WO2005044725A1 - 高純度液体塩素の製造方法 - Google Patents

高純度液体塩素の製造方法 Download PDF

Info

Publication number
WO2005044725A1
WO2005044725A1 PCT/JP2004/015982 JP2004015982W WO2005044725A1 WO 2005044725 A1 WO2005044725 A1 WO 2005044725A1 JP 2004015982 W JP2004015982 W JP 2004015982W WO 2005044725 A1 WO2005044725 A1 WO 2005044725A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid chlorine
chlorine
ppm
less
water
Prior art date
Application number
PCT/JP2004/015982
Other languages
English (en)
French (fr)
Inventor
Yoshinori Kimata
Hiroyuki Kanou
Shinzou Narimatsu
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2005515270A priority Critical patent/JP4458044B2/ja
Publication of WO2005044725A1 publication Critical patent/WO2005044725A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/075Purification ; Separation of liquid chlorine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a high-purity liquid chlorine containing a very small amount of impurities used for removing a hydroxyl group in a semiconductor manufacturing process including, for example, etching of a single crystal silicon film or the like, and manufacturing an optical fiber material. And its manufacturing method.
  • the high-purity liquid chlorine of the present invention contains very small amounts of impurities such as hydrogen chloride, water and carbon dioxide as well as molecular oxygen and molecular hydrogen. Further, the production method of the present invention employs distillation means.
  • molecular oxygen molecular hydrogen
  • molecular chlorine may be simply referred to as chlorine
  • Chlorine gas is produced together with caustic soda by electrolysis of a saline solution, where crude chlorine gas containing a relatively large amount of water, oxygen gas, hydrogen gas and the like is obtained.
  • Such crude chlorine gas is purified into a chlorine gas or liquid chlorine having a purity of about 99% by various methods after removing water by a method such as contact with concentrated sulfuric acid.
  • the crude chlorine gas from which water has been removed usually contains 2 to several percent of oxygen gas, 0.1 to 0.2% of hydrogen gas, and 0.4 to 0.6% of carbon dioxide gas.
  • a method for removing them a method is generally used in which chlorine gas is converted into liquid chlorine and then removed in the subsequent vaporization step (for example, Patent Document 1).
  • Another method of purifying crude chlorine gas is to dissolve chlorine in crude chlorine gas in low-temperature water, generate chlorine hydrate crystals, separate them from gases other than chlorine, and then heat the crystals.
  • Patent Document 2 There is also known a method of obtaining high-purity chlorine gas by heating.
  • Patent Document 3 discloses that crude liquid chlorine is supplied to a distillation column, and oxygen gas and the like are expelled by heating in the distillation column. Further, in Patent Document 4, crude chlorine gas is also adsorbed to an adsorbent such as zeolite or activated carbon by a pressure fluctuation adsorption method, and impurities other than chlorine and chlorine are separated by a difference in their adsorptivity, followed by further distillation. By When the low boiling gas is removed, a purification method is disclosed!
  • chlorine gas used as a dry etching agent in a semiconductor manufacturing process has very few impurities.
  • hydrogen chloride, water, oxygen gas, and carbon dioxide have an adverse effect on single-crystal silicon films. Therefore, in chlorine gas for powerful applications, the content of these impurities at the ppm level is a problem.
  • oxygen gas, hydrogen chloride, and water have the problem of oxidizing the surface of a semiconductor wafer, and also cause corrosion of gas piping and etching equipment.
  • Another problem is that carbon dioxide is also contaminated by solid carbon that forms the wafer surface. Therefore, the chlorine gas for the semiconductor manufacturing process must be obtained by further purifying the chlorine gas or the liquid chlorine obtained by the above-mentioned purification method.
  • the purification method the following method is used. Was adopted.
  • Patent Document 5 impurities in a gas are removed by passing chlorine gas through a purifying apparatus filled with acid-treated zeolite, and chlorine gas obtained thereby is used in a semiconductor manufacturing process. It has been proposed to use it for etching.
  • Patent Document 6 discloses a method in which chlorine gas and water in chlorine gas are removed by bringing chlorine gas into contact with a molded product containing iron oxide as a main component.
  • the deterioration of the adsorbent is inevitable.
  • the adsorption method can be said to be more cost-effective as a means for purifying large amounts of chlorine. Absent.
  • Patent Document 1 JP-A-50-128696 (Claims)
  • Patent Document 2 JP-A-53-31593 (Claims and lower right column of page 2)
  • Patent Document 3 JP-A-2002-316804 (Claims and paragraph of page 2 [0003] —
