE, 16-bit LENGTH, and 16-bit CRC.
  • the length of the PSDU corresponding to the data is variable. Note that the preamble corresponds to a known signal for estimating the delay profile.
  • FIG. 4 shows a configuration of the equalizer 18.
  • the equalizer 18 includes a linear filter unit 20, a DFE unit 22, an LMS algorithm unit 24, a determination unit 26, and a switching unit 28.
  • the signals include a filter output signal 206, a DFE input signal 208, and a tap-related signal 210.
  • the linear filter section 20 has a plurality of taps, performs an equalization process on the equalizer input signal 202, and outputs a filter output signal 206. It is assumed that the time interval of the plurality of taps arranged in the linear filter unit 20 is 1Z2, which is the time interval of the chip signal. Also, tap coefficients corresponding to a plurality of taps are calculated and set by an LMS algorithm unit 24 described later at the beginning of the burst signal. Here, it is assumed that the once set tap coefficient is fixed during the period of the burst signal.
  • DFE section 22 has a plurality of taps, and performs equalization processing based on decision feedback on DFE input signal 208, which is the same signal as filter output signal 206, to output the equalizer.
  • Output force signal 204 It is assumed that the time interval of the plurality of taps arranged in the DFE unit 22 is the time interval of the chip signal.
  • tap coefficients corresponding to a plurality of taps are calculated and set by an LMS algorithm unit 24 described later after the tap coefficients of the linear filter unit 20 are set at the head of the burst and the tap coefficients are set. .
  • the tap coefficient is updated by the LMS algorithm unit 24 over the period of the burst signal.
  • a signal necessary for setting the tap coefficient and updating the tap coefficient is transmitted between the LMS algorithm unit 24 and the DFE unit 22 by a tap-related signal 210.
  • the LMS algorithm unit 24 includes a tap filter between the linear filter unit 20 and the DFE unit 22 as described above. Calculate the number.
  • the tap coefficients for the linear filter unit 20 are calculated based on the equalizer input signal 202 and the known signal, and the tap coefficients for the DFE unit 22 are the known signal or the equalizer output signal 204 and the DFE input signal. Calculate based on signal 208.
  • the determining unit 26 stores a predetermined threshold value in advance, and compares the input delay spread value 200 with the threshold value. If the delay spread value 200 is equal to or larger than the threshold value, the operation of the DFE unit 22 is determined. If the delay spread value 200 is smaller than the threshold value, the stop of the DFE unit 22 is determined. The switching unit 28 is notified of the decision.
  • the switching unit 28 does not input a signal to the DFE unit 22, that is, does not actually operate the DFE unit 22. Specifically, when the DFE unit 22 is operated, the filter output signal 206 is directly input to the DFE unit 22 as the DFE input signal 208. On the other hand, when the DFE unit 22 is stopped, the filter output signal 206 is output as it is as the equalizer output signal 204 through the DFE unit 22.
  • FIG. 5 shows a configuration of the linear filter unit 20.
  • the linear filter unit 20 includes a first holding unit 32a, which is collectively referred to as a first delay unit 30a, an eleventh delay unit 30k, a twelfth delay unit 301, a twenty-second delay unit 30v, and a holding unit 32, which are collectively referred to as a delay unit 30.
  • the second holding unit 32b, the eleventh holding unit 32k, the twelfth holding unit 321, the thirteenth holding unit 32m, the twenty-second holding unit 32v, the twenty-third holding unit 32w, and the first multiplying unit 34a collectively referred to as a multiplying unit 34
  • the second multiplier 34b, the eleventh multiplier 34k, the twelfth multiplier 341, the thirteenth multiplier 34m, the twenty-second multiplier 34v, the twenty-third multiplier 34w, and the summation unit 36 are included.
  • the delay unit 30 delays the equalizer input signal 202.
  • the space between the two delay units 30 corresponds to the tap described above. Since 22 delay units 30 are provided as shown, the number of taps corresponds to 23.
  • the delay amount in the delay unit 30 is set to 1Z2, which is the time interval of the chip signal.
  • the holding unit 32 holds the tap coefficients calculated by the LMS algorithm unit 24 via! /, Na! /, And signal lines as shown. As described above, once the tap coefficient is set in the holding unit 32, it is fixed during the burst signal period.
  • the multiplication unit 34 multiplies the signal output from the delay unit 30 by the tap coefficient held in the holding unit 32.
  • the summation section 36 sums up the multiplication results in the multiplication section 34 and outputs a filter output signal 206.
  • FIG. 6 shows a configuration of the DFE unit 22.
  • the DFE unit 22 includes a first delay unit 40a, a second delay unit 40b, a third delay unit 40c, a tenth delay unit 40j, and a first holding unit 42a, commonly referred to as a holding unit 42, which are collectively referred to as a delay unit 40.
  • the delay unit 40 is divided into two parts, which are divided into a feed forward tap unit (hereinafter, referred to as “FF unit”) including a first delay unit 40a and a second delay unit 40b, and a third delay unit.
  • the feedback tap section (hereinafter, referred to as “FB section” t) which also has a power 40c and a tenth delay section 40j is called.
  • FB section The feedback tap section
  • the space between the two delay sections 40 corresponds to the tap described above. Since two delay units 40 are provided as shown in the drawing, the number of taps is three.
  • the FB section one delay section 40 corresponds to the tap described above. Since eight delay units 40 are provided as shown in the figure, the number of taps is eight.
  • the amount of delay in the delay unit 40 is set to the time interval of the chip signal.
  • the holding unit 42 holds the tap coefficients calculated by the LMS algorithm unit 24 via! /, Na! /, And signal lines as shown. As described above, the tap coefficient to be held in the holding unit 42 is updated during the burst period.
  • the multiplication unit 44 multiplies the signal output from the delay unit 40 by the tap coefficient held in the holding unit 42.
