WO2005038222A1 - 内燃機関の吸気装置及び吸入空気量測定方法 - Google Patents

内燃機関の吸気装置及び吸入空気量測定方法 Download PDF

Info

Publication number
WO2005038222A1
WO2005038222A1 PCT/JP2004/013866 JP2004013866W WO2005038222A1 WO 2005038222 A1 WO2005038222 A1 WO 2005038222A1 JP 2004013866 W JP2004013866 W JP 2004013866W WO 2005038222 A1 WO2005038222 A1 WO 2005038222A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air flow
intake passage
intake
throttle valve
Prior art date
Application number
PCT/JP2004/013866
Other languages
English (en)
French (fr)
Inventor
Takayuki Shimatsu
Original Assignee
Keihin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corporation filed Critical Keihin Corporation
Priority to EP04773352A priority Critical patent/EP1679431B1/en
Priority to US10/573,067 priority patent/US7395700B2/en
Publication of WO2005038222A1 publication Critical patent/WO2005038222A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Definitions

  • the present invention relates to an intake device for an internal combustion engine and a method for measuring an intake air amount of the internal combustion engine.
  • a throttle pulp (throttle valve) is provided upstream of an intake manifold (intake passage), and a fuel injection valve is provided upstream or downstream of the throttle pulp.
  • an air flow sensor may be provided (see, for example, Japanese Patent Publication No. Hei 4-151,388 (page 2, FIG. 1)).
  • the air flow rate sensor detects the flow rate of intake air and outputs an intake flow rate signal.When installed on the downstream side of the throttle valve, the air flow rate sensor generally moves in the axial direction of the intake passage of the intake manifold. is set up.
  • An intake air amount signal output from the air flow sensor is input to a control circuit, and a fuel injection amount according to an operation state of the internal combustion engine is calculated. Then, a fuel injection amount signal based on the calculated fuel injection amount is output from the control circuit to control the operation of the fuel injection valve.
  • an air flow sensor is an air flow meter that detects the amount of air as a mass flow rate. If the air flow meter is installed upstream of the throttle pulp, the air flow meter is installed in the combustion chamber. Since the sum of the amount of air taken into the intake manifold and the amount of air filled in the intake manifold is measured, there is a problem that the amount of air taken into the combustion chamber cannot be accurately measured during a transient.
  • the air flow meter is installed in the axial direction of the intake passage downstream of the throttle pulp, it is not possible to accurately measure the intake air amount due to the turbulence of air generated downstream of the throttle valve.
  • the rotation of the throttle pulp causes one end of the throttle valve to tilt forward with respect to the air flow, The other end of the mouth pulp tilts in the opposite direction to the air flow.
  • the throttle pulp is slightly opened, a gap is formed between the throttle valve and the intake passage in the intake passage, so that air flows through the gap along the inner wall in the intake passage downstream of the throttle pulp.
  • an object of the present invention is to provide an intake device for an internal combustion engine that can accurately measure the amount of air and that can reduce the size of an intake passage. Disclosure of the invention
  • the present invention relates to a throttle valve provided in an intake passage of an internal combustion engine, and an air flow rate provided in the intake passage and arranged downstream of the throttle valve for measuring an amount of air taken into the intake passage.
  • An air intake device for an internal combustion engine including a sensor, wherein the air flow sensor comprises: an air flow passage; and a sensor element disposed in the air flow passage.
  • an intake device for an internal combustion engine which is arranged to be inclined with respect to an axis.
  • the air flow sensor has an air flow passage and a sensor element arranged in the air flow passage, and the air flow passage sensor is arranged so that the axis of the air flow passage is inclined with respect to the axis of the intake passage. It is possible to read an accurate amount of air at a position where the flow velocity is high.
  • the air flow sensor when the throttle valve opens from a position close to the inner wall of the intake passage, at a position close to the inner wall of the intake passage, the air flow sensor always provides accurate airflow at a position where the air velocity is fast regardless of the opening of the throttle valve. It becomes possible to read the amount of air.
  • the throttle valve includes: a rotation axis perpendicular to an axis of the intake passage; and a wing portion that rotates about the rotation axis to open and close the intake passage. It is preferable that the flow rate sensor is arranged so that the axis of the air flow passage is inclined in substantially the same direction as the wing when the air intake passage is opened by rotating the wing.
  • an angle of an axis of the air flow passage with respect to an axis of the intake passage is zero. It is desirable that the angle is 60 ° or less.
  • the air flow sensor is arranged so that the axis of the air flow passage is tilted in the same direction as the wing when the intake passage is opened by rotating the wing, so that the air flow sensor is Air flow almost parallel to the slope Since the air flow is detected from almost the front of the air flow sensor and the air flow is detected, the measurement accuracy of the intake air flow by the air flow sensor is improved.
  • the present invention includes a sensor element and an air flow passage in which the sensor element is disposed, wherein an axis of the air flow passage is located on a downstream side of a throttle valve in an intake passage of the internal combustion engine with respect to an axis of the intake passage.
  • An intake air amount measuring method for an internal combustion engine that measures an amount of air taken into the intake passage by using an air flow sensor that is arranged to be inclined, based on a flow amount of air flowing into the air passage.
  • a method for measuring an intake air amount of an internal combustion engine for measuring the air amount is provided.
  • the throttle valve when the throttle valve provided in the intake passage of the internal combustion engine is opened, the throttle valve itself becomes an obstacle at a position immediately after the throttle valve in the intake passage, and the air becomes an obstacle. Flow velocity becomes slow.
  • the air flow sensor is arranged so that the axis of the air flow passage is tilted in the same direction as the wing when the intake passage is opened by rotating the wing, so that the air at the position where the air velocity is high is high. Can be read.
  • the air flow sensor detects the air at a position where the air velocity is always high regardless of the opening of the throttle valve. Can be read.
  • the present invention it is possible to read the flow rate of air at a position where the flow velocity of air is high, and particularly when the throttle valve is opened from a position near the inner wall of the intake passage, at a position near the inner wall of the intake passage,
  • the air flow sensor can always read the air flow rate at the position where the air flow rate is fast regardless of the opening of the throttle valve, so that the air flow rate can be measured accurately.
  • accurately measuring the flow rate of the air it is not necessary to increase the size of the intake passage to reduce air turbulence, so that the intake passage can be reduced in size.
  • FIG. 1 is a schematic diagram of an engine control system including an intake device according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view showing a throttle pulp and an air flow meter.
  • FIG. 3 is a diagram comparing the flow velocity of air drawn into the combustion chamber of the engine with the flow velocity of air calculated based on the amount of intake air detected by the air flow meter.
  • FIG. 1 is a schematic diagram showing an engine control system including a control device for an internal combustion engine according to the present embodiment.
  • the engine control system 1 of the present embodiment shown in FIG. 1 draws air from an intake passage 4 connected to an intake manifold 3 of an engine 2 which is an internal combustion engine, and distributes the air and the intake manifold 3
  • the fuel injected from the installed injector 5 is mixed with the fuel and then burned in the combustion chamber 2 a of the engine 2.
  • the control device 7 of the internal combustion engine is used. Controls the injection amount and the injection timing of the fuel to be injected in accordance with the amount of air (intake amount) taken by the engine 2.
  • the intake passage 4 includes an air cleaner 11 and a throttle body 13 having a throttle valve 12 which is a throttle valve for adjusting the amount of air downstream of the air cleaner 11.
  • the amount of air sucked into the engine 2 through the intake passage 4 is determined by the mass flow rate of an air flow meter (air flow sensor) 14, which is a sensor disposed downstream of the throttle pulp 12. Is detected as Since the air flow meter 14 is located downstream of the throttle valve 12, it is possible to accurately detect the amount of air actually sucked into the combustion chamber 2 a of the engine 2 out of the air passing through the air cleaner 11. it can. When the air flow meter 14 is attached to the throttle body 13, the number of setting steps can be reduced.
  • FIG. 2 is a partially enlarged view showing the throttle valve 12 and the air flow meter 14 provided in the intake passage 4.
  • the intake device of the internal combustion engine includes an intake passage 4, a throttle pulp 12 provided in the intake passage 4, and an air flow meter 14 provided in the intake passage 4.
  • the throttle valve 12 includes a rotation axis 12 a on the axis of the intake passage 4 and perpendicular to the axis, and wings 12 b and 12 c rotating about the rotation axis 12 a.
