WO2005036292A1 - 自走式作業ロボット - Google Patents

自走式作業ロボット Download PDF

Info

Publication number
WO2005036292A1
WO2005036292A1 PCT/JP2004/014626 JP2004014626W WO2005036292A1 WO 2005036292 A1 WO2005036292 A1 WO 2005036292A1 JP 2004014626 W JP2004014626 W JP 2004014626W WO 2005036292 A1 WO2005036292 A1 WO 2005036292A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
assembly
obstacle
traveling
work
Prior art date
Application number
PCT/JP2004/014626
Other languages
English (en)
French (fr)
Inventor
Nobukazu Kawagoe
Shigeru Oyokota
Original Assignee
Figla Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004259181A external-priority patent/JP4391364B2/ja
Priority claimed from JP2004259346A external-priority patent/JP4429850B2/ja
Application filed by Figla Co.,Ltd. filed Critical Figla Co.,Ltd.
Priority to US10/572,729 priority Critical patent/US7660650B2/en
Priority to EP04792037A priority patent/EP1672455A4/en
Publication of WO2005036292A1 publication Critical patent/WO2005036292A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors

Definitions

  • the present invention relates to a work robot suitable for work on a floor or the like near a wall.
  • This type of work robot includes a plurality of distance sensors that measure a distance from a main body to an obstacle. When the distance measured by the distance sensor is smaller than a predetermined threshold, the robot performs a predetermined avoidance operation and is controlled so as not to collide with a wall.
  • the threshold value is set to a predetermined constant value so that the robot does not move away from the wall too much.
  • the threshold value is not sufficiently large, when the inclination angle between the main body and the obstacle is large, the front end of the robot can be moved despite the fact that the head of the center of the robot is not close to the obstacle. Side approaches obstacle. Therefore, detection may be delayed and the robot may collide with an obstacle.
  • a main object of the present invention is to provide a self-propelled work robot that can accurately detect various obstacles.
  • the autonomous traveling vehicle disclosed in Japanese Patent Application Laid-Open No. 9-114523 faces the side of the vehicle. Although it is possible to run parallel to the wall, the work cannot be performed on the corners, and like the above-mentioned cleaning robot, cleaning remains at the corners where dust is most likely to collect.
  • Another object of the present invention is to provide a self-propelled work robot that can work on the floor of a region to be worked without leaving every corner.
  • Still another object of the present invention is to provide a self-propelled work robot that can appropriately and promptly respond to contact with an obstacle from any direction.
  • a first aspect of the present invention is to measure a distance to a forward obstacle.
  • Self-propelled work robot equipped with a first distance sensor that measures the distance to an obliquely forward obstacle and a first distance sensor that measures the distance to the obstacle obliquely forward.
  • First determining means for determining the approach of an obstacle by comparing the distance with a predetermined first threshold value SHc; a second measuring distance to the obstacle measured by the second distance sensor;
  • a second determining means for determining the approach of the obstacle by comparing the threshold value with the threshold value SHr; and the first threshold value or the second threshold value based on information on the inclination angle of the obstacle obtained by the first and second measured distance forces.
  • an obstacle is detected by the first and second determination means, and the first threshold value or the second threshold value SHc, SHr is determined based on information on the inclination angle of the obstacle.
  • the information on the tilt angle includes the arrangement of the first and second distance sensors, the light emission directions of the first and second distance sensors, the first and second measurement distances, and the like.
  • forward is defined based on the traveling direction of the work robot.
  • the normal L perpendicular to the surface of the obstacle W and the travel of the robot It means the angle j8 between the direction F and it.
  • the result of the determination by the first determination means as to whether or not the obstacle has approached irrespective of the magnitude of the inclination angle, and the obstacle by the second determination means are different.
  • the robot determines that the robot has approached the obstacle when it obtains the result of determining whether or not the robot has approached and determines that one of the two determination results approaches.
  • the first distance is smaller than the second distance, that is, when the inclination angle is small, it is not the second determination means that the robot determines that the robot has approached the obstacle, but the first determination means. is there .
  • the approach can be determined and determined regardless of the inclination angle.
  • the inclination angle is smaller than a predetermined value, it is determined whether or not the obstacle approaches, based on the determination result by the first determination means.
  • the obstacle can be obtained regardless of the inclination angle of the obstacle. Can be detected.
  • the changing means sets the first threshold or the second threshold SHc, SHr such that the first threshold or the second threshold SHc, SHr increases as the inclination angle increases. .
  • the obstacle can be detected before the side of the front end of the robot comes into contact with the obstacle.
  • the first and second distance sensors are arranged close to each other.
  • the first distance and the second distance are compared, and as a result of the comparison, if the first distance is smaller than the second distance, the first distance is based on the determination result by the first determination unit. And determining whether or not the obstacle is approaching.
  • the second determination means or the first determination Means based on the result of the determination.
  • the two distance sensors are arranged close to each other and the first distance is smaller than the second distance, the first threshold value SHe and the second threshold value SHr are set to the same value. Good.
  • the first determination result and the second determination result are selectively used in accordance with the inclination angle between the main body and the obstacle, thereby obtaining the inclination angle of the obstacle. Obstacles can be detected regardless of the situation.
  • the first and second distance sensors also have an optical distance sensor force
  • the first distance sensor is provided at a head portion at the center on the left and right of the robot
  • the second distance sensor is a first distance sensor.
  • An ultrasonic distance sensor that is provided in a pair adjacent to both sides of the distance sensor and that measures the distance to an obstacle in front of both sides of the front end of the robot, in addition to the optical first and second distance sensors. It is preferable to provide
  • the obstacle can be detected more accurately.
  • optical distance sensor for example, by irradiating light and grasping a part of the light beam diffusely reflected by the obstacle through a light receiving lens, the distance between the obstacle and the obstacle can be measured.
  • a commercially available optical distance sensor that measures by triangulation can be used.
  • ultrasonic distance sensor for example, a commercially available ultrasonic sensor that emits an ultrasonic wave and measures the time until the sound wave returns as a reflected wave of obstacles to measure the distance to the target object
  • An ultrasonic distance sensor can be used.
  • the first and second distance sensors also have an optical distance sensor force
  • the first distance sensor is provided at a head portion at the center on the left and right of the robot
  • the second distance sensor is a first distance sensor.
  • a pair of sensors are provided adjacent to both sides of the distance sensor
  • a protective cover is provided at the head of the robot.
  • the protective cover has a concave portion having three side surfaces and a ceiling surface facing the three sensors, It is preferable that a third distance sensor that measures the distance to the front obliquely downward is disposed at an inner position facing the ceiling surface.
  • the third distance sensor that detects the front obliquely downward, it is possible to detect the unevenness of the front floor surface. Further, since the distance sensor is provided in the concave portion of the protective cover, the surface of the concave portion can be prevented from being damaged.
  • a robot working in the second aspect of the present invention includes a traveling assembly having wheels for self-propelled movement on a floor surface, and a movably mounted left and right movable member with respect to the traveling assembly to perform work on the floor.
  • a working assembly to be performed a moving mechanism for changing a positional relationship between the traveling assembly and the working assembly, and a moving mechanism for moving the working assembly with respect to the traveling assembly; and a front surface of the working assembly provided on the working assembly.
  • a first contact sensor that detects that an obstacle has come into contact with the traveling assembly; a second contact sensor that is provided on the working assembly and that detects that an obstacle has contacted a side surface of the working assembly;
  • the work assembly is moved right and left at a first retreat speed based on a detection signal of the first contact sensor. And controlling the moving mechanism to move the work assembly left and right at a second retreat speed lower than the first retreat speed based on the detection signal of the second contact sensor. And control means.
  • the first contact sensor detects this, and the work assembly moves at a fast first evacuation speed, and the left and right unobstructed parts move. On the other hand, it retracts until the contact state is released. Therefore, it becomes possible to make the robot travel at a certain speed.
  • front or “front” is defined based on the traveling direction of the robot.
  • the second contact sensor detects this and the work assembly moves at a low second retreat speed to the opposite side of the obstacle. Evacuate to one of the left and right until the contact state is released. Therefore, since the robot can run while the work assembly is along the obstacle, there is no inconvenience that the work assembly is too far away from the wall, which is an obstacle.
  • control means has a function of stopping traveling when the time of contact detection by the first contact sensor is longer than a predetermined time. With this configuration, it is possible to prevent the work robot from being damaged due to contact with an obstacle and the obstacle from being damaged.
  • the predetermined time is set to a small value when the traveling speed is high, and is set to a large value when the traveling speed is slow.
  • control means when the control means detects that the time detected by the first contact sensor has exceeded a predetermined threshold value and stops running, the control means moves backward by a predetermined distance after the stop. After moving the work assembly in the evacuation direction by a predetermined distance, the traveling assembly and the work assembly moving mechanism are preferably controlled so as to restart traveling forward.
  • the work assembly can be prevented from moving while being in contact with the obstacle, so that the work assembly can be prevented from damaging an obstacle such as a wall.
  • the control means when the work assembly is moved based on the detection signal of the contact sensor, the control means does not detect the contact by the two contact sensors.
  • the moving mechanism is controlled so that the relative position of the working assembly with respect to the traveling assembly is returned to a position before contact with the contact sensor is detected at a return speed lower than the second retreat speed. .
  • the work assembly is formed in a substantially rectangular shape in plan view
  • the contact sensor includes a pump that covers the periphery of the work assembly, a detection unit that moves integrally with the pump, and the detection target. And a detection switch for detecting the portion.
  • the pamper is divided into right and left, and the detected part and the detection switch are provided for each of the divided pampers. It is preferable that the right bumper is positioned at a predetermined right end position while being urged right by the panel force while being urged by the panel force.
  • the pamper is divided into right and left, and is positioned at the left and right ends while being urged by the panel force. Therefore, there is no need to support the pampers in a floating state, and there is no possibility that the pampers will swing left and right during traveling or the like. Therefore, the contact with the wall can be detected with high accuracy.
  • the pamper is divided into left and right and front and rear, and the detected part and the detection switch are provided for each of the divided reminds. Is positioned at the predetermined left end and front end positions while being urged by the panel force,
  • the right front pamper is positioned at the predetermined right and front ends while being urged to the right and forward by the panel force, and the left rear pamper is applied to the left and rear by the panel force. It is positioned at the predetermined left and rear end positions when biased, and the right rear pamp is positioned at the predetermined right and rear end positions while biased by the panel force in the right and rear directions. Being preferred to
  • the pamper is divided into right and left and front and back, and the detected part and the detection switch are provided for each of the divided pampers. It is preferable that the stopper is positioned at a predetermined position by a stopper in a state where it is urged outward by a panel force so that it can be retracted inward when it comes into contact with an obstacle.
  • the pampers are divided into four parts, and the support members of the respective pampers are in contact with the stoppers with the spring force, so that the small divided pampers are stably supported. Therefore, even if the working part is long in the left and right directions, there is no possibility that the pamper will bend.
  • the respective pampers are continuous at the four corners, and The front, rear and two sides are separated from each other! And it is even more preferable! / ⁇ In this way, the continuation of the four corners obstructs the four corners of the pampa. Since there is no danger of getting stuck (being caught), smooth running can be expected.
  • Still another robot of the present invention is a traveling assembly rotatable around a vertical line with respect to a floor, and is mounted in front of or behind the traveling assembly to perform work on the floor.
  • a work assembly a rotation angle measuring means for measuring a rotation angle of the traveling assembly around the vertical line; a storage means for storing the rotation angle; and a distance from each other in a width direction of the traveling assembly.
  • a plurality of forward distance measuring means for measuring a distance to an obstacle in a traveling direction of the traveling assembly; and a lateral distance for measuring a distance to an obstacle on a side with respect to the traveling direction of the traveling assembly.
  • the traveling assembly is rotated around the vertical line until the rotation angle of the traveling assembly reaches the predetermined range, and the rotation angle of the traveling assembly is stored in the storage means.
  • the control means controls the traveling operation of the traveling assembly so as to travel along the obstacle ahead based on the rotation angle stored in the storage means.
  • the traveling assembly stops traveling, and the plurality of forward distance measurement hands are stopped.
  • the traveling assembly rotates about a vertical line until the measured distances of the steps are approximately equal. Since the angle of inclination of the obstacle with respect to the traveling direction of the traveling assembly is equal to the rotation angle when the measurement distances of the plurality of forward distance measurement means are substantially equal, the rotation angle is measured by the rotation angle measurement means. Thus, the inclination angle of the obstacle can be obtained.
  • the determination means it is possible to determine whether or not a force that requires work on the corner is required.
  • the traveling assembly If it is determined that the traveling assembly has traveled along the side wall, the operation of the traveling assembly is controlled so as to travel along a front obstacle after performing work on the corner. On the other hand, if it is determined that the traveling assembly is traveling at a position separated from the side wall, the traveling assembly immediately performs the rotation operation and immediately follows the obstacle in front of the traveling assembly. Is controlled.
  • the traveling operation of the traveling assembly is controlled according to the inclination angle of the obstacle and the presence or absence of the side wall. Since the work can be reliably performed on the corner formed by the obstacle in front, the work can be performed on the floor of the target area without leaving any corner.
  • the determination means when the forward distance measuring means detects an obstacle and the traveling assembly stops, the determination means performs the determination before the traveling assembly starts the rotation operation. If the determining means determines that the traveling assembly has traveled along the lateral wall until the rotation operation is performed, the traveling assembly moves by a predetermined distance in a direction away from the rotation center of the rotational operation by the lateral wall force. After that, it is preferable that the control means controls the traveling operation of the traveling assembly so as to perform the rotation operation.
  • the rotation center of the rotation operation is shifted to a position away from the lateral wall by a predetermined distance, so that the front distance measurement means is provided during the rotation operation. Since there is no risk that some of the distances may incorrectly measure the distance to the obstacle in front and the distance to the side wall, the inclination angle of the obstacle in front can be accurately measured.
  • the forward distance measuring means includes a plurality of ultrasonic sensors.
  • An ultrasonic sensor and a plurality of optical sensors wherein the ultrasonic sensor and the optical sensor are provided separately from each other in a width direction of the traveling assembly, and the ultrasonic sensor detects an obstacle, and When the optical sensor detects an obstacle, it is determined that the inclination of the obstacle with respect to the traveling direction of the traveling assembly is smaller than a predetermined inclination angle, and the ultrasonic sensor detects the obstacle. If the obstacle is not detected and the optical sensor detects an obstacle, it is determined that the inclination of the obstacle with respect to the traveling direction of the traveling assembly is larger than a predetermined inclination angle.
  • the obstacle can be detected by the optical sensor. Accuracy can be improved.
  • the measurement accuracy of the inclination angle of the obstacle can be improved.
  • the forward distance measuring means includes a plurality of ultrasonic sensors and a plurality of optical sensors
  • the plurality of optical sensors are provided in the traveling assembly. It is preferable to include a sensor provided at a predetermined angle with respect to the traveling direction.
  • the "side distance value" which is the distance to the side obstacle calculated based on the history of the measured values of the side distance measuring means. Is stored in the storage means. Further, in the rotation operation for obtaining the inclination angle of the front obstacle, the rotation angle of the traveling assembly when the difference or ratio of the measurement distances of the plurality of front distance measurement means falls within the predetermined range is changed.
  • the tilt angle of the obstacle is stored in the storage means as a “tilt angle value”, and the measurement distance of the forward distance measuring means at that time is stored in the storage means as a “forward distance value”.
  • the control means determines a positional relationship between the position of the intersection between the forward obstacle and the side obstacle and the traveling assembly based on the values of the "lateral distance value”, the “inclination angle value”, and the "forward distance value”. Is calculated, and based on the positional relationship information, the traveling operation of the traveling assembly is controlled so that work is performed on a corner formed by the front obstacle and the side obstacle. To do.
  • FIG. 1 is a schematic perspective view of a self-propelled work robot according to a first embodiment of the present invention, as viewed obliquely from the front.
  • FIG. 2 is a schematic perspective view of the robot, also observing an oblique rearward force.
  • FIG. 3 is a plan sectional view of the working robot.
  • FIG. 4 is a schematic configuration diagram showing a control mechanism of the working robot.
  • FIG. 5 is a schematic view showing the principle of detecting an obstacle.
  • FIG. 6 is a schematic plan view showing a method for detecting an obstacle.
  • FIG. 7 is a plan sectional view of the work assembly.
  • FIG. 8 is a plan sectional view showing a right part of the work assembly.
  • FIGS. 9 (a) and 1 (c) are plan sectional views showing a method of detecting an obstacle.
  • FIG. 10 (a)-(c) are plan sectional views showing a method of detecting an obstacle.
  • 11 (a)-(d) are plan views each showing a method of avoiding an obstacle.
  • FIG. 12 (a) is a plan view showing a method of avoiding an obstacle by the working robot, and (b) is a plan view showing a comparative example.