  • the summation section 46 sums up the multiplication results in the multiplication section 44.
  • the determination unit 48 determines the signal output from the summation unit 46. The determined signal is output to the above-described LMS algorithm unit 24 by the tap-related signal 210 and is input to the third delay unit 40c.
  • the adding section 50 subtracts the signal output from the summing section 46 and the signal determined by the determining section 48 to obtain an error, and outputs the error to the above-described LMS algorithm section 24 using a tap-related signal 210. Note that the signal output from the summation section 46 is output as an equalizer output signal 204.
  • Receiving apparatus 100 receives the burst signal, and delay spread estimating section 16 estimates the delay spread using the preamble included in the burst signal.
  • the determination unit 26 determines the operation of the DFE unit 22 because the estimated delay spread is equal to or larger than the threshold.
  • Preamble section included in the burst signal Then, the LMS algorithm unit 24 calculates tap coefficients of the linear filter unit 20 and subsequently calculates tap coefficients of the DFE unit 22.
  • the linear filter section 20 equalizes the data signal and outputs a filter output signal 206, and the DFE section 22 equalizes the DFE input signal 208 identical to the filter output signal 206.
  • An equalizer output signal 204 is output.
  • the LMS algorithm unit 24 updates the tap coefficient of the DFE unit 22 over the data section of the burst signal.
  • the delay component can be removed by the DFE even if the delay spread is large. If it is small, the DFE will not operate, which can reduce power consumption.
  • the operation of the DFE since the operation of the DFE is determined only by the delay spread, the operation of the DFE can be easily determined. Also, since the operation of the entire DFE is controlled without controlling the operation in tap units, control becomes easy.
  • taps to be used for the equalization processing are determined based on the delay spread estimated from the received signal.
  • the operation or stop of the entire DFE is determined instead of determining the operation or stop in tap units.
  • FIG. 7 shows a configuration of the equalizer 18 according to the second embodiment.
  • the equalizer 18 in FIG. 7 has the same configuration as that of the equalizer 18 in FIG. 4 except that the DFE section 22 is omitted.
  • the second delay section 30b and the 21st delay section 30u are different from the linear filter section 20 in FIG. ,
  • a third holding unit 32c, and a third multiplying unit 34c are illustrated.
  • the operations of the delay unit 30, the holding unit 32, the multiplication unit 34, and the summation unit 36 are the same as those described so far, and a description thereof will be omitted.
  • the determination unit 26 stores a predetermined threshold value in advance, as in the determination unit 26 of FIG. 4, and compares the input delay spread value 200 with the threshold value.
  • the threshold values are stored in a plurality of levels, and the number of taps to be used in the equalization processing, that is, the delay unit 30, the holding unit 32 , The number of multipliers 34 is adjusted.
  • FIG. 8 shows threshold values used in the determination unit 26.
  • the threshold for delay spread is indicated by "A" to "E", and "A" to "E” ”In this order.
  • the figure also shows the number of delay units 30 corresponding to the case in which the threshold value is exceeded.
  • delay spread value 200 is greater than or equal to threshold value “A”
  • 22 delay units 30 are used, and first delay unit 30a to 22nd delay unit 30v are used.
  • 21 delay units 30 are used, and the first delay unit 30a to the 21st delay unit 3 Ou are used. .
  • the operation or stop of the tap is determined in tap units, so that the operation of the equalizer can be optimized according to the characteristics of the radio channel.
  • the receiving apparatus 100 is used for a wireless LAN compliant with the IEEE 802.11b standard.
  • the present invention is not limited to this, and may be used for, for example, a mobile phone system, particularly a third-generation mobile phone system, or a wireless LAN compliant with standards such as IEEE802.11b other than the IEEE802.11b standard.
  • the present invention can be applied to various wireless systems. That is, the present invention is applied to a wireless system used in an environment where the characteristics of the wireless propagation path located between the transmitting side and the receiving side fluctuate.
  • the linear filter unit 20 is applied as the equalizer 18, and in the second embodiment of the present invention, the linear filter unit 20 is applied as the equalizer 18 did.
  • the present invention is not limited thereto, and for example, MLSE (Maximum Likelihood Sequence Estimation) alone or a combination of the MLSE and the DFE unit 22 may be applied as the equalizer 18.
  • MLSE Maximum Likelihood Sequence Estimation
  • various types of equalizers can be applied as the equalizer 18. That is, the type of the equalizer used as the equalizer 18 may be arbitrarily selected according to the characteristics of the radio channel on which the receiving device 100 is to be used.
  • the operation or stop of the DFE unit 22 is determined according to the delay spread value 200, and in the second embodiment of the present invention, the equalization process is performed according to the delay spread value 200.
  • the tap to be used is determined.
  • the present invention is not limited to this.
  • the operation or stop of the DFE unit 22 is determined, and the DFE unit 22 is used for equalization processing. May be executed in combination. That is, in the configuration like the equalizer 18 in FIG. 3, if the value is equal to or more than the first threshold value, the operation or stop of the DFE unit 22 is determined, and a plurality of values are set with a value smaller than the first threshold value.
  • taps to be used for equalization processing are determined based on the relationship between the delay spread value 200 and the plurality of thresholds.