  • the wings 12b and 12c are arranged so as to form the same plane with the rotation axis 12a interposed therebetween.
  • the air flow meter 14 has a structure in which a sensor element 14a is provided at the center of the air flow passage 14b.
  • the air flow meter 14 has a central axis, which is perpendicular to the plane of FIG. 2 and parallel to the rotation axis 12 a of the throttle valve 12, on the axis 4 A of the intake passage 4, and is perpendicular to this central axis.
  • the longitudinal axis 14 A of the air flow passage 14 b is disposed in the intake passage 4 at an angle ⁇ with respect to the axis 4 A of the intake passage 4.
  • the airflow meter 14 rotates the axis 14 ⁇ of the airflow passage 14 b along the wings 12 b, 12 c of the throttle valve 12, and rotates the wing 1 when the intake passage 4 is opened. They are arranged in the same direction as 2b and 12c.
  • a sensor that deposits a platinum thin film as a sensor element 14a on a silicon substrate and energizes the platinum thin film so as to keep its temperature constant.
  • the mass of air flowing around the platinum thin film that is, the air flowing through the air flow path 14b shown in FIG. 2
  • the air flow meter 14 increases the current flowing through the platinum thin film so as to keep the temperature constant.
  • the air flow meter 14 energizes the platinum thin film. Reduce the current. As described above, the current value increases and decreases in proportion to the increase and decrease in the mass of the air flowing around the platinum thin film. By monitoring this current value, the amount of air can be measured. It should be noted that such an air flow meter 14 can reduce the heat capacity as compared with the case where a platinum wire is used, and thus achieves high responsiveness and high measurement accuracy.
  • the injector 5 ejects fuel into the air flowing through the intake manifold 3 by opening and closing an electromagnetic injection valve.
  • the injector 5 is pumped out of a fuel pump 16 provided in a fuel tank 15 and is a regulator. Fuel regulated at 17 is supplied.
  • the supply of the mixed gas to the combustion chamber 2a and the discharge after the combustion are performed by an intake pulp 2b and an exhaust pulp 2c driven by a valve timing mechanism (not shown).
  • the ignition of the gas mixture is performed by a spark plug 8.
  • the spark plug 8 discharges using high energy stored in the ignition circuit 9.
  • the control device 7 for controlling the engine control system is a so-called ECU (Electronic Control Unit), which includes a CPU (Central Processing Unit), a ROM (Read On 1 y Memory), and the like. It operates by receiving power from the battery 10.
  • the control device 7 uses the output current of the air flow meter 14 as input data, performs a predetermined process, performs an amount of fuel supplied from the fuel pump 16 to the injector 5, an injection amount of the injector 5, and an injection timing thereof. Then, the timing of starting charging of the ignition circuit 9 and the ignition timing are determined, and a command signal is output to each section.
  • the wings 12 b and 12 c rotate about the rotation axis 12 a of the throttle pulp 12, thereby causing the wing 12 b to rotate.
  • the airfoil tilts forward with respect to the air flow, and the wing portion 12c tilts in the reverse direction with respect to the air flow, so that the suction of air into the engine 2 is started.
  • gaps A and B are formed between the wings 12b and 12c in the intake passage 4 and the inner wall 4a of the intake passage 4, respectively. It flows downstream of the throttle valve 12 along the inner wall 4a in the road 4.
  • an air flow meter 14 is installed in the intake passage 4 on the downstream side of the throttle pulp 12, and the axis 14 A of the air flow passage 14 b is connected to the wings 12 b of the throttle valve 12.
  • the blades 1 2b are rotated from 1 c to rotate in the substantially same direction as the blades 12 b and 12 c when the intake passage 4 is opened.
  • the air flow meter 14 receives the air flow from almost the front and detects the amount of air. The measurement accuracy of the amount of intake air is improved.
  • the throttle valve 12 When air is sucked into the engine 2 with the throttle pulp 12 provided in the intake passage 4 fully opened, the throttle valve 12 in the position immediately after the throttle valve 12 in the intake passage 4 The obstacle itself causes the flow velocity of the air to decrease.
  • the air flow meter 14 is arranged in the intake passage 4 with the longitudinal axis 14 A being inclined with respect to the axis 4 A of the intake passage 4, so that the air flow velocity and the position in the air flow can be accurately determined. It is possible to read a large amount of air.
  • the air flow meter 14 at a position close to the inner wall 4a of the intake passage 4, the air flow meter 14 always outputs accurate air at a position where the air flow velocity is fast, regardless of the opening degree of the throttle pulp 12. The quantity can be read.
  • FIG. 3 is a diagram comparing the flow velocity of the air taken into the combustion chamber 2a of the engine 2 with the flow velocity of the air calculated based on the intake air amount detected by the air flow meter 14.
  • Fig. 3 shows the angle between the longitudinal axis 14A of the air flow meter 14 and the axis 4A of the intake passage 4 when the throttle valve 12 is at a low opening (the air flow meter 14).
  • the angle is set to 30 °, 45 °, 60 ° and 75 ° clockwise, the crank angle, the air flow rate at the inlet of the intake passage 4 and the air flow meter 14
  • the horizontal axis indicates the crank angle (°)
  • one vertical axis indicates the air flow velocity (mZ s) at the inlet of the intake passage 4
  • the other vertical axis indicates the air flow meter 14. Shows the air velocity (mZ s).
  • the installation angle ⁇ of the air flow meter 14 is 30 ° or more, the flow velocity of the air passing through the air flow meter 14 does not become negative during the intake stroke of the engine 2. That is, if the installation angle ⁇ of the air flow meter 14 is set to 30 ° or more, it is possible to make the air flow less susceptible to the backflow. Therefore, the installation angle ⁇ of the air flow meter 14 is preferably 30 ° or more.
  • the installation angle ⁇ of the air flow meter 14 is 75 °
  • the air flow meter between the crank angle of 0 ° and 120 ° is greater than that of the air flow meter 14 when the installation angle ⁇ is 60 ° or more.
  • the flow velocity of the air passing through 14 decreases. This tendency is expected to be more pronounced when the installation angle of the airflow meter 14 exceeds 75 °. Therefore, it is preferable that the installation angle ⁇ of the air flow meter 14 be 60 ° or less.
  • the flow velocity of the air flowing through the intake passage 4 does not greatly differ between the position near the inner wall of the intake passage 4 and the position near the center of the intake passage 4. Absent. That is, when the throttle pulp 12 is fully opened, if the installation angle ⁇ of the air flow meter 14 is set to 60 ° or less, the flow velocity of the air passing through the air flow meter 14 can be sufficiently measured.
  • the installation angle of the air flow meter 14 is set to 30 ° or more and 60 ° or less. This makes it easier to obtain accurate waveforms.
  • the air flow meter 14 can read the amount of air at a position where the flow velocity of air is high, and at the position near the inner wall 4 a of the intake passage 4, Irrespective of the opening degree of 12, the air flow meter 14 can always read the accurate amount of air at a position where the air velocity is fast, so that the air flow rate can be measured accurately. Further, by accurately measuring the air flow rate, it is not necessary to increase the size of the intake passage 4 in order to reduce air turbulence, so that the intake passage 4 can be downsized.
  • the rotation speed of the engine 2 since it is possible to accurately measure the air flow rate, it is easy to calculate the rotation speed of the engine 2 from the number of waveforms per unit time of the air flow rate. Since the second state of the engine, such as the opening, can be estimated, accurate fuel injection, ignition timing control, etc. can be realized only with an airflow meter.
  • the present invention relates to a throttle valve provided in an intake passage of an internal combustion engine, and an air flow rate provided in the intake passage and arranged downstream of the throttle valve for measuring an amount of air taken into the intake passage.
  • An air intake device for an internal combustion engine comprising: a sensor; an air flow path; an air flow path; and a sensor element disposed in the air flow path, wherein an axis of the air flow path is an axis of the intake path.
  • the present invention relates to an intake device for an internal combustion engine which forms a predetermined angle with respect to the intake device.
  • the present invention uses an air flow sensor provided in an intake passage of an internal combustion engine and arranged downstream of a throttle valve and provided with a sensor element and an air flow passage in which the sensor element is arranged.
  • a method for measuring an intake air amount of an internal combustion engine for measuring an amount of intake air wherein the axis of the air flow passage is the axis of the intake passage.
  • the present invention relates to a method for measuring the amount of intake air of an internal combustion engine, which measures the amount of air after arranging the same at a predetermined angle with respect to the air.
  • the air flow sensor can always read the air flow rate at the position and the air flow rate regardless of the opening of the throttle valve, so that the air flow rate can be measured accurately. Furthermore, by accurately measuring the flow rate of air, it is not necessary to enlarge the intake passage to reduce air turbulence, so that the intake passage can be made smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)