  • FIG. 13 (a) is a plan view showing an avoidance method in a case where the vehicle does not stop even if it comes into contact with an obstacle, and (b) is a plan view showing an avoidance method in a case where the vehicle stops and retreats.
  • FIG. 14 (a) is a plan view showing a configuration of a traveling assembly of a working robot according to a second embodiment
  • FIG. 14 (b) is a side view of the same.
  • FIG. 15 (a) is a plan view showing the appearance of the working robot, and (b) is a block diagram showing a control configuration.
  • FIG. 16 is a plan view showing an operation when working in a region surrounded by a right-angled wall.
  • FIG. 17 is a plan view showing an operation when working on an obtuse corner.
  • FIG. 18 is a plan view showing the same series of working steps.
  • FIG. 20 is a plan view showing the operation when working along a diagonal wall in a lane apart from the lateral wall force.
  • FIG. 21 is a plan view showing an operation when working on a sharp corner.
  • FIG. 22 is a plan view showing the operation of the second embodiment.
  • FIG. 23 is a plan view showing the same series of working steps.
  • FIG. 24 is a plan view showing an operation in a case where measurement cannot be performed only with an ultrasonic sensor. Explanation of symbols
  • Optical sensor forward distance measuring means
  • 80 CPU (control means, judgment means)
  • the self-propelled work robot includes a traveling assembly 1 like a trolley running on the floor by itself, and a work assembly 2 for sucking dust on the floor.
  • the working assembly 2 is provided behind the traveling assembly 1 with respect to the stationary traveling direction F of the traveling assembly 1.
  • a suction unit 56 is provided above the traveling assembly 1.
  • the suction unit 56 is provided with a dust container (tank), a blower motor, a filter, and the like.
  • the suction unit 56 and the working assembly 2 are connected via a suction hose 57.
  • a suction port 59 is provided on the lower surface of the work assembly 2.
  • the traveling assembly 1 has a pair of drive wheels 6a and 6b for driving the traveling assembly 1 and a free caster 1 (approximately at the center of a front portion and a rear portion of the traveling assembly 1). (Not shown)).
  • the drive wheels 6a, 6b are driven by drive motors 5a, 5b, respectively.
  • the drive motors 5a and 5b can rotate forward and backward.
  • the control means 8 (FIG. 4) controls the traveling of the traveling assembly 1.
  • the traveling assembly 1 can move forward or backward by rotating the two drive motors 5a and 5b in the same direction.
  • the two drive motors 5a and 5b rotate in opposite directions, whereby the rotation operation of the robot is performed.
  • the traveling assembly 1 can perform a curved traveling.
  • the work assembly 2 is provided with a mounting plate 11 for mounting the main body 20 of the work assembly 2 to the traveling assembly 1.
  • a rail 14 extending in the left-right direction X substantially perpendicular to the traveling direction F is provided behind the traveling assembly 1.
  • the mounting plate 11 is mounted on the rail 14 and is connected to a slide drive motor 15 via a timing belt 12 and a pulley 13.
  • the mounting plate 11 is slid left and right along the rail 14 by the slide drive motor 15. Therefore, the mounting plate 11, the timing belt 12, the pulley 13, the rail 14, and the slide drive motor 15 constitute a moving mechanism for moving the work assembly 2 left and right with respect to the traveling assembly 1.
  • a plurality of ultrasonic (distance) sensors 3a to 3d and first to third optical (distance) sensors 4a to 4d are provided at the front of the traveling assembly 1 in FIG.
  • two ultrasonic sensors 3a and 3b measure the distance to obstacles on the left and right of the traveling assembly 1.
  • the remaining ultrasonic sensors 3c and 3d The optical sensors 4a-4d are provided on both sides of the front end of the traveling assembly body 111, and the optical sensors 4a-4d are provided at the center of the front end. These sensors 3c, 3d, 4a-4d measure the distance to the obstacle in front of the traveling assembly 1.
  • Optical sensors 4a-4d are identical to Optical sensors 4a-4d:
  • the first optical sensor 4a is provided at the head of the center in the left-right direction X of the robot.
  • the first optical sensor 4a measures the distance Dc (FIG. 6) to the obstacle W ahead.
  • second optical sensors 4b and 4c are provided near the first optical sensor 4a.
  • the second optical sensors 4b and 4c measure the distances Dr and D (FIG. 6) to the obliquely right and left obstacle W.
  • the third optical sensor 4d in FIG. 1 is provided above the first optical sensor 4a.
  • the third optical sensor 4d measures the distance Dd to the front diagonally below.
  • a protective cover 112 is provided at the head of the main body 111 of the traveling assembly 1.
  • the protection cover 112 has a recess 113 formed therein.
  • the concave portion 113 has side surfaces 113a and 113c which are in close proximity to the three sensors of the first and second optical sensors 4a-4c.
  • the recess 113 has a ceiling surface 113d.
  • the third optical sensor 4d is disposed at a position facing the ceiling surface 113d.
  • An optical sensor (not shown) may be disposed at a position facing the bottom surface 113e to detect whether or not an obstacle that cannot be passed through by the robot is in front of and above a force.
  • Control means :
  • the control means 8 includes a sensor signal input means 40, a traveling wheel control means 41, a slide control means 42, an optical sensor control means 43, an ultrasonic sensor control means 45, a blower motor control means 50, and a microcomputer. (Microcomputer) equipped with 44! Each of the means 40-43, 45, and 50 is connected to the microcomputer 44 via an interface (not shown).
  • the microcomputer 44 includes a CPU 46, a RAM 47, a ROM 48, and a timer 49 for measuring time.
  • the ROM 48 stores in advance evacuation speeds A1 to A3 and various threshold values, which will be described later.
  • the sensor signal input means 40 is connected to, for example, a detection switch (a part of a contact sensor) SL1—SL4, SR1—SR4 provided on the work assembly 2 and serving as an optical sensor. Yes.
  • the traveling wheel control means 41 controls the rotation of the drive motors 5a and 5b in FIG. 3, and controls the traveling of the traveling assembly 1.
  • the slide control means 42 (FIG. 4) controls the rotation of the slide drive motor 15 and controls the moving mechanism of the work assembly 2.
  • the sensor control means 43, 45 (FIG. 4) controls the ultrasonic sensors 3a-3d and the optical sensors 4a-4d.
  • the ROM 48 (FIG. 4) further stores in advance a traveling pattern of the traveling assembly 1, first and second thresholds SHc and SHr, a stopping distance DrO, and various arithmetic expressions, which will be described later.
  • the CPU (first determining means) 46 compares the first measured distance Dc to the obstacle W in FIG. 5 measured by the first optical sensor 4a with the first threshold SHc. Then, the first determination for determining the approach of the obstacle W is performed.
  • the CPU (second determination means) 46 compares the second measured distance Dr (D) to the obstacle W measured by the second optical sensor 4b (4c) with the second threshold value SHr.
  • a second determination is made to determine the approach of the obstacle W.
  • the CPU 46 determines that the robot has approached the obstacle when it is determined that one of the two determination means has approached.
  • the CPU 46 may perform deceleration, stop, turn, change direction, retreat, etc. of the traveling assembly 1, or may combine a plurality of these to form the obstacle W. Collisions may be avoided. Alternatively, the vehicle may be decelerated and travel along the wall.
  • the first determination and the second determination are performed according to the inclination angle ⁇ , so that it is possible to determine whether or not the obstacle W approaches the force regardless of the inclination angle ⁇ . . That is, as shown in FIG. 6A, when the inclination angle ⁇ is smaller than the predetermined reference angle, the result of the discrimination by the first discriminating means is valid, and whether or not the robot approaches the obstacle W is determined. A determination is made.
  • the reference angle has the following value.
  • the irradiation directions of the light from the second optical sensors 4b and 4c on both sides are set to predetermined attachment angles ex and a, respectively, with respect to the irradiation direction of the light from the first optical sensor 4a. ing. Therefore, when the inclination angle ⁇ of the obstacle W becomes 1Z2 of the mounting angle ⁇ , the first measurement distance Dc of the first optical sensor 4a and the second measurement distance of the second optical sensor 4b (4c) Dr (D) matches.
  • the CPU 46 detects the approach of the obstacle W earlier than the second determination means, so that the first measurement is performed. If the distance Dc is less than or equal to the first threshold SHc, it is determined that the obstacle W has approached.
  • the second threshold SHr when the second threshold value SHr is set to a fixed value, the inclination angle ⁇ of the obstacle W is extremely large. In such a case, there is a possibility that both sides of the front end may collide with the obstacle W. Therefore, the second threshold SHr should be increased as the inclination angle ⁇ in FIG.5 increases, and as described below, as the inclination angle ⁇ of the obstacle W increases, the second threshold SHr increases. Large value of I'm frustrated.
  • the second threshold SHr may be changed according to a ratio or a difference between the first measurement distance Dc and the second measurement distance Dr. For example, when the difference (Dc ⁇ Dr) is large, the second threshold value SHr may be increased according to the magnitude of the difference. If the ratio (Dc / Dr) is large, the second threshold value SHr may be increased according to the ratio.
  • the CPU 46 calculates the second threshold value SHr using the following equation (11).
  • the CPU 46 calculates the second threshold value SHr based on the equation (11), and compares the second threshold value SHr with the second measurement distance Dr.
  • the second threshold value SHr is equal to the travel stop reference value DrO. Becomes the same value as
  • the CPU 46 compares the second measurement distance Dr with the second threshold value SHr, and determines that the robot has approached the obstacle W when the second measurement distance Dr is equal to or less than the second threshold value SHr.
  • SHr DrO- (Dr-Dc) Z2 may be used in addition to the expression (11).
  • the force for determining whether the obstacle W has approached or not is determined.
  • a method is also conceivable in which the determination by the first determination means is always performed, and the first threshold value SHc increases as the inclination angle ⁇ of the obstacle W increases.
  • the first threshold SHc increases, so that even when the inclination angle ⁇ of the obstacle W is large.
  • the approach of the obstacle W can be detected using the determination result by the first determination means.
  • the accuracy of the distance sensor generally improves as the measurement distance decreases. Therefore, in general, when the inclination angle is large as in the present embodiment, it is preferable to use the second determination unit having a smaller measurement distance. However, depending on the type of the distance sensor, the measurement accuracy may be reduced below a predetermined distance.In such a case, the first determination unit always performs the determination, and as the inclination angle of the obstacle becomes smaller, It is preferable to adopt a method of increasing the first threshold value SHc U ⁇ .
  • the first and second optical sensors may be provided on the front side of the work robot. In such a case, only the second optical sensor measures the obliquely forward distance outside the robot body.
  • the working assembly 2 is rectangular in plan view.
  • the width of the working assembly 2 in the left-right direction is larger than the width of the traveling assembly 1 in the left-right direction X. Therefore, the working assembly 2 also protrudes the lateral force of the traveling assembly 1.
  • Working assembly 2 includes a main body 20 and pumps 21 (L, R) and 22 (L, R) covering the periphery of the main body 20.
  • the pampers 21 and 22 are divided into right and left and front and rear.
  • the pumps 21 and 22 are provided as mirror objects with respect to the center in the left-right direction X substantially perpendicular to the traveling direction F of the working robot.
  • each of the bumpers 21 and 22 is continuous at four corners.
  • Each of the pumps 21 and 22 is divided from each other on the front surface, the rear surface and two side surfaces.
  • the rear pumps 22L, 22R are divided substantially at the center in the left-right direction X of the work assembly 2.
  • the divided portions of the rear pumps 22L and 22R are substantially parallel to each other.
  • first and second rollers 25 and 26 are provided at the front corner portion and the rear corner portion of the pampers 21 and 22, respectively.
  • the rollers 25 and 26 are omitted.
  • FIG. 8 is a plan sectional view showing a right side portion of the work assembly 2. As shown in FIG.
  • the right front pump 21R is supported via a bracket 27 on a front bar (detected portion) 30F extending in the left-right direction X along the right front pump 21R.
  • the front bar 30F is attached to the work assembly body 20 via the first and second arms 31, 32.
  • the left and right ends of the front bar 30F are provided with the first and second arms 31, 32, respectively.
  • the first and second arms 31 and 32 are attached to the work assembly main body 20 so as to be rotatable around the rotation shafts 31 ⁇ and 32 ⁇ .
  • Elongated holes 31a and 32a are formed in the first and second arms 31 and 32, respectively.
  • the left and right ends of the front bar 30F are formed with sliding portions 30a, 30a that slide in the long holes 31a, 32a. Therefore, the front bar 3OF is supported via the first and second arms 31, 32 so as to be movable back and forth, right and left, and obliquely with respect to the work assembly body 20 (FIG. 9A). (c)).
  • a spring 31s is wound around a rotation shaft 31 ⁇ of the first arm 31 on the right side.
  • the front bar 30F is urged rightward by the panel force of the spring 31s as shown by the arrow.
  • a stopper 35 is fixed to the work assembly body 20.
  • the front bar 30F is positioned at a predetermined position on the right end.
  • the work assembly body 20 is provided with a third arm 33 for urging the front bar 30F in the traveling direction F.
  • the third arm 33 is provided to be rotatable with respect to the work assembly main body 20 about a rotation shaft 33 ⁇ .
  • a roller 34 that contacts the rear end of the front bar 30F is provided. The roller 34 urges the rear end of the front bar 30F toward the front direction F by the panel force of the spring 33s wound around the rotation shaft 33 ⁇ .
  • the front bar 30F is positioned at the end in the traveling direction F by contacting the front ends of the elongated holes 31a, 32a of the first and second arms 31, 32 with the sliding portions 30a, 30a.
  • the work assembly main body 20 is provided with right first and right second detection switches SRI and SR2 for detecting the position of the front bar 30F.
  • the first right detection switch SR1 is provided at a position corresponding to the right rear end of the front bar 3OF.
  • the second right detection switch SR2 is provided at a position corresponding to the left end of the front bar 30F.
  • the right first detection switch SRl (SLl) and the front bar 30F constitute a first contact sensor that detects that the front surface of the work assembly 2 has contacted the obstacle W.
  • the obstacle W contacts the side of the right front pump 21R via the first roller 25.
  • the front bar 30F moves to the left.
  • the light of the second switch SR2 is blocked by the front bar 30F, and the front bar 30F is detected. Therefore, the right second detection switch SR2 (SL2) and the front bar 30F constitute a second contact sensor that detects the contact of the obstacle W with the side surface of the work assembly 2.
  • the left first and second left detection switches SLl and SL2 provided on the left side of the working assembly 2 are respectively the right first and right second detection switches SRI and SR2. Is provided at a mirror target position. Therefore, the relationship between the detection signals of the left and right first and second detection switches SRI, SR2, SLl, SL2 and the contact position of the obstacle during forward movement is as follows.
  • the right rear pump 22R is supported via a rear bar (detected portion) 30B force bracket 27 extending in the left-right direction X along the right rear pump 22R.
  • the moving mechanism and the positioning mechanism of the rear bar 3OB are the same as those of the above-described front bar 30F, and the corresponding portions are denoted by the same reference numerals and description thereof will be omitted.
  • the work assembly body 20 has a third right and a fourth right detection for detecting the position of the rear bar 30B.
  • Output switches SR3 and SR4 are provided.
  • the right third detection switch SR3 is provided at a position corresponding to the right front end of the rear bar 30B.
  • the right fourth detection switch SR4 is provided at a position corresponding to the left front end of the rear bar 30B.
  • the left end of the rear bar 30B moves forward.
  • the right fourth detection switch SR4 detects the rear bar 30B.
  • the left third and fourth fourth detection switches SL3 and SL4 provided on the left side of the work assembly body 20 are mirrored to the right third and right fourth detection switches SR3 and SR4, respectively. Position. Therefore, the relationship between the detection signals of the third and fourth detection switches SR3, SR4, SL3, SL4 on the left and right and the contact position of the obstacle at the time of retreat is as follows.
  • SR3 and SR4 Contact near right side of work assembly 2 (Fig. 10 (c))
  • the CPU 46 receives the detection signals from the detection switches SR1 to SR4 and SL1 to SL4 via the sensor signal input means 40, so that each of the pumps 21 (L, It is possible to determine in detail which part of R), 22 (L, R) has contacted the obstacle W.
  • the CPU 46 performs various operations based on the strong detection signal. Perform the avoidance action.
  • U46 receives the force detection signal of the left second detection switch SL2 (Fig. 7) and outputs the first retreat speed A
  • the work assembly 2 is retracted rightward at the second retreat speed A2 lower than 1.
  • U46 receives the detection signal from the second right detection switch SR2 (FIG. 7), and retreats the work assembly 2 leftward at the second retreat speed A2.
  • the first retreat speed A1 is preferably, for example, about lm / sec to about 13 m / sec. No.
  • the evacuation speed A2 of 2 is preferably, for example, about 10 cmZ seconds to 30 cmZ seconds.
  • Fig. 12 (a) shows an example in which the work robot is run near a wall by employing the control method described above.
  • the obstacle W is present on the right side of the work robot will be described with an example.
  • a relatively small protrusion W1 protrudes toward the left side.
  • the work assembly 2 is located substantially at the center in the left-right direction X in the initial state.
  • FIG. 12B shows a comparative example.
  • the work assembly 2 when the side surface of the work assembly 2 comes into contact with the obstacle W, the work assembly 2 is moved at the second low retreat speed A2. Therefore, the time during which the work assembly 2 and the obstacle W are separated from each other is reduced, and the wall near the obstacle W can be cleaned.
  • the work assembly 2 when the obstacle W comes into contact with the front of the work assembly 2, the work assembly 2 is moved at a high speed at the first retreat speed A1. Therefore, the possibility that the work assembly 2 is caught by the obstacle W is reduced.
  • the avoidance operation is performed as follows.
  • the first right detection switch SR1 transmits a detection signal to the CPU 46 (FIG. 9 (a)). The transmission of the detection signal is continued until the contact of the obstacle W is eliminated.
  • the timer 49 starts counting time and measures the detection time.
  • the CPU 46 compares the detection time with the threshold (time H) from which the ROM 48 power is also read, and when the detection time is longer than the threshold (time H), the traveling assembly 1 shown in FIG. Stop running. After the stop, the CPU 46 moves the traveling assembly 1 backward by a predetermined distance. Further, the CPU 46 moves the work assembly 2 in the retreat direction by a predetermined amount at the first retreat speed A1. After that, the driving case
  • the threshold (time H) is reduced (the time is shortened) as the traveling speed of the traveling assembly 1 increases. This is because the faster the traveling speed is, the shorter the time required for the work assembly 2 to lean on the protrusion of the wall and tilt in the traveling direction is reduced.
  • a plurality of threshold values are stored in the ROM 48, and the traveling speed of the traveling assembly 1 is high, if it is low, the threshold value is read out, and if the traveling speed is low, it is large.
  • the threshold value may be read. In addition, it performs a predetermined calculation and travels The threshold may be calculated according to the speed.
  • an optical sensor was used in the above embodiment.
  • any sensor can be used as long as it can detect contact with an obstacle.
  • a contact-type switch may be used.
  • rear left and right pumps may be integrally formed. Also, only the front left and right bumpers may be used.
  • the working robot 100 includes a traveling assembly 1 and a working assembly 2 shown in FIGS. 15 (a) and 15 (b).
  • the traveling assembly 1 includes driving wheels 6a and 6b for driving the traveling assembly 1 and driven wheels 9a and 9b.
  • the drive wheels 6a, 6b are driven by drive motors 5a, 5b, respectively.
  • the drive motors 5a and 5b can rotate forward and reverse, and the rotation is controlled by a microcomputer (control means) 8.
  • the traveling assembly 1 can move forward or backward by rotating the two drive motors 5a and 5b in the same direction.