  • finer settings can be made according to the characteristics of the wireless propagation path. That is, the setting may be made in accordance with the characteristics of the wireless channel in which the receiving device 100 is to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 無線伝搬路の特性に応じて等化器の特性を変化させる。線形フィルタ部20は、複数のタップを備えており、等化器入力信号202に等化処理を行ってフィルタ出力信号206を出力する。DFE部22は、複数のタップを備えており、フィルタ出力信号206と同一の信号であるDFE入力信号208に判定帰還にもとづいた等化処理を行って等化器出力信号204を出力する。LMSアルゴリズム部24は、線形フィルタ部20とDFE部22のタップ係数を計算する。決定部26は、予め所定のしきい値を記憶しており、入力した遅延スプレッド値200をしきい値と比較する。遅延スプレッド値200がしきい値以上であれば、DFE部22の動作を決定し、遅延スプレッド値200がしきい値より小さければ、DFE部22の停止を決定する。

Description

明 細 書
等化方法およびそれを利用した受信装置
技術分野
[0001] 本発明は、等化技術に関し、特に無線伝搬路の特性に応じて等化処理に使用す べきタップを制御する等化方法およびそれを利用した受信装置に関する。
背景技術
[0002] 無線通信システムにお 、て、無線伝搬路でのマルチパスフェージングによる波形 歪を除去するための技術のひとつに適応等化器がある。このような適応等化器のひ とつは、入力端子力 受信信号を入力するトランスバーサル型の整合フィルタ、符号 間干渉を除去する判定帰還型の等化器、出力端子で判定を行う復調器を含んで構 成されている。また、整合フィルタに含まれた複数のタップにそれぞれ対応した複数 のタップ係数は、相関器によって求められている。さらに相関器の出力は、タップ係 数毎にループフィルタにて時間平均され、レベル検出器にも入力される。レベル検出 器はタップ係数単位にループフィルタの出力レベルをしき 、値と比較し、しき 、値以 上の出力レベルを有したタップ係数に対しては、当該タップ係数に対応したタップを 整合フィルタで使用するように制御される。一方、レベル検出器でしきい値より小さい 出力レベルを有したタップ係数に対しては、当該タップ係数に対応したタップを整合 フィルタで使用しないように制御される(例えば、特許文献 1参照。 ) o
特許文献 1:特開 2003— 168999号公報
発明の開示
発明が解決しょうとする課題
[0003] トランスバーサル型のフィルタと判定帰還型の等化器を組み合わせたタイプの適応 等化器では、一般的にプリカーサ部分でのマルチパスの影響をトランスバーサル型 の等化器で主として除去し、ポストカーサ部分の遅延したマルチパスの影響を判定 帰還型の等化器で主として除去する。また、一般的に適応等化器で必要とされるタツ プ数は、無線伝搬路で生じる遅延波の遅延時間に依存する。すなわち、遅延波の遅 延時間が大きくなれば、それと共にタップ数も増加すべきであって、これを前述のタイ プの適応等化器に適用すれば、遅延波の遅延時間に応じて判定帰還型の等化器 のタップ数が制御される方が望ましい。このような制御によると、遅延時間が短くなれ ば、適応処理に使用するタップ数が減少して、処理量の減少および消費電力の削減 につながる。一方、遅延検波が長くなつてもタップ数が増加するために、特性の劣化 を防止できる。
[0004] また、タップ単位で動作あるいは停止を制御する場合、無線伝搬路ゃ雑音電力は 、時間と共に変化しており、タップ単位で動作あるいは停止を決定した時刻と実際に 等化処理を行う時刻にずれがあれば、前述のような制御によって必ずしも特性の向 上が得られなくなる。一方、特性を向上させるために、タップ単位で動作あるいは停 止を厳密に制御する場合は、処理が複雑になる可能性がある。さらに、タップの動作 あるいは停止の判断は、タップ単位での電力によるものではなぐ複数のタップでの 電力を統計処理などによって、ひとつのパラメータとして取り扱えれば、処理が簡易 になる可能性がある。
[0005] 本発明はこうした状況に鑑みてなされたものであり、その目的は、無線伝搬路の特 性に応じて等化処理に使用すべきタップを判定するための処理を簡易にかつ正確 にする等化方法及びそれを利用した受信装置を提供することにある。
課題を解決するための手段
[0006] 本発明のある態様は、受信装置である。この装置は、伝搬路を介した信号を受信す る受信部と、受信した信号を複数のタップに入力し、当該複数のタップに入力した信 号を等化処理する等化処理部と、受信した信号から伝搬路の遅延スプレッドを推定 する推定部と、推定した遅延スプレッドにもとづいて、複数のタップのうちの等化処理 に使用すべきタップを決定する決定部とを備える。
以上の装置により、推定した遅延スプレッドに応じて、等化処理に使用すべきタップ を決定するため、遅延スプレッドに応じた等化能力を設定することができる。
[0007] 決定部は、推定した遅延スプレッドを予め定めたしきい値と比較し、当該比較の結 果にもとづいて、複数のタップのうちの等化処理に使用すべきタップを決定してもよ い。等化処理部は、受信した信号を複数のタップのうちの一部のタップに入力し、当 該一部のタップに入力した信号を等化処理する前段等化部と、前段等化部から出力 した信号を複数のタップのうちの残りのタップに入力し、当該残りのタップに入力した 信号をさらに等化処理する後段等化部とを備え、決定部は、推定した遅延スプレッド にもとづいて、後段等化部の動作あるいは停止を決定してもよい。前段等化部に含ま れた一部のタップは、線形フィルタを構成し、後段等化部に含まれた残りのタップは、 判定帰還型の等化器を構成してもよい。後段等化部は、判定帰還形の等化器と共に 線形フィルタも含んでもょ 、。
[0008] 本発明の別の態様は、等化方法である。この方法は、伝搬路を介して受信した信 号を等化処理すべき等化器が、受信した信号を等化処理する前段等化部と、前段等 化部から出力された信号をさらに等化処理する後段等化部とを備えており、受信した 信号力 伝搬路の遅延スプレッドを推定し、推定した遅延スプレッドにもとづいて、後 段等化部の動作ある!、は停止を決定する。
[0009] なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、 記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様とし て有効である。