  • Patent Document 4 Japanese Patent Application Laid-Open No. 9-132401 (paragraph [0043] on page 6 and FIG. 10 on page 12)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 52-65194 (Claims)
  • Patent Document 6 JP-A-8-119604 (Claims)
  • the present invention provides a method for distilling liquid chlorine under pressure, separating a distilling gas into a liquefied component and a gaseous substance using a cooler, and converting a part or all of the liquefied component into liquid chlorine.
  • a bypass is provided in the middle of a pipe connecting the liquid outlet of the cooler and the liquid chlorine tank, and an infrared absorbance measurement flow cell installed in the bypass A high-purity liquid, wherein a part of the liquid component is sampled, the impurity concentration in the liquid component is measured, and the liquefied component having the impurity concentration reached a target value is transferred to a product receiving tank.
  • This is a method for producing chlorine.
  • high-purity liquid chlorine having 2 ppm or less of water, 5 ppm or less of hydrogen chloride, and 2 ppm or less of carbon dioxide can be easily produced, and the distillation conditions in the present invention are appropriately selected. By doing so, the content of water, hydrogen chloride, carbon dioxide and the like contained in the liquid chlorine to be produced can be changed according to the purpose.
  • Purification of liquid chlorine in the present invention is basically performed by distillation, and in the present invention, a distillation tower, a condenser, and a product receiving tank are required as equipment for the distillation, and a main fraction, that is, liquid chlorine
  • a distillation tower, a condenser, and a product receiving tank are required as equipment for the distillation, and a main fraction, that is, liquid chlorine
  • an infrared spectrophotometer and an infrared absorbance measurement flow cell into the distillation system.
  • distillation method either batch distillation or continuous distillation. Any of simple distillation and rectification may be used. These may be appropriately selected depending on the amount of production or the purity of the target liquid chlorine.
  • rectification column 1 is used as a distillation column.
  • a packed column packed with a glass filler is preferable because metal impurities are hardly mixed into chlorine, but a general plate type column can also be used.
  • the preferred number of theoretical plates in the rectification column is two or more.
  • the heating of the liquid chlorine supplied to the lower part of the rectification column is preferably performed using hot water of about 35 to 40 ° C supplied from a hot water tank (not shown).
  • the pressure in the tower is preferably 1.1 to 2.0 MPa.
  • the components vaporized in the rectification column pass through the condenser 2.
  • a condenser there is a multi-tube type condenser having a large number of tubes in a cylindrical container, for example, a type in which a refrigerant flows through the tubes, and a gas to be cooled flows through the cylindrical containers to exchange heat. preferable.
  • a discharge port (non-condensable gas discharge pipe) 3 for removing non-condensable gas in the condenser 2 is attached, and the gas that has not condensed in the condenser 2 is removed from the system. Remove.
  • the main components contained in the non-condensable gas are oxygen gas, carbon dioxide, nitrogen gas and the like.
  • the number of inner tubes in a multi-tube condenser is not particularly limited, but usually about several tens of tubes are sufficient.
  • the refrigerant cold water of 10 ° C. or less is preferable.
  • the fractions filtered by the condenser 2 are monitored for impurities by an infrared absorption measurement flow cell 4 provided immediately after the condenser 2 and an infrared spectrophotometer (not shown).
  • the infrared absorbance measurement flow cell 4 is arranged and connected to a pipe branched from a pipe constituting a distillation system, that is, a no-pass so that the distillate can be taken into the flow cell without coming into contact with the outside air at all. .
  • the spectrum of the fraction sealed in the flow cell is measured by an infrared spectrophotometer, and the concentration of impurities having infrared absorption specific to the wave number is measured from the absorbance at a specific wave number in the spectrum.
  • infrared spectrophotometer a general-purpose infrared spectrophotometer can be used, but a Fourier transform type measuring instrument is preferable because it can perform highly sensitive measurement in a short time.
  • 4000— 2 S / N ratio of 000cm-1 wavenumber range is 1: 1000
  • MAGNA750 type infrared spectrophotometer manufactured by Nicole, which can measure absorbance up to 0.0001 at 0 or more.
  • the flow cell is preferably made of a material that does not easily corrode against chlorine and has a certain level of pressure resistance.
  • the pressure of the flow cell preferably withstands a pressure of 1.5 to 2.0 MPa.
