WO2005044945A1 - 蓄光性蛍光体及びその製造方法 - Google Patents

蓄光性蛍光体及びその製造方法 Download PDF

Info

Publication number
WO2005044945A1
WO2005044945A1 PCT/JP2004/016400 JP2004016400W WO2005044945A1 WO 2005044945 A1 WO2005044945 A1 WO 2005044945A1 JP 2004016400 W JP2004016400 W JP 2004016400W WO 2005044945 A1 WO2005044945 A1 WO 2005044945A1
Authority
WO
WIPO (PCT)
Prior art keywords
dysprosium
compound
ratio
strontium
sample
Prior art date
Application number
PCT/JP2004/016400
Other languages
English (en)
French (fr)
Inventor
Yoneichi Hirata
Tomoya Sakaguchi
Nobuyoshi Takeuchi
Original Assignee
Nemoto & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto & Co., Ltd. filed Critical Nemoto & Co., Ltd.
Priority to DE602004028269T priority Critical patent/DE602004028269D1/de
Priority to JP2005515308A priority patent/JP4628957B2/ja
Priority to US10/551,424 priority patent/US7422704B2/en
Priority to EP04799508A priority patent/EP1681334B1/en
Priority to AT04799508T priority patent/ATE474900T1/de
Publication of WO2005044945A1 publication Critical patent/WO2005044945A1/ja
Priority to HK06110177A priority patent/HK1089784A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates

Definitions

  • the present invention relates to a phosphorescent phosphor, particularly to a phosphorescent phosphor having excellent afterglow characteristics when excited at low illuminance.
  • the afterglow time of a phosphor is extremely short, and the luminescence is rapidly attenuated when an external stimulus is stopped. Afterglows can be observed with the naked eye for several tens of minutes (even for several hours). These phosphorescent phosphors are distinguished from ordinary phosphors by phosphorescent phosphors.
  • Examples of the phosphorescent phosphors include phosphors such as CaS: Bi (purple blue light emission), CaSrS: Bi (blue light emission), ZnS: Cu (green light emission), and ZnCdS: Cu (yellow-orange light emission). Any of these sulfide phosphors are chemically unstable, have poor light resistance, and are not suitable for use in luminous watches. However, there were many practical problems, such as the afterglow time for which the time was recognizable to the naked eye was about 30 minutes to 2 hours.
  • the applicant of the present invention has a long-lasting property that is much longer than commercially available sulfide-based phosphors, is chemically stable, and has excellent light resistance over a long period of time.
  • the present invention has been made in view of such a situation, and a phosphorescent phosphor having excellent afterglow luminance characteristics even under a low illuminance excitation condition compared to a conventional strontium aluminate phosphorescent phosphor of the same type.
  • the present inventor has proposed that in the strontium aluminate-based phosphorescent phosphor described in the above-mentioned patent publication, the activator Yuguchi Pium (Eu) and the co-activator Dysprosium (Dy) were used.
  • We will try to optimize the amount of soy sauce and further optimize the composition ratio of strontium (Sr), barium (Ba), calcium (Ca), and aluminum (A1), which are the constituent elements of the mother crystal.
  • a phosphorescent phosphor having excellent afterglow luminance characteristics was found, as compared with the conventional strontium aluminate phosphorescent phosphor, particularly when excited at low illuminance.
  • the phosphorescent phosphor according to the first invention of the present invention is a compound represented by MAIO,
  • palladium (Eu) is added as an activator and dysprosium (Dy) is added as a coactivator.
  • the added amount of porium (Eu) is more than 1.5% and 5% by mol% based on the total number of moles of the metal element represented by M and the number of moles of euphorium (Eu) and dysprosium (Dy).
  • the amount of the dysprosium (Dy) added is 0.3 ⁇ Dy / Eu ⁇ 2
  • the ratio of aluminum (Al) is 2.1 or more and 2.9 or less in terms of molar ratio with respect to the total number of moles of the metal element represented by M, the pium (Eu), and the dies (Dy).
  • the ratio of barium to M is 0.03 ⁇ Ba / (Sr + Ba) ⁇ 0.2 in molar ratio.
  • the amount of added palladium, which contributes to the characteristics is greater than the amount of dysprosium, which contributes to the afterglow luminance characteristics, and by optimizing, the initial afterglow luminance characteristics under low illumination excitation conditions are improved. And exhibits excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
  • the ratio of aluminum (A1) is set to a molar ratio of not less than 2.1 and not more than 2.9 with respect to the total number of moles of the metal element represented by M, the palladium (Eu), and the dies (Dy). Then, by increasing the ratio of aluminum to aluminum from the stoichiometric ratio of 2.0, the crystal structure is distorted and traps are easily formed. And afterglow luminance characteristics are more excellent than conventional phosphorescent phosphors.
  • the afterglow luminance characteristic is equal to or lower than that of the conventional phosphorescent phosphor, which is not preferable.
  • concentration exceeds 5%, the afterglow luminance is reduced as a whole due to concentration quenching, so that the initial afterglow luminance characteristics under low illuminance conditions are also reduced. Therefore, it is optimal to add more than 1.5% of palladium.
  • the amount of added casket is less than 0.3 in terms of molar ratio to the amount of palladium in the mouth, that is, when DyZEu ⁇ 0.3. Also, since the amount of dysprosium that contributes to the afterglow luminance characteristics is not sufficient with respect to the amount of added calories of the europium, the desired initial afterglow luminance characteristics cannot be obtained. In addition, in the case of Dy ZEu, the molar ratio of the dysprosium added to the syrup is more than 2, i.e., in the case of Dy ZEu, the fluorescent brightness characteristic is!
  • the amount of added casket of palladium as an activator is 1.5% by mol% based on the total number of moles of a metal element represented by M, pium (Eu) and dysprosium (Dy).
  • the amount of dysprosium added as a co-activator is 0.3 ⁇ DyZEu ⁇ 2 in molar ratio with respect to palladium. Luminescent characteristics are improved, and a luminous phosphor having an initial afterglow luminance characteristic superior to the conventional luminous phosphor can be obtained.
  • the ratio of aluminum (A1) is less than 2.1 in a molar ratio with respect to the total number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy), that is, A1Z (M + (Eu + Dy) ⁇ 2.1, it is almost equal to or less than the stoichiometric ratio of 2.0, so the afterglow luminance characteristics are almost the same as the conventional phosphorescent phosphor. Or decline.
  • the molar ratio exceeds 2.9, that is, 2.9 ⁇ A1 / (M + Eu + Dy)
  • the proportion of by-products increases and the luminance decreases, which is not preferable.
  • the ratio of aluminum (A1) to the total of the number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy) is 2.1 or more and 2.9 or more.
  • the ratio of barium is less than 0.03 in terms of the molar ratio to M, that is, BaZ (Sr + Ba) ⁇ 0.03, moderate distortion occurs in the crystal because the ratio of norium is too small. Not effective.
  • the molar ratio to M exceeds 0.2, that is, when 0.2 ⁇ Ba / (Sr + Ba), the ratio of strontium relatively decreases, and the overall luminance decreases. Therefore, it is not preferable.
  • the ratio of barium to M and the molar ratio of 0.03 ⁇ Ba / (Sr + Ba) ⁇ 0.2 improve the initial afterglow luminance characteristics under low illumination excitation conditions, A phosphorescent phosphor having improved afterglow luminance characteristics 60 to 90 minutes later and having excellent afterglow luminance characteristics as compared with conventional phosphorescent phosphors can be obtained.
  • the amount of added palladium that contributes to the fluorescent luminance characteristic or the initial afterglow luminance characteristic is increased as compared with the amount of dysprosium that contributes to the afterglow luminance characteristic.
  • the ratio of aluminum is increased from 2.0, which is the stoichiometric ratio of aluminum, the crystal structure is distorted, and furthermore, a part of strontium is replaced by barium to form in the crystal. Since an appropriate distortion occurs, the afterglow luminance characteristics under low-illumination excitation conditions are improved, and the afterglow luminance characteristics are improved 60 to 90 minutes after excitation, which is superior to conventional phosphorescent phosphors.
  • the afterglow luminance characteristic can be obtained.
  • the phosphorescent phosphor according to the second invention of the present invention is a compound represented by MAIO,
  • Strontium! and calcium (Ca) compound are used as mother crystals, and palladium (Eu) is added as an activator and dysprosium (Dy) is added as a co-activator.
  • the added amount of porium (Eu) is more than 1.5% and 5% by mol% based on the total number of moles of the metal element represented by M and the number of moles of euphorium (Eu) and dysprosium (Dy).
  • the amount of diploid (Dy) is 0.3 ⁇ Dy / Eu ⁇ 2 in molar ratio to the amount of palladium (Eu) in the mouth, and the ratio of aluminum (A1) is And the molar ratio of the total number of moles of palladium (Eu) and dysprosium (Dy) is 2.1 or more and 2.9 or less, and the ratio of calcium to M is 0.005 in a molar ratio.
  • ⁇ Ca / (Sr + Ca) ⁇ 0.1.
  • the Yu port Piumu (Eu) First as an activator, relative to the total mole number of the metal elements and Yu port Piumu (E u) and dysprosium (Dy) expressed by M, mole 0/0 1 More than 5% and not more than 5% is added, and dysprosium (Dy) is added as a co-activator in a molar ratio of 0% to palladium (Eu).
  • 3 ⁇ DyZEu ⁇ 2 the amount of palladium added in the Vietnameseromium that contributes to the fluorescent luminance characteristics or initial afterglow luminance characteristics is increased compared to the amount of dysprosium that contributes to the afterglow luminance characteristics, and optimization is improved.
  • the initial afterglow luminance characteristics under low-illuminance excitation conditions are improved, and the afterglow luminance characteristics are superior to those of conventional phosphorescent phosphors.
  • the ratio of aluminum (A1) is set to a molar ratio of not less than 2.1 and not more than 2.9 with respect to the total number of moles of the metal element represented by M, the palladium (Eu), and the dies (Dy). Then, by increasing the ratio of aluminum to aluminum from the stoichiometric ratio of 2.0, the crystal structure is distorted and traps are easily formed. And afterglow luminance characteristics are more excellent than conventional phosphorescent phosphors.
  • the ratio of calcium to M is expressed as a molar ratio of 0.005 ⁇ Ca / (Sr + Ca) ⁇ 0.
  • the afterglow luminance characteristic is equal to or lower than that of the conventional phosphorescent phosphor, which is not preferable.
  • concentration exceeds 5%, the afterglow luminance is reduced as a whole due to concentration quenching, so that the initial afterglow luminance characteristics under low illuminance conditions are also reduced. Therefore, it is optimal to add more than 1.5% of palladium.
  • the molar ratio of dysprosium to eutropium is less than 0.3, that is, when DyZEu ⁇ 0.3.
  • the amount of dysprosium that contributes to the afterglow luminance characteristics is not sufficient with respect to the amount of added calories of the europium, the desired initial afterglow luminance characteristics cannot be obtained.
  • the molar ratio of the dysprosium added to the syrup is more than 2, i.e., in the case of Dy ZEu, the fluorescent brightness characteristic is! / ⁇ , which contributes to the initial afterglow luminance characteristic. Is not enough compared to the amount of dysprosium that contributes to the afterglow luminance characteristics, so that the fluorescent luminance characteristics and the initial afterglow luminance characteristics decrease, and the desirable initial afterglow luminance characteristics Can not be obtained.
  • the amount of added casket of palladium as an activator is 1.5% by mol% based on the total number of moles of a metal element represented by M, pium (Eu) and dysprosium (Dy).
  • the amount of dysprosium added as a co-activator is 0.3 ⁇ DyZEu ⁇ 2 in molar ratio with respect to palladium. Luminescent characteristics are improved, and a luminous phosphor having an initial afterglow luminance characteristic superior to the conventional luminous phosphor can be obtained.
  • the ratio of aluminum (A1) is less than 2.1 in a molar ratio with respect to the total number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy), that is, A1Z (M + (Eu + Dy) ⁇ 2.1, it is almost equal to or less than the stoichiometric ratio of 2.0, so the afterglow luminance characteristics are almost the same as the conventional phosphorescent phosphor. Or decline.
  • the molar ratio exceeds 2.9, that is, 2.9 ⁇ A1 / (M + Eu + Dy)
  • the proportion of by-products increases and the luminance decreases, which is not preferable.
  • the ratio of aluminum (A1) is represented by a molar ratio of 2.1 or more to 2.9 with respect to the total number of moles of the metal element represented by M, and the number of moles of palladium (Eu) and dysprosium (Dy).
  • the molar ratio of calcium is less than 0.005 in molar ratio to M, that is, if CaZ (Sr + Ca) ⁇ 0.005, then the calcium ratio is too small, and an appropriate strain occurs in the crystal. has no effect. Further, when the molar ratio to M exceeds 0.1, that is, when it is 0.1 and CaZ (Sr + Ca) is used, calcium aluminate (CaAl 2 O 3) and the like are by-produced.
  • the ratio of strontium is relatively reduced, and the overall brightness is undesirably reduced.
  • the ratio of calcium to M is 0.005 ⁇ Ca / (Sr + Ca) ⁇ 0.1 in a molar ratio, the initial afterglow luminance characteristics and the like under low illumination excitation conditions are improved, A phosphorescent phosphor having excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor is obtained.
  • the fluorescent luminous characteristic is low or the initial afterglow is low.
  • the amount of added palladium that contributes to the temperature characteristics is increased compared to the amount of dysprosium that contributes to the afterglow luminance characteristics, and optimization is achieved, and the ratio of aluminum is the stoichiometric ratio of aluminum. Increasing the amount further causes distortion in the crystal structure, and furthermore, replacing a part of strontium with calcium causes an appropriate distortion in the crystal. It is possible to obtain excellent afterglow luminance characteristics as compared with the phosphorescent phosphor.
  • the phosphorescent phosphor according to the third invention of the present invention is a compound represented by MAIO,
  • the amount of dysprosium (Dy) added is 0.3 ⁇ DyZEu ⁇ 2 in molar ratio to the amount of palladium (Eu) in the mouth
  • the ratio of aluminum (A1) is The molar ratio of the metal element represented by M to the total number of moles of palladium (Eu) and dysprosium (Dy) is not less than 2.1 and not more than 2.9
  • the ratio of barium to M is 0.03 ⁇ Ba / (Sr + Ba + Ca) ⁇ 0.145
  • the ratio of calcium to M is 0.005 ⁇ Ca / (Sr + Ba + Ca) ⁇ 0.05.
  • the sum of the proportions of barium and calcium to M is characterized in that a 0. 035 ⁇ (Ba + Ca) / (Sr + Ba + Ca) ⁇ 0. 15 in molar ratio.
  • the amount of added palladium, which contributes to the characteristics is greater than the amount of dysprosium, which contributes to the afterglow luminance characteristics, and by optimizing, the initial afterglow luminance characteristics under low illumination excitation conditions are improved. And exhibits excellent afterglow luminance characteristics as compared with the conventional phosphorescent phosphor.
  • the ratio of aluminum (A1) is set to a molar ratio of not less than 2.1 and not more than 2.9 with respect to the total number of moles of the metal element represented by M, the palladium (Eu), and the dies (Dy). Then, aluminum By increasing the proportion of -Pb from 2.0, which is the stoichiometric ratio, the crystal structure is distorted and traps are easily formed, so that the initial afterglow luminance characteristics under low illumination excitation conditions are improved. It exhibits even better afterglow luminance characteristics than conventional phosphorescent phosphors.
  • the ratio of barium to M is expressed as a molar ratio of 0.03 ⁇ Ba / (Sr + Ba + Ca) ⁇ 0.
  • the ratio of calcium to M is 0.005 ⁇ Ca / (Sr + Ba + Ca) ⁇ 0.05 in molar ratio, and the sum of the ratios of barium and calcium to M is 0.035 ⁇ (Ba + (Ca) / (Sr + Ba + Ca) ⁇ 0.15, replacing a part of strontium with barium and potassium to generate an appropriate distortion in the crystal, resulting in initial afterglow under low illumination excitation conditions
  • the luminance characteristics are improved and the initial afterglow luminance characteristics are superior to those of conventional phosphorescent phosphors.
  • the afterglow luminance characteristic is equal to or lower than that of the conventional phosphorescent phosphor, which is not preferable.
  • concentration exceeds 5%
  • the afterglow luminance decreases as a whole due to concentration quenching, and thus the initial afterglow luminance characteristics under low illuminance conditions also decrease. Therefore, it is optimal to add more than 1.5% of palladium.
  • the addition amount of Pium in the Yuuguchi that contributes to the initial afterglow luminance characteristic is less than that of the fluorescent luminance characteristic. Since the amount of dysprosium which contributes is not enough, the fluorescent luminance characteristics and the initial afterglow luminance characteristics are lowered, and the desired! / Initial afterglow luminance characteristics cannot be obtained.
  • the amount of added casket of palladium as an activator is 1.5% in mol% based on the total number of moles of the metal element represented by M, the pium (Eu) and the dysprosium (Dy). Over 5%
  • the amount of dysprosium added as a co-activator is 0.3 ⁇ DyZEu ⁇ 2 in molar ratio with respect to palladium, so that the initial afterglow luminance characteristics under low illumination excitation conditions are improved.
  • a phosphorescent phosphor having improved initial afterglow luminance characteristics compared to conventional phosphorescent phosphors can be obtained.
  • the ratio of aluminum (A1) is less than 2.1 in a molar ratio with respect to the total number of moles of the metal element represented by M, the europium (Eu), and the dysprosium (Dy), that is, A1Z (M + (Eu + Dy) ⁇ 2.1, it is almost equal to or less than the stoichiometric ratio of 2.0, so the afterglow luminance characteristics are almost the same as the conventional phosphorescent phosphor. Or decline.
  • the molar ratio exceeds 2.9, that is, 2.9 ⁇ A1 / (M + Eu + Dy)
  • the proportion of by-products increases and the luminance decreases, which is not preferable.
  • the ratio of aluminum (A1) is represented by a molar ratio of 2.1 or more to 2.9 with respect to the total number of moles of the metal element represented by M, and the number of moles of palladium (Eu) and dysprosium (Dy).