発明の効果
[0010] 本発明によれば、無線伝搬路の特性に応じて等化処理に使用すべきタップを判定 するための処理を簡易にかつ正確にできる。
図面の簡単な説明
[0011] [図 1]実施例 1に係る受信装置の構成を示す図である。
[図 2]図 1の遅延スプレッド推定部で推定した遅延プロファイルを示す図である。
[図 3]実施例 1に係る通信システムのバーストフォーマットを示す図である。
[図 4]図 1の等化器の構成を示す図である。
[図 5]図 4の線形フィルタ部の構成を示す図である。
[図 6]図 4の DFE部の構成を示す図である。
[図 7]実施例 2に係る等化器の構成を示す図である。
[図 8]図 7の決定部にて使用されるしき!/、値を示す図である。
符号の説明
[0012] 10 アンテナ、 12 RF部、 14 AGC、 16 遅延スプレッド推定部、 18 等化 器、 20 線形フィルタ部、 22 DFE部、 24 LMSアルゴリズム部、 26 決定部 、 28 切替部、 30 遅延部、 32 保持部、 34 乗算部、 36 総和部、 40 遅延部、 42 保持部、 44 乗算部、 46 総和部、 48 判定部、 50 加算部、 60 復調部、 62 制御部、 100 受信装置。
発明を実施するための最良の形態
[0013] (実施例 1)
本発明を具体的に説明する前に、概要を述べる。本発明の実施例 1は、 IEEE802 . l ib規格の無線 LANの受信装置に関する。受信装置は、等化処理を行うために 線形フィルタと判定帰還型等化器(以下、「DFE (Decision Feedback Equalizer )」という)を含み、線形フィルタから出力された信号が、 DFEに入力される構成になつ ている。また、線形フィルタと DFEは、共に複数のタップを配列した構成になっている 力 DFEは線形フィルタよりも遅延時間の長い遅延波を除去できるように、線形フィ ルタと DFEのタップ数が設定されて!、る。
[0014] 本実施例に係る受信装置は、送信装置から無線伝搬路を介したバースト信号を受 信すると、当該バースト信号の先頭部分にぉ 、て無線伝搬路の遅延スプレッドを推 定する。これに続いて、推定した遅延スプレッドを予め設定したしきい値と比較し、遅 延スプレッドがしきい値以上の場合は DFEを動作させる。一方、遅延スプレッドがしき V、値より小さ 、場合は DFEを停止させ、線形フィルタ力もの出力信号を等化器全体 の出力信号として出力する。以上の構成によって、無線伝搬路の遅延スプレッドが長 い場合には、遅延波の残留歪成分を小さくするために DFEも使用し、無線伝搬路の 遅延スプレッドが短い場合には、消費電力の低減を図るために DFEを停止させる。 なお、線形フィルタあるいは DFEから出力された信号には、 CCK復調や逆拡散処理 などが施される。
[0015] 本実施例の前提として、 IEEE802. l ib規格における CCK変調の概略を説明す る。 CCK変調は、 8ビットをひとつの単位(以下、この単位を「CCK変調単位」とする) とし、この 8ビットを上位力ら dl、 d2、 · · 'd8と名づける。 CCK単位のうち、下位 6ビット は、 [d3, d4]、 [d5, d6]、 [d7, d8]単位でそれぞれ QPSK (Quadrature Phase Shift Keying)の信号点配置にマッピングされる。また、マッピングした位相をそ れぞれ(φ2、 φ3、 φ4)とする。さらに、位相 φ 2、 φ3、 φ 4力ら 8種類の拡散符号 Ρ 1力も Ρ8を以下の通り生成する。
[0016] 削
Ρ1二 02+ 03+ 04
Ρ2= 03+ 04
Ρ3二 02+ 04
Ρ4二 04
Ρ5= 02+ φ3
Ρ6= 03
ΡΊ= φ2
Ρ8:0
一方、 CCK変調単位のうち、上位 2ビットの [dl, d2]は、 DQPSK (Differential encoding Quadrature Phase Shift Keying)の信号点酉己置にマッピングされ 、ここではマッピングした位相を φ 1とする。なお、 φ 1が被拡散信号に相当する。さら に、被拡散信号 Φ 1と拡散符号 P1から P8より、以下の通り 8通りのチップ信号 X0から X7を生成する。
[0017] [数 2]
X0=e」( 1P1 )
Figure imgf000007_0001
X3:- e」( 1十 P4)
X4=e」( 1+P5)
Figure imgf000007_0002
送信装置は、チップ信号 XOカゝら X7の順に送信する(以下、チップ信号 X0から X7 によって構成される時系列の単位も「CCK変調単位」と ヽぅ)。
なお、 IEEE802. l ib規格では CCK変調の他に、 DBPSKや DQPSKの位相変 調した信号が既知の拡散符号によって拡散されて送信される。以下、本実施例で示 される受信信号は、原則としてチップ信号の形態であるものとする。
[0018] 図 1は、実施例 1に係る受信装置 100の構成を示す。受信装置 100は、アンテナ 1
0、RF部 12、 AGC (Automatic Gain Control) 14、遅延スプレッド推定部 16、 等化器 18、復調部 60、制御部 62を含む。また信号として、遅延スプレッド値 200、等 ィ匕器入力信号 202、等化器出力信号 204を含む。
アンテナ 10は、図示しない送信装置カゝら送信された無線周波数のバースト信号を 受信する。
[0019] RF部 12は、受信した無線周波数のバースト信号を中間周波数のバースト信号に 周波数変換する。さらに、中間周波数のバースト信号を直交検波し、ベースバンドの バースト信号を出力する。一般にベースバンドのバースト信号は、同相成分と直交成 分のふたつの成分によって示される力 ここではそれらをまとめた形で図示する。
[0020] AGC14は、ベースバンドのバースト信号の振幅を図示しない AD変換器のダイナミ ックレンジ内の振幅にするために、利得を自動的に制御する。 AD変 ^^は、ベース バンドのアナログ信号をデジタル信号に変換し、複数ビットで構成された信号を出力 する。なお、 AGC14から出力される信号は、等化器入力信号 202と示される。
[0021] 遅延スプレッド推定部 16は、ベースバンドのバースト信号から遅延スプレッドを推定 する。バースト信号の先頭部分は、既知の信号となっており、当該先頭部分において 、受信したバースト信号と既知の信号力 相関処理を行って、遅延プロファイルを推 定する。さらに、推定した遅延プロファイル力も遅延スプレッドを推定する。ここで遅延 プロファイルカゝら遅延スプレッドを推定する一例を図 2によって示す。図 2は、遅延ス ブレッド推定部 16で推定した遅延プロファイルを示しており、横軸は遅延時間で、縦 軸は電力とする。最も電力の強い遅延成分に相当する遅延時間を「遅延時間 0」にし 、当該「遅延時間 0」力もの遅延時間差を「遅延時間 T」、「遅延時間 2Τ」のごとく示し ている。ここで、 「Τ」は、遅延プロファイルの遅延成分を推定する時間分解能を示し ており、通常は AZD変換のサンプリング周期に設定されている。また、「遅延時間 0」 より前に存在する、先行波に相当する遅延時間差を「遅延時間 T」、「遅延時間 2 Τ」のごとく示している。