Abstract

この内燃機関の吸気装置は、内燃機関の吸気通路に設けられた絞り弁と、絞り弁の下流側に設けられ吸気通路に吸入される空気量を測定する空気流量センサとを備え、空気流量センサは、センサ素子が配された空気流通路を備えるとともに、その空気流通路の軸線が吸気通路の軸線に対して所定の角度をなして吸気通路に設置される。

Description

内燃機関の吸気装置及び吸入空気量測定方法 技 W分野
本発明は、 内燃機関の吸気装置及び内燃機関の吸入空気量測定方法に関する。 本願は、 2 0 0 3年 9月 2 6日に出願された特願 2 0 0 3— 3 3 5 7 8 4号に ついて優先権を主張し、 その内容をここに援用する。
糸 1
、背景技術
車両等に用いられる内燃機関の中には、 吸気マ二ホールド (吸気通路) の上流 側にス口ットルパルプ (絞り弁) が設けられ、 このスロットルパルプの上流側ま たは下流側に燃料噴射弁及び空気流量センサが設けられるものがある (例えば、 特公平 4一 1 5 3 8 8号公報 (第 2頁、 第 1図) を参照のこと)。
空気流量センサは、 吸入空気の流量を検出して吸気流量信号を出力するもので あり、 スロットルバルブの下流側に設置された場合には、 一般に、 吸気マ二ホー ルドの吸気通路の軸線方向に設置されている。
空気流量センサが出力する吸気量信号は制御回路に入力され、 内燃機関の運転 状態に応じた燃料噴射量が演算される。 そして、 演算された燃料噴射量に基づく 燃料噴射量信号が制御回路から出力されて前記燃料噴射弁の作動制御が行われる。 従来の内燃機関の吸気装置において、 空気流量センサが空気の量を質量流量と して検出するエアフローメータであり、 エアフローメータがスロットルパルプの 上流に設置された場合、 そのエアフローメータは、 燃焼室に吸入される空気量と 吸気マ二ホールドに充填された空気量との和を計測しているため、 過渡時にぉ ヽ て燃焼室に吸入される空気量を正確に測定できないという問題があった。
一方、 エアフローメータがスロットルパルプの下流に吸気通路の軸線方向に設 置された場合、 スロットルバルブの下流側に発生する空気の乱れの影響で、 正確 な吸入空気量を測定することができない。 すなわち、 スロットルパルプの回転に よってスロットルバルブの一端が空気の流れに対して順方向に傾くとともに、 ス 口ットルパルプの他端が空気の流れに対して逆方向に傾く。 スロットルパルプを わずかに開いている場合、 吸気通路内におけるスロットルバルブと吸気通路との 間に隙間が形成されるため、 空気がこの隙間を通って吸気通路内の内壁に沿って スロットルパルプの下流側に流れる。 これにより、 順方向に傾いたス口ットルバ ルブの一端側下流において吸気通路の内壁に沿って空気が直進して流れ、 逆方向 に傾いたスロットルバルブの他端側下流において吸気通路の中心方向に向かって 空気が渦を形成して流れる。 すなわち、 スロッ トルパルプの下流ではその他端側 から一端側に向かって、 スロットルバルブの傾きとほぼ平行な空気の流れが形成 される。 したがって、 スロットルパルプの直後にエアフローメータが吸気通路の 軸線方向に延在するように設置されると、 エアフローメータが燃焼室に吸入され る空気量を正確に測定できないという問題があった。
また、 スロットルバルブを全開している場合、.空気が吸気通路内を流れるが、 スロットルバルブの回転軸の下流側に空気の流速が遅くなる領域が生じるため、 スロットルバルブの直後にエアフローメータが吸気通路の軸線方向に延在するよ うに設置されると、 エアフローメータが燃焼室に吸入される空気量を正確に測定 できないという問題があった。
これらの問題を解決するために、 従来では、 空気の乱れを少なくすべく吸気通 路を大きくして、エアフローメータを適当な位置に設置しなければならなかった。 本発明は、 このような事情を考慮してなされたもので、 正確な空気量を測定す ることができ、 吸気通路を小型化できる内燃機関の吸気装置及びを提供すること を目的とする。 発明の開示
本発明は、 内燃機関の吸気通路に設けられた絞り弁と、 前記吸気通路に設けら れて前記絞り弁の下流側に配置され、 前記吸気通路に吸入される空気量を測定す る空気流量センサとを備える内燃機関の吸気装置であって、 前記空気流量センサ が、 空気流通路と、 前記空気流通路に配置されたセンサ素子とを備え、 前記空気 流通路の軸線を、 前記吸気通路の軸線に対して傾けて配置されている内燃機関の 吸気装置を提供する。 上記内燃機関の吸気装置においては、 内燃機関の吸気通路に設けられた絞り弁 を開いた場合、 吸気通路内で絞り弁の直後の位置では、 絞り弁自体が障害となつ て空気の流速が遅くなる。 一方、 吸気通路内で絞り弁の直後ではない位置、 例え ば吸気通路の内壁に近い位置では、 障害なく空気の流速が速くなる。 そこで、 空 気流量センサが、 空気流通路と、 空気流通路に配置されたセンサ素子とを備え、 空気流通路の軸線を、 吸気通路の軸線に対して傾けて配置されることにより、 空 気の流速の速い位置における正確な空気量を読み取ることが可能になる。
特に、 絞り弁が吸気通路の内壁に近い位置から開く場合、 吸気通路の内壁に近 い位置では、 空気流量センサが、 絞り弁の開度によらず常に空気の流速が速い位 置における正確な空気量を読み取ることが可能になる。
本発明の内燃機関の吸気装置において、 前記絞り弁は、 前記吸気通路の軸線に 垂直な回転軸と、 前記回転軸を中心に回転して前記吸気通路を開閉する翼部とを 備え、 前記空気流量センサは、 前記空気流通路の軸線を、 前記翼部を回転させて 前記吸気通路を開いた状態での前記翼部と略同方向に傾けて配置されることが望 ましい。
本発明の内燃機関の吸気装置において、 前記空気流通路の軸線の、 前記吸気通 路の軸線に対する角度は、 0。 以上 6 0 ° 以下であることが望ましい。