  • the infrared transmitting window plate calcium fluoride, sapphire or quartz which is not affected by chlorine and has high hardness and excellent pressure resistance is preferable.
  • the material of the body of the cell is not particularly limited, but a material having excellent corrosion resistance such as stainless steel or hastelloy is preferable.
  • the optical path length of the cell is preferably 5 to 40 mm, which can be selected appropriately according to the performance of the infrared spectrophotometer and the required lower limit of quantification.
  • the destination of the fraction coming out of the condenser 2 is selected depending on the amount of impurities contained therein. That is, a part thereof is usually returned to the distillation column as reflux, and the rest is sent to the product receiving tank 5 as fully purified liquid chlorine.
  • the rectification starting force also reaches the end of the process.At the start, the rectification is fully refluxed, and the water in the liquid chlorine is reacted with chlorine to convert the water to hydrogen chloride.
  • the fraction from condenser 2 is monitored with an infrared spectrophotometer.
  • a part of the distillate is returned to the distillation column for a while after the confirmation that the impurity concentration in the distillate is stable, and the other distillate is discharged out of the system from the initial distillate discharge pipe 7. .
  • Monitoring of the impurity concentration is continued while distilling off the first distillation, and after confirming that the target purity has been reached, the highly purified liquid chlorine fraction is sent to the product receiving tank.
  • the impurities monitored by the infrared spectrophotometer are preferably water, hydrogen chloride, or carbon dioxide.
  • infrared absorption having a wave number of 3710 cm-1 of hydrogen, 2830 cm-1 of hydrogen chloride and 2340 cm-1 of carbon dioxide.
  • FIG. 2 shows an example of an infrared absorption spectrum measured for high-purity liquid chlorine produced by the method of the present invention. From the infrared absorption at the wave number corresponding to each impurity, the impurity concentration can be determined by a conventional method.
  • the molar extinction coefficient of each impurity component required to convert the absorbance measured for the impurity measurement into a concentration can be determined by a method generally used in an absorptiometry method. That is, a standard sample in which a certain amount of the above-described impurities is dissolved in a substance having a solvent characteristic similar to that of liquid chlorine, for example, tetrachloride carbon, may be used to determine the unit optical path length and the absorbance per unit molar concentration.
  • the concentrations of oxygen gas and nitrogen gas in the high-purity liquid chlorine obtained by the present invention are all reduced to below the lower limit of detection which can be measured by gas chromatography or the like.
  • it is preferable to select distillation conditions so as to obtain high-purity liquid chlorine of liquid chlorine that can be suitably used for semiconductor production that is, water 2 ppm or less, chloride hydrogen 5 ppm or less, and carbon dioxide 2 ppm or less. . More preferably, water is 0.4 ppm or less,
  • High-purity liquid chlorine with lppm or less of carbon dioxide and lppm or less of carbon dioxide.
  • Chlorine (hereinafter referred to as raw material liquid chlorine!) Produced in a sodium chloride electrolytic cell and dried by pressurizing air to IMPa with air (hereinafter referred to as raw liquid chlorine! Is packed in a distillation column as shown in FIG. 300 kg was supplied to the batch type rectification column 1.
  • This raw material liquid chlorine was analyzed by infrared absorption spectroscopy separately, and it was found that the hydrochloride contained impurities of .1 ppm and hydrogen chloride contained impurities of 1.9 ppm.
  • the distillation apparatus was heated to 40 ° C to start the rectification operation, and the infrared absorption spectrum of the fraction guided to the flow cell was measured while refluxing the whole. Three hours after the start of the total reflux, the hydropower S decreased to 0.8 ppm and the hydrogen chloride increased to 8.9 ppm. During this time the water in the liquid chlorine It is presumed that the amount reacted with chlorine and changed to hydrogen chloride.
  • the infrared absorption total measurement conditions used for measuring the impurity concentration in the liquid chlorine in the above example are as follows.
  • Infrared transparent window material safia (effective light receiving area 15mm diameter)
  • FIG. 1 is a schematic diagram of one embodiment of a distillation apparatus and an infrared absorbance measurement flow cell incorporated therein according to the present invention.
  • FIG. 2 is an example of an absorption spectrum obtained by measuring infrared absorption of high-purity liquid chlorine obtained by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