[0022] また、各遅延時間に対する遅延成分の電力を「Li」のごとく示しており、例えば、「遅 延時間 0」に対する電力を「LO」としている。以上の表記を用いれば、遅延スプレッド 推定部 16で推定される遅延スプレッド Sは、以下の通り示される。
[数 3]
∑し X 卜
s = -1
∑し 以上のように推定された遅延スプレッド Sは遅延スプレッド値 200として出力される。
[0023] 図 1に戻る。等化器 18は、等化器入力信号 202を入力して等化処理を行い、等化 器出力信号 204を出力する。なお、等化器 18の構成は後述するが、複数のタップを 含んでおり、それらに対応した複数のタップ係数は、 LMS (Least Mean Squares )アルゴリズムによって推定される。さらに、複数のタップのうち、実際に等化処理にお いて使用するタップは遅延スプレッド値 200にもとづいて決定される。
[0024] 復調部 60は、等化器出力信号 204を復調する。等化器出力信号 204が位相変調 および拡散処理された信号である場合は、逆拡散処理および遅延検波等を行い、等 ィ匕器出力信号 204が CCK変調された信号である場合は、ウオルシュ変換にもとづ!/ヽ た CCK復調を行う。
制御部 62は、受信装置 100のタイミング等を制御する。
[0025] この構成は、ハードウェア的には、任意のコンピュータの CPU、メモリ、その他の LS Iで実現でき、ソフトウェア的にはメモリのロードされた予約管理機能のあるプログラム などによって実現されるが、ここではそれらの連携によって実現される機能ブロックを 描いている。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ 、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解 されるところである。 [0026] 図 3は、実施例 1に係る通信システムのバーストフォーマットを示す。このバーストフ ォーマットは、 IEEE802.11b規格の ShortPLCPに相当する。バースト信号は、図 示のごとくプリアンブル、ヘッダ、データの領域を含む。さらに、プリアンブルは、 DBP SKの変調方式で伝送速度 1Mbpsで通信され、ヘッダは、 DQPSKの変調方式で伝 送速度 2Mbpsで通信され、データは、 CCKの変調方式で伝送速度 11Mbpsで通 信される。また、プリアンブルは、 56ビットの SYNC、 16ビットの SFDを含み、ヘッダ は、 8ビットの SIGNAL, 8ビットの SERVICE、 16ビットの LENGTH, 16ビットの CR Cを含む。一方、データに対応した PSDUの長さは、可変である。なお、プリアンブル が遅延プロファイルを推定するための既知の信号に相当する。
[0027] 図 4は、等化器 18の構成を示す。等化器 18は、線形フィルタ部 20、 DFE部 22、 L MSアルゴリズム部 24、決定部 26、切替部 28を含む。また信号として、フィルタ出力 信号 206、 DFE入力信号 208、タップ関連信号 210を含む。
線形フィルタ部 20は、複数のタップを備えており、等化器入力信号 202に等化処 理を行ってフィルタ出力信号 206を出力する。線形フィルタ部 20に配置された複数 のタップの時間間隔は、チップ信号の時間間隔の 1Z2になっているものとする。また 、複数のタップにそれぞれ対応したタップ係数は、バースト信号の先頭部分において 、後述の LMSアルゴリズム部 24で計算されて設定される。ここで、 1度設定されたタ ップ係数は、当該バースト信号の期間中固定されて 、るものとする。
[0028] DFE部 22は、複数のタップを備えており、フィルタ出力信号 206と同一の信号であ る DFE入力信号 208に対して、判定帰還にもとづいた等化処理を行って等化器出 力信号 204を出力する。 DFE部 22に配置された複数のタップの時間間隔は、チップ 信号の時間間隔になっているものとする。また、複数のタップにそれぞれ対応したタ ップ係数は、バーストの先頭部分にぉ 、て線形フィルタ部 20のタップ係数が設定さ れた後に、後述の LMSアルゴリズム部 24で計算されて設定される。ここで、バースト 信号期間中にわたつて、タップ係数は LMSアルゴリズム部 24で更新されるものとす る。なお、このようなタップ係数の設定とタップ係数の更新に必要な信号は、タップ関 連信号 210によって LMSアルゴリズム部 24と DFE部 22の間を伝送する。
[0029] LMSアルゴリズム部 24は、前述のごとぐ線形フィルタ部 20と DFE部 22のタップ係 数を計算する。線形フィルタ部 20に対するタップ係数は、等化器入力信号 202と既 知の信号にもとづいて計算し、 DFE部 22に対するタップ係数は、既知の信号あるい は等化器出力信号 204と、 DFE入力信号 208にもとづいて計算する。
決定部 26は、予め所定のしきい値を記憶しており、入力した遅延スプレッド値 200 をしきい値と比較する。遅延スプレッド値 200がしきい値以上であれば、 DFE部 22の 動作を決定し、遅延スプレッド値 200がしきい値より小さければ、 DFE部 22の停止を 決定する。当該決定は、切替部 28に通知する。
[0030] 切替部 28は、決定部 26で DFE部 22の停止を決定した場合に、 DFE部 22に信号 を入力せず、すなわち実際に DFE部 22を動作させないようにする。具体的には、 D FE部 22を動作させる場合にフィルタ出力信号 206をそのまま DFE入力信号 208と して DFE部 22に入力する。一方、 DFE部 22を停止させる場合にフィルタ出力信号 2 06をそのまま等化器出力信号 204として DFE部 22をパスして出力する。
[0031] 図 5は、線形フィルタ部 20の構成を示す。線形フィルタ部 20は、遅延部 30と総称さ れる第 1遅延部 30a、第 11遅延部 30k、第 12遅延部 301、第 22遅延部 30v、保持部 32と総称される第 1保持部 32a、第 2保持部 32b、第 11保持部 32k、第 12保持部 32 1、第 13保持部 32m、第 22保持部 32v、第 23保持部 32w、乗算部 34と総称される 第 1乗算部 34a、第 2乗算部 34b、第 11乗算部 34k、第 12乗算部 341、第 13乗算部 34m、第 22乗算部 34v、第 23乗算部 34w、総和部 36を含む。