  • the molar ratio of barium to M is less than 0.03, that is, if BaZ (Sr + Ba + Ca) ⁇ 0.03, then moderate distortion will occur in the crystal due to too little norium. Everything ⁇ has no effect. If the same proportion of calcium is less than 0.005 in molar ratio to M, that is, CaZ (Sr + Ba + Ca) ⁇ 0.005, there is no effect obtained by calcium. When the molar ratio to M exceeds 0.05, that is, when 0.05 ⁇ Ca / (Sr + Ba + Ca), calcium aluminate (CaAl 04) and the like are by-produced.
  • the sum of the molar ratios of barium and calcium to M exceeds 0.15, that is, 0.15 (Ba + Ca) Z (Sr + Ba + Ca)
  • the ratio of strontium is relatively reduced, and the overall brightness is reduced, which is not preferable.
  • the molar ratio of barium to M is 0.03 ⁇ Ba / (Sr + Ba + Ca) ⁇ 0.145, and 0.005 ⁇ Ca / (Sr + Ba + Ca) ⁇ 0.05.
  • Power M Since the total power of the proportions of palladium and calcium is 0.035 ⁇ (Ba + Ca) / (Sr + Ba + Ca) ⁇ 0.15, the initial afterglow luminance characteristics under low illumination excitation conditions, etc. Thus, a phosphorescent phosphor having afterglow luminance characteristics that is superior to that of the conventional phosphorescent phosphor can be obtained.
  • dysprosium which has a fluorescent luminance characteristic, and / or whose dysprosium which contributes to the initial afterglow luminance characteristic, the amount of addition of the europium pium which contributes to the afterglow luminance characteristic.
  • the method for producing the alkaline earth metal aluminate phosphorescent phosphor according to the fourth aspect of the present invention comprises an aluminum (A1) compound, a strontium (Sr) compound, a barium compound (Ba), It is characterized in that a pium (Eu) compound and a dysprosium (Dy) compound are mixed so that each element has the following molar ratio, fired in a reducing atmosphere, and then cooled and pulverized.
  • the initial afterglow luminance characteristics under low illuminance excitation conditions are improved, and are superior to the conventional phosphorescent phosphor.
  • An alkaline earth metal aluminate phosphorescent phosphor having afterglow luminance characteristics can be manufactured.
  • the method for producing an alkaline earth metal aluminate phosphorescent phosphor according to the fifth invention of the present invention is a method for producing an aluminum (A1) compound, a strontium (Sr) compound, and a calcium compound.
  • Al aluminum
  • Sr strontium
  • Ca calcium
  • Pr palladium
  • Dy dysprosium
  • the initial afterglow luminance characteristics under low illuminance excitation conditions are improved, and are superior to conventional phosphorescent phosphors.
  • An alkaline earth metal aluminate phosphorescent phosphor having afterglow luminance characteristics can be manufactured.
  • the method for producing an alkaline earth metal aluminate phosphorescent phosphor comprises: an aluminum (A1) compound, a strontium (Sr) compound, and a barium (Ba) compound.
  • a calcium compound (Ca), a palladium (Eu) compound, and a dysprosium (Dy) compound were mixed at the following molar ratios, calcined in a reducing atmosphere, and then cooled and pulverized. It is characterized by:
  • the initial afterglow luminance characteristics under low illuminance excitation conditions are improved, and are superior to the conventional phosphorescent phosphor.
  • An alkaline earth metal aluminate phosphorescent phosphor having afterglow luminance characteristics can be manufactured.
  • the method for producing an alkaline earth metal aluminate luminous phosphor according to the seventh invention of the present invention includes the alkaline earth metal aluminate luminous phosphor according to the fourth, fifth, or sixth invention.
  • the method for producing a phosphor is characterized in that a boron compound is added as a flux to the raw material and the mixture is fired. Then, by adding a boron compound as a flux to the raw material and firing the mixture, an alkaline earth metal element aluminate phosphorescent phosphor excellent even at a low firing temperature can be manufactured.
  • a boron compound for example, boric acid (HBO) is preferable.
  • the amount of the boron compound to be added is preferably about 0.01 to 10%, more preferably about 0.5 to 3%, based on the total mass of the raw materials.
  • the amount of the boron compound to be added exceeds 10% of the total mass of the raw material, the fired product is hard and sintered, so that the pulverization becomes difficult, and the reduction in luminance due to the pulverization decreases. Get offended. Therefore, the amount of the boron compound to be added is preferably 0.01% to 10% based on the total mass of the raw materials.
  • the alkaline earth metal aluminate phosphorescent phosphor according to the fourth, fifth, or sixth invention is provided. According to the manufacturing method, an alkaline earth metal element aluminate phosphorescent phosphor which is excellent even at a low firing temperature can be manufactured.
  • FIG. 1 is a view showing a particle size distribution of Sample 1 (4).
  • FIG. 2 is an X-ray powder diffraction pattern of Sample 2- (9).
  • FIG. 3 is an X-ray powder diffraction pattern of Sample 3- (7).
  • strontium (Sr), barium (Ba) and barium (Ca) as raw materials of metal elements represented by M, such as strontium carbonate (SrCO) and barium carbonate (Ba).
  • Dysprosium oxide (Dy 2 O 3) is added as a raw material.
  • the added calorie of pium (Eu) The amount is more than 1.5% and not more than 5% in mol% based on the total number of moles of the metal element represented by M and the number of moles of palladium and dysprosium, and the added amount of dysprosium (Dy) is The molar ratio to (Eu) is 0.3 or more and 2 or less.
  • alumina Al 2 O 3 is converted to strontium, norium, calcium, europium and zinc.
  • the molar ratio of aluminum to the sum of the number of moles of sprosium is 2.1 or more and 2.9 or less, and for example, boric acid (HBO) is used as a flux as a boron compound.
  • HBO boric acid
  • the mixture is fired in a reducing atmosphere, for example, in a stream of a mixed gas of nitrogen and hydrogen at a firing temperature of, for example, about 1300 ° C to 1500 ° C for about 1 hour to 6 hours, and then to room temperature for about 1 hour to 6 hours. Cool over time.
  • the obtained fired product is pulverized and sieved to obtain a phosphorescent phosphor having a predetermined particle size.
  • the added amount of palladium (Eu) as an activator to be added refers to the amount of each of the metal element M, the activator palladium (Eu) and the co-activator dysprosium (Dy). It is expressed in mol% based on the total number of moles of the element.
  • the metal element represented by M is strontium and norium
  • the molar ratio of barium to the total number of moles of strontium and barium is 0.1
  • the molar ratio of barium to the total number of moles of strontium and barium is 0.1
  • the amount of palladium in the mouth is 3% in mole%
  • the amount of dysprosium is 1.5% in the mole ratio
  • the number of moles of stonium and barium is 1.
  • the molar ratio of barium to the sum of is 0.1.
  • the firing temperature using a boron compound as the flux is sufficiently higher than the temperature required for the reaction, for example, about 1450 ° C.
  • the flux is sufficiently higher than the temperature required for the reaction, for example, about 1450 ° C.
  • the metal element represented by M is substantially strontium and barium, strontium and calcium, or strontium, barium and calcium, and a trace amount of another element in addition to these elements as long as they are also composed of power. Even if included Included in the scope of the invention.
  • strontium carbonate (SrCO) 128.88 g (0.873) was used as a raw material for strontium (Sr).
  • DyO dysprosium oxide
  • DyZEu the molar ratio of dysprosium to europium pium
  • the particle size distribution was measured by Shimadzu Corporation. This is shown in Figure 1.
  • the afterglow luminance characteristic after 90 minutes is about 1.23 times lower than that of Comparative Example 1.
  • the afterglow luminance characteristic after 5 minutes is preferably 1.82 times that of Comparative Example 1, but the afterglow luminance after 90 minutes.
  • the characteristics are 1.94 times higher than those of Comparative Example 1 and slightly lower than twice the expected value. The whole is decreasing.
  • sample 11- (4) which were more favorable than the results shown in Table 2, that is, the amount of sulfur added to the palladium at 3 mol% relative to the total of strontium, palladium, palladium at the mouth and dysprosium, Mainly on the condition that the ratio of dysprosium to pium (DyZEu) is 0.5, the addition amount of pium in the Yuguchi is fixed at 3 mol%, and the value of DyEu is shown in Table 3 as 0.1.
  • the phosphorescent phosphor was prepared under the same manufacturing conditions as in Sample 1- (3) except that the force was varied in the range of 2.5, and Sample 11 (7) through Sample 11 (14 ).
  • the samples 1- (7) to 1- (14) were excited under a low illuminance condition (4200K fluorescent lamp Z541x for 60 minutes) and the afterglow luminance characteristics were examined similarly to the sample 1- (1).
  • the results were compared with the results of Comparative Example 1 and Sample 1- (4) when the afterglow luminance of Comparative Example 1 was set to 1. Table 4 shows the luminance.
  • sample 1- (14) that is, when the ratio of dysprosium to europium is 2.5, the afterglow luminance characteristic after 90 minutes is more than twice that of Comparative Example 1, but the fluorescence luminance and the initial luminance Since the addition amount of palladium that contributes to the light luminance is smaller than the amount of dysprosium that contributes to the afterglow luminance characteristics, the initial afterglow luminance characteristics deteriorate.
  • the molar percentage of the total number of moles of pium (Eu) and dysprosium (Dy) should be more than 1.5% and not more than 5%, and the amount of dysprosium (Dy) added to euproium pium (Eu)
  • the molar ratio compared with the conventional phosphorescent phosphor, especially when excited under low illuminance conditions, the initial afterglow luminance characteristics and The afterglow luminance characteristic after 90 minutes and after 90 minutes was found to have excellent afterglow luminance characteristics, indicating that it has a new characteristic that has not existed before.
  • the metal element represented by M is strontium (Sr) and barium (Ba)
  • the number of moles of the metal element represented by M, the palladium (Eu), and the dysprosium (Dy) is determined.
  • the molar ratio of aluminum (A1) to the total and the afterglow luminance characteristics will be described.
  • DyO dysprosium oxide
  • Sample 2- (13) 3.3 Next, as in Sample 1- (1), these Samples 2- (1) to 2- (13) were excited under low-light conditions (4200K fluorescent lamp Z541xZ60 minutes), and the afterglow luminance characteristics were examined.
  • Low-light conditions 4200K fluorescent lamp Z541xZ60 minutes
  • the results are shown in Table 7 together with Sample 1 (4) under the same conditions except that the molar ratio of aluminum was 2.3, and the relative luminance when the afterglow luminance of Comparative Example 1 was 1. .
  • M is strontium (Sr) and barium
  • strontium carbonate (SrCO) 112.79 g (0.764) was used as a raw material for strontium (Sr).
  • barium carbonate (BaCO 3) as a raw material for barium (Ba)
  • DyO dysprosium oxide
  • This mixture is calcined in a reducing atmosphere in a gas stream of 97% nitrogen-3% hydrogen at a calcining temperature of 1350 ° C for 4 hours, and then cooled to room temperature in about 1 hour.
  • the obtained fired product was pulverized, sieved, and passed through a # 250 mesh to obtain a phosphorescent phosphor sample 3- (7).
  • This sample 3- (7) has 0.764 mol of strontium and 0.191 mol of barium, which is 0.955 mol of the total number of moles of strontium and barium.
  • the molar ratio of strontium is 0.8, and the molar ratio of norium is 0.2.
  • the added amount of palladium in the mouth is 3 mol% based on the total number of moles of strontium, barium, palladium in the mouth, and dysprosium, and the amount of sulfur added in the dysprosium is 1.5 mol%.
  • the molar ratio of dysprosium to dysprosium, ie DyZEu is 0.5.
  • the molar ratio of aluminum, that is, AlZ (Sr + Ba + Eu + Dy) is 2.3, which exceeds the stoichiometric ratio of 2.0.
  • Phosphorescent phosphors varied in the range of 0.01-1. 7: 0. 3 were prepared, and Sample 3— (1) through Sample 3— (6), Sample 3— (8), and Sample 3— Obtained as (9).
  • Sample 3- (7) a powder X-ray diffraction analysis was performed using a Cu tube to obtain a diffraction pattern. This is shown in FIG.
  • the afterglow luminance characteristics, particularly after 5 minutes, were higher than those of Comparative Example 1 when the proportion of barium was between 0.03 and 0.2, that is, between Samples 3- (2) and 3- (7).
  • the initial afterglow luminance characteristics of all were about 1.7 times or more superior to those of Comparative Example 1, and the afterglow luminance characteristics after 90 minutes were about twice that of Comparative Example 1. It is clear that it is superior to or more.
  • Sample 3— (3), Sample 3— (4), and Sample 1 (4), ie, the ratio of barium is 0.05 or more and 0.1 or less, the afterglow luminance characteristics after 5 minutes are comparative examples.
  • Sample 1 (4) and Sample 3- (5) that is, the ratio of barium is 0.1 or more and 0.15 or less, and the afterglow luminance characteristic after 90 minutes is more preferable. It can be seen that the afterglow luminance characteristics are more preferable and are 2.4 times or more as compared with Comparative Example 1. However, in Sample 3- (1), that is, when the ratio of Norium was 0.01, the afterglow luminance characteristic after 5 minutes in the initial stage was 1.9 times better than that of Comparative Example 1, but afterglow luminance after 90 minutes. The characteristics are about 1.56 times that of Comparative Example 1. Sample 3— (8) and Sample 3— (9) If the ratio of the strontium exceeds 0.2 and 0.3 or less, the ratio of the strontium may relatively decrease, and the afterglow luminance is reduced as a whole.
  • the above sample was measured with an emission spectrum measuring apparatus. It was apparent that the peak of the emission wavelength was slightly shifted to the shorter wavelength side as compared with the phosphorescent phosphor. For this reason, the emission color is slightly bluish.
  • boric acid (HBO) as a boron (B) compound as a flux is 3.lg (that is, 1.2 mass% based on the raw material).
  • the mixture is fired at a firing temperature of 1350 ° C for 4 hours in a mixed gas stream of 97% nitrogen and 3% hydrogen in a reducing atmosphere, and then cooled to room temperature over about 1 hour.
  • the obtained fired product was pulverized, sieved, and passed through # 250 mesh to obtain a phosphorescent phosphor sample 41- (5).
  • This sample 4 (5) had 0.8595 mole of strontium and 0.0955 mole of calcium, and the molar ratio of strontium to 0.955 mole of the total mole number of strontium and calcium was 0.9, and the mole ratio of calcium was 0.95. The ratio is 0.1.
  • the molar ratio of dysprosium to pium, ie DyZEu is 0.5.
  • the molar ratio of aluminum, that is, AlZ (Sr + Ca + Eu + Dy) is 2.3, which exceeds the stoichiometric ratio of 2.0.
  • the afterglow luminance characteristic after 90 minutes is 1.33 times that of Comparative Example 1, indicating that the afterglow luminance characteristic is more excellent.
  • the ratio of calcium to M is 0.003
  • the afterglow luminance characteristic after 90 minutes is 1.12 times that of Comparative Example 1, which is not so effective.
  • the ratio of strontium may be relatively reduced, and overall afterglow brightness is reduced. are doing.
  • the metal element represented by M is strontium and calcium
  • the ratio of calcium to M that is, when CaZ (Sr + Ca) is 0.005 or more and 0.1 or less
  • the metal element represented by M is strontium and barium. It can be seen that even if the phosphor is not as good as the phosphor, the phosphor has excellent afterglow luminance characteristics as compared with the conventional phosphor.
  • the metal element represented by M consists of strontium and calcium.
  • the peak of the emission wavelength was slightly longer than that of the phosphorescent phosphor in which the metal element represented by M was strontium only. It turned out that it was shifted to the wavelength side. For this reason, the light emission color is slightly yellowish.
  • barium carbonate (BaCO 3) as a raw material for barium (Ba)
  • This sample 5- (4) contains 0.881 175 strontium, 0.0955 strontium, 0.00955 monol, and kanoreshimuka ⁇ ). 04775.
  • the total number of moles of strontium, normium, and calcium is 0.955 mol, compared to 0.955 mol. Is 0.85, the molar ratio of norium is 0.1, and the molar ratio of calcium is 0.05.
  • the added amount of strontium, norium, calcium, euproium pium, and dysprosium was 3 mol% based on the total number of moles of strontium, norium, calcium, euprosium, and dysprosium added 1.5 mol%.
  • the molar ratio of dysprosium to pium, ie DyZEu is 0.5.
  • the molar ratio of aluminum to aluminum, ie, AlZ (Sr + Ba + Ca + Eu + Dy) is 2.3, which exceeds the stoichiometric ratio of 2.0.
  • barium was fixed at 0.1 in terms of the molar ratio to M, which was suitable in Example 1, and the mixing ratio of strontium and calcium was as shown in Table 12, in the range of Ca: 0.003-0.2.
  • Phosphorescent phosphors with different surroundings were prepared, and were obtained as Sample 5— (1) to Sample 5— (3), Sample 5— (5), and Sample 5— (7), respectively.
  • the metal element represented by M is strontium, norium and calcium
  • the ratio of barium to M that is, BaZ (Sr + Ba + Ca) is 0.03 or more and 0.145 or less
  • the ratio of calcium, that is, CaZ (Sr + Ba + Ca) is 0.005 or more and 0.05 or less
  • the sum of the ratios of barium and calcium to M that is, (Ba + Ca) Z (Sr + Ba + Ca)
  • the metal element is not less than 0.035 and not more than 0.15
  • the metal element represented by M may not be a phosphorescent phosphor of strontium and barium, but may be a phosphorescent phosphor having excellent afterglow luminance characteristics. Understand.
  • the present invention can be used for safety applications used in a low-light environment, such as a release handle for an escape of an automobile trunk and a safety sign for evacuation guidance in subways, tunnels, ships, and airplanes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

 低照度の励起条件でも、従来の同種のアルミン酸ストロンチウム系蓄光性蛍光体に比べて優れた残光輝度特性を有する蓄光性蛍光体、特に初期の残光輝度特性に優れ、かつ励起後60分ないしは90分後の残光輝度特性にも優れる、下記の蓄光性蛍光体。  0.015<Eu/(Sr+Ba+Eu+Dy)≦0.05、  0.3≦Dy/Eu≦2、  0.03≦Ba/(Sr+Ba)≦0.2、  2.1≦Al/(Sr+Ba+Eu+Dy)≦2.9

Description

明 細 書
蓄光性蛍光体及びその製造方法
技術分野
[0001] 本発明は蓄光性蛍光体、特に低照度で励起されたときに、優れた残光特性を有す る蓄光性蛍光体に関するものである。
背景技術
[0002] 一般に蛍光体の残光時間は極めて短ぐ外部刺激を停止すると速やかにその発光 は減衰するが、まれに紫外線等で刺激した後その刺激を停止した後も力なりの長時 間 (数 10分力も数時間)に渡り残光が肉眼で認められるものがあり、これらを通常の 蛍光体とは区別して蓄光性蛍光体ある 、は燐光体と呼んで 、る。
この蓄光性蛍光体としては、 CaS: Bi (紫青色発光)、 CaSrS: Bi (青色発光)、 ZnS : Cu (緑色発光)、 ZnCdS: Cu (黄色一橙色発光)等の硫ィ匕物蛍光体が知られて ヽ る力 これらのいずれの硫化物蛍光体も、化学的に不安定であったり、耐光性に劣つ たり、またこの硫ィ匕亜鉛系蛍光体を夜光時計に用いる場合であっても、肉眼でその 時刻を認識可能な残光時間は約 30分から 2時間程度であるなど実用面での問題点 が多かった。
[0003] そこで、出願人は、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を 有し、更には化学的にも安定であり、かつ長期にわたり耐光性に優れる蓄光性蛍光 体として、 MAI Oで表わされる化合物で、 Mは、カルシウム、ストロンチウム、バリウム
2 4
力 なる群力 選ばれる少なくとも 1つ以上の金属元素力 なる化合物を母結晶にし た蓄光性蛍光体を発明し、特許を取得した (特許第 2543825号公報参照。 )0 この特許公報記載のアルミン酸塩系蓄光性蛍光体の発明により、従来の硫ィ匕物系 蛍光体に比べて遥かに長時間の残光特性を有し、さらには酸ィ匕物系であることから 化学的にも安定であり、かつ耐光性に優れる、様々な用途に適用可能な長残光の蓄 光性蛍光体を提供することが可能となった。
発明の開示
[0004] し力しながら、さらなる巿場ニーズ、特に自動車トランクの脱出用リリースハンドルや 地下鉄、トンネル、船舶、航空機内などにおける避難誘導用安全標識など、低照度 環境において使用するセーフティ用途のニーズが高まっており、より低照度での励起 条件にお 、て、高 、残光輝度特性が要求されてきて!/、る。
例えば、 UL規格の UL924"Emergency Lighting and Power Equipment"においては 、 5ft— c (約 541x)で 60分間励起という低照度条件が定められており、また ISO規格 の ISO15370:2001
Ships and marine technology · Low-location lighting on passenger ships · Arrangement"にお!/、ては、 251xで 24時間励起と!/、う低照度条件が定められて 、る。
[0005] さらに、前記 UL924では、前記励起条件で励起し、 90分経過後の残光輝度特性を 判断基準として用いている。
本発明は、このような現状に鑑みなされたもので、低照度の励起条件でも、従来の 同種のアルミン酸ストロンチウム系蓄光性蛍光体に比べて優れた残光輝度特性を有 する蓄光性蛍光体、特に初期の残光輝度特性に優れ、かつ励起後 60分ないしは 9 0分後の残光輝度特性にも優れる蓄光性蛍光体およびその製造方法の提供を目的 とする。
そこで、本発明者は、前述の現状に鑑み、前記特許公報記載のアルミン酸ストロン チウム系蓄光性蛍光体において、賦活剤であるユウ口ピウム (Eu)と共賦活剤である ジスプロシウム(Dy)の添カ卩量の最適化をはかり、さらに、母結晶の構成元素であるス トロンチウム(Sr)、バリウム(Ba)、カルシウム(Ca)、アルミニウム (A1)の構成比の最 適化をは力ることにより、特に低照度で励起した時に、従来のアルミン酸ストロンチウ ム系蓄光性蛍光体と比べて、残光輝度特性に優れた蓄光性蛍光体を見出した。
[0006] (1)第 1の発明
本発明のうち第 1の発明に係る蓄光性蛍光体は、 MAI Oで表される化合物で、 M
2 4
は、ストロンチウム !:)とバリウム (Ba)力もなる化合物を母結晶にすると共に、賦活剤 としてユウ口ピウム (Eu)を添加し、共賦活剤としてジスプロシウム (Dy)を添加してお り、ユウ口ピウム(Eu)の添カ卩量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロ シゥム(Dy)のモル数の合計に対して、モル%で 1. 5%を超え 5%以下であり、ジス プロシゥム(Dy)の添力卩量はユウ口ピウム(Eu)に対するモル比で 0. 3≤ Dy/Eu≤ 2 であり、アルミニウム(Al)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下であり、 Mに対 するバリウムの割合は、モル比で 0. 03≤Ba/ (Sr + Ba)≤0. 2であることを特徴とし ている。
[0007] そして、まず賦活剤としてユウ口ピウム (Eu)を、 Mで表す金属元素とユウ口ピウム (E u)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 1. 5%を超え 5%以下 添加し、共賦活剤としてジスプロシウム(Dy)をユウ口ピウム (Eu)に対するモル比で 0 . 3≤DyZEu≤2添加したことで、蛍光輝度特性ないしは初期残光輝度特性に寄与 するユウ口ピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比 ベ増大し、最適化がは力 れることにより、低照度励起条件による初期残光輝度特性 が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を示す。
さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下とすると、アルミ -ゥムの割合をィ匕学量論比である 2. 0より増加させることにより、結晶構造に歪みが 生じトラップが形成されやすくなるため、低照度励起条件による初期残光輝度特性が 向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を示す。
[0008] さらに、 Mに対するバリウムの割合を、モル比で 0. 03≤Ba/ (Sr+Ba)≤0. 2とし たため、ストロンチウムの一部をバリウムで置換することで結晶中に適度な歪が生じる ことによって、低照度励起条件による初期残光輝度特性および励起後 60分後、 90 分後における残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光 輝度特性を示す。
ここで、まず賦活剤としてのユウ口ピウムの添カ卩量力 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対するモル0 /0で 1. 5%以下の場 合では、ユウ口ピウムの添加量が少なぐ初期残光輝度特性が充分に得られないた め、従来の蓄光性蛍光体と同等か、それ以下の残光輝度特性となり好ましくない。さ らに、 5%を超える場合では、濃度消光により全体的に残光輝度が低下するため、低 照度条件での初期残光輝度特性も低下する。よって、ユウ口ピウムの添加量は、 1. 5 %を超え 5%以下が最適である。 [0009] そして、共賦活剤としてのジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比 で 0. 3未満、すなわち DyZEu<0. 3の場合では、優れた初期残光輝度特性を得る ためには、残光輝度特性に寄与するジスプロシウムの添加量がユウ口ピウムの添カロ 量に対して充分ではないため、望ましい初期残光輝度特性が得られない。また、ジス プロシゥムの添カ卩量力 ユウ口ピウムに対するモル比で 2を超える、すなわち 2く Dy ZEuの場合では、蛍光輝度特性な!/ヽしは初期残光輝度特性に寄与するユウ口ピウ ムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ充分ではな いため、蛍光輝度特性や初期残光輝度特性が低下し、望ましい初期残光輝度特性 が得られない。
[0010] そのため、賦活剤としてのユウ口ピウムの添カ卩量は、 Mで表す金属元素とユウ口ピウ ム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル%で 1. 5%を超え 5% 以下であり、さらに共賦活剤としてのジスプロシウムの添カ卩量は、ユウ口ピウムに対す るモル比で 0. 3≤DyZEu≤2であることで、低照度励起条件による初期残光輝度 特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を有する蓄光 性蛍光体が得られる。
また、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジスプロ シゥム(Dy)のモル数の合計に対して、モル比で 2. 1未満、すなわち A1Z (M + Eu + Dy) < 2. 1とした場合には、化学量論比である 2. 0とほぼ等しいかそれ以下であ るため、その残光輝度特性は従来の蓄光性蛍光体とほぼ同等か、または低下する。 また、同じくモル比で 2. 9を超える、すなわち 2. 9<A1/ (M+Eu+Dy)とした場合 には、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない
[0011] そのため、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジ スプロシゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下としたこと で、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比 ベさらに優れた残光輝度特性を有する蓄光性蛍光体が得られる。
さらに、バリウムの割合を、 Mに対するモル比で 0. 03未満、すなわち BaZ (Sr+B a) <0. 03とした場合は、ノリウムの割合が少なすぎるため結晶中に適度な歪がおき にくく効果がない。また、 Mに対するモル比で 0. 2を超える、すなわち 0. 2< Ba/ (S r + Ba)とした場合では、相対的にストロンチウムの割合が減少し、全体的な輝度の低 下がおこるため好ましくない。
[0012] そのため、 Mに対するバリウムの割合力 モル比で 0. 03≤Ba/ (Sr+Ba)≤0. 2 であることにより、低照度励起条件による初期残光輝度特性が向上し、かつ励起後 6 0分ないしは 90分後の残光輝度特性が向上した、従来の蓄光性蛍光体に比べ優れ た残光輝度特性を有する蓄光性蛍光体が得られる。
この第 1の発明に係る蓄光性蛍光体によれば、蛍光輝度特性ないしは初期残光輝 度特性に寄与するユウ口ピウムの添加量が残光輝度特性に寄与するジスプロシウム の添加量に比べ増大し最適化がはかられ、またアルミニウムの割合をィ匕学量論比で ある 2. 0より増加させることにより、結晶構造に歪みが生じ、さらにストロンチウムの一 部をバリウムで置換することで結晶中に適度な歪が生ずるため、低照度励起条件に よる残光輝度特性が向上し、かつ励起後 60分後ないし 90分後における残光輝度特 性が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を得ることができる。
[0013] (2)第 2の発明
本発明のうち第 2の発明に係る蓄光性蛍光体は、 MAI Oで表される化合物で、 M
2 4
は、ストロンチウム !:)とカルシウム (Ca)力 なる化合物を母結晶にすると共に、賦 活剤としてユウ口ピウム (Eu)を添加し、共賦活剤としてジスプロシウム (Dy)を添加し ており、ユウ口ピウム(Eu)の添カ卩量は、 Mで表す金属元素とユウ口ピウム(Eu)とジス プロシゥム(Dy)のモル数の合計に対して、モル%で 1. 5%を超え 5%以下であり、ジ スプロシゥム(Dy)の添力卩量はユウ口ピウム(Eu)に対するモル比で 0. 3≤ Dy/Eu ≤2であり、アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジス プロシゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下であり、 Mに 対するカルシウムの割合は、モル比で 0. 005≤Ca/ (Sr+Ca)≤0. 1であることを 特徴としている。
[0014] そして、まず賦活剤としてユウ口ピウム (Eu)を、 Mで表す金属元素とユウ口ピウム (E u)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 1. 5%を超え 5%以下 添加し、共賦活剤としてジスプロシウム(Dy)をユウ口ピウム (Eu)に対するモル比で 0 . 3≤DyZEu≤2添加したことで、蛍光輝度特性ないしは初期残光輝度特性に寄与 するユウ口ピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比 ベ増大し、最適化がは力 れることにより、低照度励起条件による初期残光輝度特性 が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を示す。
さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下とすると、アルミ -ゥムの割合をィ匕学量論比である 2. 0より増加させることにより、結晶構造に歪みが 生じトラップが形成されやすくなるため、低照度励起条件による初期残光輝度特性が 向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を示す。
[0015] さらに、 Mに対するカルシウムの割合を、モル比で 0. 005≤Ca/ (Sr+Ca)≤0.
1としたため、ストロンチウムの一部をカルシウムで置換することで結晶中に適度な歪 が生じることによって、低照度励起条件による初期残光輝度特性等が向上し、従来 の蓄光性蛍光体に比べ優れた初期残光輝度特性を示す。
ここで、まず賦活剤としてのユウ口ピウムの添カ卩量力 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対するモル0 /0で 1. 5%以下の場 合では、ユウ口ピウムの添加量が少なぐ初期残光輝度特性が充分に得られないた め、従来の蓄光性蛍光体と同等か、それ以下の残光輝度特性となり好ましくない。さ らに、 5%を超える場合では、濃度消光により全体的に残光輝度が低下するため、低 照度条件での初期残光輝度特性も低下する。よって、ユウ口ピウムの添加量は、 1. 5 %を超え 5%以下が最適である。
[0016] そして、共賦活剤としてのジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比 で 0. 3未満、すなわち DyZEu<0. 3の場合では、優れた初期残光輝度特性を得る ためには、残光輝度特性に寄与するジスプロシウムの添加量がユウ口ピウムの添カロ 量に対して充分ではないため、望ましい初期残光輝度特性が得られない。また、ジス プロシゥムの添カ卩量力 ユウ口ピウムに対するモル比で 2を超える、すなわち 2く Dy ZEuの場合では、蛍光輝度特性な!/ヽしは初期残光輝度特性に寄与するユウ口ピウ ムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ充分ではな いため、蛍光輝度特性や初期残光輝度特性が低下し、望ましい初期残光輝度特性 が得られない。
[0017] そのため、賦活剤としてのユウ口ピウムの添カ卩量は、 Mで表す金属元素とユウ口ピウ ム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル%で 1. 5%を超え 5% 以下であり、さらに共賦活剤としてのジスプロシウムの添カ卩量は、ユウ口ピウムに対す るモル比で 0. 3≤DyZEu≤2であることで、低照度励起条件による初期残光輝度 特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を有する蓄光 性蛍光体が得られる。
また、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジスプロ シゥム(Dy)のモル数の合計に対して、モル比で 2. 1未満、すなわち A1Z (M + Eu + Dy) < 2. 1とした場合には、化学量論比である 2. 0とほぼ等しいかそれ以下であ るため、その残光輝度特性は従来の蓄光性蛍光体とほぼ同等か、または低下する。 また、同じくモル比で 2. 9を超える、すなわち 2. 9<A1/ (M+Eu+Dy)とした場合 には、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない
[0018] そのため、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジ スプロシゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下としたこと で、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比 ベさらに優れた残光輝度特性を有する蓄光性蛍光体が得られる。
さらに、カルシウムの割合を、 Mに対するモル比で 0. 005未満、すなわち CaZ (Sr + Ca) < 0. 005とした場合は、カルシウムの割合が少なすぎるため結晶中に適度な 歪がおきに《効果がない。また、 Mに対するモル比で 0. 1を超える、すなわち 0. 1 く CaZ (Sr + Ca)とした場合では、アルミン酸カルシウム(CaAl O )等が副生し、ま
2 4
た相対的にストロンチウムの割合が減少し、全体的な輝度の低下がおこるため好まし くない。
[0019] そのため、 Mに対するカルシウムの割合が、モル比で 0. 005≤Ca/ (Sr+Ca)≤ 0. 1であることにより、低照度励起条件による初期残光輝度特性等が向上し、従来の 蓄光性蛍光体に比べ優れた残光輝度特性を有する蓄光性蛍光体が得られる。 この第 2の発明に係る蓄光性蛍光体によれば、蛍光輝度特性な 、しは初期残光輝 度特性に寄与するユウ口ピウムの添加量が残光輝度特性に寄与するジスプロシウム の添加量に比べ増大し最適化がはかられ、またアルミニウムの割合をィ匕学量論比で ある 2. 0より増加させることにより、結晶構造に歪みが生じ、さらにストロンチウムの一 部をカルシウムで置換することで結晶中に適度な歪が生ずるため、低照度励起条件 による残光輝度特性等が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性 を得ることができる。
[0020] (3)第 3の発明
本発明のうち第 3の発明に係る蓄光性蛍光体は、 MAI Oで表される化合物で、 M
2 4
は、ストロンチウム(Sr)とバリウム (Ba)とカルシウム (Ca)とからなる化合物を母結晶に すると共に、賦活剤としてユウ口ピウム (Eu)を添加し、共賦活剤としてジスプロシウム (Dy)を添カ卩しており、ユウ口ピウム (Eu)の添カ卩量は、 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 1. 5%を超え 5 %以下であり、ジスプロシウム(Dy)の添力卩量はユウ口ピウム(Eu)に対するモル比で 0. 3≤DyZEu≤2であり、アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口 ピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9 以下であり、 Mに対するバリウムの割合は、モル比で 0. 03≤Ba/ (Sr + Ba + Ca) ≤0. 145であり、 Mに対するカルシウムの割合は、モル比で 0. 005≤Ca/ (Sr+B a + Ca)≤0. 05であり、かつ Mに対するバリウムとカルシウムの割合の合計は、モル 比で 0. 035≤ (Ba + Ca) / (Sr + Ba + Ca)≤0. 15であることを特徴としている。
[0021] そして、まず賦活剤としてユウ口ピウム (Eu)を、 Mで表す金属元素とユウ口ピウム (E u)とジスプロシウム(Dy)のモル数の合計に対して、モル0 /0で 1. 5%を超え 5%以下 添加し、共賦活剤としてジスプロシウム(Dy)をユウ口ピウム (Eu)に対するモル比で 0 . 3≤DyZEu≤2添加したことで、蛍光輝度特性ないしは初期残光輝度特性に寄与 するユウ口ピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比 ベ増大し、最適化がは力 れることにより、低照度励起条件による初期残光輝度特性 が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を示す。
さらに、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジスプ 口シゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下とすると、アルミ -ゥムの割合をィ匕学量論比である 2. 0より増加させることにより、結晶構造に歪みが 生じトラップが形成されやすくなるため、低照度励起条件による初期残光輝度特性が 向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を示す。
[0022] さらに、 Mに対するバリウムの割合を、モル比で 0. 03≤Ba/ (Sr+Ba + Ca)≤0.
145とし、 Mに対するカルシウムの割合を、モル比で 0. 005≤Ca/ (Sr + Ba + Ca) ≤0. 05とし、かつ Mに対するバリウムとカルシウムの割合の合計を 0. 035≤(Ba + Ca) / (Sr + Ba + Ca)≤0. 15としたため、ストロンチウムの一部をバリウムおよび力 ルシゥムで置換することで結晶中に適度な歪が生じることによって、低照度励起条件 による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝 度特性を示す。
ここで、まず賦活剤としてのユウ口ピウムの添カ卩量力 Mで表す金属元素とユウロピ ゥム(Eu)とジスプロシウム(Dy)のモル数の合計に対するモル0 /0で 1. 5%以下の場 合では、ユウ口ピウムの添加量が少なぐ初期残光輝度特性が充分に得られないた め、従来の蓄光性蛍光体と同等か、それ以下の残光輝度特性となり好ましくない。さ らに、 5%を超える場合では、濃度消光により全体的に残光輝度が低下するため、低 照度条件での初期残光輝度特性も低下する。よって、ユウ口ピウムの添加量は、 1. 5 %を超え 5%以下が最適である。
[0023] そして、共賦活剤としてのジスプロシウムの添カ卩量力 ユウ口ピウムに対するモル比 で 0. 3未満、すなわち DyZEu< 0. 3の場合では、優れた初期残光輝度特性を得る ためには、残光輝度特性に寄与するジスプロシウムの添加量がユウ口ピウムの添カロ 量に対して充分ではないため、望ましい初期残光輝度特性が得られない。また、ジス プロシゥムの
添加量が、ユウ口ピウムに対するモル比で 2を超える、すなわち 2く DyZEuの場合 では、蛍光輝度特性な ヽしは初期残光輝度特性に寄与するユウ口ピウムの添加量が 残光輝度特性に寄与するジスプロシウムの添加量に比べ充分ではな 、ため、蛍光輝 度特性や初期残光輝度特性が低下し、望まし!/、初期残光輝度特性が得られな ヽ。
[0024] そのため、賦活剤としてのユウ口ピウムの添カ卩量は、 Mで表す金属元素とユウ口ピウ ム(Eu)とジスプロシウム (Dy)のモル数の合計に対するモル%で 1. 5%を超え 5% 以下であり、さらに共賦活剤としてのジスプロシウムの添カ卩量は、ユウ口ピウムに対す るモル比で 0. 3≤DyZEu≤2であることで、低照度励起条件による初期残光輝度 特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を有する蓄光 性蛍光体が得られる。
また、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム (Eu)とジスプロ シゥム(Dy)のモル数の合計に対して、モル比で 2. 1未満、すなわち A1Z (M + Eu + Dy) < 2. 1とした場合には、化学量論比である 2. 0とほぼ等しいかそれ以下であ るため、その残光輝度特性は従来の蓄光性蛍光体とほぼ同等か、または低下する。 また、同じくモル比で 2. 9を超える、すなわち 2. 9<A1/ (M+Eu+Dy)とした場合 には、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない
[0025] そのため、アルミニウム (A1)の割合を、 Mで表す金属元素とユウ口ピウム(Eu)とジ スプロシゥム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下としたこと で、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比 ベさらに優れた残光輝度特性を有する蓄光性蛍光体が得られる。
さらに、バリウムの割合を、 Mに対するモル比で 0. 03未満、すなわち BaZ (Sr+B a + Ca) < 0. 03とした場合は、ノリウムの割合が少なすぎるため結晶中に適度な歪 がおきに《効果がない。同じぐカルシウムの割合を、 Mに対するモル比で 0. 005 未満、すなわち CaZ (Sr+Ba + Ca) < 0. 005とした場合は、カルシウムによって得 られる効果がない。また、 Mに対するモル比で 0. 05を超える、すなわち 0. 05< Ca / (Sr + Ba + Ca)とした場合では、アルミン酸カルシウム(CaAl 04)等が副生する
2
などして、全体的な輝度の低下がおこるため好ましくな 、。
[0026] 一方、上記条件に加えて、また、 Mに対するバリウムおよびカルシウムのモル比の 合計が 0. 15を超える、すなわち 0. 15く(Ba + Ca) Z (Sr + Ba + Ca)とした場合で は、相対的にストロンチウムの割合が減少し、全体的な輝度の低下がおこるため好ま しくない。
そのため、 Mに対するバリウムの割合力 モル比で 0. 03≤Ba/ (Sr + Ba + Ca)≤ 0. 145であり、 0. 005≤Ca/ (Sr+Ba + Ca)≤0. 05であり、力つ Mに対するノ リ ゥムおよびカルシウムの割合の合計力 モル比で 0. 035≤ (Ba + Ca) / (Sr+Ba + Ca)≤0. 15であることによって、低照度励起条件による初期残光輝度特性等が向 上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を有する蓄光性蛍光体が得 られる。
[0027] この第 3の発明に係る蓄光性蛍光体によれば、蛍光輝度特性な!/ヽしは初期残光輝 度特性に寄与するユウ口ピウムの添加量が残光輝度特性に寄与するジスプロシウム の添加量に比べ増大し最適化がはかられ、またアルミニウムの割合をィ匕学量論比で ある 2. 0より増加させることにより、結晶構造に歪みが生じ、さらにストロンチウムの一 部をバリウムおよびカルシウムで置換することで結晶中に適度な歪が生ずるため、低 照度励起条件による残光輝度特性等が向上し、従来の蓄光性蛍光体に比べ優れた 残光輝度特性を得ることができる。
(4)第 4の発明
本発明のうち第 4の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、バリウム化合物 (Ba)と、ユウ口ピウム (Eu)化合物と、ジスプロシウム (Dy)化合物とを各元素が下記 のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したこと を特徴としている。
[0028] 0. 015<Eu/ (Sr+Ba+Eu+Dy)≤0. 05、
0. 3≤Dy/Eu≤2,
0. 03≤Ba/ (Sr+Ba)≤0. 2、
2. l≤Al/ (Sr+Ba+Eu+Dy)≤2. 9
この第 4の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体 に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光 体を製造できる。
(5)第 5の発明
本発明のうち第 5の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、カルシウム化合 物(Ca)と、ユウ口ピウム (Eu)化合物と、ジスプロシウム (Dy)化合物とを各元素が下 記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したこ とを特徴としている。
[0029] 0. 015<Eu/ (Sr+Ca+Eu+Dy)≤0. 05、
0. 3≤Dy/Eu≤2,
0. 005≤Ca/ (Sr+Ca)≤0. 1、
2. l≤Al/ (Sr+Ca+Eu+Dy)≤2. 9
この第 5の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体 に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光 体を製造できる。
(6)第 6の発明
本発明のうち第 6の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、バリウム (Ba)化 合物と、カルシウム化合物(Ca)と、ユウ口ピウム(Eu)化合物と、ジスプロシウム(Dy) 化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、 その後冷却、粉砕したことを特徴としている。
[0030] 0. 015<Eu/ (Sr+Ba + Ca+Eu+Dy)≤0. 05、
0. 3≤Dy/Eu≤2,
0. 03≤Ba/ (Sr+Ba + Ca)≤0. 145、
0. 005≤Ca/ (Sr+Ba+Ca)≤0. 05、
0. 035≤ (Ba + Ca) / (Sr + Ba + Ca)≤0. 15、
2. l≤Al/ (Sr + Ba + Ca + Eu+Dy)≤2. 9
この第 6の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体 に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光 体を製造できる。
[0031] (7)第 7の発明 本発明のうち第 7の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製 造方法は、前記第 4、第 5または第 6の発明に係るアルカリ土類金属アルミン酸塩蓄 光性蛍光体の製造方法において、原料中に、フラックスとしてホウ素化合物を添加し 焼成することを特徴としている。そして、原料中に、フラックスとしてホウ素化合物を添 加し焼成することで、低!ゝ焼成温度でも優れたアルカリ土類金属元素アルミン酸塩蓄 光性蛍光体を製造できる。なお、ホウ素化合物としては例えばホウ酸 (H BO )が好
3 3 適に用いられるが、ホウ酸に限らずホウ素化合物であれば同様の効果が得られる。ま た、添加するホウ素化合物の量としては、原料の総質量に対して 0. 01— 10%程度 添加するのが良ぐより好ましくは、 0. 5— 3%程度である。
[0032] ここで、添加するホウ素化合物の量力 原料の総質量に対して 10%を超える場合 では、焼成物が硬く焼結してしまうため、粉砕が困難となり、また粉砕による輝度の低 下がおこってしまう。このため、添加するホウ素化合物の量は原料の総質量に対して 0. 01— 10%が好ましい。
この第 7の発明に係るアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法に よれば、前記第 4、第 5または第 6の発明に係るアルカリ土類金属アルミン酸塩蓄光 性蛍光体の製造方法にお!、て、低 、焼成温度でも優れたアルカリ土類金属元素ァ ルミン酸塩蓄光性蛍光体を製造できる。
図面の簡単な説明
[0033] [図 1]試料 1 (4)の粒度分布を示した図である。
[図 2]試料 2—(9)の粉末 X線回折図形である。
[図 3]試料 3—(7)の粉末 X線回折図形である。
発明を実施するための最良の形態
[0034] 以下、本発明の一実施の形態における蓄光性蛍光体を製造する工程を説明する。
まず、 Mで表す金属元素としてのストロンチウム(Sr)、バリウム(Ba)およびカルシゥ ム(Ca)の原料として例えばそれぞれ炭酸ストロンチウム(SrCO )、炭酸バリウム (Ba
3
CO )および炭酸カルシウム(CaCO )に、賦活剤としてのユウ口ピウム (Eu)の原料と
3 3
して酸ィ匕ユウ口ピウム (Eu O )を添カロし、共賦活剤としてのジスプロシウム(Dy)の原
2 3
料として酸化ジスプロシウム(Dy O )を添カ卩する。このときのユウ口ピウム(Eu)の添カロ 量は、 Mで表す金属元素とユウ口ピウムとジスプロシウムのモル数の合計に対するモ ル%で 1. 5%を超え 5%以下であり、ジスプロシウム(Dy)の添カ卩量は、ユウ口ピウム( Eu)に対するモル比で 0. 3以上 2以下である。さらに、アルミニウム (A1)の原料として 例えばアルミナ(Al O )をストロンチウム、ノ リウム、カルシウム、ユウ口ピウムおよびジ
2 3
スプロシゥムのモル数の和に対して、アルミニウムのモル比で 2. 1以上 2. 9以下にな るように加え、フラックスとしてのホウ素化合物として例えばホウ酸 (H BO )を原料の
3 3 総質量に対して 0. 01— 10%程度添加し、ボールミル等を用いて充分に混合する。 この混合物を還元雰囲気中例えば窒素一水素混合ガス気流中で、例えば約 1300°C から 1500°Cの焼成温度で、約 1時間から 6時間の間焼成を行い、その後室温まで約 1時間から 6時間かけて冷却する。得られた焼成物を粉砕し篩分して、所定の粒径の 蓄光性蛍光体を得る。
[0035] なおこのとき、添加する賦活剤としてのユウ口ピウム (Eu)の添カ卩量とは、金属元素 Mと賦活剤ユウ口ピウム(Eu)と共賦活剤ジスプロシウム(Dy)の各々の元素のモル数 の合計に対するモル%で表され、例えば、 Mで表す金属元素がストロンチウムおよび ノ リウムの場合であって、ストロンチウムとバリウムのモル数の合計に対するバリウムの モル比を 0. 1とし、ユウ口ピウムを 3モル%添加、ジスプロシウムを 1. 5モル%添カロす る場合は、ストロンチウム元素が 0. 8595モル、バリウム元素が 0. 0955モル、ユウ口 ピウム元素が 0. 03モノレ、ジスプロシウム元素が 0. 015モノレとなるように、各々の元 素の化合物を配合する。これにより、各々の元素のモル数の合計 1に対して、ユウ口 ピウムの量はモル%で 3%、ジスプロシウムの量はモル比で 1. 5%となり、またスト口 ンチウムとバリウムのモル数の合計に対するバリウムのモル比は 0. 1となる。
[0036] また、上記実施の形態では、フラックスとしてホウ素化合物を用いて焼成した力 焼 成温度が反応に要する温度に対して充分に高温であれば、例えば 1450°C程度であ れば、フラックスを用いずに焼成してもよぐこの場合得られた焼成物の凝集は弱ぐ 粉砕が容易となるため、粉砕による輝度低下を低減できる。
なお、本願発明における Mで表す金属元素は、実質的にストロンチウムとバリウム、 ストロンチウムとカルシウム、またはストロンチウムとバリウムとカルシウムと力も構成さ れていればよぐこれらの元素の他に微量の別の元素が含まれていたとしても、本願 発明の範囲に含まれる。
[0037] (1)実施例 1
次に、上記一実施の形態の実施例として、 Mで表す金属元素がストロンチウム(Sr) およびバリウム (Ba)である場合を説明する。
まず始めに、ユウ口ピウム (Eu)およびジスプロシウム(Dy)の添カ卩量と、初期残光輝 度特性との関係を説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 128.88g (0. 873
3
モル)に、ノ リウム(Ba)の原料として炭酸バリウム(BaCO )を 19.14g (0. 097モル)
3
加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )を
2 3
3.52g (Euとして 0. 02モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料と して酸化ジスプロシウム(Dy O )を 1.86g (Dyとして 0. 01モル)添加し、さらにアルミ
2 3
-ゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち AlZ (S
2 3
r + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合物としてホウ酸( H BO )を 3. 2g (すなわち原料に対して 1. 2質量%)添カ卩し、ボールミルを用いて充
3 3
分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガス気流 中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時間かけて冷 却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを蓄光性蛍光 体の試料 1一(3)とした。この試料 1— (3)は、ストロンチウムが 0. 873モル、ノ リウムが 0. 097モルで、ストロンチウムとバリウムのモル数の合計 0. 97モルに対するストロン チウムのモル比は 0. 9、 ノ リウムのモル比は 0. 1となる。さらに、ストロンチウム、ノ リウ ム、ユウ口ピウム、ジスプロシウムの合計に対するユウ口ピウムの添カ卩量が 2モル0 /0、 同じくジスプロシウムの添カ卩量が 1モル0 /0であり、ユウ口ピウムに対するジスプロシウム のモル比、すなわち DyZEuは 0. 5である。また、アルミニウムのモル比、すなわち A lZ (Sr+Eu+Dy)は、化学量論比 2. 0を超えた 2. 3である。
[0038] 同様にして、ユウ口ピウムに対するジスプロシウムのモル比、すなわち DyZEuを 0.
5に固定して、ストロンチウム(Sr)とバリウム(Ba)とユウ口ピウム(Eu)とジスプロシウム (Dy)のモル数の合計に対するユウ口ピウムの添力卩量を表 1に示すように 0. 01力ら 0 . 07の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 1 (1)、試料 1 (2 )、試料 1 (4)ないし試料 1 (6)として得た。さらに、比較例としては、従来のアルミ ン酸塩系蓄光性蛍光体として、特許文献 1の実施形態の一つである蓄光性蛍光体「 N夜光 ZLumiNova」G— 300M (ロット No. DM— 092、根本特殊化学株式会社)を 比較例 1とした。なお、試料 1— (4)についてレーザ回折式粒度分布測定装置( SALD-2100
株式会社島津製作所)で粒度分布を測定した。これを図 1に示す。
[0039] [表 1]
Figure imgf000017_0001
次に、これら試料 1- ( 1)なレ、し試料 1- (6)および比較例 1の残光輝度特性を調べ た。各試料粉末をアルミニウム製試料容器に充填し、あらカゝじめ暗所にて 120°Cで約 2時間加熱することで残光を消去した後、色温度が 4200Kである蛍光ランプにより 5 41xの明るさで 60分間励起、すなわち低照度条件で励起し、その後の残光を輝度計 (色度輝度計 BM— 5A トプコン株式会社)を用 Vヽて計測した。その結果を、比較例 1 の残光輝度を 1とした場合の相対輝度として表 2に示す。
[0040] [表 2] 励起条件 F L ( 200 )、 54 1 X、 6 0分間
|Ρ\·|;斗 残光輝度特性 (相対値、 比較例 1 = 1.0として)
5分後 10分後 20分後 60分後 90分後 比較例 1 1. 00 1. 00 1. 00 1. 0 0 1. 00 試料】 - (1) 1. 6 2 1. 70 1. 74 1. 9 3 1. 8 5 試料 i (2) 1. 82 1 . 89 1. 96 2. 1 9 1. 94 試料 1-(3) 1 - 89 1. 98 2. 09 2. 4 8 2. 5 3 試料】 - (4) 2. ϋ 0 2. 1 2 2. 23 2. 7 S 2. 8 1 試枓 1. 89 1 , 08 2. 0 D 2. 4 8 2. 5 3 試料 1-(6) 1. 6 9 丄. 57 1. 43 1. 5 2 1. 2 3
これら表 2に示す結果より、試料 1 (3)ないし試料 1 (5)すなわちユウ口ピウムの 添加量が 2モル%な 、し 5モル%の条件にぉ 、て比較例 1に比べて残光輝度特性、 特に初期の 5分後の残光輝度特性が、比較例 1に比べていずれも 1.7倍程度をこえ て優れており、なおかつ 90分後の残光輝度特性が、比較例 1に比べていずれも 2倍 程度をこえて優れていることがわかる。さらに、試料 1 (4)すなわちユウ口ピウムの添 加量が 3モル%の条件にお 、て、 5分後の残光輝度特性が比較例 1と比べて 2倍で あり、かつ 90分後の残光輝度特性が比較例 1と比べて 2.81倍となっており、より好ま LV、優れた残光輝度特性を有して!/、ることがわ力る。
[0041] し力し、試料 1一(6)すなわちユウ口ピウムの添カ卩量が 5モル0 /0を超え 7モル0 /0の条 件では、濃度消光により輝度全体が低下してしまい、特に 90分後の残光輝度特性は 比較例 1の 1.23倍程度と低下している。
また、試料 1 (2)すなわちユウ口ピウムの添加量が 1.5モル%の条件では、 5分後 の残光輝度特性が比較例 1に比べて 1.82倍と好ましいものの、 90分後の残光輝度 特性が比較例 1に比べて 1.94倍となっており、期待値の 2倍を僅かに下回っている さらに、試料 1一(1)すなわちユウ口ピウムの添加量が 1モル%の条件では、輝度全 体が低下している。
[0042] これらの結果より、低照度条件で励起した場合において、ユウ口ピウムに対するジス プロシゥムの比を 0. 5に固定したとき、ユウ口ピウムの添加量が 1. 5モル0 /0を超え 5モ ル%以下である場合において、従来例に比べ優れた残光輝度特性となることがわか る。
次に、ジスプロシウムとユウ口ピウムの添カ卩量の比(DyZEu)を変化させた場合の、 初期残光輝度特性の変化を説明する。
表 2に示す結果より好適であった試料 1一 (4)の条件、すなわちストロンチウム、バリ ゥム、ユウ口ピウムおよびジスプロシウムの合計に対するユウ口ピウムの添カ卩量が 3モ ル%、ユウ口ピウムに対するジスプロシウムの比(DyZEu)が 0. 5である条件を中心 に、ユウ口ピウムの添力卩量を 3モル%に固定し、 Dy Euの値を表3に示すょぅに0. 1 力も 2. 5の範囲でそれぞれ変化させて、その他の条件は試料 1— (3)と同様な製造 条件にて蓄光性蛍光体を作成し、それぞれ試料 1一 (7)ないし試料 1一 (14)として得 た。
[表 3]
Figure imgf000019_0001
これら試料 l-(7)ないし試料 1-(14)について、試料 1-(1)と同様に、低照度条件 (4200K蛍光ランプ Z541x 60分間)で励起し残光輝度特性を調べた。その結果 を、比較例 1および試料 1ー(4)とともに、比較例 1の残光輝度を 1とした場合の相対 輝度として表 4に示す。
[表 4]
Figure imgf000020_0001
これら、表 4に示す結果より、試料 1一 (9)ないし試料 1ー(13)すなわちユウ口ピウム に対するジスプロシウムの比が 0. 3ないし 2の範囲において比較例 1に比べて残光 輝度特性、特に初期の 5分後の残光輝度特性が、比較例 1に比べていずれも 1. 7倍 程度をこえて優れており、なおかつ 90分後の残光輝度特性が、比較例 1に比べてい ずれも 2倍程度をこえて優れていることがわかる。さらに、試料 1— (4)、試料 1一(11) ないし試料 1一(13)すなわちユウ口ピウムに対するジスプロシウムの比が 0. 5以上 2 以下の範囲において、 5分後の残光輝度特性が比較例 1と比べて 1. 9倍以上であり 、かつ 90分後の残光輝度特性が比較例 1と比べて略 2. 8倍となっており、より好まし い優れた残光輝度特性を有していることがわかる。しかし、試料 1一 (7)および試料 1 一 (8)すなわちユウ口ピウムに対するジスプロシウムの比が 0. 1以上 0. 2以下では残 光輝度特性に寄与するジスプロシウムの添加量がユウ口ピウムに比べて少なすぎる ため、残光輝度特性が低下し、特に 90分後の残光輝度が低下しているのがわかる。 また試料 1ー(14)すなわちユウ口ピウムに対するジスプロシウムの比が 2. 5では、 90 分後の残光輝度特性は比較例 1に比べて 2倍以上あるが、蛍光輝度および初期残 光輝度に寄与するユウ口ピウムの添加量が残光輝度特性に寄与するジスプロシウム の量に比べて少なくなるため、初期の残光輝度特性が低下してしまう。
[0045] これらの結果より、低照度条件で励起した場合において、ユウ口ピウムの添加量を 3 モル%に固定したとき、ジスプロシウムとユウ口ピウムの比(DyZEu)が 0. 3以上 2. 0 以下において、従来例に比べ優れた残光輝度特性となることがわかる。また、ユウ口 ピウムの添加量を 1. 5%ないし 5%としても同様の効果が得られることを確認した。 さらに、上記測定において好適であった試料 1ー(9)、試料 1ー(4)、試料 1ー(13)す なわちユウ口ピウムの添カ卩量がそれぞれ 3%であって、ジスプロシウムの添カ卩量が 0. 9%、 1. 5%、 6%である蓄光性蛍光体を、上記比較例 1とともに低照度条件で励起 するのではなぐ通常光の条件下の一例として D65標準光源により 4001xの明るさで 20分間励起し、同様に残光輝度特性を測定した。その結果を、比較例 1の残光輝度 を 1とした場合の相対輝度として表 5に示す。
[0046] [表 5]
Figure imgf000021_0001
これら、表 5に示す結果より、前期試料を D65標準光源にて 4001xの明るさで 20分 間励起した場合、試料 1 (9)においては比較例 1と比べて残光輝度特性の向上は 見られな力つた。また、試料 1— (4)、試料 1— (13)においては比較例 1と比べて残光 輝度特性の向上が見られた。しかし、その効果は例えば励起 5分後および 90分後の 残光輝度においていずれも比較例 1の 1. 3倍ないし 1. 4倍程度であり、上記表 4で 示した同一試料を低照度条件 (4200K蛍光ランプ Z541xZ60分間)で励起した場 合の励起 5分後の残光輝度が、比較例 1の約 2倍、励起 90分後の残光輝度が比較 例 1の約 2. 8倍という顕著な効果と比べると、小さな効果に留まっている。このことより 、少なくとも試料 1 (9)、試料 1 (4)、試料 1 (13)の蓄光性蛍光体においては、通 常光による励起条件 (例えば D65標準光源 Z4001xZ20分間)よりも、低照度条件( 例えば 4200K蛍光ランプ Z541xZ60分間)において、より優れた残光輝度特性を 有することがゎカゝる。同様に通常光励起条件で、試料 1 (2)、試料 1 (3)、試料 1 (10)ないし試料 1—( 12)の蓄光性蛍光体について確認したところ、いずれも試料 1— (9)、試料 1 (4)、試料 1— (13)らと同様の傾向があることが確認された。
[0047] 以上、試料 1一(1)ないし試料 1一(14)の残光輝度測定結果より、ユウ口ピウム (Eu) の添力卩量をストロンチウム(Sr)とバリウム(Ba)とユウ口ピウム(Eu)とジスプロシウム(D y)のモル数の合計に対して、モル%で 1. 5%を超え 5%以下とし、ジスプロシウム(D y)の添力卩量をユウ口ピウム(Eu)に対するモル比で 0. 3≤Dy/Eu≤2とすることによ り、従来の蓄光性蛍光体に比べ、特に低照度条件で励起した場合において、特に初 期残光輝度特性および励起後 60分後な ヽし 90分後の残光輝度特性にぉ ヽて優れ た残光輝度特性を有することがわかり、従来にない新たな特性を備えていることがわ かる。
[0048] 次に、 Mで表す金属元素がストロンチウム(Sr)およびバリウム(Ba)である場合にお ける、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシウム (Dy)とのモル数の合 計に対するアルミニウム (A1)のモル比と、残光輝度特性につ!、て説明する。
ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 126.89g (0. 8595モ
3
ル)に、ノ リウム(Ba)の原料として炭酸バリウム(BaCO )を 18.85g (0. 0955モル)カロ
3
え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )を 5.28g
2 3
(Euとして 0. 03モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料として酸 化ジスプロシウム(Dy O )を 2.80g (Dyとして 0. 015モル)添加し、さらにアルミニウム
2 3
原料としてのアルミナ(Al O )を 104.51g (Alとして 2. 05モル、すなわち
2 3 AlZ(Sr+B a + Eu + Dy) = 2. 05)加え、さらにフラックスとしてのホウ素(B)化合物としてホウ酸 (H BO )を 3. lg (すなわち原料に対して 1. 2質量%)添カ卩し、ボールミルを用いて
3 3
充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガス気 流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時間かけて 冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを蓄光性蛍 光体の試料 2— (1)とした。この試料 2—(1)は、ストロンチウムが 0.8595モル、ノリウ ムが 0.0955モルで、ストロンチウムとバリウムのモル数の合計 0.955モルに対する ストロンチウムのモル比は 0.9、ノ リウムのモル比は 0.1となる。さらに、ストロンチウム 、 ノリウム、ユウ口ピウム、ジスプロシウムの合計に対するユウ口ピウムの添カ卩量が 3モ ル0 /0、同じくジスプロシウムの添カ卩量が 1.5モル%であり、ユウ口ピウムに対するジス プロシゥムのモル比、すなわち DyZEuは 0.5である。また、アルミニウムのモル比、 すなわち Al/(Sr+Ba+Eu+Dy)は、化学量論比 2.0を超えた 2.05である。
[0049] 同様にして、アルミニウムのモル比、すなわち Al/(Sr+Eu+Dy)を表 6に示すよ うに 2.1から 3.3の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 2— (2) ないし試料 2—( 13)として得た。なお、試料 2—(9)すなわちアルミニウムのモル比が 2 .9の試料について Cu管球を用いた粉末 X線回折分析を行い、回折図形を得た。こ れを図 2に示す。
[0050] [表 6] 条件 = S r +B a (S r = 0, 9、 B a = 0. 1 )
E u = 3モル 、 13 y = 1. 5モル0/。(対 M+Eu+Dy)
試料 A 1 /(M+E u + D y )
試料 2- (1) 2. 0 0
試料 2- (2) 2. 1
試料2 (3) 2. 2
試料 1-(4) 2. 3
試料 2 (.1) 2. 4
試料2- ) 2. 5
試料 2- (6) 2. 6
試料2 (7) 2. 7
試料 2 (8) 2. 8
試料 2 - (9) 2. 9
難 2(10) 3. 0
試料 2 (U) 3. 1
試料 2- (12) 3. 2
試料 2- (13) 3. 3 次に、これら試料 2- (1)ないし試料 2- (13)について、試料 1-(1)と同様に、低照 度条件 (4200K蛍光ランプ Z541xZ60分間)で励起し、残光輝度特性を調べた。そ の結果を、アルミニウムのモル比が 2. 3である他は同一条件である試料 1 (4)ととも に、比較例 1の残光輝度を 1とした場合の相対輝度として表 7に示す。
[表 7]
Figure imgf000024_0001
この表 7に示す結果より、試料 2— (2)な 、し試料 2— (9)すなわちアルミニウムのモ ル比が 2. 1以上 2. 9以下において、比較例 1に比べ残光輝度特性、特に 5分後の 初期残光輝度特性が比較例 1と比べていずれも 1. 7倍程度をこえて優れており、な おかつ 90分後の残光輝度特性が、比較例 1に比べていずれも 2倍程度をこえて優れ ていることがわかる。さらに、試料 2—(3)ないし試料 2— (6) (アルミニウムのモル比が 2. 2以上 2. 6以下)において、 5分後の残光輝度特性が比較例 1と比べて 2倍程度 かそれ以上であり、かつ 90分後の残光輝度が比較例 1と比べて 2. 8倍以上となって おり、より好ましい優れた残光輝度特性を有していることがわかる。これらは、アルミ- ゥムのモル比が 2. 0を超えることで、結晶中に歪みが生じることによるものと考えられ る。しかし、試料 2—(1) (アルミニウムのモル比が 2. 05)では、 90分後の残光輝度特 性が比較例 1の 2倍と優れているものの、 5分後の残光輝度特性では比較例 1の 1. 6 倍程度の輝度向上にとどまつている。また、試料 2—(10)ないし試料 2—(13) (アルミ -ゥムのモル比が 3以上 3. 3以下)では、全体的に残光輝度の低下がみられる。これ は、アルミニウムのモル比が増加することによって、副生成物として例えば(Sr, Ba) Al O以外のアルミン酸塩などの生成が増加してくるためであると考えられる。
2 4
このことより、 MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)およびバリウム
2 4
(Ba)力もなる化合物を母結晶にする場合、ストロンチウムとバリウムとユウ口ピウムとジ スプロシゥムとのモル数の合計に対するアルミニウムのモル比、すなわち AlZ (Sr+ Ba + Eu+Dy)が 2. 1以上 2. 9以下のとき、優れた残光輝度特性をもつ蓄光性蛍光 体となることがわかる。
次に、 Mで表す金属元素がストロンチウム(Sr)およびバリウム(Ba)である場合につ いて、バリウムの割合と、初期残光輝度特性について説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 112.79g (0. 764
3
モル)に、バリウム(Ba)の原料として炭酸バリウム(BaCO )を 37.69g (0. 191モル)
3
加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )を
2 3
5.28g (Euとして 0. 03モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料と して酸化ジスプロシウム(Dy O )を 2.80g (Dyとして 0. 015モル)添加し、さらにアルミ
2 3
-ゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち AlZ (S
2 3
r + Ba + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合物としてホ ゥ酸 (H BO )を 3. 3g (すなわち原料に対して 1. 2質量%)添加し、ボールミルを用
3 3
いて充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガ ス気流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時間か けて冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを蓄光 性蛍光体の試料 3—(7)とした。この試料 3—(7)は、ストロンチウムが 0. 764モル、バ リウムが 0. 191モルで、ストロンチウムとバリウムのモル数の合計 0. 955モルに対す るストロンチウムのモル比は 0. 8、ノ リウムのモル比は 0. 2となる。さらに、ストロンチウ ム、バリウム、ユウ口ピウム、ジスプロシウムのモル数の合計に対するユウ口ピウムの添 加量が 3モル%、同じくジスプロシウムの添カ卩量が 1. 5モル%であり、ユウ口ピウムに 対するジスプロシウムのモル比、すなわち DyZEuは 0. 5である。また、アルミニウム のモル比、すなわち AlZ (Sr+Ba+Eu+Dy)は、化学量論比 2. 0を超えた 2. 3で ある。
[0053] 同様にして、ストロンチウムとバリウムの配合比を表 8に示すように、 Sr:Ba=0. 99 :
0. 01-0. 7:0. 3の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 3—(1 )ないし試料 3— (6)、試料 3— (8)および試料 3— (9)として得た。なお、試料 3— (7)に ついて Cu管球を用いた粉末 X線回折分析を行い、回折図形を得た。これを図 3に示 す。
[0054] [表 8]
Figure imgf000026_0001
次に、これら試料 3—(1)ないし試料 3— (9)について、実験例 1の試料 1一(1)と同様 に、低照度条件 (4200K蛍光ランプ Z541xZ60分間)で励起し、残光輝度特性を 調べた。その結果を、ストロンチウムとバリウムの配合比が 0. 9 :0. 1である他は同一 条件である試料 l-(4)とともに、前記比較例 1の残光輝度を 1とした場合の相対輝度 として表 9に示す。
[表 9]
Figure imgf000027_0001
この表 9に示す結果より、試料 3— (2)ないし試料 3— (7)すなわちバリウムの割合が 0 . 03以上 0. 2以下において比較例 1に比べて残光輝度特性、特に 5分後の初期残 光輝度特性が比較例 1に比べていずれも 1. 7倍程度かそれ以上と優れており、なお かつ 90分後の残光輝度特性が比較例 1に比べていずれも 2倍程度かそれ以上と優 れていることがわかる。さらに、試料 3— (3)、試料 3— (4)および試料 1 (4)すなわち バリウムの割合が 0. 05以上 0. 1以下の条件において、 5分後の残光輝度特性が比 較例 1に比べて略 2倍となりより好ましく、また試料 1 (4)および試料 3— (5)すなわち バリウムの割合が 0. 1以上 0. 15以下の条件において、 90分後の残光輝度特性が 比較例 1に比べて 2. 4倍以上と、より好ましい優れた残光輝度特性となることがわか る。しかし、試料 3—(1)すなわちノリウムの割合が 0. 01では、初期の 5分後の残光 輝度特性は比較例 1の 1. 9倍と優れているものの、 90分後の残光輝度特性は比較 例 1の 1. 56倍程度となっている。また試料 3— (8)および試料 3— (9)すなわちノリウ ムの割合が 0. 2を超えて 0. 25以上 0. 3以下では、相対的にストロンチウムの割合が 減少してしまうこともあり、残光輝度が全体的に低下してしまって ヽる。
[0056] このことより、 Mで表す金属元素がストロンチウムおよびバリウム力 なる場合、 Mに 対するバリウムの割合、すなわち BaZ (Sr + Ba)が 0. 03以上 0. 2以下のとき、優れ た残光輝度特性をもつ蓄光性蛍光体となることがわかる。
なお、これらの Mで表す金属元素がストロンチウムおよびバリウム力 なる蓄光性蛍 光体の発光波長を調べるため、上記の試料を発光スペクトル測定装置より測定する と、 Mで表す金属元素力ストロンチウムのみである蓄光性蛍光体と比較して、その発 光波長のピークが若干短波長側にシフトしていることがわ力つた。このため、若干で はあるが、発光色が青みがかった色になって 、る。
[0057] (2)実施例 2
次に、上記一実施の形態の別の実施例として、 Mで表す金属元素の構成元素をバ リウム(Ba)に変わってカルシウムを用いた例、すなわち Mで表す金属元素がストロン チウム(Sr)およびカルシウム(Ca)である場合を説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 126.89g (0. 859
3
5モル)に、カルシウム(Ca)の原料として炭酸カルシウム(CaCO )を 9.56g (0. 0955
3
モル)加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )
2 3 を 5.28g (Euとして 0. 03モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料 として酸化ジスプロシウム(Dy O )を 2.80g (Dyとして 0. 015モル)添加し、さらにァ
2 3
ルミ-ゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち A1
2 3
/ (Sr + Ca + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合物とし てホウ酸 (H BO )を 3. lg (すなわち原料に対して 1. 2質量%)添加し、ボールミル
3 3
を用いて充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混 合ガス気流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで約 1時 間かけて冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過したものを 蓄光性蛍光体の試料 4一(5)とした。この試料 4 (5)は、ストロンチウムが 0. 8595モ ル、カルシウムが 0. 0955モルで、ストロンチウムとカルシウムのモル数の合計 0. 95 5モルに対するストロンチウムのモル比は 0. 9、カルシウムのモル比は 0. 1となる。さ らに、ストロンチウム、カルシウム、ユウ口ピウム、ジスプロシウムのモル数の合計に対 するユウ口ピウムの添カ卩量が 3モル0 同じくジスプロシウムの添カ卩量が 1. 5モル% であり、ユウ口ピウムに対するジスプロシウムのモル比、すなわち DyZEuは 0. 5であ る。また、アルミニウムのモル比、すなわち AlZ (Sr+Ca + Eu + Dy)は、化学量論 比 2. 0を超えた 2. 3である。
[0058] 同様にして、ストロンチウムとカルシウムの配合比を表 10に示すように、 Sr:Ca=0.
997:0. 003— 0. 8 :0. 2の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試 料 4 1)な 、し試料 4 (4)、試料 4 (6)、試料 4 (7)として得た。
[0059] [表 10]
Figure imgf000029_0001
次に、これら試料 4- (1)ないし試料 4- (7)について、試料 1-(1)と同様に、低照度 条件 (4200K蛍光ランプ Z541xZ60分間)で励起し、残光輝度特性を
調べた。その結果を、前記比較例 1の残光輝度を 1とした場合の相対輝度として表 1 1に示す。
[0060] [表 11] 励起条件 F L (4200K)、 54 1 X、 60分間 試料 残光輝度特性(相対値、 比較例 1 =1.0として)
5分後 10分後 2ϋ分後 60分後 90分後
比較例 1 1. 00 1. 00 1. 00 1. 00 1. 00 試料 4-(】.) 1. 54 1. 2 . 37 1. 20 t - 1 2 試料 4 - (2) 1. 6 -1 1. 54 1. 38 1. 20 1. 1 9 試料 4-(3) T . 54 1. 48 ] . 9 1. 2 3 1. 1 試料 4 (4) 1. 6 1. 46 1. 47 1. 3 9 1. 33 試料 4- (5) 1. 38 1. 28 1. 22 1. 1 2 1. 1 8 試料 4 (6) 1. 05 1 . 00 0. 94 0. 9 1 0. 89 試料 4— (7) 0. 42 0. 40 0. 36 0. 3 1 0, 29 この表 11に示す結果より、試料 4 (2)な 、し試料 4 (5)すなわちカルシウムの割合 が 0.005ないし 0.1において比較例 1に比べて、残光輝度特性、特に 5分後の初期 残光輝度特性が比較例 1の 1.4倍程度かそれ以上と優れており、なおかつ 90分後 の残光輝度特性が、比較例 1に比べて 1.2倍程度かそれ以上と優れていることがわ かる。さらに、試料 4一(2) (Mに対するカルシウムの割合が 0.005)において 5分後 の残光輝度特性が比較例 1の 1.64倍とより好まぐまた試料 4 (4) (Mに対する力 ルシゥムの割合が 0.05)において 90分後の残光輝度特性が比較例 1の 1.33倍と より好しい優れた残光輝度特性を有していることがわかる。しかし、試料 4ー(1) (Mに 対するカルシウムの割合が 0.003)では、 90分後の残光輝度特性が比較例 1の 1.1 2倍と、あまり効果がない。また試料 4 (6)および試料 4 (7) (Mに対するカルシウム の割合が 0. 15ないし 0.2)では、相対的にストロンチウムの割合が減少してしまうこと もあり、全体的に残光輝度が低下している。
このことより、 Mで表す金属元素がストロンチウムおよびカルシウム力 なる場合、 M に対するカルシウムの割合、すなわち CaZ(Sr+Ca)が 0.005以上 0.1以下のとき 、 Mであらわす金属元素がストロンチウムおよびバリウムによる蓄光性蛍光体には及 ばずとも、従来の蓄光性蛍光体に比べて優れた残光輝度特性をもつ蓄光性蛍光体 となることがわかる。
なお、これらの Mで表す金属元素がストロンチウムおよびカルシウムからなる蓄光性 蛍光体の発光波長を調べるため、上記の試料を発光スペクトル測定装置より測定す ると、 Mで表す金属元素がストロンチウムのみである蓄光性蛍光体と比較して、その 発光波長のピークが若干長波長側にシフトしていることがわ力つた。このため、若干 ではある力 発光色が黄みがかった色になっている。
(3)実施例 3
次に、上記一実施の形態のさらに別の実施例として、 Mで表す金属元素がストロン チウム(Sr)、バリウム (Ba)およびカルシウム(Ca)である場合を説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO ) 119.84g (0. 811
3
75モル)に、バリウム(Ba)の原料として炭酸バリウム(BaCO )を 18.85g (0. 0955モ
3
ル)加え、カルシウム(Ca)の原料として炭酸カルシウム(CaCO )を 4.78g (0. 04775
3
モル)加え、さらに賦活剤としてのユウ口ピウムの原料として酸ィ匕ユウ口ピウム (Eu O )
2 3 を 5.28g (Euとして 0. 03モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料 として酸化ジスプロシウム(Dy O )を 2.80g (Dyとして 0. 015モル)添加し、さらにァ
2 3
ルミ-ゥム原料としてのアルミナ(Al O )を 117.26g (Alとして 2. 3モル、すなわち A1
2 3
/ (Sr + Ba + Ca + Eu + Dy) = 2. 3)加え、さらにフラックスとしてのホウ素(B)化合 物としてホウ酸 (H3B03)を 3. 2g (すなわち原料に対して 1. 2質量%)添カ卩し、ボー ルミルを用いて充分に混合する。この混合物を還元雰囲気中として窒素 97%—水素 3%混合ガス気流中で、 1350°Cの焼成温度で 4時間焼成を行い、その後室温まで 約 1時間かけて冷却する。得られた焼成物を粉砕し篩分し # 250メッシュを通過した ものを蓄光性蛍光体の試料 5— (4)とした。この試料 5— (4)は、ストロンチウムが 0. 81 175モノレ、ノ リウムカ 0. 0955モノレ、カノレシゥムカ^). 04775で、ストロンチウムとノ リ ゥムとカルシウムのモル数の合計 0. 955モルに対するストロンチウムのモル比は 0. 8 5、 ノ リウムのモル比は 0. 1、カルシウムのモル比は 0. 05となる。さらにストロンチウム 、 ノ リウム、カルシウム、ユウ口ピウム、ジスプロシウムのモル数の合計に対するユウ口 ピウムの添カ卩量が 3モル%、同じくジスプロシウムの添カ卩量が 1. 5モル%であり、ユウ 口ピウムに対するジスプロシウムのモル比、すなわち DyZEuは 0. 5である。また、ァ ルミ-ゥムのモル比、すなわち AlZ (Sr+Ba + Ca + Eu + Dy)は、化学量論比 2. 0 を超えた 2. 3である。 [0063] 同様にして、バリウムを実施例 1で好適であった Mに対するモル比で 0. 1に固定し 、ストロンチウムとカルシウムの配合比を表 12に示すように、 Ca:0.003—0.2の範 囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 5— (1)ないし試料 5— (3)、お よび試料 5— (5)な 、し試料 5— (7)として得た。
[0064] [表 12]
Figure imgf000032_0001
次に、これら試料 5- (1)ないし試料 5- (7)について、試料 1-(1)と同様に、低照度 条件 (4200K蛍光ランプ Z541xZ60分間)で励起し、残光輝度特性を調べた。その 結果を、前記比較例 1の残光輝度を 1とした場合の相対輝度として表 13に示す。
[0065] [表 13] 励起条件 F L (4200K)、 54 1 X、 60分間
試料 残光輝度特性(相対値、 比較例 1 =1. ()として)
5分後 10分後 20分後 60分後 90分後 比較例 1 1. 00 1. 00 1 , 00 1. 00 1. 00 試料5 (1) 1. 8 5 1. 87 1. 90 1. 88 1. 92 試料5- (2) 1. 9 2 1. 99 1. 95 2. 1 7 2. 2 2 試料 5 -(3) 1. 9 2 1. 9 1. 9 9 2. 23 2. 25 試料 5- ( 1. 9 2 2. 03 2. 1 7 2. 40 2. 40 試料 5- (5) 1. 3 1 1. 38 1. 42 1. 58 1. 5 8
; 枓5 -(6) 0. 6 5 0. 78 0. 7 7 0. 79 0. 78 試科 5- (7) 0. 5 2 0. 5 1 0. 5 1 0. 5 1 0. 48 この表 13に示す結果より、試料 5— (2)ないし試料 5— (4) (バリウムの割合が 0. 1、力 ルシゥムの割合が 0. 005以上 0. 05以下、すなわちバリウムとカルシウムの割合の合 計は、 0. 105以上 0. 15以下)において、比較例 1に比べ残光輝度特性、特に 5分 後の残光輝度特性が比較例 1に比べていずれも 1. 9倍以上とすぐれており、なおか つ 90分後の残光輝度特性が比較例 1に比べていずれも 2倍以上と優れていることが わかる。さらに、試料 5— (4) (Mに対するバリウムの割合が 0. 1、カルシウムの割合が 0. 05すなわちバリウムとカルシウムの割合の合計は、 0. 15)において 90分後の残 光輝度特性が比較例 1の 2. 4倍とより好ましい優れた残光輝度特性を有していること がわかる。しかし、試料 5—(1) (Mに対するカルシウムの割合が 0. 003)では、 90分 後の残光輝度特性が比較例 1に比べて 2倍未満となっており、また試料 5— (5)な 、し 試料 5—(7) (Mに対するバリウムの割合が 0. 1、カルシウムの割合が 0. 1以上 0. 2 以下、すなわちバリウムとカルシウムの割合の合計は、 0. 2以上 0. 3以下)では、相 対的にストロンチウムの割合が減少してしまう等のため、残光輝度が全体的に低下し ており、特に試料 5— (6)と試料 5— (7)では、比較例 1を下回っている。
[0066] これら試料 5—(1)ないし試料 5—(7)のほかにも、バリウムおよびカルシウムの配合 比を変化させて実験を行った力 いずれも、バリウムの割合の好適な範囲は、 0. 03 以上 0. 145以下であり、カノレシゥムの好適な範囲は 0. 005以上 0. 05以下であり、 かつバリウムおよびカルシウムの割合の合計の好適な範囲は、 0. 035以上 0. 15以 下であることが確認された。
このことより、 Mで表す金属元素がストロンチウム、ノ リウムおよびカルシウムからな る場合、 Mに対するバリウムの割合、すなわち BaZ (Sr + Ba + Ca)が 0. 03以上 0. 145以下であり、 Mに対するカルシウムの割合、すなわち CaZ (Sr + Ba + Ca)が 0. 005以上 0. 05以下であり、かつ Mに対するバリウムおよびカルシウムの割合の合計 、すなわち(Ba + Ca) Z (Sr + Ba + Ca)が 0. 035以上 0. 15以下のとき、 Mであらわ す金属元素がストロンチウムおよびバリウムによる蓄光性蛍光体には及ばずとも、優 れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。
[0067] なお、これらの Mで表す金属元素がストロンチウム、ノ リウムおよびカルシウムから なる蓄光性蛍光体の発光波長を調べるため、上記の試料を発光スペクトル測定装置 より測定すると、 Mで表す金属元素がストロンチウムのみである蓄光性蛍光体と比較 して、その発光波長のピークのシフトはあまり見られなかった。このことは、ノリウムが 存在することで短波長側にシフトする作用と、カルシウムが存在することで長波長側 にシフトする作用とが打ち消しあっているためであろうと推察される。これらのことより、 Mで表す金属元素をストロンチウム、ノリウムおよびカルシウムとすることで、発光波 長のシフトを抑え、かつ残光輝度特性の改善された蓄光性蛍光体が得られることが わかった。
産業上の利用可能性
本発明は、自動車トランクの脱出用リリースハンドルや地下鉄、トンネル、船舶、航 空機内などにおける避難誘導用安全標識など、低照度環境において使用するセー フティ用途に利用可能である。

Claims

請求の範囲
[1] MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)およびバリウム(Ba)力もな
2 4
る化合物を母結晶にすると共に、
賦活剤としてユウ口ピウム (Eu)を添加し、
共賦活剤としてジスプロシウム (Dy)を添加する蓄光性蛍光体であって、 ユウ口ピウム(Eu)の添加量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシ ゥム(Dy)のモル数の合計に対するモル%で 1. 5%を超え 5%以下であり、
ジスプロシウム(Dy)の添カ卩量は、ユウ口ピウム(Eu)に対するモル比で 0. 3≤Dy/
Eu≤2であり、
アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシゥ ム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下であり、
Mに対するバリウム(Ba)の割合力 0. 03≤Ba/ (Sr+Ba)≤0. 2であることを特 徴とした蓄光性蛍光体。
[2] MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)およびカルシウム(Ca)から
2 4
なる化合物を母結晶にすると共に、
賦活剤としてユウ口ピウム (Eu)を添加し、
共賦活剤としてジスプロシウム (Dy)を添加する蓄光性蛍光体であって、 ユウ口ピウム(Eu)の添加量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシ ゥム(Dy)のモル数の合計に対するモル%で 1. 5%を超え 5%以下であり、
ジスプロシウム(Dy)の添カ卩量は、ユウ口ピウム(Eu)に対するモル比で 0. 3≤Dy/
Eu≤2であり、
アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシゥ ム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下であり、
Mに対するカルシウム(Ca)の割合は、 0. 005≤Ca/ (Sr + Ca)≤0. 1であること を特徴とした蓄光性蛍光体。
[3] MAI Oで表される化合物で、 Mは、ストロンチウム(Sr)、バリウム(Ba)およびカル
2 4
シゥム (Ca)力 なる化合物を母結晶にすると共に、
賦活剤としてユウ口ピウム (Eu)を添加し、 共賦活剤としてジスプロシウム (Dy)を添加する蓄光性蛍光体であって、 ユウ口ピウム(Eu)の添加量は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシ ゥム(Dy)のモル数の合計に対するモル%で 1. 5%を超え 5%以下であり、
ジスプロシウム(Dy)の添カ卩量は、ユウ口ピウム(Eu)に対するモル比で 0. 3≤Dy/
Eu≤2であり、
アルミニウム (A1)の割合は、 Mで表す金属元素とユウ口ピウム(Eu)とジスプロシゥ ム(Dy)のモル数の合計に対して、モル比で 2. 1以上 2. 9以下であり、
Mに対するバリウム(Ba)の割合は、 0. 03≤Ba/ (Sr+Ba + Ca)≤0. 145であり
Mに対するカルシウム(Ca)の割合は、 0. 005≤Ca/ (Sr + Ba + Ca)≤0. 05で あり、
かつ Mに対するバリウム(Ba)およびカルシウム(Ca)の割合の合計は、 0. 035≤ ( Ba + Ca) / (Sr+Ba + Ca)≤0. 15であることを特徴とした蓄光性蛍光体。
[4] アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、バリウム化合物(Ba)と、 ユウ口ピウム (Eu)化合物と、ジスプロシウム (Dy)化合物とを各元素が下記のモル比 になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕することを特徴と するアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。
0. 015<Eu/ (Sr + Ba + Eu + Dy)≤0. 05、
0. 3≤Dy/Eu≤2,
0. 03≤Ba/ (Sr+Ba)≤0. 2、
2. l≤Al/ (Sr+Ba+Eu+Dy)≤2. 9
[5] アルミニウム (A1)化合物と、ストロンチウム(Sr)化合物と、カルシウム化合物(Ca)と 、ユウ口ピウム(Eu)化合物と、ジスプロシウム(Dy)化合物とを各元素が下記のモル 比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕することを特徴 とするアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。
0. 015<Eu/ (Sr+Ca+Eu+Dy)≤0. 05、
0. 3≤Dy/Eu≤2,
0. 005≤Ca/ (Sr+Ca)≤0. 1、
2. l≤Al/ (Sr+Ca+Eu+Dy)≤2. 9
[6] アルミニウム (Al)化合物と、ストロンチウム(Sr)化合物と、バリウム (Ba)化合物と、 カルシウム(Ca)化合物と、ユウ口ピウム(Eu)化合物と、ジスプロシウム(Dy)化合物と を各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷 却、粉砕することを特徴とするアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方 法。
0. 015<Eu/ (Sr + Ba + Ca + Eu+Dy)≤0. 05、
0. 3≤Dy/Eu≤2,
0. 03≤Ba/ (Sr+Ba + Ca)≤0. 145、
0. 005≤Ca/ (Sr+Ba+Ca)≤0. 05、
0. 035≤ (Ba + Ca) / (Sr + Ba + Ca)≤0. 15、
2. l≤Al/ (Sr + Ba + Ca + Eu+Dy)≤2. 9
[7] 原料中に、フラックスとしてホウ素化合物を添加し焼成することを特徴とする請求の 範囲第 4項、第 5項または第 6項記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体 の製造方法。
PCT/JP2004/016400 2003-11-06 2004-11-05 蓄光性蛍光体及びその製造方法 WO2005044945A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602004028269T DE602004028269D1 (de) 2003-11-06 2004-11-05 Phosphoreszierender Leuchtstoff und Herstellungsverfahren dafür
JP2005515308A JP4628957B2 (ja) 2003-11-06 2004-11-05 蓄光性蛍光体及びその製造方法
US10/551,424 US7422704B2 (en) 2003-11-06 2004-11-05 Phosphorescent phosphor and method of manufacturing thereof
EP04799508A EP1681334B1 (en) 2003-11-06 2004-11-05 Phosphorescent Phosphor and Merthod of Manufacturing Thereof
AT04799508T ATE474900T1 (de) 2003-11-06 2004-11-05 Phosphoreszierender leuchtstoff und herstellungsverfahren dafür
HK06110177A HK1089784A1 (en) 2003-11-06 2006-09-14 Light storing phosphor and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-377414 2003-11-06
JP2003377414 2003-11-06

Publications (1)

Publication Number Publication Date
WO2005044945A1 true WO2005044945A1 (ja) 2005-05-19

Family

ID=34567144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016400 WO2005044945A1 (ja) 2003-11-06 2004-11-05 蓄光性蛍光体及びその製造方法

Country Status (8)

Country Link
US (1) US7422704B2 (ja)
EP (1) EP1681334B1 (ja)
JP (1) JP4628957B2 (ja)
CN (1) CN100375775C (ja)
AT (1) ATE474900T1 (ja)
DE (1) DE602004028269D1 (ja)
HK (1) HK1089784A1 (ja)
WO (1) WO2005044945A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488432B2 (en) * 2003-10-28 2009-02-10 Nichia Corporation Fluorescent material and light-emitting device
US7952291B2 (en) 2007-03-15 2011-05-31 Osram Sylvania Inc. Discharge lamp having a visual-change timer
US8298441B1 (en) 2007-05-22 2012-10-30 The Sherwin-Williams Company Method for incorporating water soluble, reactive, phosphorescent pigments into a stable waterborne coating through pH buffering
DE102007046650A1 (de) 2007-09-28 2009-04-09 Schott Ag Glasanordnung mit photoluminiszierendem Leuchtstoff
DE102008028530A1 (de) 2008-06-16 2009-12-17 Schott Ag Verfahren zur Herstellung einer Glasschmelze mit einem lumineszierenden Stoff, eine Glasanordnung aus einer derartigen Schmelze sowie Verwendung einer derartigen Glasanordnung
US8562864B2 (en) * 2008-06-24 2013-10-22 Shell Oil Company Asphalt mixture
US8152586B2 (en) 2008-08-11 2012-04-10 Shat-R-Shield, Inc. Shatterproof light tube having after-glow
EP2540797B1 (en) * 2010-06-11 2013-10-09 Nemoto Lumi-materials Company, Limited Phosphorescent phosphor and phosphorescent pigment
US8404153B2 (en) 2010-12-17 2013-03-26 General Electric Company White persistent phosphor blend or layered structure
US8506843B2 (en) 2010-12-17 2013-08-13 General Electric Company White emitting persistent phosphor
CH709020B1 (de) 2013-12-24 2018-10-31 Daniel Rytz Dr Lichtdurchlässiges Objekt und dessen Anwendung.
EP3088488B1 (en) 2014-03-11 2017-08-23 Nemoto Lumi-materials Company, Limited Phosphorescent phosphor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1190520A (en) * 1967-11-22 1970-05-06 Philips Electronic Associated Luminescent Materials
JPH0711250A (ja) * 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk 蓄光性蛍光体
JPH08127772A (ja) * 1994-11-01 1996-05-21 Nemoto Tokushu Kagaku Kk 蓄光性蛍光体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208948A (ja) * 1996-02-05 1997-08-12 Nemoto Tokushu Kagaku Kk 長残光性蛍光体の製造方法
JP3605645B2 (ja) * 1996-12-17 2004-12-22 北京市豊台区宏業塗装輔料廠 長残光性発光材料及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1190520A (en) * 1967-11-22 1970-05-06 Philips Electronic Associated Luminescent Materials
JPH0711250A (ja) * 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk 蓄光性蛍光体
JPH08127772A (ja) * 1994-11-01 1996-05-21 Nemoto Tokushu Kagaku Kk 蓄光性蛍光体

Also Published As

Publication number Publication date
CN100375775C (zh) 2008-03-19
DE602004028269D1 (de) 2010-09-02
US20070096058A1 (en) 2007-05-03
CN1768123A (zh) 2006-05-03
HK1089784A1 (en) 2006-12-08
JP4628957B2 (ja) 2011-02-09
EP1681334A4 (en) 2008-03-12
US7422704B2 (en) 2008-09-09
EP1681334B1 (en) 2010-07-21
ATE474900T1 (de) 2010-08-15
JPWO2005044945A1 (ja) 2007-05-17
EP1681334A1 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US7755276B2 (en) Aluminate-based green phosphors
CN102174324B (zh) 荧光体和使用荧光体的发光装置
CN102333844B (zh) 共掺杂锆和铪的次氮基硅酸盐
US20060043337A1 (en) Phosphor and manufacturing method therefore, and light source using the phosphor
JP2012193390A (ja) 蛍光体およびその製造方法、並びに該蛍光体を用いた発光装置
JP4597865B2 (ja) 蓄光性蛍光体及びその製造方法
WO2005044945A1 (ja) 蓄光性蛍光体及びその製造方法
JP6833683B2 (ja) 蛍光体およびその製造方法、ならびにledランプ
WO2016076380A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2015131946A (ja) 蛍光体
US10669480B2 (en) Phosphorescent phosphor
KR101256626B1 (ko) 초장잔광 형광체 및 그의 분말 제조방법
JP3268761B2 (ja) 耐熱・耐候性に優れた高輝度・長残光性アルミン酸塩蓄光体
JP2005162948A (ja) 赤橙色蛍光体及びその赤橙色蛍光体を用いて得られる蒸着用ペレット、スパッタリング用ターゲット、ディスプレイ、ledチップ
CN102399554A (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
JP2017190434A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
WO2005044946A1 (ja) 蓄光性蛍光体及びその製造方法
WO2023063251A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
JP2005232414A (ja) アルミン酸ストロンチウム系蓄光粉末及びその製造方法
US9938460B2 (en) Phosphor, light emitting apparatus and method of forming phosphor
JP2023057391A (ja) 蛍光体
JP2016079213A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2012121974A (ja) 蓄光性蛍光体及びその製造方法
JP2002012863A (ja) 蓄光材用アルミン酸塩系蛍光体の製造方法
JP2017179019A (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048087353

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004799508

Country of ref document: EP

Ref document number: 2007096058

Country of ref document: US

Ref document number: 10551424

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005515308

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004799508

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10551424

Country of ref document: US