【課題】 塩化水素、水および二酸化炭素が殆ど含まれていない高純度液体塩素を、優れた生産効率で大量に生産する方法の提供。 【解決手段】 液体塩素を加圧下で蒸留して、留出するガスを冷却器で液化成分とガス状物質とに分離し、該液化成分の一部または全部を液体塩素として製品受槽に移送することからなる高純度液体塩素の製造方法において、前記冷却器の液出口と液体塩素タンクを連結する配管の中途にバイパスを設け、該バイパス内に設置した赤外線吸光度測定フローセルに前記液化成分の一部を採取し、該液化成分中の不純物濃度を測定し、不純物濃度が目標値に達した液化成分を製品受槽に移送することを特徴とする高純度液体塩素の製造方法。本発明によれば、水2ppm以下、塩化水素5ppm以下および二酸化炭素2ppm以下の高純度液体塩素が容易に得られ、かかる高純度な液体塩素は、半導体製造プロセス用に好適である。                                                                                 

Description

明 細 書
高純度液体塩素の製造方法
技術分野
[0001] 本発明は、例えば単結晶シリコン膜などのエッチングを始めとする半導体製造プロ セス、光ファイバ一材料製造におけるヒドロキシル基除去用に使用される不純物の含 有量が極めて少ない高純度液体塩素およびその製造方法に関する。本発明の高純 度液体塩素中には、分子状酸素や分子状水素は勿論のこと、塩化水素、水および 二酸ィ匕炭素等の不純物は極めて微量にしか含まれていない。また、本発明の製造 方法は、蒸留手段を採用するものである。
なお、以下の説明において、分子状酸素および分子状水素等は、酸素ガスおよび 水素ガス等と称することがあり、分子状塩素を単に塩素と称することがある。 背景技術
[0002] 塩素ガスは、食塩水の電気分解により、カセイソーダとともに製造され、そこでは水 分、酸素ガスおよび水素ガス等を比較的多く含む粗塩素ガスが得られる。かかる粗 塩素ガスは、例えば濃硫酸と接触させるなどの方法により水分を除去された後に、各 種の方法により、純度 99%程度の塩素ガスまたは液体塩素に精製される。水分を除 去した後の粗塩素ガスには、通常 2—数%の酸素ガス、 0. 1-0. 2%の水素ガスお よび 0. 4-0. 6%の二酸化炭素ガスが含まれており、それらの除去方法としては、塩 素ガスをー且液体塩素として、その後気化させる工程にぉ 、てそれらを除去する方 法が一般的である(例えば特許文献 1)。
粗塩素ガスに関するその他の精製方法としては、粗塩素ガス中の塩素を低温の水 に溶解し、塩素水和物結晶を生成させることにより塩素以外のガスと分離した後に、 該結晶を加温して高純度の塩素ガスを得る方法も知られて ヽる(特許文献 2)。
[0003] また、特許文献 3には、粗液体塩素を蒸留塔に供給し、該塔内において加熱によ り酸素ガス等を追い出すことが開示されている。さらに、特許文献 4においても、粗塩 素ガスを圧力変動吸着法により、ゼォライトまたは活性炭等の吸着剤に吸着させ、塩 素と塩素以外の不純物をそれらの吸着性の違いにより分離した後、さらに蒸留により 低沸点ガスを除去すると!ヽぅ精製方法が開示されて!、る。
[0004] 一方、半導体製造プロセスにおけるドライエッチング剤として利用される塩素ガスは 、不純物が極めて少ないものである。特に塩化水素、水、酸素ガス、二酸化炭素は 単結晶シリコン膜に悪影響を及ぼすため、力かる用途向けの塩素ガスにおいては、 p pmレベルでこれらの不純物の含有量が問題となっている。
例えば、酸素ガス、塩化水素および水は、半導体ウェハー表面を酸ィ匕するという問 題があり、さらにガス配管やエッチング装置の腐食の原因ともなる。または、二酸化炭 素もウェハー表面を生成する固体炭素により汚染するという問題があった。従って、 半導体製造プロセス用の塩素ガスは、前述の精製方法によって得られた塩素ガスま たは液体塩素をさらに精製したものでなければならず、そのための精製方法としては 、以下のような方法が採用されていた。
[0005] すなわち、特許文献 5では、酸処理をしたゼォライトを充填した精製装置に塩素ガ スを通過させることにより、ガス中の不純物を除去し、それによつて得られる塩素ガス を半導体製造プロセスにおけるエッチング用に用いることが提案されている。
また、特許文献 6には、酸化鉄を主成分とする成形体に塩素ガスを接触させること により、塩素ガス中の塩ィ匕水素や水分を除去するという方法が開示されている。 し 力しながら、上記のような吸着法においては吸着剤の劣化が不可避であり、例えば蒸 留法等と比較すると、吸着法は大量の塩素の精製手段としてコスト的に適していると は言えない。
特許文献 1:特開昭 50-128696号 (特許請求の範囲)
特許文献 2 :特開昭 53— 31593号 (特許請求の範囲および第 2頁右下欄) 特許文献 3:特開 2002— 316804号 (特許請求の範囲および第 2頁段落 [0003]— [
0008])
特許文献 4:特開平 9 - 132401号 (第 6頁段落 [0043]および第 12頁図 10) 特許文献 5:特開昭 52— 65194号 (特許請求の範囲)
特許文献 6:特開平 8—119604号 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題 [0006] 本発明においては、例えば半導体製造プロセスにおいても使用することができる不 純物、特に塩化水素、水および二酸ィ匕炭素が殆ど含まれていない高純度液体塩素 を、優れた生産効率で大量に生産する方法の提供を課題とした。