[0032] 遅延部 30は、等化器入力信号 202を遅延させる。ふたつの遅延部 30の間が前述 のタップに相当する。遅延部 30は図示のごとく 22個設けられているために、タップ数 は 23に相当する。また、遅延部 30での遅延量は、チップ信号の時間間隔の 1Z2に 設定されている。
[0033] 保持部 32は、図示して!/、な!/、信号線を介して、 LMSアルゴリズム部 24で計算され たタップ係数をそれぞれ保持する。前述のごとくタップ係数は、一度、保持部 32に設 定されれば、バースト信号期間中固定される。
乗算部 34は、遅延部 30から出力された信号と保持部 32に保持されたタップ係数 を乗算する。総和部 36は、乗算部 34での乗算結果を総和して、フィルタ出力信号 2 06を出力する。 [0034] 図 6は、 DFE部 22の構成を示す。 DFE部 22は、遅延部 40と総称される第 1遅延 部 40a、第 2遅延部 40b、第 3遅延部 40c、第 10遅延部 40j、保持部 42と総称される 第 1保持部 42a、第 2保持部 42b、第 3保持部 42c、第 4保持部 42d、第 11保持部 42 k、乗算部 44と総称される第 1乗算部 44a、第 2乗算部 44b、第 3乗算部 44c、第 4乗 算部 44d、第 11乗算部 44k、総和部 46、判定部 48、加算部 50を含む。
[0035] 遅延部 40は、ふたつの部分に分かれており、それらを第 1遅延部 40a、第 2遅延部 40bからなるフィードフォワードタップ部(以下、「FF部」という)と、第 3遅延部 40c、第 10遅延部 40j力もなるフィードバックタップ部(以下、「FB部」 t 、う)と呼ぶ。 FF部で は、ふたつの遅延部 40の間が前述のタップに相当する。 FF部の遅延部 40は図示の ごとく 2個設けられているために、タップ数は 3となる。一方、 FB部では、ひとつの遅 延部 40が前述のタップに相当する。 FB部の遅延部 40は図示のごとく 8個設けられて いるために、タップ数は 8となる。また、遅延部 40での遅延量は、チップ信号の時間 間隔に設定されている。
[0036] 保持部 42は、図示して!/、な!/、信号線を介して、 LMSアルゴリズム部 24で計算され たタップ係数をそれぞれ保持する。前述のごとく保持部 42に保持されるべきタップ係 数はバースト期間中にわたつて更新される。
乗算部 44は、遅延部 40から出力された信号と保持部 42に保持されたタップ係数 を乗算する。総和部 46は、乗算部 44での乗算結果を総和する。判定部 48は、総和 部 46から出力された信号を判定する。判定した信号は、タップ関連信号 210によつ て前述の LMSアルゴリズム部 24に出力されると共に、第 3遅延部 40cに入力される。
[0037] 加算部 50は、総和部 46から出力された信号と判定部 48で判定した信号を減算し て、誤差を求め、タップ関連信号 210によって前述の LMSアルゴリズム部 24に出力 する。なお、総和部 46から出力された信号は、等化器出力信号 204として出力され る。
[0038] 以上の構成による受信装置 100の動作を説明する。受信装置 100は、バースト信 号を受信し、遅延スプレッド推定部 16はバースト信号に含まれたプリアンブルで遅延 スプレッドを推定する。決定部 26は、推定した遅延スプレッドがしきい値以上であるた めに DFE部 22の動作を決定する。当該バースト信号に含まれたプリアンブルの区間 で、 LMSアルゴリズム部 24は、線形フィルタ部 20のタップ係数を計算し、これに続い て DFE部 22のタップ係数を計算する。バースト信号のデータ区間では、線形フィル タ部 20がデータ信号を等化処理してフィルタ出力信号 206を出力し、 DFE部 22が フィルタ出力信号 206と同一の DFE入力信号 208を等化処理して等化器出力信号 204を出力する。また、バースト信号のデータ区間にわたって、 LMSアルゴリズム部 24は、 DFE部 22のタップ係数を更新する。
[0039] 本発明の実施例 1によれば、推定した遅延スプレッドの値に応じて DFEの動作を決 定するため、遅延スプレッドが大きくても DFEによって遅延成分を除去でき、一方、 遅延スプレッドが小さければ DFEが動作しないため、消費電力を削減できる。また、 DFEの動作を遅延スプレッドによってのみ決定するため、 DFEの動作の判断が容易 になる。また、タップ単位で動作を制御せず DFE全体の動作を制御するため、制御 が容易になる。
[0040] (実施例 2)
本発明の実施例 2は、実施例 1と同様に、受信した信号カゝら推定した遅延スプレッド にもとづいて、等化処理に使用すべきタップを決定する。し力しながら、実施例 1と異 なって、 DFE全体の動作あるいは停止を決定するのではなぐタップ単位で動作ある いは停止を決定する。
[0041] 図 7は、実施例 2に係る等化器 18の構成を示す。図 7の等化器 18は、図 4の等化 器 18力も DFE部 22を除外した構成になっており、図 5の線形フィルタ部 20と比べて 第 2遅延部 30b、第 21遅延部 30u、第 3保持部 32c、第 3乗算部 34cが図示されてい る。ここで、遅延部 30、保持部 32、乗算部 34、総和部 36の動作は、これまでの説明 と同様のため、説明を省略する。
[0042] 決定部 26は、図 4の決定部 26と同様に、予め所定のしきい値を記憶しており、入力 した遅延スプレッド値 200をしきい値と比較する。し力しながら、ここで、しきい値は複 数段階記憶されており、それらと入力した遅延スプレッド値 200の関係で、等化処理 に使用すべきタップ数、すなわち遅延部 30、保持部 32、乗算部 34の数を調節する。 この具体例を図 8にもとづいて説明する。図 8は、決定部 26にて使用されるしきい値 を示す。図では、遅延スプレッドに対するしきい値を「A」から「E」で示し、「A」から「E 」の順でしきい値が小さくなつているものとする。さらに図では、当該しきい値以上の 場合に対応した遅延部 30の数も示している。すなわち、遅延スプレッド値 200がしき い値「A」以上ならば、遅延部 30は、 22個使用されるため、第 1遅延部 30aから第 22 遅延部 30vが使用される。また、遅延スプレッド値 200がしきい値「A」より小さく「B」 以上ならば、遅延部 30は、 21個使用されるため、第 1遅延部 30aから第 21遅延部 3 Ouが使用される。
[0043] 本発明の実施例 2によれば、タップ単位でタップの動作あるいは停止を決定するた め、無線伝搬路の特性に応じて等化器の動作を最適化できる。