上記内燃機関の吸気装置においては、 空気流量センサが絞り弁の下流に吸気通 路の軸線方向に設置された場合、 絞り弁の回転によって絞り弁の一端が空気の流 れに対して順方向に傾くとともに、 絞り弁の他端が空気の流れに対して逆方向に 傾く。 このとき、 絞り弁をわずかに開いている場合、 吸気通路内における絞り弁 と吸気通路との間に隙間が形成されるため、 空気がこの隙間を通つて吸気通路内 の内壁に沿って絞り弁の下流側に流れる。 これにより、 順方向に傾いた絞り弁の 一端側下流において吸気通路の内壁に沿って空気が直進して流れ、 逆方向に傾い た絞り弁の他端側下流において吸気通路の中心方向に向かって空気が渦を形成し て流れる。 すなわち、 絞り弁の他端側から一端側に向かって、 絞り弁の傾きとほ ぼ平行な空気の流れが形成される。 そこで、 空気流量センサが、 空気流通路の軸 線を、 翼部を回転させて吸気通路を開いた状態における翼部と略同方向に傾けて 配置されることにより、 空気流量センサが絞り弁の傾きとほぼ平行な空気の流れ を空気流量センサのほぼ正面から受けて空気量を検出することとなるため、 空気 流量センサによる吸入空気量の測定精度が向上する。
本発明は、 センサ素子と前記センサ素子を配置された空気流通路とを備え、 内 燃機関の吸気通路における絞り弁の下流側に、 前記空気流通路の軸線が前記吸気 通路の軸線に対して傾斜するように配置された空気流量センサを用い、 前記吸気 通路に吸入される空気量を測定する内燃機関の吸入空気量測定方法であって、 前記空気流通路に流入する空気の流量に基づいて前記空気量を測定する内燃機 関の吸入空気量測定方法を提供する。
上記内燃機関の吸入空気量測定方法においては、 内燃機関の吸気通路に設けら れた絞り弁を開いた場合、 吸気通路内で絞り弁の直後の位置では、 絞り弁自体が 障害となって空気の流速が遅くなる。 一方、 吸気通路内で絞り弁の直後ではない 位置、 例えば吸気通路の内壁に近い位置では、 障害なく空気の流速が速くなる。 そこで、 空気流量センサが、 空気流通路の軸線を、 翼部を回転させて吸気通路を 開いた状態における翼部と略同方向に傾けて配置されることにより、 空気の流速 の速い位置における空気の流速を読み取ることが可能になる。 特に、 絞り弁が吸 気通路の内壁に近い位置から開かれる場合、 吸気通路の内壁に近い位置では、 空 気流量センサが、 絞り弁の開度によらず常に空気の流速が速い位置における空気 の流速を読み取ることが可能になる。
本発明によれば、 空気の流速の速い位置における空気の流量を読み取ることが 可能になり、 特に、 絞り弁が吸気通路の内壁に近い位置から開かれる場合、 吸気 通路の内壁に近い位置では、 空気流量センサが、 絞り弁の開度によらず常に空気 の流速が速い位置における空気の流量を読み取ることが可能になるので、 空気の 流量を精度よく測定することができる。 さらに、 空気の流量を精度よく測定する ことにより、 空気の乱れを少なくすべく吸気通路を大きくする必要がないので、 吸気通路の小型化が可能となる。 図面の簡単な説明
図 1は、 本発明の実施形態における吸気装置を含むエンジン制御システムの概 略図である。 図 2は、 スロットルパルプ及びエアフローメータを示す部分拡大図である。 図 3は、 エンジンの燃焼室への吸入される空気の流速と、 エアフローメータに よって検出された吸入空気量に基づいて算出された空気の流速とを比較した図で ある。 発明を実施するための最良の形態
以下、 図面を参照しつつ、 本発明の好適な実施例について説明する。 図 1は本 実施形態における内燃機関の制御装置を備えるェンジン制御システムを示す概略 図である。
図 1に示す本実施形態のエンジン制御システム 1は、 内燃機関であるエンジン 2の吸気マ二ホールド 3に連結された吸気通路 4から空気を吸入し、この空気と、 吸気マ二ホールド 3に配設されたィンジヱクタ 5から噴出する燃料とを混合させ た後にエンジン 2の燃焼室 2 a内で燃焼させ、 燃焼後の燃焼ガスを排気マ二ホー ルド 6から排出するに際し、 内燃機関の制御装置 7が、 エンジン 2が吸入する空 気量 (吸気量)に応じて噴射する燃料の噴射量および噴射タイミングを制御する。 吸気通路 4は、 エアクリーナ 1 1と、 エアクリーナ 1 1よりも下流で空気量の 調整を行う絞り弁であるスロットルバルブ 1 2を有するスロットルボディ 1 3と を備えている。
この吸気通路 4を通ってエンジン 2に吸入される空気の量は、 スロットルパルプ 1 2よりも下流側に位置するように配設されたセンサであるエアフローメータ (空気流量センサ) 1 4において質量流量として検出される。 エアフローメータ 1 4がスロットルバルブ 1 2よりも下流にあることで、 エアクリーナ 1 1を通過 した空気のうち、 実際にエンジン 2の燃焼室 2 aに吸入される空気量を正確に検 出することができる。 なお、 エアフローメータ 1 4をスロットルボディ 1 3に取 付けると、 セッティングの工数を削減することができる。
図 2は、 吸気通路 4に設けられたスロッ トルバルブ 1 2及びエアフローメータ 1 4を示す部分拡大図である。 なお、 内燃機関の吸気装置は、 吸気通路 4と、 吸 気通路 4に設けられたスロットルパルプ 1 2と、 吸気通路 4に設けられたエアフ ローメータ 1 4とを備えて構成されるものである。 スロットルバルブ 1 2は、 吸気通路 4の軸線上にあり軸線に垂直な回転軸 1 2 aと、 回転軸 1 2 aを中心に回転する翼部 1 2 b, 1 2 cとを備えている。 翼部 1 2 b , 1 2 cは、 回転軸 1 2 aを挟んで同一の平面をなすように配置されてい る。
エアフローメータ 1 4は、 空気流通路 1 4 bの中央部にセンサ素子 1 4 aが設 けられた構造を有する。 エアフローメータ 1 4は、 図 2において紙面に垂直方向 でありかつス口ットルバルブ 1 2の回転軸 1 2 aに平行な中心軸が吸気通路 4の 軸線 4 A上にあり、 この中心軸に垂直な空気流通路 1 4 bの長手方向の軸線 1 4 Aが吸気通路 4の軸線 4 Aに対して角度 αをなして吸気通路 4に設置されている。 エアフローメータ 1 4は、 空気流通路 1 4 bの軸線 1 4 Αを、 スロッ トルバル プ 1 2の翼部 1 2 b , 1 2 cを回転させて吸気通路 4を開いた状態での翼部 1 2 b, 1 2 cと略同方向に傾けて配置されている。
本実施形態に好適なエアフローメータ 1 4としては、 シリコン基板にセンサ素 子 1 4 aとしてプラチナ薄膜を蒸着し、 プラチナ薄膜の温度を一定に保つように 通電するセンサが挙げられる。 プラチナ薄膜の周囲すなわち図 2に示す空気流通 路 1 4 bを通流する空気の質量が増加すると、 空気を介してプラチナ薄膜から散 逸する熱量が増大し、これに比例してプラチナ薄膜の温度が低下する。このとき、 エアフローメータ 1 4は、 温度を一定に保つようにプラチナ薄膜に通電する電流 を増加させる。 一方、 プラチナ薄膜の周囲を通流する空気の質量が減少すると、 空気を介してプラチナ薄膜から散逸する熱量が減少してプラチナ薄膜の温度が上 がるので、 エアフローメータ 1 4はプラチナ薄膜に通電する電流を減少させる。 このように、 プラチナ薄膜の周囲を通流する空気の質量の増減に比例して電流値 が増減するので、この電流値をモニタすることで空気量を測定することができる。 なお、 このようなエアフローメータ 1 4は、 プラチナ製のワイヤを用いる場合 に比べて熱容量を減少させることできるので、 高い応答性と高い測定精度とを実 現している。
インジヱクタ 5は、 吸気マユホールド 3内を通流する空気内に、 電磁噴射弁の 開閉動作により燃料を噴出するもので、 燃料タンク 1 5内に設けられた燃料ボン プ 1 6から汲み出されレギユレータ 1 7で調圧された燃料が供給される。 燃焼室 2 aへの混合気体の供給および燃焼後の排出は、 図示しないバルブタイ ミング機構により駆動される吸気パルプ 2 bおよぴ排気パルプ 2 cで行う。
混合気体への点火は、 点火プラグ 8で行われる。 点火プラグ 8は、 点火回路 9 に蓄積させた高工ネルギを利用して放電を行う。
このエンジン制御システム における制御を行う制御装置 7は、 いわゆる EC U (E l e c t o r o n i c Co n t r o l Un i t) であり、 CPU (C e n t r a l P r o c e s s i n g Un i t) や ROM (Re a d On 1 y Memo r y) 等を有し、 パッテリ 10からの電力供給を受けて作動する。 この制御装置 7は、 エアフローメータ 14の出力電流を入力データとし、 所定の 処理を行って、 燃料ポンプ 16からインジェクタ 5に供給する燃料の量と、 イン ジェクタ 5の噴射量おょぴその噴射タイミングと、 点火回路 9への充電開始のタ イミングと、 点火タイミングとを決定し、 各部に指令信号を出力する。
次に、 上記の構成からなる内燃機関の吸気装置の機能および吸入空気量測定方 法について説明する。
エンジン 2が稼動すると、 ある程度の時間が経過してからエンジン 2内への空 気の吸引が開始され、 エンジン 2の吸気通路 4内に空気が吸入され、 その空気が 吸気通路 4内のスロットルバルブ 12を通過してその下流側のエアフローメータ 14の方へ流れる。
吸気通路 4に設けられたス口ットルバルブ 12をわずかに開くと、 スロットル パルプ 12の回転軸 1 2 aを中心として翼部 12 b, 1 2 cが回転することによ つて、 翼部 1 2 bが空気の流れに対して順方向に傾くとともに、 翼部 12 cが空 気の流れに対して逆方向に傾き、 エンジン 2内への空気の吸引が開始される。 こ のとき、 吸気通路 4内における翼部 12 b, 1 2 cと吸気通路 4の内壁 4 aとの 間にそれぞれ隙間 A, Bが生じるため、 空気がこれら隙間 A, Bを通って吸気通 路 4内の内壁 4 aに沿ってスロットルバルブ 1 2の下流側に流れる。 そして、 ス 口ットルバルブ 12の翼部 12 b側において吸気通路 4の内壁 4 aに沿って空気 が直進して流れ(図 2の矢印 a )、スロットルパルプ 12の翼部 12 c側において 吸気通路 4の中心方向すなわち回転軸 12 aの方向に向かって ^気が渦を形成し て流れる (図 2の矢印 b, c, d)。 すなわち、 スロットルバルブ 12の直後にお いては、 翼部 1 2 c側から翼部 1 2 b側に向かって、 スロットルバルブ 1 2に沿 うような空気の流れが形成される。
このとき、 空気の流れに対して順方向に傾いている翼部 1 2 bと吸気通路 4の 内壁 4 aとの隙間 Aを通過する空気が、 空気の流れに対して翼部 1 2 bが順方向 に傾いて!/、ることで隙間 Aの方に集約されながら通過するため、 空気の流速が速 くなり、 隙間 Aの下流側における空気圧が減少する。 一方、 空気の流れに対して 逆方向に傾いている翼部 1 2 cと吸気通路 4の内壁 4 aとの隙間 Bを通過する空 気が、 空気の流れに対して翼部 1 2 bが逆方向に傾いていることで隙間 Bの方に 集約されずにそのまま通過するため、 空気の流速が速くならず、 隙間 Bの下流側 における空気圧がほとんど減少しない。 そのため、 隙間 Aの下流側でより大きな 圧力低下が起こり、 その結果、 スロットルバルブ 1 2の下流側で、 翼部 1 2 cか ら翼部 1 2 bの方向に空気が流れやすくなる。
そこで、 エアフローメータ 1 4が、 吸気通路 4内においてスロットルパルプ 1 2の下流側に設置され、 かつ空気流通路 1 4 bの軸線 1 4 Aを、 スロットルパル ブ 1 2の翼部 1 2 b , 1 2 cを回転させて吸気通路 4を開いた状態での翼部 1 2 b, 1 2 cと略同方向に傾けて配置されることにより、 翼部 1 2 c側から翼部 1 2 b側に向かってス口ットルバルブ 1 2に沿うように形成された空気の流れに対 して、 エアフローメータ 1 4がほぼ正面から空気の流れを受けて空気量を検出す るので、 エアフローメータ 1 4による吸入空気量の測定精度が向上する。
また、 吸気通路 4に設けられたスロットルパルプ 1 2を全開した状態でェンジ ン 2内に空気が吸引されると、 吸気通路 4内におけるスロットルバルブ 1 2の直 後の位置では、スロットルバルブ 1 2自体が障害となって空気の流速が遅くなる。 一方、 吸気通路 4内でス口ットルパルプ 1 2の直後ではなく吸気通路 4の内壁 4 aに沿った位置では、 スロットルパルプ 1 2による空気の流れの障害を受けるこ となく空気の流速が速くなる。そこで、エアフローメータ 1 4が、吸気通路 4に、 長手方向の軸線 1 4 Aを吸気通路 4の軸線 4 Aに対して傾けて配置されることに より、空気の流速の速レ、位置における正確な空気量を読み取ることが可能になる。 さらに、 吸気通路 4の内壁 4 aに近い位置では、 スロットルパルプ 1 2の開度に よらず、 エアフローメータ 1 4が常に空気の流速が速い位置における正確な空気 量を読み取ることが可能になる。
図 3は、 エンジン 2の燃焼室 2 aに吸入される空気の流速と、 エアフローメー タ 1 4によって検出された吸入空気量に基づいて算出された空気の流速とを比較 した図である。
ここで、 図 3は、 スロットルバルブ 1 2の低開度時において、 エアフローメー タ 1 4の長手方向の軸線 1 4 Aが吸気通路 4の軸線 4 Aに対してなす角度 (エア フローメータ 1 4の設置角度)ひを時計回りに 3 0 ° 、 4 5 ° 、 6 0 ° 及ぴ 7 5 ° とした場合に、 クランク角度と、 吸気通路 4の入口における空気の流速及ぴエア フローメータ 1 4を通過する空気の流速との関係を示す。 なお、 図 3において、 横軸はクランク角度 (° ) を示し、 一方の縦軸は吸気通路 4の入口における空気 の流速 (mZ s ) を示し、 他方の縦軸はエアフローメータ 1 4を通過する空気の 流速 (mZ s ) を示す。
エアフローメータ 1 4の設置角度 αが 3 0 ° 以上の場合、 エンジン 2の吸入行 程の間であれば、 エアフローメータ 1 4を通過する空気の流速が負になることは ない。 つまり、 エアフローメータ 1 4の設置角度 αを 3 0 ° 以上に設定すれば、 空気の流れが逆流した影響を受け難くすることができる。 したがって、 ェアフロ 一メータ 1 4の設置角度 αは 3 0 ° 以上であることが好ましい。
また、エアフローメータ 1 4の設置角度 αが 7 5 ° の場合、クランク角度が 0 ° から 1 2 0 ° の間において、 エアフローメータ 1 4の設置角度 αが 6 0 ° 以上の 場合よりもエアフローメータ 1 4を通過する空気の流速が低下する。 エアフロー メータ 1 4の設置角度ひが 7 5 ° を越える場合は、 この傾向がより顕著に現れる と予想される。 したがって、 エアフローメータ 1 4の設置角度 αは 6 0 ° 以下で あることが好ましい。
なお、 スロットルバルブ 1 2を全開にすると、 吸気通路 4を流れる空気の流速 は、 吸気通路 4の内壁に近い位置であっても、 吸気通路 4の中心に近い位置であ つても大きく異なることはない。 つまり、 スロットルパルプ 1 2の全開時には、 エアフローメータ 1 4の設置角度 αを 6 0 ° 以下に設定すれば、 エアフローメー タ 1 4を通過する空気の流速を十分に計測可能である。
このようにエアフローメータ 1 4の設置角度を 3 0 ° 以上かつ 6 0 ° 以下とす ることで、 精度のよい波形を得られやすくなる。
上記の構成によれば、 エアフローメータ 1 4が、 空気の流速の速い位置におけ る空気量を読み取ることが可能になり、 さちに、 吸気通路 4の内壁 4 aに近い位 置では、 スロットルパルプ 1 2の開度によらず、 エアフローメータ 1 4が常に空 気の流速が速い位置における正確な空気量を読み取ることが可能になるので、 空 気の流量を精度よく測定することができる。 さらに、 空気の流量を精度よく測定 することにより、 空気の乱れを少なくすべく吸気通路 4を大きくする必要がない ので、 吸気通路 4の小型化が可能となる。
また、 空気流量を精度よく測定することが可能になるので空気流量の単位時間 当たりの波形の数からエンジン 2の回転数を算出することが容易となり、 また、 その時点におけるクランク角度あるいはスロットルバルブの開度など、 エンジン 2め状態を推定できるので、 正確な燃料噴射、 点火時期制御などをエアフローメ ータのみで実現することができる。
以上、 本発明の好ましい実施例を説明したが、 本発明は上記実施例に限定され ることはない。 本発明の趣旨を逸脱しない範囲で、 構成の付加、 省略、 置換、 お ょぴその他の変更が可能である。 本発明は前述した説明によって限定されること はなく、 添付のクレームの範囲によってのみ限定される。 産業上の利用の可能性
本発明は、 内燃機関の吸気通路に設けられた絞り弁と、 前記吸気通路に設けら れて前記絞り弁の下流側に配置され、 前記吸気通路に吸入される空気量を測定す る空気流量センサとを備える内燃機関の吸気装置であって、 前記空気流量センサ は、 空気流通路と、 前記空気流通路に配置されたセンサ素子とを備え、 前記空気 流通路の軸線は前記吸気通路の軸線に対して所定の角度をなしている内燃機関の 吸気装置に関する。
本発明は、 内燃機関の吸気通路に設けられて絞り弁の下流側に配置され、 セン サ素子と前記センサ素子を配置された空気流通路とを備える空気流量センサを用 い、 前記吸気通路に吸入される空気量を測定する内燃機関の吸入空気量測定方法 であって、 前記空気流量センサを、 前記空気流通路の軸線が前記吸気通路の軸線 に対して所定の角度をなすように配置したうえで、 前記空気量を測定する内燃機 関の吸入空気量測定方法に関する。
本発明によれば、 空気の流速の速い位置における空気の流量を読み取ることが 可能になり、 特に、 絞り弁が吸気通路の内壁に近い位置から開かれる場合、 吸気 通路の内壁に近い位置では、 空気流量センサが、 絞り弁の開度によらず常に空気 の流速が速レ、位置における空気の流量を読み取るこ.とが可能になるので、 空気の 流量を精度よく測定することができる。 さらに、 空気の流量を精度よく測定する ことにより、 空気の乱れを少なくすべく吸気通路を大きくする必要がないので、 吸気通路の小型ィヒが可能となる。

Claims

請求の範囲
1 . 内燃機関の吸気通路に設けられた絞り弁と、 前記吸気通路に設けられて前記 絞り弁の下流側に配置され、 前記吸気通路に吸入される空気量を測定する空気流 量センサとを備える内燃機関の吸気装置であって、
前記空気流量センサは、 空気流通路と、 前記空気流通路に配置されたセンサ素 子とを備え、 前記空気流通路の軸線を、 前記吸気通路の軸線に対して傾けて配置 されている。
2 . 請求項 1記載の内燃機関の吸気装置であって、 前記絞り弁は、 前記吸気通路 の軸線に垂直な回転軸と、 前記回転軸を中心に回転して前記吸気通路を開閉する 翼部とを備え、
前記空気流量センサは、 前記空気流通路の軸線を、 前記翼部を回転さ て前記 吸気通路を開いた状態での前記翼部と略同方向に傾けて配置されている。
3 . 請求項 2記載の内燃機関の吸気装置であって、 前記空気流通路の軸線の、 前 記吸気通路の軸線に対する角度が、 3 0 ° 以上 6 0 ° 以下である。
4 . センサ素子と前記センサ素子を配置された空気流通路とを備え、 内燃機関の 吸気通路における絞り弁の下流側に、 前記空気流通路の軸線が前記吸気通路の軸 線に対して傾斜するように配置された空気流量センサを用い、 前記吸気通路に吸 入される空気量を測定する内燃機関の吸入空気量測定方法であって、
前記空気流通路に流入する空気の流量に基づいて前記空気量を測定する。
PCT/JP2004/013866 2003-09-26 2004-09-15 内燃機関の吸気装置及び吸入空気量測定方法 WO2005038222A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04773352A EP1679431B1 (en) 2003-09-26 2004-09-15 Intake device for internal combustion engine and method of measuring intake air amount
US10/573,067 US7395700B2 (en) 2003-09-26 2004-09-15 Intake device for internal combustion engine and method of measuring intake air amount

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003335784A JP4034251B2 (ja) 2003-09-26 2003-09-26 内燃機関の吸気装置及び吸入空気量測定方法
JP2003-335784 2003-09-26

Publications (1)

Publication Number Publication Date
WO2005038222A1 true WO2005038222A1 (ja) 2005-04-28

Family

ID=34463073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013866 WO2005038222A1 (ja) 2003-09-26 2004-09-15 内燃機関の吸気装置及び吸入空気量測定方法

Country Status (5)

Country Link
US (1) US7395700B2 (ja)
EP (1) EP1679431B1 (ja)
JP (1) JP4034251B2 (ja)
CN (1) CN100458125C (ja)
WO (1) WO2005038222A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7516658B2 (en) * 2006-09-29 2009-04-14 Rosemount Inc. Electro-kinetic pressure/flow sensor
US7891236B2 (en) * 2008-08-14 2011-02-22 Richard Lucian Touchette Non obstructive pressure differential valve
DE102012100087A1 (de) * 2012-01-05 2013-07-11 Pierburg Gmbh Vorrichtung zur Bestimmung eines Gasmassenstroms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415388B2 (ja) * 1983-03-08 1992-03-17 Mazda Motor
JPH11501126A (ja) * 1995-12-21 1999-01-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 流動媒体の質量を測定するための測定装置
JP2003161652A (ja) * 2001-11-27 2003-06-06 Hitachi Ltd 流量測定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106537A (zh) * 1985-08-30 1987-03-18 株式会社日立制作所 空气流量计
JPS6436937A (en) * 1987-08-03 1989-02-07 Nippon Denso Co Intake device for internal combustion engine
US4942763A (en) * 1988-03-23 1990-07-24 Harpster Joseph W Flow sensor assembly
JPH0415388A (ja) 1990-05-01 1992-01-20 Mirai Ind Co Ltd 波付菅の接続構造及び接続具
JP2997529B2 (ja) * 1990-10-19 2000-01-11 株式会社日立製作所 熱式空気流量計
US5804718A (en) * 1996-04-24 1998-09-08 Denso Corporation Airflow meter having an inverted u-shape bypass passage
JP3292817B2 (ja) * 1997-04-24 2002-06-17 三菱電機株式会社 感熱式流量センサ
DE19735891A1 (de) * 1997-08-19 1999-02-25 Bosch Gmbh Robert Meßvorrichtung zum Messen der Masse eines in einer Leitung strömenden Mediums
CN1135366C (zh) * 1997-12-15 2004-01-21 东京瓦斯株式会社 流量计
DE19942502A1 (de) * 1999-09-07 2001-03-08 Bosch Gmbh Robert Vorrichtung zur Messung von zumindest einem Parameter eines in einer Leitung strömenden Mediums
DE60120339T2 (de) * 2001-01-05 2007-06-06 NGK Spark Plug Co., Ltd., Nagoya Gasdurchflussmessvorrichtung
DE10135142A1 (de) * 2001-04-20 2002-10-31 Bosch Gmbh Robert Vorrichtung zur Bestimmung zumindest eines Parameters eines in einer Leitung strömenden Mediums
JP3764860B2 (ja) * 2001-09-11 2006-04-12 株式会社日立製作所 流量計測装置
JP3709385B2 (ja) * 2002-07-01 2005-10-26 株式会社日立製作所 内燃機関用気体流量測定装置
JP4072860B2 (ja) * 2004-06-15 2008-04-09 株式会社デンソー 内燃機関の吸入空気量検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415388B2 (ja) * 1983-03-08 1992-03-17 Mazda Motor
JPH11501126A (ja) * 1995-12-21 1999-01-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 流動媒体の質量を測定するための測定装置
JP2003161652A (ja) * 2001-11-27 2003-06-06 Hitachi Ltd 流量測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1679431A4 *

Also Published As

Publication number Publication date
US20070101807A1 (en) 2007-05-10
CN1856639A (zh) 2006-11-01
CN100458125C (zh) 2009-02-04
US7395700B2 (en) 2008-07-08
JP4034251B2 (ja) 2008-01-16
EP1679431B1 (en) 2011-07-27
EP1679431A4 (en) 2009-04-29
JP2005098266A (ja) 2005-04-14
EP1679431A1 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP5389238B1 (ja) 内燃機関のウェイストゲートバルブ制御装置
EP1445455A2 (en) Fuel property determination system
CN102449292B (zh) 内燃机的控制装置
JP2010024878A (ja) 内燃機関の制御装置
WO2005038222A1 (ja) 内燃機関の吸気装置及び吸入空気量測定方法
JP3926763B2 (ja) 内燃機関の制御システム
JP4836179B2 (ja) 発熱抵抗体式流体流量測定装置
JPS58138258A (ja) 燃料供給装置
JP2007205298A (ja) 空気流量検出器の故障判定装置
JP2000328950A (ja) 内燃機関の過給装置
JPS5861411A (ja) 気体流量測定装置
WO1981003523A1 (en) Electronic control fuel injection device
JPS6232237A (ja) 内燃機関の空燃比制御装置
JP2002332885A (ja) 内燃機関の制御装置
JP3899329B2 (ja) 内燃機関の制御装置
WO2004094798A1 (ja) 内燃機関の吸気装置及び制御装置
JP2987675B2 (ja) 内燃機関の吸気制御装置
JPH10169457A (ja) ターボ過給機付エンジン
JP3961446B2 (ja) 内燃機関の制御装置
JP2587850Y2 (ja) 内燃機関のアイドル回転制御装置
JP2874360B2 (ja) 内燃機関の吸気装置
JPH07189773A (ja) 過給機付内燃機関の燃料供給制御装置
JPS6179826A (ja) 内燃機関用燃料供給装置
JPS5835265A (ja) 混合気調量装置
JPH07166930A (ja) 内燃機関のアイドリング時制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027543.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007101807

Country of ref document: US

Ref document number: 10573067

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004773352

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004773352

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10573067

Country of ref document: US