課題を解決するための手段
[0007] 本発明者らは、上記課題を解決するために鋭意検討した結果、従来塩素の精製に おいて採用されていな力つた技術手段、すなわち液体塩素を蒸留してガス化した塩 素をコンデンサーで再び液ィ匕し、その際に低沸点ガスを系外に除去するという手段 によれば、高純度の液体塩素を効率よく大量に製造できることを見出し、本発明を完 成するに至った。
すなわち、本発明は、液体塩素を加圧下で蒸留して、留出するガスを冷却器で液 化成分とガス状物質とに分離し、該液化成分の一部または全部を液体塩素として製 品受槽に移送することからなる高純度液体塩素の製造方法にぉ 、て、前記冷却器 の液出口と液体塩素タンクを連結する配管の中途にバイパスを設け、該バイパス内 に設置した赤外線吸光度測定フローセルに前記液ィ匕成分の一部を採取し、該液ィ匕 成分中の不純物濃度を測定し、不純物濃度が目標値に達した液化成分を製品受槽 に移送することを特徴とする高純度液体塩素の製造方法である。
発明の効果
[0008] 本発明によれば、例えば水 2ppm以下、塩ィ匕水素 5ppm以下、二酸化炭素 2ppm以 下である高純度液体塩素を容易に製造することができ、さらに本発明における蒸留 条件を適宜選択することにより、製造する液体塩素に含まれる水 、塩化水素または 二酸化炭素等の含有量を目的に応じて変化させることもできる。
発明を実施するための最良の形態
[0009] 以下、本発明についてさらに詳しく説明する。本発明における液体塩素の精製は、 基本的に蒸留によって行われ、本発明においては当該蒸留のための設備として、蒸 留塔、コンデンサー、製品受槽が必要であり、さらに主留分すなわち液体塩素中の 不純物濃度を測定するために、赤外線分光光度計および赤外線吸光度測定フロー セルが蒸留系内に組み込まれて ヽることが必要である。
蒸留方法に関しては特に制限はなく、バッチ式蒸留または連続式蒸留のいずれで もよぐまた単蒸留または精留のいずれでもよい。それらは、生産量の多寡または目 的とする液体塩素の純度に応じて適宜選択すればよい。
[0010] 以下本発明の一実施態様を表した図 1を用いて、本発明を説明する。図 1におい ては、蒸留塔として精留塔 1を使用している。精留塔としては、塩素中に金属不純物 の混入が起こり難い点でガラス製充填剤を詰めた充填式のものが好ましいが、一般 的な棚段式のものも使用できる。精留塔の好ましい理論段数は 2段以上である。精留 塔の下部に供給された液体塩素の加熱は、図示されていない温水タンクから供給さ れる 35— 40°C程度の温水によることが好ましい。また、塔内圧力としては 1. 1-2. 0 MPaが好ましい。
[0011] 精留塔で気化された成分は、コンデンサー 2を通過する。コンデンサ一としては、円 筒状の容器内に多数の管を有しており、例えば冷媒をその管内に流し、被冷却ガス を円筒状容器に流して熱交換をさせる形式の多管式コンデンサーが好ましい。本発 明においては、コンデンサー 2において非凝縮性ガスを除外するための抜出し口(非 凝縮ガス排出管) 3が取り付けられており、コンデンサー 2において凝縮しな力つたガ スをそこ力も系外に除去する。 上記の非凝縮性ガスに含まれる主な成分は、酸素ガ ス、二酸ィ匕炭素および窒素ガス等である。なお、不純物として液体塩素中に含まれる 水分の大半は、精留塔内において精留中に塩素と反応して塩ィ匕水素に変換される。 多管式コンデンサーにおける内管の本数は、特に限定されないが、通常数一 20本 程度で十分である。冷媒としては、 10°C以下の冷水が好ましい。
[0012] コンデンサー 2で液ィ匕された留分は、コンデンサー 2の直ぐ後に設けられた赤外線 吸光度測定フローセル 4と図示されていない赤外線分光光度計によって、不純物を モニターされる。赤外線吸光度測定フローセル 4は、前記留分を外気と一切接触させ ることなくフローセル内に取り込むことができるように、蒸留系を構成する配管から分 岐した配管すなわちノ ィパスと配置、連結されている。フローセル内に密封された留 分は、赤外線分光光度計によりスペクトルを測定され、当該スペクトルにおける特定 の波数における吸光度から当該波数に固有の赤外線吸収のある不純物濃度を測定 する。赤外線分光光度計としては、汎用のものが使用できるが、好ましくは、短時間 で高感度な測定ができる点でフーリエ変換方式の測定器である。例えば、 4000— 2 000cm- 1波数域の S/N比が 1: 1000
0以上で吸光度 0. 0001まで計測できるニコレ一社製の MAGNA750型赤外線分 光光度計等が挙げられる。
[0013] フローセルとしては、塩素に対して腐食し難い材質でし力もある程度の耐圧性のも のが好ましい。フローセルの而圧は、 1.5— 2.0MPaの圧力に耐えることが好ましい。 また、赤外線透過窓板としては塩素に侵されず、かつ高硬度で耐圧性に優れたフッ 化カルシウム、サフアイャまたは石英が好ましい。セルの胴体の材質は特に限定され ないが、ステンレスまたはハステロィ等の耐腐食性に優れたものが好ましい。セルの 光路長は 5— 40mmが好ましぐ赤外分光光度計の性能および必要とする定量下限 に応じて適宜選択すれば良 ヽ。
[0014] 上記コンデンサー 2から出てくる留分は、それに含まれる不純物の多寡により、行き 先が選択される。すなわち、通常その一部は還流として蒸留塔に戻され、残りは全量 精製された液体塩素として製品受槽 5に送られる。ノ ツチ式の精留を行うときには、 精留の開始力も終期にいたるまでの間で、開始時には全還流とし、液体塩素中の水 分を塩素と反応させて水を塩ィ匕水素に変換させ、その間コンデンサー 2からの留分を 赤外線分光光度計でモニターする。留分中の不純物濃度が安定したことを確認した 後からさらにしばらくの期間、留分の一部を蒸留塔に還流し、それ以外の留分を初留 分排出管 7から系外に排出する。初留を留出させながら不純物濃度のモニターを継 続し、目標の純度に至ったことを確認した後に高純度化された液体塩素留分を製品 受槽に送る。
本発明において単蒸留を採用する場合には、還流は不要であり、コンデンサーか らの留分を赤外線分光光度計でモニターし、初留分と高沸分のカットだけすればよ い。また単蒸留または精留のいずれの場合であっても、コンデンサー 2から出てくる 留分の純度が低いときは必要により、初留分排出管 7から当該留分を系外に排出す ることちでさる。
連続で蒸留を行う場合には、蒸留開始後しばらくの間、装置内の洗浄運転を行い、 その際コンデンサ一力も出る留分は初留分排出管 7から除去するのが好ましい。その 後は、非凝縮性ガスを連続的に系外に除去しながら、かつ目的の純度の液体塩素 が得られるように、蒸留条件を選択して連続蒸留を行うことができる。
[0015] 赤外線分光光度計でモニターする不純物としては、水、塩ィヒ水素または二酸ィ匕炭 素が好ましい。水、塩ィ匕水素または二酸ィ匕炭素の濃度測定のためには、水 3710 cm-1塩化水素 2830cm-l二酸化炭素 2340cm-lの波数の赤外線吸収を利用す るのが好ましい。なお、本発明の方法によって製造された高純度液体塩素について 測定された赤外線吸収スペクトルの一例は、図 2のとおりである。各不純物に対応す る波数における赤外線吸収から、常法により不純物濃度が求められる。
不純物測定のために測定した吸光度を濃度に変換するために必要な各不純物成 分のモル吸光係数は、吸光光度法で一般的に用いられる方法で求めることができる 。すなわち液体塩素と類似な溶媒特性を持つ物質、例えば四塩ィ匕炭素などに上記 不純物を一定量溶解させた標準試料を用い、単位光路長、単位モル濃度あたりの吸 光度を求めればよい。
[0016] 本発明によって得られる高純度液体塩素中の酸素ガスや窒素ガスの濃度は、ガス クロマトグラフィー等によって測定することができる力 通常いずれも検出下限以下に まで低減されている。 本発明においては、半導体製造用に好適に使用できる液体 塩素、すなわち水 2ppm以下、塩ィ匕水素 5ppm以下、二酸化炭素 2ppm以下の高純度 液体塩素が得られるよう、蒸留条件を選択することが好ましい。さらに好ましくは、水 0 . 4ppm以下、塩化水
素 lppm以下、二酸化炭素 lppm以下の高純度液体塩素である。
以下、実施例を挙げることにより、本発明をさらに具体的に説明する。
実施例
[0017] 食塩の電解槽で生成し、乾燥させた塩素を IMPaまで空気加圧して液ィ匕した塩素( 以下、原料液体塩素と!、う)を図 1に示すような蒸留装置における充填塔方式のバッ チ式精留塔 1に 300kg供給した。この原料液体塩素は別途行った赤外線吸収スぺタト ル分析により、水力^. lppm、塩化水素は 1.9ppmの不純物を含んでいた。
蒸留器を 40°Cまで加温して精留運転を開始し、全還流させながらフローセルに導 かれた留分の赤外吸収スペクトル測定を行った。全還流を開始して 3時間後には、水 力 S0.8ppmに減少し、塩化水素は 8.9ppmに増加していた。この間に液体塩素中の水 分が、塩素と反応して塩ィ匕水素に変化したものと推測される。
次いで、還流比 2で排出管 7へ初留を 30kg留去させた後に留出液中の不純物量を 測定したところ、水 0.4ppm、塩ィ匕水素 1.3ppmまで減少していた。それ以降の留出液 全量を主留として製品受槽 5に導いた。精製液体塩素の回収量は 260kg、収率は 87 %であった。得られた高純度液体塩素につ!、て赤外線吸収スペクトルの測定を行つ た結果、水、塩ィ匕水素および二酸ィ匕炭素含有量はそれぞれ 0.33ppm、 0.95ppm、 0.51ppmと定量された。
[0018] なお、上記の例で液体塩素中の不純物濃度の測定に用いた赤外線吸収スぺタト ル測定条件は、次のとおりである。
〇測定条件
装置ニコレ一社製 MAGNA750型フーリヱ変換赤外分光光度計
測定波数域 4000— 2100cm- 1
分解能 4cm-l
積算回数 128回
定量計算に用いたパラメータモル吸光係数 水 35M- lcm- 1 (3710cm- 1) モル吸光係数 塩化水素 12M-lcm-l (2830cm-l)
モル吸光係数 二酸化炭素 120M- lcm- 1 (2340cm- 1)
液体塩素の比重 1. 44
〇フローセノレ
セル胴体材質ハステロィ
赤外線透過窓材サフアイャ(有効受光面 15mm径)
セル内容積 lml
光路長 lcm
産業上の利用可能性
[0019] 本発明によって得られる高純度液体塩素は、水分および塩化水素濃度が極めて低 ぐ半導体ウェハーのドライエッチング剤や光ファイバ一材料の製造用に最適である 図面の簡単な説明 [0020] [図 1]本発明における蒸留装置およびそれに組み込んだ赤外線吸光度測定フローセ ルの一実施形態の模式図である。
[図 2]本発明で得られた高純度液体塩素について、赤外線吸光度を測定した吸収ス ベクトルの一例である。
符号の説明
[0021] 1……精留塔
2……コンデンサー
3……非凝縮ガス排出管
4……赤外線吸光度測定フローセル
5……製品受槽
6……流量計
7……初留分排出管
8……液体塩素供給管
9……温水供給管
10……温水排出管
11……冷水供給管
12……冷水排出管

Claims

請求の範囲
[1] 液体塩素を加圧下で蒸留して、留出するガスを冷却器で液化成分とガス状物質と に分離し、該液ィ匕成分の一部または全部を液体塩素として製品受槽に移送すること 力 なる高純度液体塩素の製造方法において、前記冷却器の液出口と液体塩素タ ンクを連結する配管の中途にバイパスを設け、該バイパス内に設置した赤外線吸光 度測定フローセルに前記液化成分の一部を採取し、該液化成分中の不純物濃度を 測定し、不純物濃度が目標値に達した液化成分を製品受槽に移送することを特徴と する高純度液体塩素の製造方法
[2] 前記液ィヒ成分における不純物のうちから水、塩ィヒ水素または二酸ィヒ炭素の 1種ま たは 2種以上を選択し、その濃度の測定することを特徴とする請求項 1記載の高純度 液体塩素の製造方法。
[3] 請求項 1記載の方法によって得られる水 2ppm以下、塩ィ匕水素 5ppm以下、二酸ィ匕 炭素 2ppm以下の高純度液体塩素。
[4] 請求項 1記載の方法によって得られる水 0. 4ppm以下、塩化水素 lppm以下、二酸 化炭素 lppm以下の高純度液体塩素。
PCT/JP2004/015982 2003-11-05 2004-10-28 高純度液体塩素の製造方法 WO2005044725A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515270A JP4458044B2 (ja) 2003-11-05 2004-10-28 高純度液体塩素の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003375769 2003-11-05
JP2003-375769 2003-11-05

Publications (1)

Publication Number Publication Date
WO2005044725A1 true WO2005044725A1 (ja) 2005-05-19

Family

ID=34567089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015982 WO2005044725A1 (ja) 2003-11-05 2004-10-28 高純度液体塩素の製造方法

Country Status (3)

Country Link
JP (1) JP4458044B2 (ja)
KR (1) KR101025074B1 (ja)
WO (1) WO2005044725A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035673A1 (ja) * 2008-09-24 2010-04-01 東亞合成株式会社 高純度塩素の製造方法
JP2013521210A (ja) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド 三塩化窒素を含有する液体塩素を気化させるための方法および装置
JP2013521211A (ja) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド 三塩化窒素を含有する液体塩素の処理方法
CN103466549A (zh) * 2013-08-20 2013-12-25 山东新龙科技股份有限公司 一种高纯氯气精馏工艺及其设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136033B1 (ko) * 2009-10-13 2012-04-18 코아텍주식회사 고순도 염소의 제조방법 및 장치
CN113546439B (zh) * 2021-08-16 2023-02-21 聊城鲁西氯甲烷化工有限公司 一种液氯闪蒸除氧的系统及工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362002A (ja) * 1991-06-11 1992-12-15 Mitsui Toatsu Chem Inc 塩素の工業的分離回収方法
JPH08243376A (ja) * 1995-03-09 1996-09-24 Tokuyama Corp 塩素ガスの供給方法
JP2002316804A (ja) * 2001-04-19 2002-10-31 Sumitomo Chem Co Ltd 塩素精製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362002A (ja) * 1991-06-11 1992-12-15 Mitsui Toatsu Chem Inc 塩素の工業的分離回収方法
JPH08243376A (ja) * 1995-03-09 1996-09-24 Tokuyama Corp 塩素ガスの供給方法
JP2002316804A (ja) * 2001-04-19 2002-10-31 Sumitomo Chem Co Ltd 塩素精製法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035673A1 (ja) * 2008-09-24 2010-04-01 東亞合成株式会社 高純度塩素の製造方法
JP2010076953A (ja) * 2008-09-24 2010-04-08 Toagosei Co Ltd 高純度塩素の製造方法
JP2013521210A (ja) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド 三塩化窒素を含有する液体塩素を気化させるための方法および装置
JP2013521211A (ja) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド 三塩化窒素を含有する液体塩素の処理方法
CN103466549A (zh) * 2013-08-20 2013-12-25 山东新龙科技股份有限公司 一种高纯氯气精馏工艺及其设备

Also Published As

Publication number Publication date
JPWO2005044725A1 (ja) 2007-11-29
JP4458044B2 (ja) 2010-04-28
KR20060111551A (ko) 2006-10-27
KR101025074B1 (ko) 2011-03-25

Similar Documents

Publication Publication Date Title
CN102398895B (zh) 一种超纯电子级化学试剂的生产方法
CN105347307B (zh) 一种氯化氢气体的除水方法
BRPI0501182B1 (pt) "processo para processamento de águas residuais alcalinas resultantes da lavagem de nitrobenzeno bruto".
JP2001089131A (ja) 三塩化硼素の精製プロセス及び装置
WO2014185499A1 (ja) 塩化水素の精製方法
US3020128A (en) Method of preparing materials of high purity
JPH11506431A (ja) イソプロピルアルコールの無水化及び純粋化
JP3507317B2 (ja) 蒸留装置及び蒸留方法
JP2007302663A (ja) 半導体製造用ドライエッチングガスおよびその製造方法
US20060000702A1 (en) Method for separating a krypton-xenon concentrate and a device for carrying out said method
CN108502888B (zh) 三氯硅烷的纯化系统以及硅晶体
WO2005044725A1 (ja) 高純度液体塩素の製造方法
US6500994B1 (en) Purification of 1,1,1,3,3-pentafluorobutane
EP1571447B1 (en) Process for measuring mercury concentration within hydrocarbons
US5061348A (en) Sulfuric acid reprocessor with continuous purge of second distillation vessel
JP3878278B2 (ja) 燐含有量の少ない多結晶シリコンの製造方法
EP2225176B1 (en) Methods of recovering silane
CN1644487A (zh) 一种低温蒸发制取超净高纯盐酸的装置和方法
CN101421209B (zh) 用于生产正丙基溴或其它脂肪族溴化物的工艺
JP3066978B2 (ja) 無水酢酸及び酢酸の精製方法
JPH0144114B2 (ja)
WO2023238627A1 (ja) 高純度塩酸の製造方法
EP3530621A1 (en) Method for controlling concentration of solid content and method for producing trichlorosilane
JP5946740B2 (ja) 無水塩化水素の精製方法および無水塩化水素精製装置
RU2253650C1 (ru) Способ получения монохлоруксусной кислоты

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515270

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067010817

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067010817

Country of ref document: KR

122 Ep: pct application non-entry in european phase