[0044] 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それ らの各構成要素や各処理プロセスの組合せに 、ろ 、ろな変形例が可能なこと、また そうした変形例も本発明の範囲にあることは当業者に理解されるところである。
[0045] 本発明の実施例 1と 2において、受信装置 100は、 IEEE802. l ib規格に準拠し た無線 LANに使用されている。しかしこれに限らず例えば、携帯電話システム、特に 第 3世代携帯電話システムや IEEE802. l ib規格以外の IEEE802. l lg等の規格 に準拠した無線 LANに使用されてもよい。本変形例によれば、様々な無線システム に本発明を適用できる。すなわち、送信側と受信側の間に位置する無線伝搬路の特 性が変動する環境下で使用される無線システムに適用されればょ 、。
[0046] 本発明の実施例 1において、等化器 18として線形フィルタ部 20と DFE部 22の組合 せを適用し、本発明の実施例 2において、等化器 18として線形フィルタ部 20を適用 した。しかしこれに限らず例えば、 MLSE (Maximum Likelihood Sequence E stimation)単独やこれと DFE部 22の組合せ等が等ィ匕器 18として適用されてもよい 。本変形例によれば、様々なタイプの等化器を等化器 18として適用できる。すなわち 、等化器 18として使用される等化器のタイプは、受信装置 100を使用すべき無線伝 搬路の特性に応じて任意のものに選択されればよい。
[0047] 本発明の実施例 1において、遅延スプレッド値 200に応じて DFE部 22の動作ある いは停止を決定し、本発明の実施例 2において、遅延スプレッド値 200に応じて、等 化処理に使用すべきタップを決定している。し力しこれに限らず例えば、遅延スプレ ッド値 200に応じて、 DFE部 22の動作あるいは停止の決定と、等化処理に使用すベ きタップの決定を組合せて実行してもよい。すなわち、図 3の等化器 18のような構成 において、第 1のしきい値以上であれば、 DFE部 22の動作あるいは停止を決定し、 第 1のしきい値より小さい値で複数設定された複数のしきい値の間では、遅延スプレ ッド値 200と当該複数のしきい値との関係によって、等化処理に使用すべきタップを 決定する。本変形例によれば、無線伝搬路の特性に応じて、より細かい設定が可能 になる。すなわち、受信装置 100を使用すべき無線伝搬路の特性に応じて、設定さ れればよい。
[0048] 本発明の実施例 1と実施例 2の組合せも有効であって、本変形例によれば、実施例 1と実施例 2の効果が得られる。
産業上の利用可能性
[0049] 無線伝搬路の特性に応じて等化処理に使用すべきタップを判定するための処理を 簡易にかつ正確にできる。

Claims

請求の範囲
[1] 伝搬路を介した信号を受信する受信部と、
前記受信した信号を複数のタップに入力し、当該複数のタップに入力した信号を等 化処理する等化処理部と、
前記受信した信号から伝搬路の遅延スプレッドを推定する推定部と、
前記推定した遅延スプレッドにもとづいて、前記複数のタップのうちの等化処理に 使用すべきタップを決定する決定部と、
を備えることを特徴とする受信装置。
[2] 前記決定部は、前記推定した遅延スプレッドを予め定めたしきい値と比較し、当該 比較の結果にもとづいて、前記複数のタップのうちの等化処理に使用すべきタップを 決定することを特徴とする請求項 1に記載の受信装置。
[3] 前記等化処理部は、
前記受信した信号を前記複数のタップのうちの一部のタップに入力し、当該一部の タップに入力した信号を等化処理する前段等化部と、
前記前段等化部から出力した信号を前記複数のタップのうちの残りのタップに入力 し、当該残りのタップに入力した信号をさらに等化処理する後段等化部とを備え、 前記決定部は、前記推定した遅延スプレッドにもとづいて、前記後段等化部の動作 あるいは停止を決定することを特徴とする請求項 1または 2に記載の受信装置。
[4] 前記前段等化部に含まれた前記一部のタップは、線形フィルタを構成し、
前記後段等化部に含まれた前記残りのタップは、判定帰還型の等化器を構成して いることを特徴とする請求項 3に記載の受信装置。
[5] 前記後段等化部は、前記判定帰還形の等化器と共に線形フィルタも含むことを特 徴とする請求項 4に記載の受信装置。
[6] 伝搬路を介して受信した信号を等化処理すべき等化器が、受信した信号を等化処 理する前段等化部と、前記前段等化部から出力された信号をさらに等化処理する後 段等化部とを備えており、前記受信した信号から伝搬路の遅延スプレッドを推定し、 前記推定した遅延スプレッドにもとづ 、て、前記後段等化部の動作あるいは停止を 決定する等化方法。
PCT/JP2004/016758 2003-11-20 2004-11-11 等化方法およびそれを利用した受信装置 WO2005050867A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-391295 2003-11-20
JP2003391295A JP2005159466A (ja) 2003-11-20 2003-11-20 等化方法およびそれを利用した受信装置

Publications (1)

Publication Number Publication Date
WO2005050867A1 true WO2005050867A1 (ja) 2005-06-02

Family

ID=34616375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016758 WO2005050867A1 (ja) 2003-11-20 2004-11-11 等化方法およびそれを利用した受信装置

Country Status (2)

Country Link
JP (1) JP2005159466A (ja)
WO (1) WO2005050867A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10554452B2 (en) 2018-03-22 2020-02-04 Toshiba Memory Corporation Electronic device and method of receiving data

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804462B1 (ko) 2006-05-15 2008-02-20 연세대학교 산학협력단 직렬 연결된 양방향 등화기
CN103368885B (zh) * 2013-07-29 2016-07-06 四川九洲电器集团有限责任公司 一种频域双向迭代均衡的融合方法