  • the traveling assembly 1 rotates around a vertical line (center of rotation) O with respect to the floor surface in FIG. 14 by the two drive motors 5a and 5b rotating in opposite directions. be able to.
  • the traveling assembly 1 can perform a curved traveling.
  • a mounting plate 11 for mounting the work assembly 2.
  • the mounting plate 11 is driven by a slide drive motor 15 and is slidable along the rail 14 in the width direction X of the traveling assembly 1.
  • the work assembly 2 shown in FIG. 15A is attached to the rear of the traveling assembly 1 via the attachment plate 11.
  • the work assembly 2 performs work on the floor surface in close proximity to or in contact with the floor surface.
  • the work assembly 2 sucks dust on the floor or applies a paint to the floor surface.
  • the work assembly 2 is mounted on the mounting plate 11.
  • the slide assembly can slide with respect to the traveling assembly 1 in the width direction X.
  • a plurality of ultrasonic sensors 3a-3e and a plurality of optical sensors 17a-17e are provided at the front of the traveling assembly 1.
  • the two ultrasonic sensors 3a and 3b constitute side distance measuring means for measuring the distance to obstacles on the left and right of the traveling assembly 1.
  • the remaining ultrasonic sensors 3c, 3d, 3e and the optical sensors 17a, 17b, 17c, 17d, 17e provide a forward distance measuring means for measuring a distance to an obstacle in front of the traveling assembly 1.
  • a bumper sensor 10 for detecting contact with an obstacle is provided at a front outer edge portion of the traveling assembly 1.
  • the ultrasonic sensors 3c, 3d, 3e and the optical sensors 17a, 17b, 17c, 17d, 17e are provided separately from each other in the width direction X of the traveling assembly 1.
  • the two optical sensors 17b and 17d are each provided at a predetermined angle with respect to the traveling direction of the traveling assembly 1.
  • the microcomputer 8A includes drive motors 5a, 5b, a slide drive motor 15, forward distance measuring means 3c-3e, 17a-17e, side distance measuring means 3a, 3b, A gyro sensor (rotation angle measuring means) 7 and a bumper sensor 10 are connected via an interface (not shown).
  • the gyro sensor 7 measures the rotation angle of the traveling assembly 1 around the vertical line O, and is provided near the rotation center O as shown in FIGS. 14 (a) and 14 (b). ing.
  • the microcomputer 8A includes a CPU (control means, determination means) 80 and a memory (storage means) 81.
  • the memory 81 stores respective measurement values measured by the front distance measuring means 3c-3e, 17a-17e, the side distance measuring means 3a, 3b, and the gyro sensor 7.
  • the work robot 100 travels on a plurality of traveling lanes 201 and 202 parallel to the side wall (side obstacle) in the order of one end force. If the work robot 100 detects a wall (a front obstacle) ahead while traveling in a certain lane, the traveling assembly 1 rotates 90 degrees, moves forward by a predetermined distance along the front wall, and rotates 90 degrees to move next to it. Go to lane. In this way, the work robot 100 performs work in the target area while traveling from the start position P1 to the end position P2 by repeating the turn and the travel.
  • FIG. 17 shows an example in which the work robot 100 encounters the front diagonal wall 51 while working while moving forward along the lateral wall 52.
  • This example is an example in which the angle between the front oblique wall 51 and the horizontal wall 52 is an obtuse angle.
  • FIG. 17 (a) is a diagram showing a state where the work robot 100 is moving forward along the lateral wall 52.
  • D1 is the distance from the rotation center O of the traveling assembly 1 to the lateral wall 52
  • Mb of the sensor 3b is the distance between the rotation center O and the force of the sensor 3b in the width direction X. It is calculated by adding.
  • the measurement by the side distance measuring means 3a and 3b is repeatedly executed at a predetermined cycle, and the data of the past 120 times are stored in time series in the memory 8
  • the travel distance data force of the travel assembly 1 is detected by an encoder (not shown) connected to the drive motors 5a and 5b and stored in the memory 81.
  • FIG. 17 (b) shows a state in which the work robot 100 detects that the front wall 51 has approached within a predetermined distance while moving forward along the lateral wall 52, and has stopped traveling.
  • Wi is the width of the work assembly 2
  • Mc is the distance measured by the ultrasonic sensor 3c on the left
  • Md is the distance measured by the ultrasonic sensor 3c on the right.
  • a predetermined threshold travel stop limit distance SHd
  • the CPU 80 Determines that the right side of the front wall 51 is near and the left side is far.
  • the CPU 80 compares the measured distances Mc and Md, and determines whether or not the absolute value of the difference between Mc and Md is greater than another predetermined threshold value (the inclination determination reference value SHa). If the absolute value of the difference between the measurement distances Mc and Md is larger than the inclination determination reference value SHa (outside the range of the predetermined value), the CPU 80 sets the rotation center O to the above to measure the inclination angle of the front wall. Positional force at point J Rotate travel assembly 1 clockwise without power.
  • the traveling assembly 1 rotates clockwise, and the absolute value of the difference between the measured distances Mc and Md falls below the inclination determination reference value SHa (within a predetermined value range). Then, the CPU 80 determines that the traveling assembly 1 and the front oblique wall 51 are almost facing each other, and stops the rotational movement of the traveling assembly 1.
  • the rotation angle ⁇ of the traveling assembly 1 at this time is measured by the gyro sensor 7 and stored in the memory 81.
  • the distance D2 to the front wall 51 at this time is stored in the memory 81.
  • Fig. 17 (d) shows that the traveling assembly 1 is rotated 90 degrees from the state shown in Fig. 17 (c) with respect to the traveling direction Y in Fig. 17 (a), and the right end 21e of the working assembly 2 is This shows a state where the intersection between the front wall 51 and the side wall 52 comes into contact with each other, and the rear end of the work assembly 2 has moved to a position where it comes into contact with the side wall 52.
  • the position of the rotation center O at this time is defined as a point B.
  • FIG. 17 (e) shows a state in which the work robot 100 is in a posture along the front wall 51, and the right end 21e of the work assembly 2 is in contact with the point C. From this state, the work robot 100 moves forward by a predetermined distance, so that the work can be performed while traveling along the front wall 51.
  • the position of the point C is calculated, for example, by the following arithmetic expression.
  • the coordinates of the point J are (Xa, Ya)
  • the coordinates of the point C are (Xc, Yc)
  • the coordinates of the point D are (Xd, Yd).
  • the point D is a point at which the center line Ly of the traveling assembly 1 in the Y-axis direction intersects the front wall 51.
  • the coordinates (Xc, Yc) of the point C can be expressed as follows using the coordinates Xa, Ya of the point J, the distances Dl, D2, and the rotation angle ⁇ .
  • the coordinates (Xb, Yb) of the point ⁇ in FIG. 17D can be expressed as follows using the rotation center O force and the distance D3 to the rear end of the work assembly 2 and the width W of the work assembly.
  • the movement distance in the X-axis direction and the Y-axis direction for moving from point J to point B and point E as described above can be calculated. Therefore, the work robot 100 can be autonomously moved so that the right end 21e of the work assembly 2 contacts the point C.
  • FIG. 18 (a)-1 (s) a description will be given of the flow of operation when the work robot 100 moves forward while working along the lateral wall 52 and the oblique wall 51 appears forward.
  • the examples shown in these figures are examples in which the angle between the front oblique wall 51 and the horizontal wall 52 is obtuse.
  • the hatched area in FIG. 18 is the area where the work has been completed.
  • the working robot 100 is moving forward while working along the side wall 52.
  • the above distance measurement data along with the traveling distance data at the time of the past 120 measurements of the lateral distance measurement means 3a and 3b for measuring the distance to the obstacle in the horizontal direction X on the paper are used.
  • the traveling assembly 1 stops traveling. . Then, the measured distances Mc and Md of the sensors 3c and 3d are compared, and since the absolute value of the difference between Mc and Md is larger than the slope determination reference value SHa and Mc> Md, a forward obstacle Judgment that the right side of the object is near and the left side is a distant oblique wall, and the history of the measured distances of the past 120 side distance measuring means 3a and 3b and the running at the time when the measured distance was measured The distance data and the force also determine that the wall 52 exists on the right side of the traveling assembly 1.
  • the CPU 80 calculates the coordinates of the point B (FIG. 17 (d)) from the above equations (1) and (2),
  • the traveling assembly 1 is moved backward until the Y coordinate Yb of B is matched.
  • the traveling assembly 1 is rotated counterclockwise by an angle (0 + 90 °) while the working assembly 2 is slid to the left end with respect to the traveling assembly 1. .
  • the robot retreats to a point which coincides with the X coordinate Xb of the point B of the rotation center O.
  • the work robot 100 works while moving forward by a distance corresponding to the width W of the work assembly 2. This completes the work for a part of the corner.
  • the CPU 80 calculates the coordinates of the point E (FIG. 17 (e)) from the above equations (3) and (4), and the X coordinate of the rotation center O is the X coordinate of the point E.
  • the traveling assembly 1 is moved backward until the coordinate Xe is reached. Thereafter, as shown in FIG. 18 (i), with the work assembly 2 slid to the left end with respect to the traveling assembly 1, the traveling assembly 1 rotates 90 degrees clockwise.
  • the traveling assembly 1 rotates counterclockwise by the angle ⁇ , and assumes a posture along the front oblique wall 51.
  • the work robot 100 moves forward by a predetermined distance while working along the oblique wall 51. This completes the rest of the corner and part of the space along the front wall 51.
  • the traveling assembly 1 rotates 90 degrees counterclockwise, it retracts until the rear end of the work assembly 2 contacts the front wall 51.
  • the working robot 100 moves forward by a predetermined distance while working.
  • the traveling assembly 1 turns 90 degrees counterclockwise.
  • the working robot 100 moves forward by a predetermined distance while working.
  • the vehicle retreats until the X coordinate of the rotation center O coincides with the center position of the lane adjacent to the lane that was traveling in FIG. 18 (a).
  • the traveling assembly 1 is rotated clockwise by an angle (90 ° — ⁇ )
  • the traveling assembly 1 is moved 180 ° from the traveling direction in FIG. 18 (a). Turn in the opposite direction.
  • the work robot 100 moves forward while performing work, and performs work for the next lane.
  • the work robot 100 can work all the way to the corners of the wall even when there is a diagonal wall.
  • the work robot 100 moves forward while working on the lane away from the side wall 52, and stops running when the front wall 51 is detected. Then, the CPU 80 determines whether the lateral wall exists on the side of the traveling assembly 1 or not, and determines whether the inclination of the front wall 51 is equal to or greater than a predetermined angle.
  • the work robot 100 advances while working on the lane away from the side wall 52, and stops traveling when the front wall 51 is detected. Then, after the CPU 80 determines whether the lateral wall exists on the side of the traveling assembly 1 or not, and determines whether the inclination of the front wall 51 is greater than or equal to a predetermined angle, the work robot 100 proceeds to FIG. (a) —Operations slightly different from those shown in (e) are performed.
  • the traveling assembly 1 rotates counterclockwise, the distance to the front wall 51 is repeatedly measured by the left and right sensors 3c and 3d, and the left and right sensors are measured.
  • the rotation is stopped.
  • the traveling assembly 1 is rotated 90 degrees counterclockwise, so that the traveling assembly 1 is oriented along the front wall 51.
  • the work robot 100 moves forward by a predetermined distance while working along the oblique wall 51. Thereby, a part of the work along the front oblique wall 51 is completed.
  • the traveling assembly 1 rotates 90 degrees counterclockwise, and then moves backward until the rear end of the work assembly 2 comes into contact with the front wall 51. Thereafter, as shown in FIG. 20 (g), the working robot 100 moves forward by a predetermined distance while working.
  • the robot moves backward until the X coordinate of the rotation center O coincides with the center position of the lane next to the lane running in FIG. 20 (a). I do.
  • the traveling assembly 1 when the traveling assembly 1 is rotated clockwise by an angle ⁇ , the traveling assembly 1 is turned in the direction 180 ° opposite to the traveling direction in FIG. 20 (a). Turn around.
  • the work robot 100 moves forward while performing work and performs work for the next lane.
  • the work robot 100 is moving forward while working along the side wall 52.
  • the lateral distance measuring means 3a and 3b for measuring the distance to the obstacle in the horizontal direction X on the paper surface are stored in the memory 81 together with the traveling distance data at the time of measurement in the past 120 times. .
  • the traveling assembly 1 stops traveling. Then, the measured distances Mc, Md of the sensors 3c, 3d are compared, and since the absolute value of the difference between Mc and Md is larger than the inclination determination reference value SHa and is Mc ⁇ Md, It was determined that the right side of the obstacle 51 was distant and the left side was an oblique wall near, and the history of the measuring distances by the past 120 side distance measuring means 3a and 3b and the measuring distance were measured. The data and the power of the traveling distance at the time are also determined that the wall 52 exists on the right side of the traveling assembly 1.
  • the traveling assembly 1 rotates 90 degrees counterclockwise. Then, the robot moves backward until the rear end of the work assembly 2 contacts the side wall 52. After this retreat, as shown in FIG. 21 (d), the work robot 100 moves forward while performing work, detects the front wall 51 again, and stops traveling. As shown in FIG. 21 (e), the traveling assembly 1 retreats again until the rear end of the work assembly 2 contacts the side wall 52. Thereafter, the work assembly 2 moves rightward with respect to the traveling assembly 1 until the right end 21 of the work assembly 2 contacts the front wall 51. Thereafter, as shown in FIG. 21 (f), the work robot 100 moves forward while performing work. During this traveling, the work assembly 2 is controlled to gradually move to the left along the front wall 51. Work robot 100 travels until front wall 51 is detected again.
  • the work robot 100 moves forward while performing work, and stops when the front wall 51 is detected.
  • the work assembly 2 is controlled to gradually move to the left along the front wall 51.
  • the work robot 100 moves forward by a predetermined distance along the oblique wall 51 while performing work. Thereby, a part of the work along the front diagonal wall 51 is partially completed.
  • the subsequent operations are the same as those shown in FIGS. 20 (f) to 20 (j), and the work robot 100 moves to the next lane.
  • the traveling assembly 1 does not stop rotating, and as shown in FIG. 22 (a), even when the robot is actually facing the oblique wall 51, the right ultrasonic sensor 3d erroneously detects the lateral wall 52, and The measurement distances Mc and Md of the sensors 3c and 3d may not be close to each other, or the reflected waves of the ultrasonic waves emitted from the ultrasonic sensor 3d may not return and the distances may not be measured.
  • the traveling assembly 1 does not stop rotating, and as shown in FIG.
  • the rotation center O of the rotational operation is measured before measuring the inclination angle of the oblique wall 51. It is controlled to move a predetermined distance in a direction away from the side wall 52. That is, FIG.
  • the ultrasonic sensor 3d on the right side is moved to the side wall as shown in FIG. It is possible to accurately measure the angle ⁇ while facing the oblique wall 51 without measuring the distance to 52.
  • FIG. 23 (a) to FIG. 23 (b) The operation from FIG. 23 (a) to FIG. 23 (b) is the same as the operation from FIG. 18 (a) to FIG. As shown in FIG. 23 (c), the traveling assembly 1 rotates 90 degrees clockwise. Subsequently, as shown in FIG.
  • the vehicle moves backward by a predetermined distance in a direction away from the side wall 52, and the moving distance D4 at this time is stored. After this retreat, the traveling assembly 1 rotates 90 degrees counterclockwise as shown in FIG. 23 (e). Then, as shown in FIG. 23 (f), the work robot 100 moves forward while performing work, and stops running when an obstacle is detected ahead.
  • the traveling assembly 1 rotates clockwise, and the inclination angle ⁇ of the front inclined wall is stored.
  • the traveling assembly 1 rotates counterclockwise by the angle ⁇ and returns in the same direction as the traveling direction Y in FIG. 23 (f).
  • the CPU calculates the coordinates of the point B (FIG. 17 (d)) from equations (5) and (6) described later, and determines the Y coordinate of the rotation center O as the Y coordinate Yb of the point B.
  • the robot retreats until it matches.
  • FIG. 23 (j) after the traveling assembly 1 is rotated 90 degrees counterclockwise, as shown in FIG.
  • the X coordinate of the rotation center O becomes the X coordinate Xb of the point B. Step backward until they match. During this retreat, the rear end of the work assembly 2 comes into contact with the lateral wall 52, and when this comes into contact, the retraction stops. Thus, the right end 21e of the work assembly 2 can be moved to a position in contact with the point C. Thereafter, the work robot 100 moves to the next lane in the same manner as the operation shown in FIGS. 18 (g) to 18 (s).
  • the coordinates (Xc, Yc) of the point C as described above can be expressed as follows using the coordinates (Xf, Yf) of the point F and Dl, D2, D4, ⁇ .
  • the coordinates (Xb, Yb) of the point ⁇ in Fig. 17 (d) are calculated as follows using the distance D3 from the rotation center O to the rear end of the work assembly 2 and the width W of the work assembly 2 as follows. Can be expressed.
  • the plurality of ultrasonic sensors 3a to 3e are measured one by one at a predetermined time interval in a predetermined order in order to avoid interference of ultrasonic waves.
  • the ultrasonic sensor measures the distance from the emission of the ultrasonic wave to the return of the reflected wave reflected by the obstacle, thereby measuring the distance to the obstacle. Therefore, if the inclination of the obstacle increases, the reflected wave may not return to the ultrasonic sensor, and measurement may not be performed. Therefore, only an ultrasonic sensor can detect an obstacle with a small inclination.
  • the ultrasonic sensors 3a to 3e are provided with optical sensors 17a to 17e (see FIG. 24 (a)).
  • an optical sensor can detect a part of light scattered and reflected when the surface to be measured is not a mirror surface but a diffusion surface. Can be measured.
  • the right ultrasonic sensor 3d does not detect the obstacle 51 and the right optical sensor 17e detects the obstacle 51, it is determined that the oblique wall 51 exists on the right side of the robot. It is also possible.
  • the magnitude of the inclination of the wall can be recognized to some extent. Therefore, if the wall is extremely inclined, more advanced processing can be performed, such as treating the wall as a side wall (the difference between Fig. 24 (a) and Fig. 24 (b) can be seen).
  • the ultrasonic sensors 3c-3e detect the obstacles 51, 52 and the optical sensors 17b and 17d detect the obstacle 51. In this case, it is determined that the inclination of the obstacles 51, 52 with respect to the traveling direction of the traveling assembly is smaller than a predetermined inclination angle.
  • the ultrasonic sensors 3c-3e do not detect the obstacles 51, 52, and the optical sensor 17d does not. Obstacles 51 and 52 are detected. In this case, it is determined that the inclination of the obstacles 51, 52 with respect to the traveling direction of the traveling assembly is larger than a predetermined inclination angle.
  • whether or not the traveling assembly is traveling along the side wall is determined based on the history including a plurality of measured values measured by the lateral distance measuring means.
  • the measured value for this determination may be obtained by providing a plurality or a large number of measuring means.
  • the inclination of the obstacle ahead was determined based on whether or not the difference in the measurement distance was larger than the reference value SHa. However, this determination can be made based on the ratio (McZMd or MdZMc) of the measurement distances Mc and Md in FIGS. 17 (b) and (c).
  • McZMd or MdZMc the ratio of the measurement distances Mc and Md in FIGS. 17 (b) and (c).
  • the number and arrangement of the sensors of the front distance measuring means and the Z or side distance measuring means are not limited to those in the above-described embodiment, and can be set as appropriate. Further, the arithmetic expression used in the operation control at the corner is not limited to the above-described one, and another control method may be used.
  • a swivel caster may be employed for the wheel structure.
  • the robot may be one that performs liquid application, etc.
  • the robot of the present invention can be used for a robot that performs various tasks while traveling by itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

 前方の障害物Wまでの距離を測定する第1距離センサ4aと、斜め前方の障害物Wまでの距離を測定する第2距離センサ4b(4c)とを備えた自走式の作業ロボットに関する。第1距離センサ4aにより測定した障害物までの第1測定距離Dcと、所定の第1閾値とを比較して障害物Wの接近を判別する第1判別手段と、第2距離センサ4b(4c)により測定した障害物Wまでの第2測定距離Dr(DL )と、所定の第2閾値とを比較して障害物の接近を判別する第2判別手段と、第1および第2測定距離から得られる障害物Wの傾斜角に関する情報に基づいて、第1もしくは第2閾値を変更する変更手段とを備えている。

Description

明 細 書
自走式作業ロボット
技術分野
[0001] 本発明は、壁際の床面等に対する作業に適した作業ロボットに関する。
背景技術
[0002] 従来より、壁際の床面の清掃等の作業を行う自走式の作業ロボットは公知である。
[0003] この種の作業ロボットは、本体から障害物までの距離を測定する複数の距離センサ 備えている。前記ロボットは、距離センサによって測定された距離が所定の閾値よりも 小さい場合には、所定の回避動作を行い、壁に衝突しないように制御される。前記閾 値は、本ロボットが壁際力 離れすぎないように、所定の一定の値に設定されている
[0004] しかし、前記閾値が十分に大きくないと、本体と障害物との傾斜角が大きい場合に は、ロボットの中央部先頭が障害物に接近していないにも拘わらず、ロボットの前端 の側部が障害物に接近する。そのため、検出が遅れて、ロボットが障害物に衝突する おそれがある。
[0005] したがって、本発明の主目的は、種々の障害物を精度良く検出することのできる自 走式作業ロボットを提供することである。
[0006] また、従来、この種の作業ロボットは、作業対象となる領域の周囲の壁の隅部、特に 、その角度が直角でない隅部に対して作業を行うことが難しぐ作業残りが発生すると いう問題があった。
例えば、特開平 9— 269810号に開示された清掃ロボットでは、直角な隅部を概ね 清掃することは可能であるが、直角でない隅部の場合には作業残りが生じるおそれ がある。前記清掃ロボットは、予め記憶された動作シーケンスに従って、その動作が 制御されるが、隅部が直角でない場合に隅々まで残らず清掃する場合の動作につ いての説明が無ぐ開示されている制御方法のみでは、ゴミが最も溜まりやすい隅部 に清掃残りが生じてしまう。
一方、特開平 9— 114523号に開示された自律走行車両は、車両の側面に対向す る壁に平行に走行することが可能であるが、隅部に対して作業を行うことはできず、 前記清掃ロボットと同様に、ゴミが最も溜まりやすい隅部に清掃残りが生じてしまう。
[0007] したがって、本発明の別の目的は、作業対象となる領域の床面に対して隅々まで 残らず作業することができる自走式作業ロボットを提供することである。
[0008] 従来より、接触センサを設け、障害物の接触を検出する自走式の作業ロボットが提 案されている。(たとえば、特許第 3201208号(図 2)、特開昭 60-206759号(図 1) 、実開昭 56—164602号(図 5) )。
[0009] しかし、この種の従来の自走式作業ロボットは、障害物に接触した場合の回避動作 において、適切、かつ、迅速に対応することができな力つた。そのため、走行速度が 著しく遅力つたり、壁際力も離れすぎてしまうなどの欠点があった。
[0010] したがって、本発明の更に別の目的は、いずれの方向から障害物に接触した場合 にも適切、かつ、迅速に対応可能な自走式作業ロボットを提供することである。
[0011] 前記主目的を達成するために、本発明の第 1の態様は、前方の障害物までの距離 を測定
する第 1距離センサと、斜め前方の障害物までの距離を測定する第 2距離センサとを 備えた自走式の作業ロボットにおいて、前記第 1距離センサにより測定した障害物ま での第 1測定距離と、所定の第 1閾値 SHcとを比較して障害物の接近を判別する第 1判別手段と、前記第 2距離センサにより測定した障害物までの第 2測定距離と、所 定の第 2閾値 SHrとを比較して障害物の接近を判別する第 2判別手段と、前記第 1 および第 2測定距離力 得られる前記障害物の傾斜角に関する情報に基づいて、前 記第 1閾値もしくは第 2閾値 SHc, SHrを変更する変更手段とを備えている。
[0012] 本発明によれば、第 1および第 2判別手段により、障害物の検出を行うと共に、前記 障害物の傾斜角に関する情報に基づいて、前記第 1閾値もしくは前記第 2閾値 SHc , SHrを変更することにより、傾斜角の大きな障害物であっても、精度良く検出するこ とがでさる。
[0013] 本発明において、前記傾斜角に関する情報は、前記第 1および第 2距離センサの 配置と、前記第 1および第 2距離センサの光の放射方向と、前記第 1および第 2測定 距離とに基づいて得ることができる。 [0014] ここで、「前方」とは、作業ロボットの進行方向を基準にして定義付けられる。
また、「第 1および第 2測定距離から得られる前記障害物の傾斜角」としては、たとえ ば、図 5に示すように、障害物 Wの表面に直交する法線 Lと、本ロボットの進行方向 F とがなす角度 j8のことをいう。
[0015] 本発明の好ましい実施例では、前記傾斜角の大小にかかわらず前記第 1判別手段 による前記障害物が接近したか否かの判別結果と、前記第 2判別手段による前記障 害物が接近した力否かの判別結果とを得て、前記 2つの判別結果のうち、いずれか 一方が接近したと判別した時に、前記ロボットが前記障害物に接近したと断定する。 第 1距離の方が第 2距離よりも小さい場合は、つまり、傾斜角が小さい場合は、ロボ ットが障害物に接近したと判別するのは、第 2判別手段ではなぐ第 1判別手段である 。一方、第 1距離の方が第 2距離よりも大きい場合は、つまり、傾斜角が大きい場合は 、ロボットが障害物に接近したと判別するのは、第 1判別手段ではなぐ第 2判別手段 である。したがって、傾斜角の角度に拘わらず、接近を判別し断定することができる。 しかし、本発明においては、前記傾斜角が所定値よりも小さい場合には、前記第 1 判別手段による判別結果に基づいて、前記障害物が接近したか否かを判別し、一方 、前記傾斜角が所定値よりも大きい場合には、前記第 2判別手段による判別結果に 基づ 、て前記障害物が接近した力否かを判別してもよ 、。
このように、障害物の傾斜角に基づいて、前方の第 1判別手段による判別結果と、 斜め前方の第 2判別手段による判別結果とを使い分けることで、障害物の傾斜角に 拘わらず障害物の検出を行うことができる。
[0016] 本発明において、当該傾斜角が大きくなる程、前記第 1閾値もしくは第 2閾値 SHc , SHrが大きくなるように前記第 1閾値もしくは前記第 2閾値 SHc, SHrを前記変更 手段が設定する。このように、第 1閾値もしくは第 2閾値 SHc, SHrを大きくすることに より、ロボットの前端の側部が障害物に接触する前に、該障害物を検出することがで きる。
[0017] 本発明において、前記第 1および第 2距離センサが互いに近接して配置されている のが好ましい。この場合、前記第 1距離と第 2距離とを比較し、その比較の結果、前記 第 1距離が第 2距離よりも小さい場合には、前記第 1判別手段による判別結果に基づ いて、前記障害物が接近したか否かを判別し、一方、前記比較の結果、前記第 1距 離が第 2距離よりも大きい場合には、前記第 2判別手段 (又は、前記第 1判別手段)に よる判別結果に基づ
いて前記障害物が接近した力否かを判別することができる。このように、両距離セン サが接近して配置され、第 1距離が第 2距離よりも小さい場合などには、前記第 1閾 値 SHeと第 2閾値 SHrとが同じ値に設定されてもよい。
このように、第 1距離と第 2距離とを比較することにより、本体と障害物との傾斜角に 応じて、第 1判別結果と第 2判別結果とを使い分けることで、障害物の傾斜角に拘わ らず障害物の検出を行うことができる。
[0018] 本発明において、前記第 1および第 2距離センサは光学式の距離センサ力もなり、 前記第 1距離センサはロボットの左右の中央の先頭部分に設けられ、前記第 2距離 センサは第 1距離センサの両側に近接して一対設けられ、前記光学式の第 1および 第 2距離センサの他に、ロボットの前端の両側部に前方の障害物までの距離を測定 する超音波式の距離センサが設けられて 、るのが好ま 、。
このように、超音波式の距離センサと光学式の距離センサを併用することにより、よ り一層、正確に障害物の検出を行うことができる。
[0019] なお、「光学式の距離センサ」としては、たとえば、光を照射し、障害物によって拡散 反射された光線の一部を受光レンズを通して把えることにより、障害物との間の距離 を三角測距法により測定する市販の光学式距離センサを用いることができる。
「超音波式の距離センサ」としては、たとえば、超音波を発射し、その音波が障害物 力 反射波として戻ってくるまでの時間を計測することで対象物までの距離を測定す る市販の超音波式距離センサを用いることができる。
[0020] 本発明において、前記第 1および第 2距離センサは光学式の距離センサ力もなり、 前記第 1距離センサはロボットの左右の中央の先頭部分に設けられ、前記第 2距離 センサは第 1距離センサの両側に近接して一対設けられ、前記ロボットの先頭部分に は保護カバーが設けられ、該保護カバーは前記 3つのセンサが近接対向する 3つの 側面および天井面を持つ凹部を有し、前記天井面に対向する内側の位置に前方の 斜め下方までの距離を測定する第 3の距離センサが配置されているのが好ましい。 このように、前方の斜め下方を検出する第 3の距離センサを設けることにより、前方 の床面の凹凸を検出することができる。また、保護カバーの凹部に距離センサを設け たので、凹部表面が傷付くのを防止することができる。
[0021] 本発明の第 2の態様に力かるロボットは、床面を自走するための車輪を有する走行 アセンブリと、前記走行アセンブリに対し左右に移動可能に取り付けられ、前記床に 対する作業を行う作業アセンブリと、前記走行アセンブリと前記作業アセンブリとの位 置関係を変更すベぐ前記作業アセンブリを前記走行アセンブリに対して移動させる 移動機構と、前記作業アセンブリに設けられ、前記作業アセンブリの前面に障害物 が接触したのを検知する第 1の接触センサと、前記作業アセンブリに設けられ、前記 作業アセンブリの側面に障害物が接触したのを検知する第 2の接触センサと、前記 走行アセンブリの走行を制御すると共に、前記第 1の接触センサの検知信号に基づ いて、第 1の退避速度で前記作業アセンブリを左右に移動させるよう前記移動機構を 制御し、前記第 2の接触センサの検知信号に基づいて第 1の退避速度よりも低速の 第 2の退避速度で前記作業アセンブリを左右に移動させるよう前記移動機構を制御 する制御手段とを備えて 、る。
[0022] ロボットの前進中に、前方の障害物が作業アセンブリの前面に接触すると、第 1の 接触センサがこれを検知し、作業アセンブリが速い第 1の退避速度で、障害物のない 左右の一方に前記接触状態が解除されるまで退避する。したがって、ロボットの走行 速度をある程度の速さで走行させることが可能となる。
なお、ここでいう、「前方」ないし「前面」は、ロボットの進行方向を基準にして定義付 けられる。
[0023] ロボットの前進中に、作業アセンブリが障害物の側面に接触すると、第 2の接触セン サがこれを検知し、作業アセンブリが低速の第 2の退避速度で、障害物とは反対側の 左右の一方に、当該接触状態が解除されるまで退避する。したがって、作業ァセンブ リが障害物に沿った状態で、ロボットが走行することが可能であるから、作業ァセンブ リが障害物である壁際力も離れすぎてしまうという不都合が生じない。
[0024] 本発明において、前記制御手段は、第 1の接触センサによる接触検知の時間が所 定の時間よりも長い場合は、走行を停止させる機能を有するのが好ましい。 このようにすれば、障害物との接触による作業ロボットの破損や、障害物の損傷を 防止することができる。
[0025] 本発明において、前記所定の時間は、走行速度が速い時には小さい値に設定され 、走行速度が遅 、場合には大き 、値に設定されるのが好ま 、。
このようにすれば、低速走行時の不要な停止を防止すると共に、高速走行時にお ける本作業ロボットや障害物の損傷を防止することができる。
[0026] 本発明において、前記制御手段は、第 1の接触センサによる検知時間が所定の閾 値を超えたことを検出して走行を停止させた場合、当該停止後、所定距離だけ後方 へ移動させ、前記作業アセンブリを所定距離退避方向に移動させた後、前方への走 行を再開するように、前記走行アセンブリと前記作業アセンブリ移動機構を制御する のが好ましい。
このようにすれば、作業アセンブリが障害物に接触したまま移動するのを防止できる から、作業アセンブリによって壁などの障害物が傷つくのを防止することができる。
[0027] 本発明にお 、て、前記制御手段は、前記接触センサの検知信号に基づ!/、た作業 アセンブリの移動が行われた場合、前記両接触センサによる接触が検出されなくなつ た後に、前記走行アセンブリに対する作業アセンブリの相対位置を接触センサによる 接触が検出される以前の位置に、第 2の退避速度よりも低速の復帰速度で戻すよう に前記移動機構を制御するのが好ま 、。
このようにすれば、作業アセンブリの復帰時において、障害物と作業アセンブリとの 接触時の衝撃を少なくすることができる。
[0028] 本発明においては、前記作業アセンブリは平面視が概ね長方形に形成され、前記 接触センサは前記作業アセンブリの周囲を覆うパンパと、前記パンパと一体に移動 する被検出部と、前記被検出部を検出する検出スィッチとを備えるのが好ましい。 このようにすれば、パンパが作業アセンブリの周囲を覆っているので、該パンパと一 体に移動する被検出部を検出することにより、障害物との接触を検出することができ る。
[0029] 本発明においては、前記パンパは左右に分割されており、当該分割されたパンパ ごとに前記被検出部および検出スィッチが設けられ、前記左側のパンパは左方向に パネ力により付勢された状態で所定の左端の位置に位置決めされ、前記右側のバン パは右方向にパネ力により付勢された状態で所定の右端の位置に位置決めされて いるのが好ましい。
このようにすれば、パンパは、左右に分割され、パネ力により付勢された状態で左 右端に、それぞれ位置決めされる。そのため、パンパを浮いた状態で支持する必要 がなくなるから、該パンパが走行中などに左右に揺れるおそれがない。したがって、 壁との接触を精度良く検知することができる。
[0030] 本発明においては、前記パンパは左右および前後に分割されており、当該分割さ れたパンパごとに前記被検出部および検出スィッチが設けられ、左前側のパンパは 、左方向および前方向にパネ力により付勢された状態で所定の左端および前端の位 置に位置決めされ、
右前側のパンパは、右方向および前方向にパネ力により付勢された状態で所定の右 端および前端の位置に位置決めされ、左後側のパンパは、左方向および後方向に パネ力により付勢された状態で所定の左端および後端の位置に位置決めされ、右後 側のパンパは、右方向および後方向にパネ力により付勢された状態で所定の右端お よび後端の位置に位置決めされて 、るのが好ま 、。
このようにパンパを前後および左右に 4分割して設けることで、壁との接触を前後お よび左右において検出することができる。
[0031] 本発明においては、前記パンパは左右および前後に分割されており、当該分割さ れたパンパごとに前記被検出部および検出スィッチが設けられ、前記分割された各 パンパは、当該各パンパが障害物に接触した際に内方へ退避可能なように外方に 向ってパネ力により付勢された状態でストッパにより所定の位置に位置決めするのが 好ましい。
このようにすれば、パンパが 4分割され、かつ、各々、各パンパごとの支持部材がバ ネ力でストツバに接触していることにより、小さく分割されたパンパが安定して支持さ れる。したがって、左右に長い作業部であっても、パンパに撓みが出るおそれがない
[0032] この場合、前記各パンパは、四隅のコーナ部では連続しており、かつ、各パンパ同 士が前面、後面および 2つの側面にお!、て互いに分割されて!、るのが更に好まし!/ヽ このように、四隅のコーナ部が連続していることにより、パンパの四隅が障害物に係 合する(引っ掛かる)おそれがないので、スムースな走行を期待することができる。
[0033] 本発明の更に別のロボットは、床面に対して鉛直線のまわりに回転可能な走行ァセ ンプリと、前記走行アセンブリの前方または後方に取り付けられ、床面に対して作業 を行う作業アセンブリと、前記鉛直線のまわりの前記走行アセンブリの回転角度を測 定する回転角度測定手段と、前記回転角度を記憶する記憶手段と、前記走行ァセン プリの幅方向に互いに離間して設けられ、前記走行アセンブリの進行方向にある障 害物までの距離を測定する複数の前方距離測定手段と、前記走行アセンブリの進行 方向に対して側方にある障害物までの距離を測定する側方距離測定手段と、前記 側方距離測定手段によって測定された複数の測定値に基づ!/ヽて、前記走行ァセン プリが横壁に沿って走行して ヽるか否かを判別する判別手段と、前記走行アセンブリ の走行動作を制御する制御手段とを更に備え、前記制御手段は、前記複数の前方 距離測定手段の少なくとも一つの測定値が、所定の走行停止限界距離 SHd以下と なった場合に、走行アセンブリが前方の障害物に近接していると判断して前記走行 アセンブリの走行を停止させると共に、前記複数の前方距離測定手段の測定値を比 較して、当該障害物の面までの測定距離の差もしくは比が所定の範囲内力否かを判 別し、前記測定距離の差もしくは比が前記所定範囲外であると判別した場合には、 前記測定距離の差もしくは比が前記所定範囲内になるまで前記走行アセンブリを前 記鉛直線のまわりに回転動作させると共に、前記所定範囲内となった時点の走行ァ センプリの回転角度を前記記憶手段に記憶させ、前記判別手段により、前記回転動 作を行うまでの前記走行アセンブリの走行が横壁に沿った走行であつたと判別された 場合には、前記横壁と前方の障害物とによって形成される隅部に対して作業を行つ た後、前記記憶手段に記憶されている前記回転角度に基づいて前方の障害物に沿 つて走行するように前記制御手段が前記走行アセンブリの走行動作を制御する。
[0034] 本発明では、走行アセンブリの進行方向に対して所定の角度以上傾いた障害物が 検出されると、前記走行アセンブリが走行を停止して、前記複数の前方距離測定手 段の測定距離が概ね等しくなるまで、前記走行アセンブリが鉛直線のまわりに回転動 作する。走行アセンブリの進行方向に対する前記障害物の傾き角度は、前記複数の 前方距離測定手段の測定距離が概ね等しくなつた時点の回転角度に等しいから、 該回転角度を前記回転角度測定手段により測定することで、前記障害物の傾き角度 を求めることができる。一方、前記判別手段により横壁の有無を検知することにより、 隅部に対する作業が必要である力否かが判
断される。走行アセンブリが横壁に沿って走行していたと判別された場合は、隅部に 対して作業を行った後に、前方の障害物に沿って走行するように走行アセンブリの動 作が制御される。これに対し、走行アセンブリが横壁カゝら離れた位置を走行していた と判別された場合は、走行アセンブリが前記回転動作を行った後、すぐに前方の障 害物に沿って走行するように制御される。
[0035] 本発明によれば、走行アセンブリの前方にある障害物の傾き角度にかかわらず、障 害物の傾き角度および横壁の有無に応じて走行アセンブリの走行動作が制御される ので、横壁と前方の障害物とによって形成される隅部に対しても確実に作業を行うこ とができるから、作業対象となる領域の床面に対して隅々まで残らず作業することが できる。
[0036] 本発明において、前記判別手段は、前記前方距離測定手段が障害物を検出して 前記走行アセンブリが停止した際、前記走行アセンブリが前記回転動作を開始する 前に前記判別を行い、前記判別手段により、前記回転動作を行うまでの前記走行ァ センプリの走行が横壁に沿った走行であつたと判別された場合には、前記回転動作 の回転中心を前記横壁力 離れる方向に所定の距離移動させた後、前記回転動作 を行うように前記制御手段が前記走行アセンブリの走行動作を制御するのが好まし い。
[0037] この態様によれば、走行アセンブリが前記回転動作を行う前に、回転動作の回転 中心を横壁から所定の距離離れた位置にズラすことで、前記回転動作中に前方距 離測定手段の一部が、前方の障害物までの距離と誤って横壁までの距離を測定す るおそれがないから、前方の障害物の傾き角度を正確に測定することができる。
[0038] 本発明の好適な態様においては、前記前方距離測定手段が、複数の超音波式セ ンサと複数の光学式センサとを備え、前記超音波式センサおよび光学式センサを、 各々、前記走行アセンブリの幅方向に互いに離間して設け、前記超音波式センサが 障害物を検出し、かつ、前記光学式センサが障害物を検出している場合は、当該障 害物の前記走行アセンブリの進行方向に対する傾きが所定の傾き角度よりも小さいと 判断し、前記超音波式センサが障害物を検出せず、かつ、前記光学式センサが障害 物を検出している場合は、当該障害物の前記走行アセンブリの進行方向に対する傾 きが所定の傾き角度よりも大きいと判断する。
[0039] この態様によれば、前方の障害物の傾きが所定の傾き角度よりも大きくて超音波式 センサでは検出できない場合でも、光学式センサにより障害物を検出できるので、障 害物の検出精度を向上させることができる。また、障害物を検出して当該障害物の傾 き角度を測定する際には、測定精度の良い超音波式センサを主として用いることで、 障害物の傾き角度の測定精度を向上させることができる。
[0040] 本発明にお 、て、前記前方距離測定手段が複数の超音波式センサと複数の光学 式センサとを備えている場合には、前記複数の光学式センサが、前記走行ァセンブ リの進行方向に対して所定の角度傾けて設けられたセンサを含むのが好ましい。
[0041] こうすれば、走行アセンブリの斜め前方にある障害物を検出することができるから、 障害物の検出精度が更に向上する。
[0042] 本発明のより具体的な態様にお!、ては、前記側方距離測定手段の測定値の履歴 に基づいて算出された側方の障害物までの距離である「側方距離値」が前記記憶手 段に記憶される。また、前記前方の障害物の傾き角度を求めるための回転動作で、 前記複数の前方距離測定手段の測定距離の差もしくは比が前記所定範囲内となつ た時点の走行アセンブリの回転角度が前記前方障害物の傾き角度である「傾き角度 値」として前記記憶手段に記憶されると共に、その時点の前方距離測定手段の測定 距離が「前方距離値」として前記記憶手段に
記憶される。前記制御手段は、前記「側方距離値」、「傾き角度値」および「前方距離 値」の値に基づいて、前方障害物と側方障害物との交点の位置と走行アセンブリとの 位置関係を算出し、その位置関係情報に基づいて、前方障害物と側方障害物とによ つて形成される隅部に対して作業を行うように前記走行アセンブリの走行動作を制御 する。
[0043] このようにすれば、直角でない壁の隅部と作業ロボットの現在位置との相対位置関 係を計算できるので、隅々まで正確に作業をすることができる。
図面の簡単な説明
[0044] [図 1]本発明の実施例 1にかかる自走式作業ロボットの斜め前方から見た概略斜視図 である。
[図 2]同ロボットの斜め後方力も見た概略斜視図である。
[図 3]本作業ロボットの平面断面図である。
圆 4]本作業ロボットの制御機構を示す概略構成図である。
[図 5]障害物の検出原理を示す模式図である。
[図 6]障害物の検出方法を示す概略平面図である。
[図 7]作業アセンブリの平面断面図である。
[図 8]作業アセンブリの右側部分を示す平面断面図である。
[図 9] (a)一 (c)は、それぞれ、障害物の検出方法を示す平面断面図である。
[図 10] (a)一 (c)は、それぞれ、障害物の検出方法を示す平面断面図である。
[図 11] (a)—(d)は、それぞれ、障害物の回避方法を示す平面図である。
[図 12] (a)は本作業ロボットによる障害物の回避方法を示す平面図、 (b)は比較例を 示す平面図である。
[図 13] (a)は障害物に接触しても停止しない場合の回避方法を示す平面図、 (b)は 停止および後退する場合の回避方法を示す平面図である。
[図 14] (a)は実施例 2にかかる作業ロボットの走行アセンブリの構成を示す平面図、( b)は同側面図である。
[図 15] (a)は作業ロボットの外観を示す平面図、(b)は制御構成を示すブロック図で ある。
[図 16]直角の壁に囲まれた領域を作業する場合の動作を示す平面図である。
[図 17]鈍角の隅部を作業する際の動作を示す平面図である。
[図 18]同一連の作業工程を示す平面図である。
[図 19]横壁力 離れたレーンで斜め壁に沿って作業する場合の動作を示す平面図 である。
[図 20]横壁力 離れたレーンで斜め壁に沿って作業する場合の動作を示す平面図 である。
[図 21]鋭角の隅部を作業する際の動作を示す平面図である。
[図 22]実施例 2の動作を示す平面図である。
[図 23]同一連の作業工程を示す平面図である。
[図 24]超音波センサだけでは測定できない場合の動作を示す平面図である。 符号の説明
1:走行アセンブリ
2:作業アセンブリ
11:取付板 (移動機構の一部)
12:タイミングベルト (移動機構の一部)
13:プーリー (移動機構の一部)
14:レール (移動機構の一部)
21 (L, R), 22 (L, R):パンパ
30F:前バー (被検出部:第 1および第 2の接触センサの一部)
30B:後バー (被検出部)
4a:第 1光学センサ (第 1距離センサ)
4b, 4c:第 2光学センサ (第 2距離センサ)
4d:第 3光学センサ (第 3距離センサ)
112:保護カバー
113:凹部
46:CPU (第 1および第 2判別手段、変更手段)
7:ジャイロセンサ(回転角度測定手段)
8:マイコン (制御手段)
3a, 3b:超音波センサ (側方距離測定手段)
3c— 3e:超音波センサ (前方距離測定手段)
17a— 17e:光学式センサ (前方距離測定手段) 80 : CPU (制御手段,判別手段)
81 :メモリ(記憶手段)
Θ:回転角度
O :回転中心 (鉛直線)
Dc :第 1測定距離
Dr:第 2測定距離
W:障害物
β:傾斜角
SRI, SL1 :第 1検出スィッチ (第 1の接触センサの一部)
SR2, SL2:第 2検出スィッチ(第 2の接触センサの一部)
発明を実施するための最良の形態
[0046] 本発明は、添付の図面を参考にした以下の好適な実施例の説明からより明瞭に理 解されるであろう。しかしながら、実施例および図面は単なる図示および説明のため のものである。本発明の範囲は請求の範囲のみに基づいて定められる。添付図面に おいて、複数の図面における同一の部品番号は、同一または相当部分を示す。
[0047] 以下、本発明の実施例を図面に従って説明する。
以下の実施例では、本発明の自走式作業ロボットを、床上のゴミを吸い上げる自走 式の清掃ロボットに適用した場合について例示して説明する。
[0048] 第 1実施例:
図 1および図 2に示すように、本発明にかかる自走式作業ロボットは、床面を自走す る台車様の走行アセンブリ 1と、床上のゴミを吸い上げる作業アセンブリ 2とを備えて いる。作業アセンブリ 2は、走行アセンブリ 1の定常的な進行方向 Fに対して、該走行 アセンブリ 1の後方に設けられている。
[0049] 走行アセンブリ 1の上部には、吸引ユニット 56が設けられている。吸引ユニット 56に は、ゴミ収容部(タンク)や、ブロア一モータ、フィルタなどが設けられている。吸引ュ ニット 56と作業アセンブリ 2とは、吸引ホース 57を介して接続されている。作業ァセン プリ 2の下面には吸引口 59が設けられている。本作業ロボットが走行しながら清掃作 業を行うと、床のゴミが吸引口 59から次々に吸い上げられて、床面の清掃が行われ る。
[0050] 走行アセンブリ 1 :
図 3に示すように、前記走行アセンブリ 1は、該走行アセンブリ 1の駆動を行うための 1対の駆動輪 6a, 6bと、前記走行アセンブリ 1の前部と後部の略中央に自在キャスタ 一(図示せず)とを備えている。前記駆動輪 6a, 6bは、それぞれ、駆動モータ 5a, 5b によって駆動される。駆動モータ 5a, 5bは正逆回転可能である。制御手段 8 (図 4)は 走行アセンブリ 1の走行を制御する。
[0051] 直進走行時には、前記 2つの駆動モータ 5a, 5bが同方向に回転することで、走行 アセンブリ 1は前進または後退することができる。回転動作を行う際には、前記 2つの 駆動モータ 5a, 5bがそれぞれ逆方向に回転することで、ロボットの回転動作が行な われる。一方、前記 2つの駆動モータ 5a, 5bの回転の比率が制御されることで、走行 アセンブリ 1はカーブ走行を行うことができる。
[0052] 前記作業アセンブリ 2には、作業アセンブリ 2の本体 20を走行アセンブリ 1に取り付 けるための取付板 11が設けられている。一方、走行アセンブリ 1の後方には、進行方 向 Fに略直交する左右方向 Xに延びるレール 14が設けられている。前記取付板 11 は、前記レール 14に取り付けられ、かつ、タイミングベルト 12およびプーリー 13を介 してスライド駆動モーター 15に接続されている。前記取付板 11は、前記スライド駆動 モーター 15により前記レール 14に沿って左右にスライド移動される。したがって、取 付板 11、タイミングベルト 12、プーリー 13、レール 14およびスライド駆動モーター 15 は、作業アセンブリ 2を走行アセンブリ 1に対して左右に移動させる移動機構を構成し ている。
[0053] 本作業ロボットの走行中に、作業アセンブリ 2を所定のタイミングで左右移動させる ように制御することにより、図 12や図 13に示すように、作業アセンブリ 2が壁 Wに沿つ て移動される。
[0054] 図 3の前記走行アセンブリ 1の前部には、複数の超音波(距離)センサ 3a— 3dと、 第 1一第 3の光学 (距離)センサ 4a— 4dとが設けられている。
[0055] これら複数のセンサのうち、 2つの超音波センサ 3a, 3bは、走行アセンブリ 1の左右 にある障害物までの距離を測定するものである。一方、残りの超音波センサ 3c, 3dは 、走行アセンブリ本体 111の前端の両側部に設けられ、光学センサ 4a— 4dは、前端 の中央部に設けられている。これらのセンサ 3c, 3d, 4a— 4dは走行アセンブリ 1の前 方にある障害物までの距離を測定する。
[0056] 光学センサ 4a— 4d:
第 1光学センサ 4aはロボットの左右方向 Xの中央の先頭部分に設けられている。第 1光学センサ 4aは、前方の障害物 Wまでの距離 Dc (図 6)を測定する。
第 1光学センサ 4aの左右の両側には、該第 1光学センサ 4aに近接して第 2光学セ ンサ 4b, 4cが設けられている。第 2光学センサ 4b, 4cは、左右の斜め前方の障害物 Wまでの距離 Dr, D (図 6)を測定する。
図 1の第 3光学センサ 4dは、第 1光学センサ 4aの上方に設けられている。第 3光学 センサ 4dは、前方の斜め下方までの距離 Ddを測定する
[0057] 走行アセンブリ 1の本体 111の先頭部には、保護カバー 112が設けられている。前 記保護カバー 112には、凹部 113が形成されている。図 1に示すように、前記凹部 1 13は、第 1および第 2光学センサ 4a— 4cの 3つのセンサに近接対向する側面 113a 一 113cを備えている。一方、凹部 113には、天井面 113dが形成されている。該天 井面 113dに対向する位置には、前記第 3光学センサ 4dが配置されている。なお、底 面 113eに対向する位置には、ロボットがくぐり抜けることができない障害物が前方の 上方にある力否かを検出するための光学センサ(図示せず)が配置されてもょ 、。
[0058] 制御手段:
図 4に示すように、前記制御手段 8は、センサ信号入力手段 40、走行車輪制御手 段 41、スライド制御手段 42、光学センサ制御手段 43、超音波センサ制御手段 45、 ブロアモータ制御手段 50およびマイコン(マイクロコンピュータ) 44を備えて!/、る。 各手段 40— 43, 45, 50は、それぞれ、図示しないインターフェイスを介してマイコ ン 44に接続されている。マイコン 44は、 CPU46、 RAM47、 ROM48および計時を 行うタイマ 49を備えている。 ROM48には、後述する退避速度 A1— A3や種々の閾 値などが予め記憶されて 、る。
[0059] 前記センサ信号入力手段 40には、作業アセンブリ 2に設けられた、たとえば光セン サ力 なる検出スィッチ (接触センサの一部) SL1— SL4, SR1— SR4が接続されて いる。
前記走行車輪制御手段 41は、図 3の駆動モータ 5a, 5bの回転を制御し、走行ァセ ンブリ 1の走行の制御を行う。
前記スライド制御手段 42 (図 4)は、スライド駆動モーター 15の回転を制御し、作業 アセンブリ 2の移動機構の制御を行う。
前記センサ制御手段 43, 45 (図 4)は、前記複数の超音波式センサ 3a— 3dおよび 光学式センサ 4a— 4dの制御を行う。
[0060] 障害物の検出:
前記 ROM48 (図 4)には、更に、走行アセンブリ 1の走行パターンや、後述する第 1 および第 2閾値 SHc、 SHr、停止距離 DrOおよび種々の演算式等が予め記憶されて いる。
[0061] CPU (第 1判別手段) 46 (図 4)は、前記第 1光学センサ 4aにより測定された図 5の 障害物 Wまでの第 1測定距離 Dcと、前記第 1閾値 SHcとを比較して障害物 Wの接近 を判別する第 1判別を行う。また、 CPU (第 2判別手段) 46は、第 2光学センサ 4b (4c )により測定された障害物 Wまでの第 2測定距離 Dr(D )と、第 2閾値 SHrとを比較し し
て障害物 Wの接近を判別する第 2判別を行う。
[0062] 前記 CPU46は、前記 2つの判別手段のうち、いずれか一方が接近したと判別した 時に、前記ロボットが前記障害物に接近したと断定する。前記 CPU46は、障害物 W が接近したと断定すると、走行アセンブリ 1の減速や、停止、旋回、方向転換、後退な どを行ってもよいし、これらの内の複数を組み合わせて障害物 Wとの衝突の回避を行 つてもよい。あるいは、減速して壁に沿って走行するようにしてもよい。
[0063] 障害物 Wの検出原理:
つぎに、本発明による障害物 Wの検出原理にっ 、て説明する。
図 6 (c) , (d)に示すように、障害物 Wの傾斜角 βが大きな場合には、前記第 1光学 センサ 4aによる第 1判別のみでは、走行アセンブリ 1の前端の側部が障害物 Wに衝 突するおそれがある。そこで、本ロボットでは、傾斜角 βに応じて、第 1判別および第 2判別を行い、傾斜角 βにかかわらず、障害物 Wが接近した力否かの判別を行うこと ができるようにしている。 すなわち、図 6 (a)のように、傾斜角 βが所定の基準角度よりも小さい場合には、第 1判別手段の判別結果が有効となってロボットが障害物 Wに接近した力否かの判別 が行われる。一方、図 6 (c) , (d)のように、傾斜角 βが前記基準角度よりも大きな場 合には、第 2判別手段の判別結果が有効となって、ロボットが障害物 Wに接近したか 否かの判別が行われる。
[0064] たとえば、本実施例では、前記基準角度は以下の値となる。
図 5に示すように、第 1光学センサ 4aからの光(平行光)は、本ロボットの定常的な進 行方向 Fに略平行に照射される。
[0065] 一方、両側の第 2光学センサ 4b, 4cからの光の照射方向は、第 1光学センサ 4aか らの光の照射方向に対して、それぞれ、所定の取付角度 ex , aに設定されている。 そのため、障害物 Wの傾斜角 βが、前記取付角度 αの 1Z2になったときに、第 1光 学センサ 4aの第 1測定距離 Dcと、第 2光学センサ 4b (4c)の第 2測定距離 Dr (D )と し がー致する。
[0066] 本実施例では、前記取付角度 αの 1Z2を基準角度として、当該基準角度よりも傾 斜角 βが小さい場合、すなわち、第 1測定距離 Dcが第 2測定距離 Drよりも小さい場 合 (たとえば、図 6 (a) )には、前記第 1判別による判別結果に基づいて、障害物 Wが 接近した力否かの判別が行われる。 CPU46は、傾斜角 βが基準角度よりも小さい場 合 (Dcく Drの場合)、第 1判別手段の方が第 2判別手段よりも先に障害物 Wの接近 を検出するから、第 1測定距離 Dcが第 1閾値 SHc以下の場合には、障害物 Wが接 近したと断定する。
[0067] 一方、傾斜角 βが基準角度以上の場合、すなわち、第 1測定距離 Dcが第 2測定距 離 Dr以上の場合 (たとえば、図 6 (b)—(d) )には、第 2判別手段の方が第 1判別手段 よりも先に障害物 Wの接近を検出するから、前記第 2判別による判別結果に基づい て、障害物 Wが接近した力否かの断定が行われる。
ここで、第 2閾値 SHrを固定値にすると、障害物 Wの傾斜角 βが著しく大きい図 6 ( このような場合にば、前端の両側部が障害物 Wに衝突してしまうおそれが生じる。そ のため、第 2閾値 SHrは、図 5の傾斜角 βが大きくなる程、大きくするとよい。そこで、 以下に説明するように、障害物 Wの傾斜角 βが大きくなる程、第 2閾値 SHrの値を大 さくしている。
[0068] 以下、傾斜角 βが基準角度以上の場合 (Dc≥Drの場合)の第 2閾値 SHrの変更 方法について説明する。
前記第 2閾値 SHrの変更方法としては、第 1測定距離 Dcと第 2測定距離 Drとの比 や差に応じて、第 2閾値 SHrを変更してもよい。たとえば、差 (Dc-Dr)が大きい場合 には、当該差の大きさに応じて第 2閾値 SHrを大きくするようにしてもよい。また、比率 (Dc/Dr)が大きい場合には、当該比率に応じて第 2閾値 SHrを大きくするようにし てもよい。
[0069] 以下、第 2閾値 SHrの変更方法として、第 1測定距離 Dcと第 2測定距離 Drとの差を 用いた場合にっ 、て例示して説明する。
CPU46は、下記の (11)式を用いて第 2閾値 SHrを算出する。
SHr=DrO-(Dr-Dc)…… (11)
ここで、 DrOは、 Dr=Dcの時の Drの走行停止基準値であり、センサの配置や本口 ボットの大きさや形状に基づいて予め設定された値である。
[0070] CPU46は、前記 (11)式に基づいて第 2閾値 SHrを算出し、前記第 2閾値 SHrと第 2測定距離 Drとの比較を行う。
たとえば、図 6 (b)に示すように、 Dr=Dcの場合(障害物 Wの傾斜角 βが、前記取 付角度 αの 1Z2の場合)には、第 2閾値 SHrは走行停止基準値 DrOと同じ値になる
[0071] 一方、図 6 (c)に示すように、障害物 Wの傾斜角 /3が a Z2よりも大きな場合には、 Drく Dcであるから、前記 (11)式により、第 2閾値 SHrの値は走行停止基準値 DrO よりも大きな値に設定される。
さらに、図 6 (d)に示すように、障害物 Wの傾斜角 βが著しく大きな場合には、 Dr《 Dcであるから、前記 (11)式により、第 2閾値 SHrの値は更に大きな値に設定される。
CPU46は、第 2測定距離 Drと第 2閾値 SHrとの比較を行い、第 2測定距離 Drが第 2閾値 SHr以下の場合には、ロボットが障害物 Wに接近したと判別する。
[0072] 以上のように、障害物 Wの傾斜角 βが基準角度よりも大きい場合には、当該傾斜 角 βが大きくなるほど第 2閾値 SHrの値が大きくなるように、所定の演算式に基づい て第 2閾値 SHrの値が変更される。したがって、傾斜角 βが著しく大きくても、ロボット の前端の側部が障害物 Wに接触する前に、確実に障害物 Wを検出することができる
[0073] なお、第 2閾値 SHrの算出式としては、本ロボットの形状や大きさ、走行速度等によ つて種々の演算式が考えられる。該演算式としては、前述の (11)式の他に、たとえば 、 SHr=DrO— (Dr— Dc) Z2を用いてもよい。
[0074] また、前述の実施例では、傾斜角 βが大き!/、場合、第 2判別手段による判別結果 に基づいて、障害物 Wが接近したか否かの判別が行なわれた力 他の実施例として 、常に第 1判別手段による判別を行い、障害物 Wの傾斜角 βが大きくなる程、第 1閾 値 SHcを大きくする方法も考えられる。
力かる変形例に用いる演算式としては、たとえば、以下の (12)式を用いてもよい。 SHc = DRO-(Dr-Dc) X 1. 5…… (12)
したがって、図 6 (b)—(d)に示すように、障害物 Wの傾斜角 βが大きくなるほど、第 1閾値 SHcが大きくなるので、障害物 Wの傾斜角 βが大きい場合であっても、第 1判 別手段による判別結果を用いて障害物 Wの接近を検出することができる。
[0075] しかし、距離センサは、一般的に測定距離が小さい程測定精度が向上する。その ため、一般的には、本実施例のように、傾斜角が大きい場合には、より測定距離の小 さい前記第 2判別手段を用いる方が好ましい。但し、距離センサの種類によっては、 所定距離以下で測定精度が低下する場合もあるので、そのような場合には、常に第 1判別手段による判別を行い、障害物の傾斜角が小さくなる程、第 1閾値 SHcを大き くする方法を採用するほうが好ま Uヽ。
[0076] 第 1および第 2光学センサ (距離センサ)は、作業ロボットの前面の側部に設けられ ていてもよい。かかる場合、第 2光学センサは、ロボット本体の外側の斜め前方の距 離を測定する一方のみでよ 、。
[0077] 作業アセンブリ 2 :
図 3に示すように、前記作業アセンブリ 2は、平面視が長方形である。前記作業ァセ ンブリ 2の左右方向の幅は、走行アセンブリ 1の左右方向 Xの幅よりも大きい。したが つて、作業アセンブリ 2は、走行アセンブリ 1の左右力も突出している。作業アセンブリ 2は、本体 20と、該本体 20の周囲を覆うパンパ 21 (L, R) , 22 (L, R)を備えている。 前記パンパ 21, 22は、左右および前後に分割されている。前記パンパ 21, 22は、 本作業ロボットの進行方向 Fに略直交する左右方向 Xの中心に対して、鏡対象に設 けられている。
[0078] 図 2 (および図 7)に示すように、各パンパ 21, 22は、四隅のコーナ部では連続して いる。各パンパ 21, 22は、前面、後面および 2つの側面において、互いに分割され ている。後側のパンパ 22L, 22Rは、作業アセンブリ 2の左右方向 Xの概ね中心部分 において分割されている。前記後側のパンパ 22L, 22Rの分割部分は、互いに略平 行
、かつ、上下方向 Zに対して斜めに形成されている。
[0079] 図 7に示すように、パンパ 21, 22の前側のコーナ部および後側のコーナ部には、そ れぞれ第 1および第 2コロ 25, 26が設けられている。なお、図 1、図 2では、コロ 25, 2 6が省略されている。
[0080] 前バー 30F:
図 8は、作業アセンブリ 2の右側部分を示す平面断面図である。
図 8に示すように、右前パンパ 21Rは、該右前パンパ 21Rに沿って左右方向 Xに延 びる前バー (被検出部) 30Fに、ブラケット 27を介して支持されている。前バー 30Fは 、第 1および第 2アーム 31, 32を介して作業アセンブリ本体 20に取り付けられている
[0081] パンパ支持機構:
前バー 30Fの左右の端部には、前記第 1および第 2アーム 31, 32が、それぞれ設 けられている。第 1および第 2アーム 31, 32は、回動軸 31ο, 32οを中心に、作業ァ センプリ本体 20に対して回動自在に取り付けられている。第 1および第 2アーム 31, 32には、長孔 31a, 32aが形成されている。前バー 30Fの左右の端部には、前記長 孔 31a, 32a内を摺動する摺動部 30a, 30aが形成されている。したがって、前バー 3 OFは、第 1および第 2アーム 31, 32を介して、作業アセンブリ本体 20に対して前後、 左右および斜め方向に移動可能に支持されて 、る(図 9 (a)— (c) )。
[0082] 右前パンパ 21Rの左側の端部 23は、後方に向って折り曲げられている。そのため 、図 9 (a) , (c)に示すように、右前パンパ 21Rの前面や斜め前のコーナ部が障害物 Wに接触すると、前記端部 23が作業アセンブリ本体 20に接触し、前記端部 23を中 心に右前パンパ 21Rが若干回動する。
[0083] 位置決め機構:
図 8に示すように、右側の第 1アーム 31の回動軸 31οには、スプリング 31sが卷回さ れている。前バー 30Fは、スプリング 31sのパネ力によって、矢印で示すように右側に 向って付勢されている。
一方、作業アセンブリ本体 20には、ストッパ 35が固定されている。第 1アーム 31は ストッパ 35に接することで、前バー 30Fが右端の所定の位置に位置決めされている。
[0084] 一方、作業アセンブリ本体 20には、前バー 30Fを進行方向 Fに付勢するための第 3アーム 33が設けられている。第 3アーム 33は、回動軸 33οを中心に作業アセンブリ 本体 20に対して回動自在に設けられている。第 3アーム 33の端部には、前バー 30F の後端部に接するローラ 34が設けられている。前記回動軸 33οに卷回されたスプリ ング 33sのパネ力によって、ローラ 34が前バー 30Fの後端部を前方向 Fに向って付 勢している。
前バー 30Fは、前記摺動部 30a, 30a力 第 1および第 2アーム 31, 32の長孔 31a , 32aの前端部に接触することにより、進行方向 Fの端部に位置決めされている。
[0085] 右第 1および右第 2検出スィッチ SRI, SR2 :
作業アセンブリ本体 20には、前バー 30Fの位置を検出するための右第 1および右 第 2検出スィッチ SRI, SR2が設けられている。右第 1検出スィッチ SR1は、前バー 3 OFの右側の後端部に対応する位置に設けられている。一方、右第 2検出スィッチ SR 2は、前バー 30Fの左端に対応する位置に設けられて 、る。
[0086] たとえば、図 9 (a)に示すように、前進時において、右前パンパ 21Rの前面が障害 物 Wに当接した場合には、前バー 30Fが右後方に移動する。この際、前バー 30Fに よって右第 1検出スィッチ SR1の光が遮光されて、前バー 30Fが検出される。したが つて、右第 1検出スィッチ SRl (SLl)および前バー 30Fは、作業アセンブリ 2の前面 が障害物 Wに接触したのを検知する第 1の接触センサを構成している。
図 9 (b)に示すように、右前パンパ 21Rの側面に第 1コロ 25を介して障害物 Wが接 触した場合には、前バー 30Fが左側に移動する。この際、前バー 30Fによって第 2ス イッチ SR2の光が遮光されて前バー 30Fが検出される。したがって、右第 2検出スィ ツチ SR2 (SL2)および前バー 30Fは、作業アセンブリ 2の側面に障害物 Wが接触し たのを検知する第 2の接触センサを構成して 、る。
図 9 (c)に示すように、右前パンパ 21Rの斜め前に第 1コロ 25を介して障害物 Wが 接触した場合には、前バー 30Fが左斜め後に移動する。この際、右第 1および右第 2 検出スィッチ SRI, SR2の双方が前バー 30Fを検出する。
[0087] 図 7に示すように、作業アセンブリ 2の左側に設けられた左第 1および左第 2検出ス イッチ SLl, SL2は、それぞれ、前述の右第 1および右第 2検出スィッチ SRI, SR2 に対して、鏡対象の位置に設けられている。したがって、左右の第 1および第 2検出 スィッチ SRI, SR2, SLl, SL2の検出信号と、前進時における障害物の接触位置と の関係は、以下のようになる。
SR1のみ:右前面に接触(図 9 (a) )
SR2のみ:右側面に接触(図 9 (b) )
SRIおよび SR2:右斜め前に接触(図 9 (c) )
SL1のみ:左前面に接触
SL2のみ:左側面に接触
SL1および SL2 :左斜め前に接触
[0088] 後バー 30B:
図 8に示すように、前記右後パンパ 22Rは、該右後パンパ 22Rに沿って左右方向 X に延びる後バー (被検出部) 30B力 ブラケット 27を介して支持されている。後バー 3 OBの移動機構および位置決め機構は、前述の前バー 30Fに対して、同様であり、そ の相当部分に同一符号を付してその説明を省略する。
このように、分割された各パンパ 21 (L, R) , 22 (L, R)は、当該各パンパ 21 (L, R) , 22 (L, R)が障害物 Wに接触した際に、内方へ退避可能なように外方に向ってバ ネカにより付勢された状態で、ストッパ 35により所定の位置に位置決めされている。
[0089] 右第 3および右第 4検出スィッチ SR3, SR4 :
作業アセンブリ本体 20には、後バー 30Bの位置を検出する右第 3および右第 4検 出スィッチ SR3, SR4が設けられている。右第 3検出スィッチ SR3は、後バー 30Bの 右側の前端部に対応する位置に設けられている。一方、右第 4検出スィッチ SR4は、 後バー 30Bの左側の前端部に対応する位置に設けられている。
[0090] たとえば、図 10 (a)に示すように、後退時において、後方の第 2コロ 26を介して右 後パンパ 22Rの右斜め後のコーナ部が障害物 Wに接触した場合には、後バー 30B の右端が前方に移動し、右第 3検出スィッチ SR3が後バー 30Bを検出する。
図 10 (b)に示すように、右後パンパ 22Rの左端付近、すなわち作業アセンブリ 2の 中央部の右側付近に障害物 Wが接触した場合には、後バー 30Bの左端が前方に移 動し、右第 4検出スィッチ SR4が後バー 30Bを検出する。
図 10 (c)に示すように、右後パンパ 22Rの中央部付近、すなわち、作業アセンブリ 2の右側に障害物 Wが接触した場合には、後バー 30Bが前方に移動し、右第 3およ び右第 4検出スィッチ SR3, SR4の双方が後バー 30Bを検出する。
[0091] 作業アセンブリ本体 20の左側に設けられた左第 3および左第 4検出スィッチ SL3, SL4は、それぞれ、前述の右第 3および右第 4検出スィッチ SR3, SR4に対して、鏡 対象の位置に設けられている。したがって、左右の第 3および第 4検出スィッチ SR3, SR4, SL3, SL4の検出信号と、後退時における障害物の接触位置との関係は、以 下のようになる。
SR3のみ:右斜め後に接触(図 10 (a) )
SR4のみ:作業アセンブリ 2の中央部右に接触(図 10 (b) )
SR3および SR4:作業アセンブリ 2の右側付近に接触(図 10 (c) )
SL3のみ:左斜め後に接触
SL4のみ:作業アセンブリ 2の中央部左に接触
SL3および SL4:作業アセンブリ 2の左側付近に接触
[0092] 回避動作:
以上説明したように、前記 CPU46は、センサ信号入力手段 40を介して検出スイツ チ SR1— SR4, SL1— SL4からの検出信号を受信することにより、前進ないし後退 時において、各パンパ 21 (L, R) , 22 (L, R)のどの部分が障害物 Wに接触したかを 詳細に判別することが可能である。 CPU46は、力かる検出信号に基づいて、種々の 回避動作を行う。
以下、回避動作について、本作業ロボットが前進している場合で、かつ、障害物 w に作業アセンブリ 2の前面ないし側面が接触した場合について例示して説明する。
[0093] 図 11 (a)に示すように、左前パンパ 21Lの前面が障害物 Wに接触した場合、 CPU
46は左第 1検出スィッチ SL1 (図 7)力 の検出信号を受け取り、第 1の退避速度 A1 で、作業アセンブリ 2を右方向に移動させる。
図 11 (b)に示すように、右前パンパ 21Rの前面が障害物 Wに接触した場合、 CPU
46は右第 1検出スィッチ SRI (図 7)力 の検出信号を受け取り、第 1の退避速度 A1 で、作業アセンブリ 2を左方向に移動させる。
[0094] 図 11 (c)に示すように、左前パンパ 21Lの左側面が障害物 Wに接触した場合、 CP
U46は左第 2検出スィッチ SL2 (図 7)力 の検出信号を受け取り、第 1の退避速度 A
1よりも低速の第 2の退避速度 A2で、作業アセンブリ 2を右方向に退避させる。
図 11 (d)に示すように、右前パンパ 21Rの右側面が障害物 Wに接触した場合、 CP
U46は右第 2検出スィッチ SR2 (図 7)からの検出信号を受け取り、前記第 2の退避速 度 A2で、作業アセンブリ 2を左方向に退避させる。
なお、第 1の退避速度 A1としては、たとえば lm/秒一 3m/秒程度が好ましい。第
2の退避速度 A2としては、たとえば、 lOcmZ秒一 30cmZ秒程度が好ましい。
[0095] 図 12 (a)は、前述の制御方法を採用して、本作業ロボットを壁際で走行させた場合 の例を示す。以下、本作業ロボットの右側に障害物 Wが存在する場合について、例 示して説明する。
前記障害物 (壁) Wの途中には、左側に向って比較的小さな凸部 W1が突出してい る。作業アセンブリ 2は、初期状態において、左右方向 Xについてはほぼ中央に位置 している。
[0096] 1) :走行アセンブリ 1が走行を開始し、右前パンパ 21R側面の第 1コロ 25が障害物 Wに接触すると、第 2検出スィッチ SR2から検出信号が送信される(図 9 (b)の状態 )。 CPU46は、第 2検出スィッチ SR2からの検出信号を受け取ると、スライド制御手段 42を介してスライド駆動モーター 15 (図 3)を作動させ、作業アセンブリ 2を左側に低 速の第 2の退避速度 A2で移動させる(図 11 (d) )。 2) :作業アセンブリ 2が左方向に移動したため、第 2検出スィッチ SR2からの検出信 号が送信されなくなる。 CPU46は、前記検出信号を受信しなくなると、直ちに、第 2 の退避速度 A2よりも更に低速の復帰速度 A3で作業アセンブリ 2を元の位置に向つ て移動させる。
3): 1)および 2)と同じ動作を繰り返しながら壁 Wに沿って前進する。
4) :障害物 Wの凸部 W1に右前パンパ 21Rの右前が接触すると、第 1検出スィッチ S R1から検出信号が送信される(図 9 (a)の状態)。 CPU46は、第 1検出スィッチ SR1 力 の検出信号を受け取ると、作業アセンブリ 2を第 1の退避速度 A1で左側に高速 移動させて、障害物 Wの凸部 W1を回避しながら前進する(図 l l (b) )。
5)、 6):前記 1)および 2)と同じ動作を繰り返しながら前進する。
[0097] 図 12 (b)は、比較例を示す。
図 12 (b)の比較例では、右前パンパ 21Rの側面が障害物 Wに接触した場合に、作 業アセンブリ 2を第 1の退避速度 A1で高速移動させている(図 12 (b)の 1))。そのた め、本比較例では、障害物 Wから作業アセンブリ 2が離れすぎてしまい、障害物 Wと 作業アセンブリ 2が離れている時間が長くなる(図 12 (b)の 1)一 3))。
これに対し、本実施例では、作業アセンブリ 2の側面が障害物 Wに接触した場合に は、作業アセンブリ 2を低速の第 2の退避速度 A2で移動させている。そのため、作業 アセンブリ 2と障害物 Wとが離れている時間が短くなり、障害物 Wに沿って壁際を清 掃することができる。
[0098] 一方、図示して!/ヽな 、が、障害物 Wの凸部 W1に右前パンパ 21Rの右前が接触し た場合に、作業アセンブリ 2を第 2の退避速度 A2で低速移動させることも考えられる 。力かる場合には、障害物 Wの凸部 W1に対する回避が遅くなり、比較的小さな凸部 W1であっても作業アセンブリ 2が当該凸部 W1に引っ掛かってしまい、走行ァセンブ リ 1の進行方向が傾くおそれが生じる。
これに対し、本実施例では、作業アセンブリ 2の前面に障害物 Wが接触した場合に は、作業アセンブリ 2を第 1の退避速度 A1で高速移動させている。そのため、作業ァ センプリ 2が障害物 Wに引っ掛力るおそれが少なくなる。
[0099] つぎに、図 13 (a) , (b)に示すように、障害物 Wの途中に比較的大きな凸部 W2が 存在する場合について説明する。
図 13 (a)に示すように、障害物 Wの凸部 W2が大きい場合には、作業アセンブリ 2を 高速の第 1の退避速度 A1で左側に移動させる回避動作を行っても、当該回避動作 が間に合わず、作業アセンブリ 2が凸部 W2に引っ掛力つてしまい、走行アセンブリ 1 の進行方向が傾くおそれが生じる。
[0100] そこで、本実施例では、以下のように、回避動作を行う。
図 13 (b)の 4)に示すように、右前パンパ 21Rに障害物 Wが接触すると、右第 1検出 スィッチ SR1が検出信号を CPU46に送信する(図 9 (a) )。前記検出信号は、障害物 Wの接触が解消されるまで、送信が続けられる。
図 4の CPU46が、右第 1検出スィッチ SR1からの検出信号を受け取ると、タイマ 49 が計時を開始し、検知時間を計時する。一方、 CPU46は当該検知時間と、 ROM48 力も読み出した閾値 (時間 H)との比較を行い、検知時間が前記閾値 (時間 H)よりも 長い場合には、図 13 (b)に示す走行アセンブリ 1の走行を停止させる。該停止後、 C PU46は、走行アセンブリ 1所定距離だけ後方へ移動させる。更に、 CPU46は作業 アセンブリ 2を第 1の退避速度 A1で所定量退避方向に移動させる。その後、走行ァ セ
ンブリ 1が前方への移動を再開する。
[0101] このように、第 1検出スィッチ SRI (SL1)による検知時間が所定の閾値(時間 H)を 超えたことを検出して、走行アセンブリ 1の走行が一旦停止され、当該停止後、走行 アセンブリ 1が所定距離だけ後方へ移動される。したがって、作業アセンブリ 2が障害 物 Wに引っ掛力ることによって走行アセンブリ 1の進行方向が傾くのを防止し得る。ま た、障害物 Wや作業アセンブリ 2に傷が付くのを防止することができる。
[0102] なお、走行アセンブリ 1の走行速度が速 、ほど、前記閾値(時間 H)を小さく(時間を 短く)するのが好ましい。走行速度が速いほど、作業アセンブリ 2が壁の出っ張りに引 っ掛力つて進行方向が傾くまでの時間が短くなるからである。
力かる回避の方法としては、たとえば、 ROM48に複数の閾値を記憶させ、走行ァ センプリ 1の走行速度が速 、場合には小さ 、値の閾値を読み出し、走行速度が遅!ヽ 場合には大きい値の閾値を読み出すようにしてもよい。また、所定の演算を行い走行 速度に応じて閾値を算出するようにしてもよい。
[0103] 前記実施例において、接触センサの一例として、前述の実施例では光センサを用 いた。しかし、センサは障害物の接触を検出し得るものであればよぐたとえば、接触 型のスィッチが用いられてもよ 、。
また、後方の左右のパンパは一体に形成されていてもよい。また、前方の左右のバ ンパのみが用いられてもよ 、。
[0104] 第 2実施例:
全体構成:
本作業ロボット 100は、図 15 (a) , (b)に示す走行アセンブリ 1および作業ァセンブ リ 2を備えている。図 14 (a) , (b)に示すように、前記走行アセンブリ 1は、走行ァセン ブリ 1の駆動を行うための駆動輪 6a, 6bと、走行アセンブリ 1のバランスをとるための 従動輪 9a, 9bとを備えている。前記駆動輪 6a, 6bは、それぞれ、駆動モータ 5a, 5b によって駆動される。駆動モータ 5a, 5bは正逆回転可能で、マイコン (制御手段) 8に よって回転が制御される。
[0105] 直進走行時には、前記 2つの駆動モータ 5a, 5bが同方向に回転することで、走行 アセンブリ 1は前進または後退することができる。
回転動作を行う際には、前記 2つの駆動モータ 5a, 5bがそれぞれ逆方向に回転す ることで、走行アセンブリ 1は、図 14の床面に対する鉛直線(回転中心) Oのまわりに 回転することができる。
なお、前記 2つの駆動モータ 5a, 5bの回転の比率が制御されることで、走行ァセン プリ 1はカーブ走行を行うことができる。
[0106] 走行アセンブリ 1の後部には、前記作業アセンブリ 2を取り付けるための取付板 11 が設けられている。取付板 11は、スライド駆動モータ 15によって駆動され、レール 14 に沿って走行アセンブリ 1の幅方向 Xにスライド移動可能とされている。
[0107] 図 15 (a)の作業アセンブリ 2は、前記取付板 11を介して、前記走行アセンブリ 1の 後方に取り付けられる。前記作業アセンブリ 2は、床面に近接ないし接触して床面に 対する作業を行うものであり、たとえば、床上のゴミを吸引したり、あるいは、床面にヮ ックスを塗布する。前記作業アセンブリ 2は、前記取付板 11に取り付けられていること で、走行アセンブリ 1に対して幅方向 Xにスライド移動することができる。
[0108] 図 14に示すように、走行アセンブリ 1の前部には、複数の超音波式センサ 3a— 3e と、複数の光学式センサ 17a— 17eとが設けられている。これら複数のセンサのうち、 2つの超音波式センサ 3a, 3bは、走行アセンブリ 1の左右にある障害物までの距離を 測定する側方距離測定手段を構成する。一方、残りの超音波式センサ 3c, 3d, 3eお よび光学式センサ 17a, 17b, 17c, 17d, 17eは、走行アセンブリ 1の前方にある障 害物までの距離を測定する前方距離測定手段を構成する。
なお、走行アセンブリ 1の前部外縁部には、障害物との接触を検知するためのバン パーセンサ 10が設けられている。
[0109] 前記超音波式センサ 3c, 3d, 3eおよび前記光学式センサ 17a, 17b, 17c, 17d, 17eは、各々、前記走行アセンブリ 1の幅方向 Xに互いに離間して設けられている。 前記光学式センサ 17a— 17bのうち、 2つの光学式センサ 17b, 17dは、それぞれ、 前記走行アセンブリ 1の進行方向に対して所定の角度傾けて設けられている。
[0110] 制御構成:
つぎに制御構成について説明する。
図 15 (b)に示すように、前記マイコン 8Aには、駆動モータ 5a, 5b、スライド駆動モ ータ 15、前方距離測定手段 3c— 3e, 17a— 17e、側方距離測定手段 3a, 3b、ジャ イロセンサ(回転角度測定手段) 7およびバンパーセンサ 10などが図示しないインタ 一フェイスを介して接続されて 、る。
前記ジャイロセンサ 7は、前記鉛直線 Oのまわりの走行アセンブリ 1の回転角度を測 定するものであり、図 14 (a) , (b)に示すように、前記回転中心 Oの近傍に設けられて いる。
[0111] 前記マイコン 8Aは CPU (制御手段、判別手段) 80およびメモリ(記憶手段) 81を備 えている。前記メモリ 81には、前記前方距離測定手段 3c— 3e, 17a— 17e、側方距 離測定手段 3a, 3bおよびジャイロセンサ 7によって測定される各測定値が記憶される
[0112] 動作:
つぎに、本作業ロボットの動作について詳しく説明する。 まず、図 16を参照して、直角の壁で囲まれたスペースを作業する場合の基本的な 動作について説明する。
図 16に示すように、作業ロボット 100は、横壁 (側方障害物)の壁面に平行な複数 の走行レーン 201, 202を一方の端力 順に走行していく。あるレーンの走行中に、 作業ロボット 100が前方に壁 (前方障害物)を検出すると、走行アセンブリ 1は 90度回 転、前壁に沿って所定距離前進、 90度回転を行って隣の走行レーンに移動する。こ のように、作業ロボット 100は、ターンと走行とを繰り返して開始位置 P1から終了位置 P2まで走行しながら対象領域の作業を行う。
[0113] 次に、作業対象領域に斜めの壁が存在する場合の動作について説明する。
図 17は、作業ロボット 100が横壁 52に沿って前進しながら作業を行っている途中 に、前方の斜め壁 51に遭遇した場合の例を示している。この例は、前方の斜め壁 51 と横壁 52との成す角度が鈍角である場合の例である。
[0114] 図 17 (a)は、作業ロボット 100が横壁 52に沿って前進している様子を示す図である 。この図において、 D1は走行アセンブリ 1の回転中心 Oから横壁 52までの距離であ つて、前記センサ 3bの測定距離 Mbに、前記センサ 3bの前記回転中心 O力もの幅方 向 Xの離間距離を加えることにより算出される。前記側方距離測定手段 3a, 3bによる 測定は、所定の周期で繰り返し実行され、過去 120回のデータが時系列で前記メモ ジ8
1に記憶される。また、走行アセンブリ 1の走行距離データ力 前記駆動モータ 5a, 5 bに接続されたエンコーダ(図示せず)により検出され、前記メモリ 81に記憶される。
[0115] 図 17 (b)は、作業ロボット 100が横壁 52に沿って前進中に、前壁 51が所定距離以 内に近づいたことを検出し、走行停止した状態を示している。この図 17 (b)において 、 Wiは作業アセンブリ 2の幅であり、 Mcは左側の超音波式センサ 3cによる測定距離 であり、 Mdは右側の超音波式センサ 3cによる測定距離である。前記右側センサ 3c の測定距離 Mdの値が所定の閾値 (走行停止限界距離 SHd)以下となると、走行ァ センプリ 1は走行を停止する。このときの前記回転中心 Oの位置を点 Jとする。
この停止状態においては、前方の壁 51は右側が走行アセンブリ 1に近くなつている ので、前記測定距離 Mc, Mdの関係は、 Mc>Mdとなる。そのため、前記 CPU80 は、前方の壁 51の右側が近くにあり、左側が遠くにあると判断する。 CPU80は、前 記測定距離 Mcと Mdとを比較して、 Mcと Mdとの差の絶対値が所定の別の閾値 (傾 き判別基準値 SHa)よりも大き 、か否かを判別する。前記測定距離 Mcと Mdとの差の 絶対値が傾き判別基準値 SHaよりも大きい (所定値の範囲外の)場合には、前壁の 傾き角を測定するため、 CPU80は回転中心 Oを前記点 Jの位置力 動力さないよう にして、走行アセンブリ 1を時計回りに回転運動させる。
[0116] 図 17 (c)に示すように、走行アセンブリ 1が時計回りに回転して、前記測定距離 Mc , Mdの差の絶対値力 傾き判別基準値 SHa以下 (所定値の範囲内)になると、 CPU 80は、走行アセンブリ 1と前方の斜め壁 51とが概ね正対する向きになったと判断して 、走行アセンブリ 1の回転運動を停止させる。このときの走行アセンブリ 1の回転角度 Θは、前記ジャイロセンサ 7により測定され、前記メモリ 81に記憶される。また、このと きの前壁 51までの距離 D2が前記メモリ 81に記憶される。
[0117] 図 17 (d)は、図 17 (c)の状態から、図 17 (a)の進行方向 Yに対して走行アセンブリ 1が 90度回転して、作業アセンブリ 2の右端部 21eが、前壁 51と横壁 52との交点 こ 接し、かつ、作業アセンブリ 2の後端が横壁 52に接する位置に移動した状態を示す。 このときの前記回転中心 Oの位置を点 Bとする。
この状態から、作業ロボット 100が所定距離前進することにより、図 17 (b)に示す状 態で作業をやり残した隅部の床面に対する作業を行うことができる。
[0118] 図 17 (e)は、作業ロボット 100が前壁 51に沿った姿勢となり、前記点 Cに作業ァセ ンブリ 2の右端部 21eが接している状態を示す。この状態から、作業ロボット 100が所 定距離前進することにより、前壁 51に沿って走行しながら作業を行うことができる。
[0119] 前記点 Cの位置は、たとえば、下記の演算式により算出される。
図 17 (f)において、点 Jの座標を (Xa, Ya)、点 Cの座標を (Xc, Yc)、点 Dの座標を (Xd, Yd)とする。なお、点 Dは、走行アセンブリ 1の Y軸方向の中心線 Lyが前壁 51 と交差する点である。
前記点 Cの X座標は、 Xc=Xa + Dl
前記点 Dの Y座標は、 Yd=Ya + D2Zcos Θ
前記点 Cの Y座標は、 Yc=Yd— Dl Xtan Θ =Ya + D2/cos θ-DlXtan Θ
[0120] 上記の式から、点 Cの座標(Xc, Yc)は、点 Jの座標 Xa, Yaと、距離 Dl, D2および 回転角度 Θを用いて下記のように表せる。
Xc=Xa + Dl
Yc=Ya + D2/cos 0— DlXtan θ
従って、図 17(d)の点 Βの座標 (Xb, Yb)は、回転中心 O力も作業アセンブリ 2の後 端までの距離 D3と、作業アセンブリの幅 Wを用いて下記のように表せる。
Xb=Xc-D3
=Xa + Dl-D3
Yb=Yc-W/2
=Ya + D2/cos θ-DlXtan Θ ~W/2 ·'·(2)
[0121] 同様に、図 17(e)に示す点 Εの座標 (Xe, Ye)は、下記のように表せる。
Xe=Xc-(W/2) Xsin Θ ~D3 X cos Θ
=Xa + Dl-(W/2) Xsin Θ ~D3 X cos θ ·'·(3)
Ye=Yc-(W/2) Xcos Θ +D3Xsin Θ
=Ya + D2/cos θ-DlXtan Θ
-(W/2) Xcos Θ +D3Xsin θ "'(4)
上記の如ぐ点 Jから点 Bおよび点 Eへ移動する為の、 X軸方向、 Y軸方向の移動距 離が計算できる。したがって、作業アセンブリ 2の右端部 21eを前記点 Cに接するよう に、作業ロボット 100を自律的に移動させることができる。
[0122] 図 18 (a)一 (s)を参照して、作業ロボット 100が横壁 52に沿って作業しながら前進 中に、前方に斜めの壁 51が現れた場合の動作の流れを説明する。これらの図に示 す例は、前方の斜め壁 51と横壁 52との成す角度が鈍角である場合の例である。 なお、図 18においてハッチングを施している部分は、作業が済んでいる領域である
[0123] 図 18 (a)に示すように、作業ロボット 100は横壁 52に沿って作業しながら前進して いる。この時、紙面左右方向 Xの障害物までの距離を測定する為の側方距離測定手 段 3a, 3bの過去 120回の測定データ力 測定時点の走行距離データと共に前記メ モリ 81に記憶される。
[0124] 図 18 (b)に示すように、前壁 (前方障害物) 51が現れたことを前方距離測定手段 3 c一 3e, 17a— 17eが検出すると、走行アセンブリ 1は走行を停止する。そして、前記 センサ 3c、 3dの測定距離 Mc, Mdを比較し、 Mcと Mdの差の絶対値が前記傾き判 別基準値 SHaよりも大きぐかつ、 Mc >Mdであることから、前方の障害物の右側が 近ぐかつ、左側が遠い斜めの壁であると判断し、更に、過去 120回の側方距離測定 手段 3a, 3bの測定距離の履歴と、該測定距離を測定した時点の走行距離のデータ と力も走行アセンブリ 1の右横に壁 52が存在していると判別する。
[0125] つぎに、図 18 (c)に示すように、走行アセンブリ 1が右回りに回転動作しながら、前 記左右のセンサ 3c、 3dで前壁 51までの距離を繰り返し測定し、前記左右のセンサ 3 c、 3dの測定距離 Mc、 Mdの値の差の絶対値が前記傾き判別基準値 SHa以下にな つた時点で回転動作を停止する。
[0126] 図 18 (d)では、前記 CPU80が前述の(1)式および(2)式から、前記点 B (図 17 (d) )の座標を計算し、回転中心 Oの Y座標が点 Bの Y座標 Ybに一致するまで走行ァセ ンブリ 1を後退させる。その後、図 18 (e)に示すように、作業アセンブリ 2を走行ァセン プリ 1に対して左端までスライド移動させた状態で、走行アセンブリ 1が反時計回りに 角度( 0 + 90° )だけ回転する。続いて、図 18 (f)に示すように、回転中心 Oの X座 標カ 前記点 Bの X座標 Xbに一致する地点まで後退する。この後退中に作業ァセン プリ 2の後端部に設けられた図示しない接触センサが横壁 52に接触すると、走行ァ センプリ 1の後退が停止される。これにより、作業アセンブリ 2の右端部 21eが、前記 点じに接するまで作業アセンブリ 2を移動させることができる。
[0127] つぎに、図 18 (g)に示すように、作業ロボット 100は作業アセンブリ 2の幅 Wに相当 する距離だけ前進しながら作業を行う。これにより、隅部の一部分の作業が完了する 。図 18 (h)では、 CPU80は前述の(3)式および (4)式から、前記点 E (図 17 (e) )の 座標を計算し、前記回転中心 Oの X座標が点 Eの X座標 Xeに一致するまで走行ァセ ンブリ 1を後退させる。その後、図 18 (i)に示すように、作業アセンブリ 2が走行ァセン プリ 1に対して左端までスライド移動した状態で、走行アセンブリ 1が時計回りに 90度 回転する。続いて、図 18 (j)に示すように、回転中心 Oの Y座標が点 Eの Y座標 Yeに 一致するまで前進しながら作業する。その後、図 18 (k)に示すように、走行アセンブリ 1は、反時計回りに角度 Θだけ回転し前方の斜め壁 51に沿った姿勢となる。
[0128] 図 18 (1)に示すように、作業ロボット 100は斜め壁 51に沿って作業をしながら所定 距離前進する。これにより、隅部の残りの部分と前壁 51沿いのスペースの一部の作 業が完了する。つぎに、図 18 (m)に示すように、走行アセンブリ 1が反時計回りに 90 度回転した後、作業アセンブリ 2の後端が前壁 51に接触するまで後退する。その後、 図 18 (n)に示すように、作業ロボット 100は作業をしながら所定距離前進する。
[0129] 続いて、図 18 (o)に示すように、走行アセンブリ 1は反時計回りに 90度旋回する。
その後、図 18 (p)に示すように、作業ロボット 100は作業をしながら所定距離前進す る 。つぎに、図 18 (q)に示すように、前記図 18 (a)で走行していたレーンの隣のレ ーンの中心位置に回転中心 Oの X座標が一致するまで後退する。ここで、図 18 (r)に 示すように、走行アセンブリ 1が時計回りに角度(90° — Θ )だけ回転することで、走 行アセンブリ 1が前記図 18 (a)での進行方向と 180度反対の方向に向く。その後、図 18 (s)に示すように、作業ロボット 100は作業をしながら前進し、次のレーンの作業を 行う。
このように、作業ロボット 100は、斜めの壁が存在する場合でも、壁の隅部まで隈な く作業することがでさる。
[0130] 次に、図 19 (a)— (1)を参照して、作業ロボット 100が横壁力も離れたレーンを作業 しながらの前進中に、前方に斜めの壁 51が現れた場合で、かつ、走行アセンブリ 1に 対して前方の斜め壁の作業開始位置 P1側の距離が小さぐ作業終了位置 P2側の 距離が大き!、場合の動作の流れにつ!、て説明する。
[0131] 図 19 (a)—図 19 (b)のように、作業ロボット 100は横壁 52から離れたレーンを作業 しながら前進し、前壁 51を検出すると、走行を停止する。そして、 CPU80が走行ァ センプリ 1の側方に横壁が存在する力否かを判別すると共に、前壁 51の傾きが所定 の角度以上であるかを判別する。
[0132] つぎに、図 19 (c)のように、走行アセンブリ 1が時計回りに回転運動し、前壁 51と概 ね正対する向きになったところで、回転運動を停止する。続いて、図 19 (d)に示すよ うに、走行アセンブリ 1は反時計回りに 90度回転することで、前方の斜め壁 51に沿つ た姿勢となる。
以後の動作の流れは、図 19 (e)—図 19 (1)に示すように、横壁 52に沿って作業す る場合 (図 18 (1)—図 18 (s)参照)の動作と同様であるため、その説明を省略する。
[0133] 次に、図 20 (a)一 (1)を参照して、作業ロボット 100が横壁力も離れたレーンを作業 しながらの前進中に、前方に斜めの壁 51が現れた場合で、かつ、走行アセンブリ 1に 対して前方の斜め壁 51の作業開始位置 P1側の距離が大きぐ作業終了位置 P2側 の距離が小さ!/、場合の動作の流れにっ 、て説明する。
[0134] 図 20 (a)—図 20 (b)のように、作業ロボット 100は横壁 52から離れたレーンを作業 しながら前進し、前壁 51を検出すると、走行を停止する。そして、 CPU80が走行ァ センプリ 1の側方に横壁が存在する力否かを判別すると共に、前壁 51の傾きが所定 の角度以上であるかを判別した後、作業ロボット 100は、前記図 19 (a )—(e )に示す 動作とは若干異なる動作を行う。
[0135] 図 20 (c)に示すように、走行アセンブリ 1が反時計回りに回転運動しながら、前記左 右のセンサ 3c、 3dで前壁 51までの距離を繰り返し測定し、前記左右のセンサ 3c、 3 dの測定距離 Mc、 Mdの値の差の絶対値が前記傾き判別基準値 SHa以下になった 時に回転運動を停止する。続いて、図 20 (d)に示すように、走行アセンブリ 1は反時 計回りに 90度回転することで、前壁 51に沿った姿勢となる。その後、図 20 (e)に示 すように、作業ロボット 100は、前記斜め壁 51に沿って作業をしながら所定距離前進 する。これにより、前方斜め壁 51沿いのスペースの一部の作業が完了する。
[0136] その後、図 20 (f)に示すように、走行アセンブリ 1は、反時計回りに 90度回転した後 、作業アセンブリ 2の後端が前壁 51に接触するまで後退する。その後、図 20 (g)に示 すように、作業ロボット 100は作業をしながら所定距離前進する。
[0137] 続いて、図 20 (h)〖こ示すように、前記図 20 (a)で走行していたレーンの隣のレーン の中心位置に回転中心 Oの X座標が一致するまでロボットは後退する。ここで、図 20 (i)に示すように、走行アセンブリ 1が時計回りに角度 Θだけ回転することで、走行ァ センプリ 1が前記図 20 (a)での進行方向と 180度反対の方向を向く。その後、図 20 (j )に示すように、作業ロボット 100は作業をしながら前進し次のレーンの作業を行う。
[0138] 次に、図 21 (a)一 (n)を参照して、作業ロボット 100が横壁に沿って作業しながら前 進中に、前方に斜めの壁 51が現れた場合の作業の流れを説明する。ただし、前方 の斜め壁 51と横壁 52との成す角度が鋭角である場合の例である。
[0139] 図 21 (a)に示すように、作業ロボット 100は横壁 52に沿って作業しながら前進して いる。この時、紙面左右方向 Xの障害物までの距離を測定する為の側方距離測定手 段 3a, 3bの過去 120回の測定データ力 測定時点の走行距離データと共に前記メ モリ 81に記憶される。
[0140] 図 21 (b)に示すように、前方に障害物 51が現れたことを前方距離測定手段 3c— 3 e, 17a— 17eが検出すると、走行アセンブリ 1は走行を停止する。そして、前記セン サ 3c、 3dの測定距離 Mc, Mdを比較し、 Mcと Mdの差の絶対値が前記傾き判別基 準値 SHaよりも大きぐかつ、 Mcく Mdであることから、前方の障害物 51の右側が遠 ぐかつ、左側が近い斜めの壁であると判断し、かつ、過去 120回の側方距離測定手 段 3a, 3bによる測定距離の履歴と、該測定距離を測定した時点の走行距離のデー タとカも走行アセンブリ 1の右横に壁 52が存在していると判別する。
[0141] つぎに、図 21 (c)に示すように、走行アセンブリ 1が反時計回りに 90度回転する。そ の後、作業アセンブリ 2の後端が横壁 52に接触するまでロボットが後退する。この後 退後、図 21 (d)に示すように、作業ロボット 100は、作業を行いながら前進し、前壁 5 1を再び検出して走行を停止する。図 21 (e)に示すように、走行アセンブリ 1は、再度 、作業アセンブリ 2の後端が横壁 52に接触するまで後退する。その後、作業ァセンブ リ 2の右端部 21が前壁 51に接触するまで、作業アセンブリ 2が走行アセンブリ 1に対 して右方向に移動する。その後、図 21 (f)に示すように、作業ロボット 100 は作業を行いながら前進する。この走行中、作業アセンブリ 2は前壁 51に沿って徐 々に左方向に移動するように制御される。作業ロボット 100は、再度前壁 51を検出す るまで走行する。
[0142] 前壁 51を検出し停止した状態から、図 21 (g)に示すように、作業アセンブリ 2が走 行アセンブリ 1に対して左端まで移動した後、作業ロボット 100は時計回りに 90度回 転する。この状態から、図 21 (h)に示すように、走行アセンブリ 1が反時計回りに 90 度回転したと仮定して、作業アセンブリ 2が走行アセンブリ 1に対して右端まで移動し た場合に、前壁 51に作業アセンブリ 2の右端部 21が接する位置を計算し、当該算出 した位置まで後退する。その後、図 21 (i)に示すように、走行アセンブリ 1が反時計回 りに 90度回転して、作業アセンブリ 2の右端部 21eが前壁 51に接触するまで作業ァ センプリ 2を走行アセンブリ 1に対して右方向に移動させる。
[0143] その後、図 21 (j)に示すように、作業ロボット 100は作業を行いながら前進し、前壁 51を検出した時点で停止する。この走行中、作業アセンブリ 2は前壁 51に沿って徐 々に左方向に移動するように制御される。
[0144] つぎに、図 21 (k)に示すように、走行アセンブリ 1は時計回りに回転しながら、前方 の左右のセンサ 3c, 3dにより前壁 51までの距離を繰り返し測定し、センサ 3c、 3dの 測定距離 Mc、Mdの値の差の絶対値が傾き判別基準値 SHa以下になった時点で 回転を停止する。続いて、図 21 (1)に示すように、走行アセンブリ 1が反時計回りに 9 0度回転して前方向の斜め壁 51に作業アセンブリ 2が接触した後、図 21 (m)に示す ように、作業アセンブリ 2の後端が横壁 52に接触するまで後退する。そして、図 21 (n )に示すように、作業ロボット 100は斜め壁 51に沿って、作業をしながら所定距離前 進する。これにより、前方の斜め壁 51沿いのスペースの一部の作業が完了する。以 後の動作は、前述した図 20 (f)—図 20 (j)と同様の動作を行って作業ロボット 100は 次のレーンに移る。
[0145] ところで、図 22 (a)に示すように、実際にはロボットが斜め壁 51に正対する向きにあ つても、右側の超音波センサ 3dが誤って横壁 52を検出し、そのため、左右のセンサ 3c, 3dの測定距離 Mc, Mdが近い値にならなかったり、あるいは、超音波センサ 3d から出射された超音波の反射波が帰ってこず、距離が測定できないという場合が生 ずる。この場合、図 22 (a)の状態では、走行アセンブリ 1が回転を停止せず、図 22 (b )に示すように、右側の超音波センサ 3dの測定距離 Mdと、左側の超音波距離センサ 3cの測定距離 Mcと力 ほぼ等しい値になった時に回転を停止し、その時の回転角 度 Θを、斜め壁 51の傾き角度であると誤って認識する。この認識は、以後の動作の 誤りを招く。
[0146] そこで、こういった不具合を解消するため、走行アセンブリ 1が横壁 52に沿って走行 している場合は、斜め壁 51の傾き角度を計測する前に、前記回転動作の回転中心 Oを横壁 52から離れる方向に所定距離移動させるように制御する。すなわち、図 22 ( c)に示すように、回転中心 Oを点 Jの位置から、横壁 52から離れた F点の位置に移動 させることによって、図 22 (d)に示すように、右側の超音波センサ 3dが横壁 52までの 距離を測定することなぐ斜め壁 51と正対した状態で、角度 Θを正確に測定すること が可能になる。
[0147] 力かる動作の具体例を、図 23 (a)一 (k)を参照して説明する。
図 23 (a)—図 23 (b)の動作にっ 、ては、前述した図 18 (a)—図 18 (b)の動作と同 様であるので説明を省略する。図 23 (c)に示すように、走行アセンブリ 1が時計回りに 90度回転する。続いて、図 23 (d)に示すように、走行アセンブリ 1が
横壁 52から離れる方向に所定距離後退すると共に、この時の移動距離 D4が記憶さ れる。この後退後、図 23 (e)に示すように、走行アセンブリ 1が反時計回りに 90度回 転する。そして、図 23 (f)に示すように、作業ロボット 100は作業を行いながら前進し 、前方に障害物を検出した時点で走行を停止する。
[0148] つぎに、図 23 (g)に示すように、走行アセンブリ 1が時計回りに回転して、前方の斜 め壁の傾き角度 Θが記憶される。図 23 (h)に示すように、走行アセンブリ 1が反時計 回りに前記角度 Θだけ回転して前記図 23 (f)の進行方向 Yと同じ方向に戻る。図 23 (i)では CPUが、後述する(5)式および (6)式から、点 B (図 17 (d) )の座標を計算し 、回転中心 Oの Y座標が点 Bの Y座標 Ybに一致するまでロボットが後退する。そして 、図 23 (j)に示すように、走行アセンブリ 1は反時計回りに 90度回転した後、図 23 (k )に示すように、回転中心 Oの X座標が点 Bの X座標 Xbに一致するまで後退する。こ の後退中に、作業アセンブリ 2の後端が横壁 52に接触し、この接触したときに後退を 停止する。これにより、作業アセンブリ 2の右側の端部 21eを前記点 Cに接する位置 に移動させることができる。以後、前記図 18 (g)—図 18 (s)に示す動作と同様にして 、作業ロボット 100は次のレーンに移る。
[0149] 前記点 Bの座標は、たとえば、下記の演算式から算出される。図 22 (c)および図 22
(d)において、
点 Cの座標を (Xc, Yc)、点 Dの座標を (Xd, Yd)、点 Fの座標を (Xf, Yf)とする。 点、 Cの X座標は、 Xc=Xa + Dl =Xf+D4 + Dl
点 Dの Y座標は、 Yd=Yf+D2Zcos Θ 点 Cの Y座標は、 Yc=Yd— (D1 + D4) X tan θ
=Yf+D2/cos 0 -(Dl + D4) X tan Θ
[0150] 上記の如ぐ点 Cの座標(Xc, Yc)は、点 Fの座標(Xf, Yf)と、 Dl、 D2、 D4、 Θを 用いて下記のように表せる。
Xc=Xf + D4 + Dl
Yc=Yf+D2/cos 0— (D1 + D4) X tan θ
[0151] 従って図 17 (d)の点 Βの座標(Xb, Yb)は、回転中心 Oから作業アセンブリ 2の後 端までの距離 D3と、作業アセンブリ 2の幅 Wを用いて下記のように表せる。
Xb=Xc-D3=Xf+D4 + Dl-D3 · '· (5)
Yb=Yc-W/2
=Yf+D2/cos 0 -(Dl + D4) X tan Θ ~W/2 · ,· (6)
[0152] なお、前記複数の超音波センサ 3a— 3eは、超音波の干渉を避けるため、一つずつ 所定の時間間隔を空けて、所定の順序で測定されるのが好ま 、。
[0153] ところで、超音波センサは、超音波を発射してから障害物で反射された反射波が戻 つてくるまでの時間を計測することにより障害物までの距離を測定するものである。し たがって、障害物の傾斜が大きくなると、超音波センサに反射波が戻ってこず、測定 ができない場合がある。そのため、超音波センサだけでは、傾斜の小さい障害物しか 検出することができない。
[0154] そこで、本発明では、超音波センサ 3a— 3eにカ卩え、光学式センサ 17a— 17eを設 けている(図 24 (a)参照)。光学式センサは、一般に測定対象の面が鏡面でなく拡散 面であれば、散乱反射された光の一部を検出することができ、したがって、傾斜の大 き 、障害物であっても距離を測定することができる。
[0155] これにより、たとえば、図 24 (a)に示すように、障害物 51が作業ロボット 100の進行 方向 Yに対して大きく傾斜している場合でも、光学式センサ 17a— 17eの検出により 測定することができるから、障害物の検出精度を向上させることができる。
したがって、例えば、右側の超音波センサ 3dが障害物 51を検出せず、かつ、右側 の光学センサ 17eが障害物 51を検出している場合は、ロボットの右側に斜め壁 51が 存在すると判断することも可能である。 [0156] また、真正面の前方を測定する光学式センサと所定の角度傾けた光学式センサとの 測定値を比較することにより、壁の傾きの大きさを、ある程度認識することができる。そ のため壁が非常に大きく傾いている場合は、その壁を横壁と見なす等の、より高度な 処理を行うことができる(図 24 (a)と図 24 (b)の差が分かる)。
[0157] また、図 24 (b)のように、壁 51 , 52の傾斜が小さい場合には、前記超音波式センサ 3c— 3eが障害物 51, 52を検出し、かつ、前記光学式センサ 17b, 17dが障害物 51 を検出する。この場合、当該障害物 51 , 52の前記走行アセンブリの進行方向に対す る傾きが所定の傾き角度よりも小さいと判断される。一方、図 24 (a)のように、壁 51, 52の傾斜が大きい場合には、前記超音波式センサ 3c— 3eが障害物 51, 52を検出 せず、かつ、前記光学式センサ 17dが障害物 51, 52を検出する。この場合は、当該 障害物 51 , 52の前記走行アセンブリの進行方向に対する傾きが所定の傾き角度より も大きいと判断される。
[0158] さらに、ロボットの左右のそれぞれに超音波センサおよび Zまたは光学センサの双 方を有することにより、ロボットが隅部に向力つて走行している力否かについても検出 することが可能である。ロボットが隅部に向力 て走行していることが検出された場合 は、ロボットが!/、ずれか一方の壁に沿うようにロボットの姿勢を変更してもよ!/、。
[0159] ところで、前記実施例では、側方距離測定手段によって測定された複数の測定値 力もなる履歴に基づいて、走行アセンブリが横壁に沿って走行している力否かにつ いて判別した。しかし、この判別のための測定値は、測定手段を複数ないし多数設け て得るようにしてちょい。
また、測定距離の差が傾き判別基準値 SHaよりも大きいか否かにより、前方の障害 物の傾きを判別した。しかし、この判別は図 17 (b) , (c)の測定距離 Mc, Mdの比率 ( McZMdまたは MdZMc)で行うことが可能である。前記判別が前記比率で行われ るロボットにおいては、図 17 (c)のように、当該比率が 1. 0に近い値の場合は、つまり 、前記比率が所定範囲内である場合は、障害物 51の傾きが小さいと判断され、一方 、図 17 (b)のように、当該比率が 1. 0に近くない場合は、つまり、前記比率が所定範 囲外である場合は障害物 51の傾きが大きいと判断される。すなわち、この判別は測 定距離の比が所定範囲内であるカゝ否かにより行われてもよい。 [0160] ところで、前方距離測定手段および Zまたは側方距離測定手段の各センサの個数 および配置は前記実施例に限定されず、適宜設定されることができる。また、隅部で の動作制御で用いる演算式は、前記のものに限られず、他の制御方法であってもよ い。
[0161] 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、 本明細書を見て、自明な範囲で種々の変更および修正を容易に想定するであろう。 たとえば、車輪の構造には自在キャスタを採用してもよい。ロボットは液剤の塗布な どを行うものでもよ ヽ。
したがって、そのような変更および修正は、請求の範囲力 定まる本発明の範囲内 のものと解釈される。
産業上の利用可能性
[0162] 本発明のロボットは、自走しながら種々の作業を行うロボットに利用できる。

Claims

請求の範囲
[1] 前方の障害物までの距離を測定する第 1距離センサと、斜め前方の障害物までの 距離を測定する第 2距離センサとを備えた自走式の作業ロボットにおいて、
前記第 1距離センサにより測定した障害物までの第 1測定距離と、所定の第 1閾値 SHcとを比較して障害物の接近を判別する第 1判別手段と、
前記第 2距離センサにより測定した障害物までの第 2測定距離と、所定の第 2閾値 SHrとを比較して障害物の接近を判別する第 2判別手段と、
前記第 1および第 2測定距離から得られる前記障害物の傾斜角に関する情報に基 づ 、て、前記第 1もしくは第 2閾値を変更する変更手段とを備えた自走式作業ロボット
[2] 請求項 1において、前記傾斜角の大小にかかわらず前記第 1判別手段による前記 障害物が接近したか否かの判別結果と、前記第 2判別手段による前記障害物が接近 した力否かの判別結果とを得て、前記 2つの判別結果のうち、いずれか一方が接近し たと判別した時に、前記ロボットが前記障害物に接近したと断定する自走式作業ロボ ッ卜。
[3] 請求項 1において、前記傾斜角が大きくなる程、前記第 1もしくは第 2閾値 SHc, S Hrが大きくなるように前記第 1もしくは第 2閾値 SHc, SHrを前記変更手段が設定す る自走式作業ロボット。
[4] 請求項 1にお!、て、前記第 1および第 2距離センサが互 ヽに近接して配置されて!ヽ る自走式作業ロボット。
[5] 請求項 1ないし 3のいずれか 1項において、前記第 1および第 2距離センサの配置と 、前記第 1および第 2距離センサからの光の放射方向と、前記第 1および第 2測定距 離とに基づ!/、て、前記傾斜角に関する情報を得るようにした自走式作業ロボット。
[6] 請求項 1において、前記第 1および第 2距離センサは光学式の距離センサ力 なり 前記第 1距離センサは前記ロボットの左右の中央の先頭部分に設けられ、 前記第 2距離センサは第 1距離センサの両側に近接して一対設けられ、 前記光学式の第 1および第 2距離センサの他に、前記ロボットの前端の両側部に前 方の障害物までの距離を測定する超音波式の距離センサが設けられている自走式 作業ロボット。
[7] 請求項 1において、前記第 1および第 2距離センサは光学式の距離センサ力 なり 前記第 1距離センサはロボットの左右の中央の先頭部分に設けられ、
前記第 2距離センサは第 1距離センサの両側に近接して一対設けられ、 前記ロボットの先頭部分には保護カバーが設けられ、該保護カバーは前記 3つの センサが近接対向する 3つの側面および天井面を持つ凹部を有し、
前記天井面に対向する内側の位置に前方の斜め下方までの距離を測定する第 3 の距離センサが配置されて 、る自走式作業ロボット。
[8] 請求項 1において、床面を自走するための車輪を有する走行アセンブリと、
前記走行アセンブリに対し左右に移動可能に取り付けられ、前記床に対する作業 を行う作業アセンブリと、
前記走行アセンブリと前記作業アセンブリとの位置関係を変更すベぐ前記作業ァ センプリを前記走行アセンブリに対して移動させる移動機構と、
前記作業アセンブリに設けられ、前記作業アセンブリの前面に障害物が接触したの を検知する第 1の接触センサと、
前記作業アセンブリに設けられ、前記作業アセンブリの側面に障害物が接触したの を検知する第 2の接触センサと、
前記走行アセンブリの走行を制御すると共に、前記第 1の接触センサの検知信号 に基づいて、第 1の退避速度で前記作業アセンブリを左右に移動させるよう前記移 動機構を制御し、前記第 2の接触センサの検知信号に基づいて第 1の退避速度より も低速の第 2の退避速度で前記作業アセンブリを左右に移動させるよう前記移動機 構を制御する制御手段とを更に備えた自走式作業ロボット。
[9] 請求項 8において、さらに、
前記制御手段は、第 1の接触センサによる接触検知の時間が所定の時間 Hよりも 長!ヽ場合は、走行を停止させる機能を有する自走式作業ロボット。
[10] 請求項 9において、さらに、 前記所定の時間 Hは、走行速度が速い時には小さい値に設定され、走行速度が遅
V、場合には大き!/、値に設定される自走式作業ロボット。
請求項 1にお 、て、床面に対して鉛直線のまわりに回転可能な走行アセンブリと、 前記走行アセンブリの前方または後方に取り付けられ、床面に対して作業を行う作 業アセンブリと、
前記鉛直線のまわりの前記走行アセンブリの回転角度を測定する回転角度測定手 段と、
前記回転角度を記憶する記憶手段と、
前記走行アセンブリの幅方向に互いに離間して設けられ、前記走行アセンブリの進 行方向にある障害物までの距離を測定する複数の前方距離測定手段と、
前記走行アセンブリの進行方向に対して側方にある障害物までの距離を測定する 側方距離測定手段と、
前記側方距離測定手段によって測定された複数の測定値に基づ!/ヽて、前記走行 アセンブリが横壁に沿って走行しているか否かを判別する判別手段と、
前記走行アセンブリの走行動作を制御する制御手段とを更に備え、
前記制御手段は、前記複数の前方距離測定手段の少なくとも一つの測定値が、所 定の走行停止限界距離 SHd以下となった場合に、走行アセンブリが前方の障害物 に近接して ヽると判断して前記走行アセンブリの走行を停止させると共に、前記複数 の前方距離測定手段の測定値を比較して、当該障害物の面までの測定距離の差も しくは比が所定範囲内か否かを判別し、前記測定距離の差もしくは比が前記所定範 囲外であると判別した場合には、前記測定距離の差もしくは比が前記所定範囲内に なるまで前記走行アセンブリを前記鉛直線のまわりに回転動作させると共に、前記所 定範囲内となった時点の走行アセンブリの回転角度を前記記憶手段に記憶させ、 前記判別手段により、前記回転動作を行うまでの前記走行アセンブリの走行が横 壁に沿った走行であつたと判別された場合には、前記横壁と前方の障害物とによつ て形成される隅部に対して作業を行った後、前記記憶手段に記憶されて ヽる前記回 転角度に基づいて前方の障害物に沿って走行するように前記制御手段が前記走行 アセンブリの走行動作を制御する自走式作業ロボット。
PCT/JP2004/014626 2003-10-08 2004-10-05 自走式作業ロボット WO2005036292A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/572,729 US7660650B2 (en) 2003-10-08 2004-10-05 Self-propelled working robot having horizontally movable work assembly retracting in different speed based on contact sensor input on the assembly
EP04792037A EP1672455A4 (en) 2003-10-08 2004-10-05 SELF-RIBBED WORKING ROBOT

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-349296 2003-10-08
JP2003349296 2003-10-08
JP2004259181A JP4391364B2 (ja) 2004-09-07 2004-09-07 自走式作業ロボット
JP2004-259181 2004-09-07
JP2004259346A JP4429850B2 (ja) 2004-09-07 2004-09-07 自走式作業ロボット
JP2004-259346 2004-09-07

Publications (1)

Publication Number Publication Date
WO2005036292A1 true WO2005036292A1 (ja) 2005-04-21

Family

ID=34437592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014626 WO2005036292A1 (ja) 2003-10-08 2004-10-05 自走式作業ロボット

Country Status (3)

Country Link
US (1) US7660650B2 (ja)
EP (1) EP1672455A4 (ja)
WO (1) WO2005036292A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852761A2 (en) * 2006-05-01 2007-11-07 Samsung Electronics Co., Ltd. Robot having an obstacle detection unit and method of controlling the same
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
CN109528101A (zh) * 2019-01-04 2019-03-29 云鲸智能科技(东莞)有限公司 移动机器人的转弯方法、移动机器人及存储介质
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
EP4209315A4 (en) * 2020-09-01 2024-09-25 Lg Innotek Co Ltd MOBILE ROBOT AND SEMICONDUCTOR MAGAZINE OPERATING SYSTEM WITH THE MOBILE ROBOT

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
KR100633444B1 (ko) * 2005-02-24 2006-10-13 삼성광주전자 주식회사 로봇 청소기 및 그 제어 방법
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
KR100677279B1 (ko) * 2005-05-17 2007-02-02 엘지전자 주식회사 로봇 청소기의 범퍼 장치
EP2816434A3 (en) 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
JP5073609B2 (ja) * 2008-08-11 2012-11-14 日東電工株式会社 光導波路の製造方法
US8449692B2 (en) * 2009-02-13 2013-05-28 Esolar, Inc. Heliostat field cleaning system
EP2366964A1 (en) * 2010-03-15 2011-09-21 Sener Ingenieria Y Sistemas, S.A. Solar field cleaning system and cleaning method used by said system
US9146559B2 (en) * 2011-03-18 2015-09-29 The Raymond Corporation System and method for gathering video data related to operation of an autonomous industrial vehicle
DE102011051729A1 (de) * 2011-07-11 2013-01-17 Alfred Kärcher Gmbh & Co. Kg Selbstfahrendes Bodenreinigungsgerät
EP2570064B1 (en) * 2011-09-01 2015-04-01 Samsung Electronics Co., Ltd. Driving wheel assembly and robot cleaner having the same
KR101970584B1 (ko) 2011-09-01 2019-08-27 삼성전자주식회사 청소 시스템과 그 메인터넌스 스테이션
US9173539B2 (en) 2011-10-18 2015-11-03 Samsung Electronics Co., Ltd. Robot cleaner and method for controlling the same
WO2014033055A1 (en) 2012-08-27 2014-03-06 Aktiebolaget Electrolux Robot positioning system
TWM451103U (zh) * 2012-10-30 2013-04-21 Agait Technology Corp 行走裝置
KR102118769B1 (ko) 2013-04-15 2020-06-03 에이비 엘렉트로룩스 로봇 진공 청소기
JP6198234B2 (ja) 2013-04-15 2017-09-20 アクティエボラゲット エレクトロラックス 突出サイドブラシを備えたロボット真空掃除機
JP6494118B2 (ja) 2013-12-19 2019-04-03 アクチエボラゲット エレクトロルックス 障害物の乗り上げの検出に伴うロボット掃除機の制御方法、並びに、当該方法を有するロボット掃除機、プログラム、及びコンピュータ製品
EP3082541B1 (en) 2013-12-19 2018-04-04 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
CN105793790B (zh) 2013-12-19 2022-03-04 伊莱克斯公司 优先化清洁区域
CN105849660B (zh) 2013-12-19 2020-05-08 伊莱克斯公司 机器人清扫装置
JP6455737B2 (ja) 2013-12-19 2019-01-23 アクチエボラゲット エレクトロルックス 方法、ロボット掃除機、コンピュータプログラムおよびコンピュータプログラム製品
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
KR102116596B1 (ko) 2013-12-19 2020-05-28 에이비 엘렉트로룩스 나선형 패턴으로 이동하는 사이드 브러시를 구비한 로봇 진공 청소기
WO2015090439A1 (en) 2013-12-20 2015-06-25 Aktiebolaget Electrolux Dust container
US9215962B2 (en) 2014-03-13 2015-12-22 Ecovacs Robotics, Inc. Autonomous planar surface cleaning robot
WO2015169382A1 (de) 2014-05-08 2015-11-12 Alfred Kärcher Gmbh & Co. Kg Selbstfahrendes und selbstlenkendes bodenreinigungsgerät und verfahren zum reinigen einer bodenfläche
JP6513709B2 (ja) 2014-07-10 2019-05-15 アクチエボラゲット エレクトロルックス ロボット型清掃装置における計測誤差を検出する方法、ロボット型清掃装置、コンピュータプログラムおよびコンピュータプログラムプロダクト
CN204120944U (zh) * 2014-08-22 2015-01-28 深圳市宝乐机器人技术有限公司 一种新型智能清洁机器人
KR102271785B1 (ko) 2014-09-08 2021-06-30 에이비 엘렉트로룩스 로봇 진공 청소기
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
WO2016091291A1 (en) 2014-12-10 2016-06-16 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
JP6532530B2 (ja) 2014-12-16 2019-06-19 アクチエボラゲット エレクトロルックス ロボット掃除機の掃除方法
KR102339531B1 (ko) 2014-12-16 2021-12-16 에이비 엘렉트로룩스 로봇 청소 장치를 위한 경험-기반의 로드맵
EP3282912B1 (en) 2015-04-17 2020-06-10 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
WO2017036532A1 (en) 2015-09-03 2017-03-09 Aktiebolaget Electrolux System of robotic cleaning devices
JP2017140350A (ja) * 2016-02-05 2017-08-17 パナソニックIpマネジメント株式会社 自律走行型掃除機、その補助ブラシ、および、自律走行型掃除機を備える掃除機システム
WO2017157421A1 (en) 2016-03-15 2017-09-21 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
WO2017220705A1 (en) * 2016-06-24 2017-12-28 Jaguar Land Rover Limited Control system for a vehicle
AU2017101247A6 (en) * 2016-09-16 2017-11-02 Bissell Inc. Autonomous vacuum cleaner
KR102683502B1 (ko) * 2016-12-30 2024-07-10 엘지전자 주식회사 청소 로봇
SE540436C2 (en) * 2017-01-11 2018-09-18 Husqvarna Ab Improved collision detection for a robotic work tool
CN110621208A (zh) 2017-06-02 2019-12-27 伊莱克斯公司 检测机器人清洁设备前方的表面的高度差的方法
WO2019063066A1 (en) 2017-09-26 2019-04-04 Aktiebolaget Electrolux CONTROL FOR MOVING A ROBOTIC CLEANING DEVICE
CN109557927B (zh) * 2019-01-10 2021-11-26 深圳先进储能技术有限公司 用于机器人返回吊篮的路径规划方法、装置、设备及介质
US11511425B2 (en) * 2019-03-19 2022-11-29 Lg Electronics Inc. Robot stopping parallel to installed object and method of stopping the same
CN114190821A (zh) * 2020-09-16 2022-03-18 尚科宁家(中国)科技有限公司 一种行走顺畅的清洁机器人
CN114355358A (zh) * 2021-12-10 2022-04-15 厦门攸信信息技术有限公司 基于超声波测距的智能避障装置及其避障方法
CN114217623A (zh) * 2021-12-14 2022-03-22 北京云迹科技股份有限公司 一种机器人过闸机的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257533A (ja) * 1992-03-12 1993-10-08 Tokimec Inc 移動ロボットの床面掃引方法及び装置
JPH06189610A (ja) * 1992-03-17 1994-07-12 Yanmar Agricult Equip Co Ltd 障害物センサ付き自動走行車両
JPH08263137A (ja) * 1995-03-23 1996-10-11 Minolta Co Ltd 自律走行車
US5568589A (en) 1992-03-09 1996-10-22 Hwang; Jin S. Self-propelled cleaning machine with fuzzy logic control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164602A (en) 1980-05-21 1981-12-17 Murata Mfg Co Ltd Frequency discriminating circuit
JPS60206759A (ja) 1984-03-31 1985-10-18 Toshiba Corp 無軌道車停止制御方法
US5377106A (en) * 1987-03-24 1994-12-27 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Process for navigating an unmanned vehicle and a vehicle for the same
JP3346513B2 (ja) * 1994-07-01 2002-11-18 ミノルタ株式会社 マップ記憶方法及びそのマップを使用する経路作成方法
JPH09114523A (ja) 1995-10-13 1997-05-02 Shizukou Kk 自律走行車両及び自律走行車両の運転方法
KR0168189B1 (ko) * 1995-12-01 1999-02-01 김광호 로보트의 환경인식장치 및 그 제어방법
JPH09269810A (ja) 1996-03-29 1997-10-14 Minolta Co Ltd 移動体制御装置
US6142252A (en) * 1996-07-11 2000-11-07 Minolta Co., Ltd. Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route
JPH10105236A (ja) * 1996-09-30 1998-04-24 Minolta Co Ltd 移動体の位置決め装置および移動体の位置決め方法
US6226830B1 (en) * 1997-08-20 2001-05-08 Philips Electronics North America Corp. Vacuum cleaner with obstacle avoidance
US6941199B1 (en) * 1998-07-20 2005-09-06 The Procter & Gamble Company Robotic system
GB0126497D0 (en) * 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568589A (en) 1992-03-09 1996-10-22 Hwang; Jin S. Self-propelled cleaning machine with fuzzy logic control
JPH05257533A (ja) * 1992-03-12 1993-10-08 Tokimec Inc 移動ロボットの床面掃引方法及び装置
JPH06189610A (ja) * 1992-03-17 1994-07-12 Yanmar Agricult Equip Co Ltd 障害物センサ付き自動走行車両
JPH08263137A (ja) * 1995-03-23 1996-10-11 Minolta Co Ltd 自律走行車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1672455A4

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8659255B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US8659256B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
EP1852761A3 (en) * 2006-05-01 2009-05-27 Samsung Electronics Co., Ltd. Robot having an obstacle detection unit and method of controlling the same
EP1852761A2 (en) * 2006-05-01 2007-11-07 Samsung Electronics Co., Ltd. Robot having an obstacle detection unit and method of controlling the same
US7602133B2 (en) 2006-05-01 2009-10-13 Samsung Electronics Co., Ltd. Robot having an obstacle detection unit and method of controlling the same
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8726454B2 (en) 2007-05-09 2014-05-20 Irobot Corporation Autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8347444B2 (en) 2007-05-09 2013-01-08 Irobot Corporation Compact autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8370985B2 (en) 2007-05-09 2013-02-12 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
CN109528101A (zh) * 2019-01-04 2019-03-29 云鲸智能科技(东莞)有限公司 移动机器人的转弯方法、移动机器人及存储介质
EP4209315A4 (en) * 2020-09-01 2024-09-25 Lg Innotek Co Ltd MOBILE ROBOT AND SEMICONDUCTOR MAGAZINE OPERATING SYSTEM WITH THE MOBILE ROBOT

Also Published As

Publication number Publication date
US7660650B2 (en) 2010-02-09
EP1672455A1 (en) 2006-06-21
US20070032904A1 (en) 2007-02-08
EP1672455A4 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
WO2005036292A1 (ja) 自走式作業ロボット
EP2921095B1 (en) Robot cleaner and method for controlling the same
US9844876B2 (en) Robot cleaner and control method thereof
KR102020215B1 (ko) 로봇 청소기 및 로봇 청소기의 제어방법
KR102426578B1 (ko) 로봇청소기 및 그 제어방법
KR100654676B1 (ko) 로봇청소기
KR101566207B1 (ko) 로봇 청소기 및 그 제어방법
JP4533787B2 (ja) 作業ロボット
JP4268911B2 (ja) 自走式掃除機
KR101361562B1 (ko) 청소로봇
EA035938B1 (ru) Робот-уборщик и способ преодоления препятствия
KR20100123035A (ko) 로봇청소기 및 그 제어방법
JP2005135400A (ja) 自走式作業ロボット
KR20170000071A (ko) 진공 청소기 및 그의 제어방법
JP2009037378A (ja) 自律走行装置およびプログラム
JPH0546246A (ja) 掃除ロボツト及びその走行方法
JP2009095361A (ja) 自走式掃除機とその制御方法
CN110507238B (zh) 自主行走式吸尘器
JP4391364B2 (ja) 自走式作業ロボット
JP2005211499A (ja) 自走式掃除機
JP2005211463A (ja) 自走式掃除機
US20210274987A1 (en) Self-propelled vacuum cleaner
JP2020010982A (ja) 自走式掃除機
JPH04328607A (ja) 掃除ロボット
JP4429850B2 (ja) 自走式作業ロボット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007032904

Country of ref document: US

Ref document number: 10572729

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792037

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10572729

Country of ref document: US