KR20220034541A (ko) 2020-09-11 2022-03-18 삼성전자주식회사 오류 검출에 기초한 채널 등화를 위한 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258511A (ja) * 1988-04-08 1989-10-16 Matsushita Electric Ind Co Ltd 適応等化装置
JPH11261457A (ja) * 1998-03-10 1999-09-24 Hitachi Ltd 波形等化処理方法
JP2001177451A (ja) * 1999-12-15 2001-06-29 Matsushita Electric Ind Co Ltd データ受信装置
JP2002198869A (ja) * 2000-11-07 2002-07-12 Stmicroelectronics Nv 情報送信チャネルのインパルス応答を推定する方法
JP2003318789A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 等化装置及び等化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750863B2 (ja) * 1987-09-25 1995-05-31 日本電気株式会社 受信器
JP3116982B2 (ja) * 1991-11-18 2000-12-11 日本電気株式会社 自動等化器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258511A (ja) * 1988-04-08 1989-10-16 Matsushita Electric Ind Co Ltd 適応等化装置
JPH11261457A (ja) * 1998-03-10 1999-09-24 Hitachi Ltd 波形等化処理方法
JP2001177451A (ja) * 1999-12-15 2001-06-29 Matsushita Electric Ind Co Ltd データ受信装置
JP2002198869A (ja) * 2000-11-07 2002-07-12 Stmicroelectronics Nv 情報送信チャネルのインパルス応答を推定する方法
JP2003318789A (ja) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd 等化装置及び等化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10554452B2 (en) 2018-03-22 2020-02-04 Toshiba Memory Corporation Electronic device and method of receiving data

Also Published As

Publication number Publication date
JP2005159466A (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
US7433430B2 (en) Wireless communications device providing enhanced block equalization and related methods
EP0755141B1 (en) Adaptive decision feedback equalization for communication systems
US7433392B2 (en) Wireless communications device performing block equalization based upon prior, current and/or future autocorrelation matrix estimates and related methods
US7636407B2 (en) Signal detector used in wireless communication system
US7266146B2 (en) Symbol-based decision feedback equalizer (DFE) optimal equalization method and apparatus with maximum likelihood sequence estimation for wireless receivers under multipath channels
US6590932B1 (en) Methods, receiver devices and systems for whitening a signal disturbance in a communication signal
US7957463B2 (en) Adaptive frequency equalizer
CN101141159B (zh) 在蓝牙系统中接收信号的装置与方法
JPH03214819A (ja) ダイバーシティ受信方式
JP2005159467A (ja) 等化方法およびそれを利用した受信装置
WO2005081422A1 (ja) 受信方法および装置
JP2006518165A (ja) レーキベースの適応イコライザーを有した通信受信機
US20050220186A1 (en) Timing adjustment method and digital filter and receiver using the method
US7489734B2 (en) Equalization in radio receiver
WO2005050867A1 (ja) 等化方法およびそれを利用した受信装置
US7457379B2 (en) Adaptive multi-step combined DC offset compensation for EDGE 8-PSK
US20040057504A1 (en) CDMA receiving device and method
US8605827B2 (en) Timing errors
EP1233586A2 (en) A method for channel equalization, a receiver, a channel equalizer, and a wireless communication device
JP2005244323A (ja) 自動利得制御増幅方法および装置ならびにそれを利用した受信装置
JP2006115221A (ja) 回線推定方法およびそれを用いた受信装置
JPH0821889B2 (ja) 簡略化ビタビ等化器
JPH06311058A (ja) 適応受信機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase