WO2005031725A1 - 光記録媒体 - Google Patents

光記録媒体 Download PDF

Info

Publication number
WO2005031725A1
WO2005031725A1 PCT/JP2004/014114 JP2004014114W WO2005031725A1 WO 2005031725 A1 WO2005031725 A1 WO 2005031725A1 JP 2004014114 W JP2004014114 W JP 2004014114W WO 2005031725 A1 WO2005031725 A1 WO 2005031725A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
recording medium
thermal conductivity
optical recording
recording
Prior art date
Application number
PCT/JP2004/014114
Other languages
English (en)
French (fr)
Inventor
Mikiko Abe
Kazunori Ito
Hiroshi Deguchi
Hiroko Ohkura
Masaki Kato
Original Assignee
Ricoh Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Company, Ltd. filed Critical Ricoh Company, Ltd.
Priority to EP04788210A priority Critical patent/EP1669988A1/en
Publication of WO2005031725A1 publication Critical patent/WO2005031725A1/ja
Priority to US11/385,674 priority patent/US20060228649A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24062Reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers

Definitions

  • the present invention relates to a rewritable optical recording medium.
  • Such a phase-change optical disc generally has at least a first protective layer, a reversible phase of an amorphous phase and a crystalline phase on a light-transmitting substrate having a concave guide groove for guiding laser beam scanning.
  • a phase-change recording layer that changes, a second protective layer, and a reflective layer made of metal are provided in this order, and a resin protective layer is further provided on the reflective layer.
  • the structure is such that the above structure is used for one side or both sides and bonded together via an adhesive layer.
  • the signal recording and reproducing method is as follows.
  • the optical recording medium is rotated at a constant linear velocity or a constant rotational velocity (angular velocity) by means of a motor or the like, and the recording layer of the medium is irradiated with a focused laser beam whose intensity is modulated.
  • the phase state of the recording layer changes between the crystal Z amorphous and the amorphous state depending on the irradiation condition of the laser beam, and a pattern formed as a difference between the phase states becomes a signal pattern.
  • Reproduction is performed by detecting a reflectance difference caused by a difference in phase state.
  • the intensity modulation of the focused laser light is performed between three output levels.
  • the highest output level (hereinafter referred to as recording power) is used for melting the recording layer.
  • An intermediate output level (hereafter referred to as erasing power) is used to heat the recording layer to a temperature just below the melting point and above the crystallization temperature.
  • the lowest level is used to control the heating or cooling of the recording layer.
  • the recording layer melted by the laser beam of the recording power becomes amorphous or microcrystalline due to the subsequent quenching, and the reflectivity decreases, thereby forming a recording mark (amorphous mark).
  • the laser beam of the erasing power is all crystalline and erasing is possible. As described above, by modulating the intensity of the laser beam between the three output levels, a crystalline region and an amorphous region are alternately formed on the recording layer, and information is stored.
  • phase-change material having a high crystallization rate for the recording layer.
  • Ge—Te, Ge—Te—Se, In—Sb, Ga—Sb, and Ge—Sb—T are examples of such phase change materials because of their high crystallization speed and high erasing ratio during high-speed recording.
  • e, Ag—In—Sb—Te, etc. are attracting attention!
  • Non-Patent Document 1 a Ga—Sb phase change material known as a recording material for high-speed recording has a very high crystallization rate (Non-Patent Document 1), but the melting point of eutectic yarns is high. Is relatively high at 630 ° C., which makes it difficult to form marks and causes a problem of insufficient sensitivity. Even if the power of the laser beam during recording is increased to compensate for the lack of sensitivity, the quenching structure required for mark formation is realized, and sufficient recording characteristics cannot be obtained. Therefore, the repetitive recording characteristics also deteriorate.
  • an adhesive layer containing an oxide is provided between the protective layer and the reflective layer and between Z or the protective layer and the recording layer, and the oxide is made of Al 2 O 3, GeO, SiO, Ta O, TiO and Y
  • An optical recording medium of at least one selected from is disclosed.
  • Patent Document 2 discloses that a first protective layer, a recording layer, a second protective layer, a third protective layer, and a reflective layer are sequentially formed on a transparent substrate, and MgO, Al is used as a material having a high Young's modulus in the third protective layer.
  • Oxygen recording media used as oxides, oxides such as SiO, TaO, TiO, SiN, Al
  • Nitrides such as N, sulfides such as SmS and SrS, and fluorides such as MgF
  • Patent Document 3 has a layer having both a thermal conductivity control function and a light absorption correction function.
  • An optical recording medium in which the constituent element of this layer is at least one selected from Ti, V, Cr, Fe, Ni, Zn, Zr, Nb, Mo, Rh, W, Ir, Pt, and Te is disclosed. .
  • Patent Document 4 discloses a light having an absorption correction layer containing any of Ti, Cr, Fe, Ni, Zn, Zr, Nb, Mo, W, and Si between a second protective layer and a reflective layer.
  • a recording medium is disclosed.
  • Patent Document 5 discloses that an upper protective layer having a lower protective layer, a phase change recording layer, a multilayer upper protective layer, a reflective heat radiation layer mainly composed of silver, and a contact with the reflective heat radiation layer is provided on a substrate.
  • Patent Document 6 discloses a phase in which a base protective layer, a recording layer, an upper transparent protective layer, an interference layer for controlling a difference in absorptance between a mark portion and an erased portion of a recording layer, and a reflective layer are sequentially formed on a substrate.
  • the interference layer is selected from Si, SiO, Ge, MgF, AlO, InO, and ZrO.
  • a phase-change optical disk is disclosed, which is made of at least one material selected from the group consisting of at least two materials and has a reflective film having an Al, Au, Cu, Ag force or a selected metal force.
  • Patent Document 7 discloses an optical recording medium in which a lower dielectric protective layer, a recording layer, an upper dielectric protective layer, and a reflective heat dissipation layer are sequentially laminated on a transparent substrate, wherein the upper dielectric protective layer is made of a material.
  • composition (Zr02) 100- X (Si02) x be used as (0 ⁇ x ⁇ 60 mol 0/0) have been disclosed.
  • Patent Document 8 discloses that a transparent substrate has at least a first thin film layer (protective layer), a phase change optical recording material layer, a second thin film layer (protective layer), and a reflective layer.
  • An optical recording medium using a material containing an oxide as a main component has been disclosed!
  • Patent Document 9 a light transmitting layer, a lower protective layer, a recording layer, a first upper protective layer, a second upper protective layer, and a reflective heat dissipation layer are laminated in this order from the side where the laser beam is incident.
  • a phase change type information recording medium in which the thermal conductivity of the upper protective layer is equal to or less than 10 mWZcmK is disclosed.
  • Patent Document 10 discloses an optical information recording medium having a recording film, a heat insulating film, and a reflective film on a transparent substrate, and having a thermal conductivity of 10 OWZmK or less.
  • Patent Document 11 discloses that a first protective layer, a recording layer, a second protective layer, and Si An optical recording medium is disclosed in which a third protective layer containing at least 95% by weight, a reflective layer containing at least 95% of Ag, and an overcoat layer are sequentially laminated.
  • the thermal conductivity between the second protective layer and the reflective layer having a thermal conductivity of 300 W / mK or more is 1 OWZmK or less.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 06-139615
  • Patent Document 2 JP-A-07-307036
  • Patent Document 3 JP-A-09-223332
  • Patent document 4 JP-A-2000-339759
  • Patent Document 5 JP-A-2000-331378
  • Patent Document 6 Japanese Patent No. 2850754
  • Patent Document 7 JP-A-2002-260281
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2003-91871
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2002-288879
  • Patent Document 10 JP-A-2000-182278
  • Patent Document 11 European Patent Application Publication No. 1343155
  • Patent Document 1 Phase—Change optical data storage in GaSb", Aplied Opticas, Vol. 26, No. 22115, November, 1987
  • the present invention provides an optical recording medium for high-speed recording corresponding to DVD3-10x speed (10mZs-36mZs), which has good recording sensitivity, does not deteriorate repetitive recording characteristics and storage reliability, and has excellent recording characteristics.
  • the purpose is to provide.
  • the present invention provides an optical recording medium having a maximum recording linear velocity of 10. OmZs or more, and rewritable at least at any linear velocity between 10. OmZs force and 36.
  • OmZs. (rt) low thermal conductivity material of 7WZm'K or less and high thermal conductivity material of 300WZm'K or more It has been found that the above problem can be achieved by appropriately combining both properties of the material (reflective layer). Furthermore, it was found that overwrite characteristics and storage reliability were further improved as compared with the case where the same low thermal conductivity material was used for the second protective layer without providing the low thermal conductivity layer, and the present invention was completed. Reached.
  • the thermal conductivity in the present invention is a measured value at room temperature (usually around 20 ° C.).
  • the maximum recording linear velocity is 10.0 to 36.
  • the recording sensitivity of the optical recording medium between Zs is improved. If a low thermal conductivity layer with a thermal conductivity of 7 WZm ⁇ K or less is provided, the recording sensitivity is improved because the temperature reached by the phase-change recording layer during recording becomes higher. Also, when used in combination with the high thermal conductivity reflective layer, the cooling gradient with respect to temperature change is also increased, so that a quenching structure required for forming marks can be realized, and good recording characteristics can be obtained.
  • the low thermal conductivity layer needs to be provided between the second protective layer and the high thermal conductivity reflective layer.
  • the above-mentioned object is solved by the following ⁇ 1> and ⁇ 15> inventions (hereinafter, referred to as the present invention 115).
  • At least the first protective layer on the transparent substrate and the maximum recording linear velocity is 10.OmZs or more, and 10. OmZs force and other 36.Phase change that can be rewritten with at least one linear velocity between OmZs It has a recording layer, a second protective layer, and a reflective layer having a thermal conductivity of 300 WZm, K or more, and a thickness between 0.5 nm and 8 nm between the second protective layer and the reflective layer. And a layer made of a low thermal conductivity material having a thermal conductivity of 7 WZm ⁇ K or less.
  • the optical recording medium according to ⁇ 1>, wherein the layer having low thermal conductivity also has a coefficient of thermal expansion of 10 ⁇ ⁇ ′′ 6 / ⁇ or less.
  • ⁇ 3> The optical recording medium according to any one of ⁇ 1> and ⁇ 2>, wherein the low thermal conductivity material is an oxide material.
  • ⁇ 4> The optical recording medium according to any one of ⁇ 1> to ⁇ 3>, wherein the low thermal conductivity material does not contain sulfur.
  • the low thermal conductivity material is at least one selected from Ila-IVa and lib-IVb
  • the optical recording medium according to any one of ⁇ 1> to ⁇ 4>, wherein the optical recording medium is an oxidizing compound or a complex oxidizing compound of one kind of element.
  • ⁇ 6> The optical recording medium according to any one of ⁇ 1> to ⁇ 5>, wherein the melting point of the low thermal conductivity material is equal to or higher than the melting point of the recording layer material.
  • the low thermal conductivity material contains at least 50% by mole of a metal carbide, a metalloid carbide, a metal nitride, and / or a metalloid nitride at less than 50 mol% of the entire material.
  • ⁇ 9> The optical recording medium according to any one of ⁇ 1> to ⁇ 8>, wherein the reflective layer is made of pure Ag or an alloy having Ag as a main component.
  • ⁇ 10> The optical recording medium according to any one of ⁇ 1> to ⁇ 9>, wherein the reflective layer has a thickness of 100 to 300 nm.
  • ⁇ 11> The optical recording medium according to any one of ⁇ 1> to ⁇ 10>, wherein the recording layer contains at least Ga, Sb, Sn, and Ge.
  • FIG. 1 is a schematic cross-sectional view of a phase-change optical disc which is an example of a rewritable information optical recording medium of the present invention.
  • FIG. 2 is a diagram showing the results of calculating the state of thermal diffusion inside the recording layer using commercially available thermal calculation software for the optical discs of Examples and Comparative Examples of the present invention.
  • the present inventors have found that at least the first protective layer on the transparent substrate, the maximum recording linear velocity is 10.Om/s or more, and 10.OmZs force et al.
  • the thickness between the second protective layer and the reflective layer is 0.5 nm or more.
  • the recording linear velocity is 10.OmZs to 36.Om/s due to the "interaction" of the high thermal insulation (heat storage property) by the low thermal conductivity layer and the quenching effect by the reflective layer having high thermal conductivity.
  • the recording sensitivity of the optical recording medium is improved.
  • the sensitivity of the recording layer can be improved because the temperature reached by the recording layer at the time of recording becomes higher, and it can be used together with a high thermal conductivity reflective layer described later. Since the cooling gradient with respect to the temperature change becomes large, a quenching structure required for forming a mark is realized, and good recording characteristics can be obtained.
  • the thermal expansion coefficient of 2 or less 10 X 10- 6 Z ° C, to become resistant to expansion and contraction is reduced connexion heat change in the low thermal conductivity layer to thermal changes in the thermal expansion as low as, Even if a high power laser is irradiated during recording and the low thermal conductivity layer reaches a high temperature, the deterioration of the layer itself is suppressed and the repetitive recording characteristics can be improved. Further, the present invention is characterized in that a low thermal conductivity layer is provided between a recording layer and a reflective layer which is a high thermal conductivity layer.
  • the recording sensitivity is further improved when the low thermal conductivity layer is provided between the recording layer and the reflective layer than when the low thermal conductivity layer is provided between the first protective layer and the recording layer.
  • the thickness thereof is preferably thin. This is because, when the film thickness is large, the adjustment of the thermal conductivity of the disk becomes difficult to control, and as the film thickness increases, the heat insulating property increases, so that the heat is excessively applied to the disk and the recording characteristics are repeated. This is due to deterioration. Therefore, for such a reason, it is preferable that the thickness of the low thermal conductivity layer is thin. Specifically, the thickness is preferably 0.5 nm or more and 8 nm or less.
  • the thermal conductivity of the reflective layer must be 300 WZm * K or more. As described above, this is to increase the cooling gradient with respect to the temperature change at the time of recording and to sufficiently realize the quenching structure required for forming the mark, in combination with the low thermal conductivity layer.
  • the thermal conductivity there is no particular upper limit on the thermal conductivity, but among commonly used materials, about 430 WZm * K of Ag It is an exhibition service.
  • the reflective layer material that composes an optical recording medium is related to the viewpoint of “thermal conductivity”, which is related to the adjustment of the cooling rate of the heat generated during recording, and to the improvement of the contrast of the reproduced signal using the interference effect.
  • thermal conductivity which is related to the adjustment of the cooling rate of the heat generated during recording, and to the improvement of the contrast of the reproduced signal using the interference effect.
  • metals with high thermal conductivity and high reflectivity are considered desirable, and Au, Ag, Cu, and A1 alone or alloys containing these metals as main components are used.
  • A1 having a thermal conductivity of about 240 WZm ⁇ K of less than 300 WZm ⁇ K cannot achieve the desired rapid cooling condition.
  • the optical recording medium of the present invention it is particularly preferable to use pure Ag or an alloy containing Ag as a main component (containing at least 50 atomic%) as the reflective layer, which has an extremely high thermal conductivity of 27 WZm'K of Ag. This is because even when used in combination with the low thermal conductivity layer, a quenching structure suitable for forming an amorphous mark can be easily realized immediately after the recording layer reaches a high temperature.
  • the synergistic effect obtained by the combination of the low thermal conductivity layer and the high thermal conductivity reflective layer described above is particularly effective in an optical recording medium having a recording linear velocity of 10. to 36. OmZs.
  • Optical recording media with a recording linear velocity of 10. OmZs to 36. OmZs are required to form large amorphous marks during short pulse irradiation because of their high-speed recording. Therefore, high recording laser power is required.On the other hand, lower than 10. OmZs. ⁇
  • Optical recording medium for low-speed recording is not so high, does not require recording laser power, and has low thermal conductivity. In such a case, the time for staying heat becomes too long, and the condition of the amorphous state is destroyed, so that the recording characteristics are rather deteriorated.
  • an optical recording medium for high-speed recording of 36.OmZs or more requires higher recording laser power, but it is difficult to realize appropriate amorphization conditions and the recording linear velocity region.
  • the maximum recording linear velocity is 10.OmZs or more, and the phase change recording layer rewritable at least at any linear velocity between 10.OmZs and 36.OmZs;
  • the thickness of the reflective layer having a thermal conductivity of 300 WZm, K or more, and between the second protective layer and the reflective layer is 0.5 nm to 8 nm, and the thermal conductivity is 7 WZm • K or less
  • the low thermal conductivity layer is an essential component, and an optical recording medium that meets these conditions has good recording sensitivity and excellent recording characteristics without deterioration in repeated recording characteristics and storage reliability. It provides an optical recording medium for high-speed recording equivalent to DVD3-10x speed (10mZs-36mZs).
  • thermal expansion coefficient of the low thermal conductivity layer is less 10 X 10- 6 Z ° C
  • expansion and contraction of the low thermal conductivity layer as thermal expansion is low for thermal changes of Even if the low thermal conductivity layer is irradiated with a high power laser during recording and reaches a high temperature during recording, the deterioration of the layer itself is suppressed, so that the overwrite characteristics can be further improved. it can.
  • coefficient of thermal expansion there is no particular lower limit for the coefficient of thermal expansion, there is no material that can be used in the present invention and has a coefficient of thermal expansion of “0”, that is, a material that does not thermally expand!
  • an inorganic oxide is desirable, in which it is desired to select an appropriate material in view of the following (1)-(4).
  • oxides or complex oxides of at least one element selected from the group Ila-IVa and the group lib-IVb are preferable because they satisfy all of the above conditions.
  • the melting point is as high as 630 ° C. Must be heated. For this reason, it is necessary to select a material having excellent heat resistance and a melting point equal to or higher than that of the recording layer material for the low thermal conductivity layer for storing heat generated by high-power laser irradiation.
  • it is an oxide having a melting point of 800 ° C or higher, more preferably an oxide having a melting point of 1000 ° C or higher.
  • a compound represented by the following composition formula is preferably exemplified. (ZrO) a (TiO) b (SiO) c (Xl) d
  • V ° c lowers the high-temperature viscosity of the low thermal conductivity layer and improves the meltability, thereby contributing to the stability and durability of the layer.
  • low thermal conductivity that takes advantage of the characteristics of each material can be achieved by selecting an appropriate combination of materials that will have a thermal conductivity of 7W Zm ⁇ K or less as a whole composite.
  • the optical properties of TiO and SiO can also be adjusted by adjusting the amount of added kao.
  • Y O ( ⁇ 2
  • Rare earth oxides typically 7W / ⁇
  • the content is desirably 0 or more and less than 10 mol%.
  • the mixing ratio is not necessarily limited to this range, but if it exceeds the above range, it becomes difficult to form a material having a thermal conductivity of 7 W / / or less, so the above range is suitable.
  • the refractive index may decrease, and the upper limit of the amount of SiO used is less than 30 mol%.
  • TiO which is a high refractive index dielectric
  • the partially stabilized zirconia added and stabilized has particularly excellent mechanical properties, prevents cracking of the target material used in producing the present invention, and further lowers the thermal conductivity as compared to Zr02 alone. Is appropriate.
  • the low thermal conductivity material contains a metal and a carbide of Z or a metalloid and Z or a nitride, the adhesion between the low thermal conductivity layer and the reflective layer or the protective layer can be improved, which is preferable.
  • New Specific examples of such a substance include carbides and nitrides such as Si, Ge, Ti, Zr, Ta, Nb, Hf, Al, Y, Cr, W, Zn, In, Sn, and B.
  • the amount of these substances exceeds 50 mol%, low thermal conductivity of the material will not be exhibited, which is not preferable. Although there is no particular lower limit on the amount, it is desirable to add 1 mol% or more in order to exert the effect.
  • the thickness of the high thermal conductivity layer is preferably 100 to 300 nm.
  • the thickness of the high thermal conductivity layer must be at least 100 nm or more to achieve the desired "quenching effect" sufficiently and to achieve appropriate interaction with the low thermal conductivity layer. From the viewpoint, the upper limit is 300 o.
  • the recording layer it is preferable to use an alloy containing at least Ga, Sb, Sn and Ge.
  • the phase-change material with the addition of Sn and Ge was selected as the recording material, focusing on the high-speed crystallization characteristics of Ga-Sb-based materials. By doing so, it is possible to provide an optical recording medium having good recording characteristics and storage reliability even in high-speed recording in which the recording linear velocity is 10. OmZs to 36. OmZs. Hereinafter, each constituent element will be specifically described.
  • the crystallization rate of Sb, the first major constituent element can be adjusted by changing the Sb ratio in the constituent materials, and the crystallization rate can be increased by increasing the ratio. It is a very excellent phase change material that is indispensable for realizing high-speed recording.
  • Ga is indispensable as the second main constituent element for improving the crystallization rate without impairing the repetitive recording characteristics and storage reliability.
  • Ga is an element effective for the stability of the mark because Ga has an effect of increasing the crystallization temperature of the phase change material with a small amount of addition.
  • the third main constituent element has the effect of increasing the crystallization speed, which was slowed down by Ga-added casks, and at the same time, has the effect of lowering the melting point. Can be adjusted. As a result, it is possible to improve the problem of poor initialization caused by the high crystallization temperature of the Ga—Sb-based material, and it is also effective for improving the sensitivity, the reflectance, and the initialization noise of the optical recording medium. Therefore, it is a very excellent constituent element for improving the recording characteristics comprehensively.
  • Ge the fourth major constituent element, is indispensable as a constituent element because the storage reliability is dramatically improved by adding a small amount.
  • Sn is less than 5%, the melting point is high and the sensitivity is poor. If Sn is more than 25%, the crystallization speed is too high, and it is not preferable because the amorphous crystallization becomes difficult. On the other hand, if Sb is less than 40%, the melting point becomes high and the recording sensitivity deteriorates.
  • the recording layer may further include at least one selected from In, Te InAl, Zn, Mg ⁇ Tl, Pb ⁇ Bi ⁇ Cd ⁇ Hg ⁇ Se ⁇ C ⁇ N ⁇ Au ⁇ Ag, Cu, Mn, and a rare earth element. It is also preferable to include the element of The total content of these elements is preferably from 0.1 to 10 atomic%, more preferably from 0.5 to 8 atomic%.
  • In has the effect of improving initialization failure in high-speed recording materials.
  • excessive addition of In causes deterioration of the reproduction light and causes a decrease in reflectance, so that it is preferably set to less than 10 atomic%.
  • Tl, Pb, Bi, Al, Mg, Cd, Hg, Mn or rare earth elements have an effect of increasing the crystallization rate, and of these elements, Bi, which easily takes the same valence as Sb, is more preferable. If the addition amount is too large, the deterioration of the reproduction light and the deterioration of the initial jitter may be caused. Therefore, the composition range must be 10 atomic% or less in all cases.
  • storage reliability can be improved by adding Te, Al, Zn, Se, C, N, Se, and Au, Ag, and Cu in addition to Ge.
  • Al and Se further improve high-speed crystallization
  • Se is also effective in improving recording sensitivity.
  • Au, Ag, Cu have excellent storage reliability, although it is an effective element for improving the initialization failure of high-speed recording materials, it also has characteristics that lower the crystallization speed and hinder high-speed recording characteristics. Therefore, the upper limit of the total amount of Au, Ag, and Cu is preferably 10 atomic%. On the other hand, if the amount is too small, the effect of addition becomes unclear. Therefore, the lower limit of the added amount of Au, Ag, and Cu is preferably 0.1 atomic%.
  • Mn and rare earth elements are also found to have the same effect as In.
  • Mn is an additive element that does not require a large increase in Ge addition and has excellent storage reliability.
  • the optimum Mn addition amount is 115 atomic%. If the content is lower than 1 atomic%, the effect of increasing the crystallization speed will not be exhibited, and if it is too high, the reflectance in an unrecorded state (crystal state) will be too low.
  • the thickness of the recording layer is preferably 6 to 20 nm. If the thickness is smaller than 6 nm, the recording characteristics are significantly degraded by repeated recording. If the thickness is larger than 20 nm, the recording layer is likely to move due to the repeated recording, and the jitter increases sharply. In order to improve the erasing characteristics by reducing the difference in absorption between the crystal and the amorphous, the thickness of the recording layer is preferably thinner, more preferably 8-17 nm.
  • This material is suitable not only for modifying the optical characteristics of the disc that needs to be adjusted by providing a low thermal conductivity layer, but also because it has excellent heat resistance, low thermal conductivity, and chemical stability, so it has a protective layer. It is also preferable because characteristics such as recording sensitivity and erasing ratio hardly deteriorate even by repetition of recording Z erasure in which the residual stress of the film is small.
  • the thickness of the first protective layer is optimally selected from thermal and optical conditions, but is preferably 40-200 nm, more preferably 40-90 nm.
  • the thickness of the second protective layer is directly affected by cooling of the recording layer and has a large direct effect. Therefore, the thickness of 0.5 nm or more is required to obtain good erasing characteristics and durability of repeated recording. If the thickness is smaller than this, defects such as cracks occur and the recording durability is repeatedly lowered, and the recording sensitivity is deteriorated. If it exceeds 8 nm, the cooling rate of the recording layer will decrease Therefore, it is difficult to form a mark, and the mark area becomes small, which is not preferable.
  • a substrate having meandering grooves with a groove pitch of 0.74 ⁇ 0.03 ⁇ m, a groove depth of 22-40 nm, and a groove width of 0.2-0.4 / z m can be used.
  • a DVD + RW medium capable of high-speed recording at 3 ⁇ speed or more (specifically, equivalent to 3 to 10 ⁇ speed) in accordance with the current DV D + RW medium standard.
  • the purpose of making the groove meander is to access an unrecorded specific track or to rotate the substrate at a constant linear velocity.
  • the "synergistic effect" of the high thermal storage property and high toughness of the low thermal conductivity layer and the quenching effect of the high thermal conductivity reflective layer provides a dramatic improvement in recording sensitivity, as well as repetitive recording characteristics and storage.
  • An optical recording medium that has a maximum recording linear velocity of 10. OmZs or higher without deterioration in reliability and excellent recording characteristics, and that can be rewritten at least at any linear velocity between 10. OmZs and 36. OmZs Can be provided.
  • the present invention will be described more specifically with reference to Examples and Comparative Examples.
  • the present invention is not limited by these Examples, the used initialization device, and the like.
  • the material used for the low thermal conductivity layer of Example 1 one 13, both, ⁇ 10W / m -K, a material which satisfies ⁇ 10 ⁇ 1 0- 6 Z ° C .
  • Table 1 summarizes the evaluation results of the examples and comparative examples.
  • a first protective layer 2 On a substrate 1, a first protective layer 2, a phase-change recording layer 3, a second protective layer 8, a low thermal conductivity layer 4, and a reflective layer 5 are formed in this order by a sputtering method, and a spin coat method is then formed thereon. A resin protective layer 6 was formed, and finally, a bonding substrate 7 was bonded to produce an optical recording medium having a layer configuration shown in FIG. 1 and initialized.
  • a substrate having a guide groove with a track pitch of 0.74 ⁇ m made of polycarbonate having a diameter of 12 cm and a thickness of 0.6 mm was used.
  • phase change recording layer 3 Ga Sb having a thickness of 16 nm was used.
  • the second protective layer 8 a thickness of 7 nm ZnSSiO: using (80 20 mol 0/0).
  • the low thermal conductivity layer 4 has a thickness of 4 nm ZrO (including 3 mol% YY) ( ⁇ 5. lW / m-
  • a UV-curable resin (SD318, manufactured by Dainippon Ink and Chemicals, Inc.) was used.
  • the bonding substrate 7 a polycarbonate substrate having a diameter of 12 cm and a thickness of 0.6 mm was used.
  • the evaluation was performed using an optical disk evaluation device (DDU-1000, manufactured by Pulstec) having a pickup of wavelength 660 nm and NA 0.65 at a recording linear velocity of 28 mZs (equivalent to 8 times the speed of DVD) and a linear density of 0.267 mZbit.
  • the CZN ratio was evaluated when the 3T single pattern was overwritten 10 times and 1000 times by the EFM + modulation method.
  • “storage reliability” for evaluating the recording characteristics again was also evaluated.
  • the evaluation criteria are as follows.
  • the CZN ratio must be at least 45 dB or more, and if it is 50 dB or more, preferably 55 dB or more, a more stable system can be realized. Have been.
  • the recording characteristics when the same recording was performed after leaving the initialized optical recording medium in an 80 ° C and 85% RH constant temperature bath for 300 hours were evaluated. In addition, “one” was assigned to the samples that were not evaluated.
  • indicates that the disc had an optimum recording power of 34 mW or less
  • indicates that the disc exceeded 34 mW but 36 mW or less
  • X indicates that the disc exceeded 36 mW.
  • the material of the low thermal conductivity layer 4 ZrO (3 mol 0 / oy including Omicron) over 10 mole 0/0 SiO ( ⁇ 3 . 5
  • An optical recording medium was prepared and initialized in the same manner as in Example 1 except that the temperature was changed to 5 W / m-K), and then evaluated.
  • An optical recording medium was manufactured.
  • the Sb ratio in the recording layer material was reduced, and instead, a recording layer to which Sn was added, which had an effect of increasing the crystallization speed and improving the recording sensitivity, was used.
  • a recording layer to which Sn was added which had an effect of increasing the crystallization speed and improving the recording sensitivity.
  • the optical recording medium was initialized and evaluated in the same manner, a high CZN ratio was obtained at a recording linear velocity of 28 mZs, and almost no deterioration was observed even after an environmental test at 80 ° C and 85% RH. I understand.
  • An optical recording medium was manufactured.
  • Example 2 Compared to Example 1, in this example, Ga in the recording layer material was replaced with Ge that is effective for storage reliability, and the Sb ratio was further reduced, and instead the crystallization speed was increased and the recording sensitivity was improved. A recording layer containing Sn, which is also effective, was used. After initializing this optical recording medium, evaluation was performed in the same manner. As a result, it was possible to realize uniform and high-reflectance initialization with a lower initializing power than in Example 1, and to achieve high initialization at a recording linear velocity of 28 mZs. It was found that a CZN ratio was obtained. Furthermore, even if left for 500 hours under an environmental test at 80 ° C and 85% RH, the characteristics were hardly degraded and the storage reliability was very high.
  • Example 2 Compared to Example 1, in this example, part of Ga in the recording layer material was replaced with Ge, which is effective for improving the storage reliability, and the Sb ratio was further reduced, and the crystallization speed was increased instead. In addition, a recording layer containing Sn, which is also effective in improving the recording sensitivity, was used.
  • An optical recording medium was manufactured.
  • Example 2 compared to Example 1, the Sb ratio in the recording layer material was reduced, and instead, a recording layer to which Mn was added, which had an effect of increasing the crystallization rate and improving the storage reliability, was used.
  • the optical recording medium was initialized and evaluated in the same manner, a high CZN ratio was obtained at a recording linear velocity of 28 mZs, and the characteristics were maintained even when left for 500 hours in an environment of 80 ° C and 85% RH. It hardly deteriorated, was very high, and had storage reliability.
  • the crystallization rate could be increased without impairing the storage reliability by adding Mn, and recording at a recording linear velocity of 35 mZs (10 times the speed of DVD) was also good.
  • Phase change recording layer 3 to 14 nm thick Ga Sb Sn Ge and reflective layer 5 to 200 nm thickness An optical recording medium was prepared and initialized in the same manner as in Example 1 except for the change, and then evaluated.
  • the material of the low thermal conductivity layer 4 (including 3 mol% Y ⁇ ) ZrO - 20 mole 0/0 point was changed to TiO
  • An optical recording medium was prepared and initialized in the same manner as in Example 9 except for 22.32, and then evaluated.
  • An optical recording medium was prepared and initialized in the same manner as in Example 9 except for 22.32, and then evaluated.
  • the material of low thermal conductivity layer 4 was changed to ZrO (including 3 mol 0 / oY ⁇ ) -20 mol 0 / oAl O
  • An optical recording medium was prepared and initialized in the same manner as in Example 9 except for the point of 2 2 3 2 3 and then evaluated.
  • the thickness of the phase-change recording layer is 2 nm thinner and the thickness of the reflective layer is 60 nm thicker than in Examples 1-4.
  • the storage reliability (particularly, shelf characteristics) of the optical recording medium is improved by reducing the thickness of the phase change recording layer, and overwriting 1000 times is performed by increasing the thickness of the reflection layer. It was confirmed that the subsequent C / N ratio was further improved. Further, in Example 13, it was confirmed that the CZN ratio after 1000 overwrites was further improved without impairing the recording sensitivity and recording characteristics as compared with Example 10.
  • the material of the low thermal conductivity layer 4 ZrO (including 3 mole 0 / oY ⁇ ) - 50 mole 0/0 TiO ( ⁇ 1. 7
  • Example 14 as compared with Example 10, the C / N ratio after overwriting 1000 times was slightly lowered, but good recording characteristics exceeding 60 dB were obtained. [Example 15]
  • An optical recording medium was prepared and initialized in the same manner as described above, and evaluated.
  • Example 15 as compared with Example 10, good recording characteristics were obtained in which the CZN ratio was reduced after overwriting 1000 times and the force exceeded 50 dB.
  • Optical recording was performed in the same manner as in Example 1 except that the material of the low thermal conductivity layer 4 was changed to SiN.
  • a medium was prepared.
  • the thermal conductivity of Si N is approximately 25WZm'K, thermal expansion coefficient of 3. 2 X 10- 6 Z ° C, thermal conductivity
  • the objective of the present invention was "the cooperative action of the high thermal storage action and high toughness of the low thermal conductivity layer and the rapid cooling action of the high thermal conductivity reflective layer.” Was not effectively exhibited, and a decrease in recording sensitivity was confirmed.
  • the current recording power is that when the phase change material with a high crystallization rate exemplified in the present invention is used for the recording layer, the target power for increasing the modulation degree is about 30 mW or more. Is needed.
  • the recording sensitivity is reduced, a higher output recording power is required, which makes the optical recording medium not only practically useful but also damages the optical recording medium itself.
  • Optical recording was performed in the same manner as in Example 1 except that the material of the low thermal conductivity layer 4 was changed to AlO.
  • a medium was prepared.
  • the thermal conductivity of al O is approximately 30WZm'K, thermal expansion coefficient 6. 5 X 10- 6 Z ° C, thermal conductivity
  • the thermal conductivity of CaO is approximately 14. 4W / mK, the thermal expansion coefficient in 13. 6 X 10- 6 Z ° C , thermal conductivity (and thermal expansion coefficient in the present invention 2) is outside the present invention Material.
  • evaluation was performed in the same manner.
  • the objectives of the present invention were ⁇ high heat storage action and high toughness due to the low thermal conductivity layer, and rapid cooling due to the high thermal conductivity reflective layer. It was confirmed that the "cooperative action of the action" was not effectively exhibited, and that the recording sensitivity was lowered and the overwrite characteristics were deteriorated.
  • An optical recording medium was produced in the same manner as in Example 1, except that the material of the reflective layer was changed to A1.
  • the thermal conductivity of A1 is about 240 WZm'K, which is lower than that of Ag's about 430 WZm.K, so the quenching effect required for the reflective layer is expected to be weakened.
  • the second protective layer 8 was changed to 4 nm thick ZrO (including 3 mol% YY), and the low thermal conductivity layer 4 was changed to
  • Example 2 Same as Example 1 except that ZnS (80 mol%) with 7 nm thickness was replaced with SiO (20 mol%)
  • an optical recording medium was prepared and initialized in the same manner as in Example 1 and evaluated.
  • the purpose of the present invention is not to effectively exert the "cooperative action of high thermal storage action and high toughness by the low thermal conductivity layer and quenching action by the high thermal conductivity reflective layer", and the overwrite characteristics are not improved.
  • Example 1 Except for the point that the second protective layer 8 was not provided, an optical recording medium was prepared and initialized in the same manner as in Example 1, and evaluated. The CZN ratio after the environmental test at 80 ° C and 85% RH was 45 dB. It was found that the storage reliability was significantly degraded as compared with Example 1.
  • the optical recording medium was prepared and initialized in the same manner as in Example 1 except that the low thermal conductivity layer was not provided and the thickness of the second protective layer was changed to ll nm, the recording sensitivity was improved. There was no tendency for this to occur, and the C / N ratio after 1000 overwrites had deteriorated.
  • FIG. 2 shows that the optical recording media of Example 9 and Comparative Examples 1, 2, 4, and 9 use the commercially available thermal calculation software TEMPROFILE 5.0 (* Note) to determine the thermal diffusion inside the phase change recording layer. This shows the result of calculating the children.
  • TEMPROFILE a multilayer film on a flat substrate is modeled, and the plane parallel to the substrate is X-
  • the direction perpendicular to the Y plane and to the substrate is defined as the Z axis direction.
  • Each layer is defined by its film thickness, complex refractive index, specific heat, and thermal conductivity. Irradiation light is perpendicularly incident from the substrate side in the positive direction of the Z axis.
  • the complex refractive index of each layer is the value at 660 nm
  • the specific heat and the thermal conductivity are the general Balta values (reference values) of 0 ° C to 200 ° C
  • the irradiation light For the waveform, a laser beam with a rotationally symmetric Gaussian profile was input, assuming that the minimum mark (3T single pattern; 3T mark) was recorded at 8x DVD recording speed.
  • Example 9 the sensitivity in Example 9 was higher because the temperature rise inside the phase change recording layer was higher than that in the comparative example, and the temperature reached the higher temperature. Since the cooling time to the low temperature is almost the same as that of the comparative example, it can be seen that the structure is excellent in the quenching effect and more suitable for forming an amorphous mark.

Abstract

 本発明は、記録感度が良好で、かつ繰り返し記録特性の良好なDVD3~10倍速(10m/s~36m/s)に相当する高速記録用の光記録媒体を提供することを目的とする。このため、透明基板上に少なくとも第一保護層と、最高記録線速が10.0m/s以上であり、10.0m/sから36.0m/sの間の少なくともいずれかの線速で書き換えが可能な相変化記録層と、第二保護層と、熱伝導率が300W/m・K以上の反射層とを有し、かつ、第二保護層と反射層との間に膜厚が0.5nm以上8nm以下であって、かつ熱伝導率が7W/m・K以下の低熱伝導率材料からなる層を設けたことを特徴とする光記録媒体である。

Description

光記録媒体
技術分野
[0001] 本発明は、書換え型光記録媒体に関する。
背景技術
[0002] 近年、情報量の増加に伴い高密度でかつ高速に大量のデータの記録及び再生が できる記録媒体が求められて 、る。光ビームを照射レ f青報の記録及び再生を行う相 変化光記録媒体、特に相変化光ディスクは、信号品質に優れ高密度化が可能であり 、また 1ビームオーバーライトが容易なことから高速アクセス性に優れた記録媒体であ る。
このような相変化光ディスクは、一般的にレーザ光の走査を案内する凹状の案内溝 が形成された光透過性基板上に、少なくとも第一保護層、非晶質相と結晶相の可逆 的相変化をする相変化記録層、第二保護層、金属からなる反射層がこの順に設けら れ、更に反射層上に榭脂保護層が設けられた構造となっている。また、貼り合わせ型 光ディスクの場合においては前記構造を一方に用いる力、又は両方に用いて、接着 層を介し貼り合わせた構造となっている。
信号記録及び再生方法は以下の通りである。
前記光記録媒体をモーター等の手段により線速度一定、或いは回転速度 (角速度) 一定で回転させ、この媒体の記録層上に強度変調した集束レーザ光を照射する。こ のとき記録層はレーザ光の照射条件により結晶 Z非晶質間で相状態が変化し、その 相状態の差として形成されたパターンが信号パターンとなる。また再生は相状態の違 いにより生じた反射率差を検出することで行われて 、る。
集束レーザ光の強度変調は、 3つの出力レベル間で行われる。この際、最も高い出 カレベル (以下、記録パワーと称する)は記録層の溶融に使用される。中間の出カレ ベル (以下、消去パワーと称する)は融点直下で結晶化温度よりも高い温度まで記録 層を加熱するのに使用される。そして最も低いレベルは記録層の加熱又は冷却の制 御に使用される。 記録パワーのレーザ光により溶融した記録層は、続く急冷により非晶質ないしは微結 晶となって反射率の低下が起こり、記録マーク (非晶質マーク)となる。また、消去パヮ 一のレーザ光では全て結晶質となり消去が可能となる。このように、 3つの出力レベル 間でレーザ光を強度変調することにより、記録層上に交互に結晶領域と非晶質領域 が形成され、情報が記憶される。
[0003] 高速記録を実現するに当っては、記録層に速い結晶化速度を有する相変化材料 を用いる必要がある。このような相変化材料としては、結晶化速度が速く且つ高速記 録時の消去比が高いことから、 Ge— Te、 Ge— Te— Se、 In— Sb、 Ga— Sb、 Ge— Sb— T e、 Ag— In— Sb— Te等が注目されて!/、る。
しかしながら、高速記録の実現は記録層材料の結晶化速度を速めるだけでは不充 分であり、別の大きな課題として「記録感度」の問題がある。例えば、高速記録用の記 録材料として知られる Ga— Sb系の相変化材料は、結晶化速度が極めて速いことが報 告されているが(非特許文献 1)、共晶糸且成における融点は 630°Cと比較的高いため 、マーク形成が困難となり、感度不足の問題が生じる。感度不足を補うために記録時 のレーザ光パワーを高くしても、マーク形成に必要な急冷構造が実現されに《なる ため充分な記録特性が得られない他、高パワーレーザによって保護層の劣化も生じ てしまうため、繰り返し記録特性も劣化する。
[0004] 本発明に関連する公知技術としては次のようなものが挙げられる。
特許文献 1には、保護層と反射層との間及び Z又は保護層と記録層との間に酸ィ匕 物を含む接着層が設けられ、該酸化物が Al O、 GeO、 SiO、 Ta O、 TiO及び Y
2 3 2 2 2 5 2 ο力 選ばれる少なくとも一種である光記録媒体が開示されて 、る。
2 3
特許文献 2には、透明基板上に第一保護層、記録層、第二保護層、第三保護層及 び反射層を順次形成し、第三保護層にヤング率の高い材料として MgO、 Al O、 Be
2 3
0、 ZrO、 ThO、 UO、 SiC、 TiC、 ZrC、 A1N、 Si N、 MoSi等を単独又は混合
2 2 2 3 4 2
して使用する光学情報記録媒体、及び SiO、 Ta O、 TiO等の酸化物、 Si N、 Al
2 2 5 2 3 4
Nなどの窒化物、 SmS、 SrS等の硫化物及び MgFなどのフッ化物等を単独又はャ
2
ング率の高!ヽ材料と混合して使用する光学情報記録媒体が開示されて!ヽる。
[0005] 特許文献 3には、熱伝導率制御機能及び光吸収量補正機能を併せ持つ層を有し 、この層の構成元素が、 Ti、 V、 Cr、 Fe、 Ni、 Zn、 Zr、 Nb、 Mo、 Rh、 W、 Ir、 Pt、 Te 力 選ばれる少なくとも一種である光記録媒体が開示されている。
特許文献 4には、第二保護層と反射層の間に、 Ti、 Cr、 Fe、 Ni、 Zn、 Zr、 Nb、 Mo 、 W、 Siの何れかを含有する吸収量補正層を設けた光記録媒体が開示されている。 特許文献 5には、基板上に、下部保護層 Z相変化記録層 Z多層の上部保護層 Z 銀を主成分とする反射放熱層を有し、かつ反射放熱層と接触する上部保護層が A1 N、 SiNx、 SiAlN、 TiN、 BN及び TaNよりなる群から選ばれた少なくとも 1種の窒化 物、或いは、 Al O 、 MgO、 SiO、 SiO 、 TiO 、 B O 、 CeO 、 CaO、 Ta O 、 ZnO、
2 3 2 2 2 3 2 2 5
In O及び SnOよりなる群力 選ばれた少なくとも 1種の酸ィ匕物力 なる光ディスクが
2 3 2
開示されている。
[0006] 特許文献 6には、基板上に下地保護層、記録層、上部透明保護層、記録層のマー ク部分と消去部分の吸収率差を制御する干渉層、反射層を順次形成した相変化型 光ディスクにおいて、干渉層が Si、 SiO 、 Ge、 MgF 、 Al O 、 In O 、 ZrOから選ば
2 2 2 3 2 3 2 れた 1種以上の材料から成り、反射膜が Al、 Au、 Cu、 Ag力も選ばれた金属力もなる 相変化型光ディスクが開示されて 、る。
[0007] 特許文献 7には、透明基板上に下部誘電体保護層、記録層、上部誘電体保護層、 反射放熱層を順次積層した光記録媒体であって、上部誘電体保護層の材料として 組成が(Zr02) 100— X (Si02) x (0< x< 60モル0 /0)のものを用いることが開示され ている。
特許文献 8には、透明基板上に少なくとも第 1薄膜層 (保護層)、相変化光記録材 料層、第 2薄膜層 (保護層)、反射層を有し、該第 2薄膜層として Zr酸化物を主成分と する材料を用いた光記録媒体が開示されて!、る。
[0008] 特許文献 9には、レーザ光の入射される側より、光透過層、下部保護層、記録層、 第 1上部保護層、第 2上部保護層、反射放熱層の順に積層され、第 1上部保護層の 熱伝導度が lOmWZcmK以下である相変化型情報記録媒体が開示されている。 特許文献 10には、透明基板上に、記録膜、断熱膜、反射膜を有し、該断熱膜の熱 伝導率が lOWZmK以下である光情報記録媒体が開示されている。
特許文献 11には、基板上に第 1保護層、記録層、第 2保護層、 Siを少なくとも 35原 子%含有する第 3保護層、少なくとも 95%の Agを含む反射層、オーバーコート層が 順に積層された光記録媒体が開示されている。
し力しながら上記何れの文献にも、本発明のような、第二保護層と熱伝導率が 300 W/m · K以上の反射層との間に、熱伝導率が 1 OWZm · K以下の低熱伝導率層を 有する媒体構成とその効果については記載されていない。そして、例えば後述する 比較例に示したように、上記の条件を満たさな 、組み合わせでは本発明の効果は得 られない。
[0009] 特許文献 1 :特開平 06— 139615号公報
特許文献 2:特開平 07— 307036号公報
特許文献 3:特開平 09— 223332号公報
特許文献 4:特開 2000-339759号公報
特許文献 5:特開 2000 - 331378号公報
特許文献 6:特許第 2850754号公報
特許文献 7:特開 2002-260281号公報
特許文献 8:特開 2003 - 91871号公報
特許文献 9:特開 2002 - 288879号公報
特許文献 10:特開 2000-182278号公報
特許文献 11:欧州特許出願公開 1343155号明細書
特許文献 1: "Phase— Change optical data storage in GaSb", Aplied O pticas, Vol. 26, No. 22115, November, 1987
発明の開示
[0010] 本発明は記録感度が良好で、繰り返し記録特性や保存信頼性の劣化のない、記 録特性にも優れた DVD3— 10倍速(10mZs— 36mZs)に相当する高速記録用の 光記録媒体の提供を目的とする。
[0011] 本発明は、最高記録線速が 10. OmZs以上であり、 10. OmZs力ら 36. OmZsの 間の少なくともいずれかの線速で書き換えが可能な光記録媒体において、熱伝導率 (r. t. )が 7WZm'K以下の低熱伝導率材料と 300WZm'K以上の高熱伝導率材 料 (反射層)の両特性を適切に組み合わせることで前記課題を達成することができる ことを見出した。更に、低熱伝導率層を設けず、第二保護層に同じ低熱伝導率材料 を用いた場合よりも、オーバーライト特性及び保存信頼性が一層改善されることを見 出し、本発明を完成するに至った。なお、本発明における熱伝導率は、室温 (通常 2 0°C前後)での測定値とする。
本発明では、低熱伝導率層による高断熱作用(蓄熱作用)及び高靭性と、高熱伝 導率反射層による急冷作用の「協働作用」により、最高記録線速が 10. 0— 36. Om Zsの間にある光記録媒体の記録感度が改善される。熱伝導率が 7WZm · K以下の 低熱伝導率層を設けると、記録時の相変化記録層の到達温度がより高くなるため記 録感度が改善される。また、高熱伝導率反射層と併用することにより温度変化に対す る冷却勾配も大きくなるため、マーク形成に必要な急冷構造が実現され良好な記録 特性を得ることができる。
低熱伝導率層は第二保護層と高熱伝導率反射層の間に設ける必要がある。
即ち、上記課題は次の < 1 >一く 15 >の発明(以下、本発明 1一 15という)によつ て解決される。
< 1 > 透明基板上に少なくとも第一保護層と、最高記録線速が 10. OmZs以上で あり、 10. OmZs力ら 36. OmZsの間の少なくともいずれかの線速で書き換えが可能 な相変化記録層と、第二保護層と、熱伝導率が 300WZm,K以上の反射層とを有し 、かつ、第二保護層と反射層との間に膜厚が 0. 5nm以上 8nm以下であって、かつ 熱伝導率が 7WZm · K以下の低熱伝導率材料からなる層を設けたことを特徴とする 光記録媒体である。
< 2> 低熱伝導率材料力もなる層の熱膨張係数が 10 X ΙΟ"6/^以下である前記 < 1 >に記載の光記録媒体である。
< 3 > 低熱伝導率材料が、酸化物材料である前記く 1 >及びく 2 >の何れかに記 載の光記録媒体である。
<4> 低熱伝導率材料が、硫黄を含まない前記 < 1 >から < 3 >の何れかに記載 の光記録媒体である。
< 5> 低熱伝導率材料が、 Ila族一 IVa族及び lib族一 IVb族から選ばれた少なくとも 一種の元素の酸ィ匕物又は複合酸ィ匕物である前記 < 1 >力ら < 4 >の何れかに記載 の光記録媒体である。
< 6 > 低熱伝導率材料の融点が、記録層材料の融点以上である前記 < 1 >から< 5 >の何れかに記載の光記録媒体である。
<7> 低熱伝導率材料が、下記組成式で示される前記 <1>から < 6 >の何れか に記載の光記録媒体である。
(ZrO )a(TiO )b(SiO )c(Xl)d
2 2 2
〔式中、 a— dは各酸化物の割合(モル0 /0)を表し、 50≤a≤100, 0≤b<50、 0≤c< 30、 0≤d<10(a+b + c + d=100)であり、 XIは希土類酸化物力も選ばれる少なく とも 1種である。〕
<8> 低熱伝導率材料が、金属の炭化物、半金属の炭化物、金属の窒化物、及び 、半金属の窒化物の少なくとも!/、ずれかを材料全体の 50モル%未満含有する前記 < 1 >からく 7>の何れかに記載の光記録媒体である。
<9> 反射層が、純 Ag又は Agを主成分とする合金力 なる前記く 1>からく 8 > の何れかに記載の光記録媒体である。
<10> 反射層の膜厚力 100— 300nmである前記 <1>から <9>の何れかに 記載の光記録媒体である。
<11> 記録層が、少なくとも Ga、 Sb、 Sn及び Geを含有する前記 <1>からく 10 >の何れかに記載の光記録媒体である。
<12> 合金力 更に In、 Te、 Al、 Zn、 Mg、 Tl、 Pb、 Biゝ Cd、 Hg、 Se、 C、 N、 Au 、 Ag、 Cu、 Mn、希土類元素力 選択される少なくとも 1種の元素を含有し、該元素 の合計含有量が、 0.1一 10原子%である前記く 11 >に記載の光記録媒体である。 <13> 記録層の膜厚力 6— 20nmである前記 <1>からく 12>の何れかに記載 の光記録媒体である。
<14> 第二保護層力 ZnSと SiOの混合物からなる前記く 1>からく 13>の何
2
れかに記載の光記録媒体である。
<15> 透明基板力 溝ピッチ 0.74±0.03 μ m、溝深さ 22— 40nm、溝幅 0.2— 0. の蛇行溝を有し、 DVD3— 10倍速(lOmZs— 36mZs)の記録線速度で 記録可能である前記 < 1 >から < 14 >の何れかに記載の光記録媒体である。
図面の簡単な説明
[0012] [図 1]図 1は、本発明の書換え型情報光記録媒体の一例である相変化光ディスクの 概略断面図である。
[図 2]図 2は、本発明の実施例及び比較例の光ディスクについて、市販の熱計算ソフ トを用い、記録層内部の熱拡散の様子を計算した結果を示す図である。
[0013] 発明を実施するための最良の形態
以下、上記本発明について詳しく説明する。
本発明者らは、透明基板上に少なくとも第一保護層と、最高記録線速が 10. Om/s 以上であり、 10. OmZs力ら 36. OmZsの間の少なくともいずれかの線速で書き換え が可能な相変化記録層と、第二保護層と、熱伝導率が 300WZm,K以上の反射層 を設けた構成において、第二保護層と反射層との間に膜厚が 0. 5nm以上 8nm以下 であって、かつ熱伝導率が 7WZm.K以下の低熱伝導率材料力 なる層を設ける事 で、記録感度及び繰り返し記録特性が飛躍的に改善され、また更には第二保護層と して前記低熱伝導率層を設ける場合よりも、記録特性及び保存信頼性が更に改善さ れることを見出し、本発明を完成するに至った。
本発明ではまず、上記低熱伝導率層による高断熱性 (蓄熱性)と、高熱伝導率である 反射層による急冷効果の「相互作用」により、記録線速が 10. OmZsから 36. Om/s の光記録媒体の記録感度が改善される。
熱伝導率が 7WZm · K以下の低熱伝導率層を設けると、記録時の記録層の到達温 度がより高くなるため感度が改善される他、後述の高熱伝導率反射層と併用すること で温度変化に対する冷却勾配も大きくなるため、マーク形成に必要な急冷構造が実 現され良好な記録特性を得ることができる。
また本発明 2の熱膨張係数が 10 X 10— 6Z°C以下という規定では、熱膨張が低いほど 熱の変化に対し低熱伝導率層の伸び縮みが小さくなつて熱変化に強くなるため、記 録時に高パワーレーザが照射され低熱伝導率層が高温に達しても、層自体の劣化 が抑制され、繰り返し記録特性を改善することもできる。 [0014] また本発明は低熱伝導率層を、記録層と高熱伝導率層である反射層との間に設け ているところに特徴がある。本発明者らの研究によると、低熱伝導率層を記録層と反 射層の間に設ける方が、第一保護層と記録層の間に設ける場合よりも、記録感度が 一層改善されることがわ力つている。これは記録時に低熱伝導率層の蓄熱効果によ つて記録層が一度高温に達した後、アモルファスマークを形成するために直ぐに温 度の急冷を実現しなければならな 、ため、このような「高温状態からの急冷」 t 、ぅプ 口セスを短時間で、かつ連続して行うためには、低熱伝導率層を必ず反射層と隣接 して設ける必要があるためである。
記録層と反射層の間に第二保護層を設け、第二保護層と反射層との間に低熱伝導 率層を設ける方が、第二保護層を設けず記録層と反射層の間に直接設ける場合より も、記録特性及び保存信頼性がより一層改善されるため、好ましい。以下にその理由 について説明する。
低熱伝導率層を上記のように熱伝導率調整層として利用する場合、その膜厚は薄い 方が好ましい。これは、膜厚が厚いとディスクの熱伝導率の調整が制御しにくくなる他 、膜厚が厚くなるにつれ断熱性が高くなるため、返ってディスクに熱が篕りすぎ繰り返 し記録特性が劣化してしまうためである。従ってこのような理由から低熱伝導率層の 膜厚は薄い方が好ましぐ具体的には 0. 5nm以上 8nm以下が好ましい。
ところが一方で、膜厚を薄くして熱伝導率を制御しても、今度はディスクの光学特性 の調整が困難となり充分な記録特性が得られないという不具合が生じてしまう。そし てまた、低熱伝導率材料として酸ィ匕物や結晶性材料を記録層に接して設けると、記 録層を酸化させたり結晶化を促進させたりして保存信頼性も劣化させてしまう。従つ て低熱伝導率層とは異なる第二保護層を、記録層と低熱伝導率層の間に設けて光 学特性を調整し、また記録層の酸化、結晶化促進を防ぐことで、記録特性及び保存 信頼性も改善することができる。
[0015] また本発明では、反射層の熱伝導率は 300WZm*K以上でなければならな 、。こ れは先に述べたように、低熱伝導率層との併用で、記録時の温度変化に対する冷却 勾配を大きくし、マーク形成に必要な急冷構造を充分に実現するためである。熱伝 導率の上限は特に無いが、よく用いられる材料の中では、 Agの約 430WZm*Kが 展咼である。
従来、光記録媒体を構成する反射層材料には、記録時に発生する熱の冷却速度 の調整に関係する「熱伝導性」の観点と、干渉効果を利用した再生信号のコントラスト の改善に関係する「光学的」な観点から、「高熱伝導率 Z高反射率の金属」が望まし いとされ、 Au、 Ag、 Cu、 A1の単体或いはこれらの金属を主成分とする合金等が用い られて ヽるが、このうち例えば熱伝導率が 300WZm · K未満の約 240WZm · Kであ る A1では、所望の急冷条件を実現することはできない。 本発明の光記録媒体では、 反射層として特に純 Ag又は Agを主成分(50原子%以上含む)とする合金を用いる ことが好ましい、これは Agの熱伝導率力 27WZm'Kと極めて高ぐ低熱伝導率層 と併用しても、記録層が高温に達した直後にアモルファスマーク形成に適した急冷構 造を容易に実現しやす 、ためである。
なお、前記純 Ag又は Agを主成分とする合金を高熱伝導率層(反射層)として用い る場合は、硫黄を含む低熱伝導率層を接して構成すると硫黄が Agと反応し (Agの硫 化反応)劣化を起こすため欠陥の原因となる。従ってこのような場合は、硫黄を含まな Vヽ低熱伝導率材料を用いる必要がある。
上記のような低熱伝導率層及び高熱伝導率反射層の組み合せによって得られる相 乗効果は、記録線速が 10. OmZsから 36. OmZsの光記録媒体において特に効果 を奏する。
記録線速が 10. OmZsから 36. OmZsの光記録媒体は、その高速記録ゆえに、短 いパルス照射の間に大きなアモルファスマークを形成することが要求されている。そ のため、高い記録レーザパワーが必要となるのである力 これに対し 10. OmZsより 低 ヽ低速記録用の光記録媒体はそれほど高 、記録レーザパワーを必要とせず、ま た低熱伝導率を設けると、力えって熱の滞留する時間が長くなりすぎてアモルファス 化の条件が崩れてしまうため、記録特性はかえつて悪ィ匕してしまう。一方、 36. OmZ s以上の高速記録用の光記録媒体においては、更に高い記録レーザパワーが必要と なるが、適切なアモルファス化条件が実現され難 、記録線速度領域であることから、 現在のところ良好な記録感度及び繰り返し記録特性を有す光記録媒体は得られて いない。 従って本発明としては、最高記録線速が 10. OmZs以上であり、 10. OmZsから 36 . OmZsの間の少なくともいずれかの線速で書き換えが可能な相変化記録層と、第 二保護層と、熱伝導率が 300WZm,K以上の反射層、及び第二保護層と反射層と の間に設けられた膜厚が 0. 5nm以上 8nm以下であって、かつ熱伝導率が 7WZm •K以下の低熱伝導率層が必須構成要素となっており、これらの条件を満たす光記 録媒体が、記録感度が良好で、かつ、繰り返し記録特性や保存信頼性の劣化のない 、記録特性にも優れた DVD3— 10倍速(lOmZs— 36mZs )に相当する高速記録 用の光記録媒体を提供する。
[0016] また、低熱伝導率層の熱膨張係数が 10 X 10— 6Z°C以下となるような材料を選択する と、熱膨張が低いほど熱の変化に対する低熱伝導率層の伸び縮みが小さくなり熱変 化に強くなるため、記録時に高パワーレーザが照射されて低熱伝導率層が高温に達 しても、層自体の劣化が抑制されるので、オーバーライト特性を一層改善することが できる。熱膨張係数の下限は特に無いが、本発明において用いることができる材料 で熱膨張係数が「0」の材料、即ち熱膨張しな ヽ材料は存在しな!、。
低熱伝導率層を構成する材料としては、次の(1)一 (4)などの観点カゝら適切な材料 を選定することが望ましぐ無機酸ィ匕物が好ましい。
(1)レーザ光に対して光学的に透明で、充分な安定性を有すこと
(融点 ·軟化点 ·分解温度 ·などの温度に対する耐性の観点から)
(2)充分な機械的強度を有すること〔靱性'硬度 (熱膨張係数)の観点から〕
(3)金属反射層と密着性が良いこと
(4)形成が容易であること
中でも、 Ila族一 IVa族及び lib族一 IVb族から選ばれた少なくとも一種の元素の酸化 物又は複合酸化物は、上記条件を全て満たすので好ま ヽ。
しかし、複合酸化物の場合、熱膨張係数の差が大きいと靱性 '硬度が失われる可能 性があるため、注意が必要である。
[0017] また、上記「充分な安定性」を重視した場合、融点が記録層材料の融点以上である 低熱伝導率材料を用いることが望まし 、。
高速記録を実現するに当っては、記録層の加熱及び急冷をより短時間で制御する 必要があり、そのため記録層に照射する発光パルスのパルス幅が狭くなるので〔基準 となるクロック (T)が小さくなるので〕、記録時により高いレーザパワーが必要となる。 何故ならばパルス幅を広くすると冷却に必要なパルスを発光させない時間が短くなり 、非晶質マークの面積及び長さが小さくなつて、所望の長さのマークを形成し難くな るカゝらである。
また、例えば高速記録用記録層材料の一つとして知られる Ga— Sbの共晶組成付 近では、その融点が 630°C付近と非常に高ぐ高出力レーザパワーによってこれより 高い温度まで記録層を昇温しなければならない。そのため、高出力レーザ照射によ つて発生した熱を蓄積するための低熱伝導率層には、少なくとも記録層材料以上の 融点を持つ耐熱性に優れた材料を選定する必要がある。好ましくは融点が 800°C以 上、更に好ましくは融点が 1000°C以上の酸化物であり、具体例として ZrO (2720
2
°C)、TiO (1840°C)、 SiO (1710°C)が挙げられる力 これらに限定される訳では
2 2
ない。
低熱伝導率材料としては、下記組成式で示される化合物が好ましく例示される。 (ZrO ) a (TiO ) b (SiO ) c (Xl) d
2 2 2
〔式中、 a— dは各酸化物の割合(モル0 /0)を表し、 50≤a≤100, 0≤b< 50、 0≤c< 30、 0≤d< 10 (a+b + c + d= 100)であり、 XIは希土類酸化物力も選ばれる少なく とも 1種である。〕
特に優れた靱性をもつ ZrOは、熱伝導率が極めて低く( κ . OW Zm ·Κ )、熱
2
膨張係数 9 Χ ΙΟ"6/^)も金属に近いため金属との組み合せも容易であり、ま た更には機械的強度及びィ匕学的耐久性を高めるという特徴を有すことから、「記録感 度」及び「繰り返し記録特性」の改善を課題とする本発明の主要構成材料となる。 ZrOと同じ硬質酸化物として知られる TiO ( κ =6 . 5W /m ·Κ, α = 7. 6 X 10"
2 2
V°c)は、低熱伝導率層の高温粘性を低くして溶融性を改善するため、層の安定化 、耐久性の向上に寄与する。
熱伝導率が 7W Zm ·Κ以上の材料も、複合物全体としての熱伝導率が 7W Zm · K以下となるような適切な材料の組み合せを選べば、個々の材料の特性を生かした 低熱伝導率材料を設計することができる。 例えば、 ZrOと同様な低熱伝導率性を有す SiO ( κ = 1 . 6W /m ·Κ, a ^Ο. 5
2 2
X 10^/°C)は、 Al O ( κ = 30W / ·Κ, α = 6. 5 X 10—
2 3 6Z°C)の中間酸化物 と組み合せることで剛性率などの機械的物性や耐熱性が向上する。
複合物を形成する場合、熱膨張係数の値は、両者でなるべく近い値を示す材料を用 いて形成することが望ましい。熱膨張は制御を間違えると応力となり、構造を破壊す る恐れがある。複合物の場合、熱膨張係数が異なると上記のような応力が発生しや すくなるため制御が必要となる。
TiO と SiO は添カ卩量の調整によって光学特性の調整も可能である。 Y O ( κ = 2
2 2 2 3
7W / ·Κ )を代表とする希土類酸ィ匕物は、材料の温度に対する体積変化を小さ くするので、初期化時や記録時の温度変化に対する安定性を向上させターゲットの 割れを防ぐなどの働きを有し、更に、耐久性及び高温溶融性を改善することができる
TiO と SiO 、そして希土類酸ィ匕物を ZrO を主要構成材料とした場合の修飾成分
2 2 2
として添加する場合、その含有量は TiO の場合、構成材料全体に対して 0以上 50
2
モル%未満、 SiO の場合、構成材料全体に対して 0以上 30モル%未満、希土類
2
酸化物の場合、 0以上 10モル%未満とすることが望ましい。
混合する割合は必ずしもこの範囲に限定されないが、上記範囲を超えると熱伝導率 が 7W / ·Κ以下の材料の形成が困難となるため上記範囲が適している。 TiO
2 と SiO を比較した場合、 SiO は屈折率が小さく混合の割合を増やすと材料全体の
2 2
屈折率が低下する恐れがあり、 SiO の使用量の上限は 30モル%未満である。従つ
2
て屈折率の低下を抑制するためには、高屈折率誘電体である TiO を単独で混合す
2
る力、或いは TiO と SiO を併せて混合することが望ましい。
2 2
また、 ZrOの一部を、 Y O、 MgO、 CaO、 Nb O、 Al O、希土類酸化物等を数0 /o
2 2 3 2 5 2 3
添加して安定化させた部分安定ィ匕ジルコユアは機械的性質に特に優れ、本発明を 作製する際に用いるターゲット材の割れを防ぐ他、 Zr02単体に比べ更に熱伝導率 が低下することから一層適切である。
一方、希土類酸化物として特に Y Oが例示できる力 少量の添加は比弾性率の向
2 3
上及び酸化物層の均質化に寄与するため、 0以上 10モル%未満が適している。 [0020] 低熱伝導率材料に、金属及び Z又は半金属の炭化物及び Z又は窒化物を含有さ せると、低熱伝導率層と反射層又は保護層との密着性を向上させることができ、好ま しい。このような物質の具体例としては、 Si、 Ge、 Ti、 Zr、 Ta、 Nb、 Hf、 Al、 Y、 Cr、 W、 Zn、 In、 Sn、 Bなどの炭化物や窒化物が挙げられる。し力し、これらの物質の配 合量が 50モル%を越えると、材料の低熱伝導率性が発揮されなくなるため好ましくな い。配合量の下限は特に無いが、効果を発揮させるには、 1モル%以上配合すること が望ましい。
また、高熱伝導率層(反射層)の厚さは 100— 300nmが好ましい。所望とする「急 冷効果」を十分に実現し、低熱伝導率層との適切な相互作用を実現するためには高 熱伝導率層の厚さは少なくとも lOOnm以上は必要であり、生産性の観点から上限は 300應である。
[0021] 記録層については、少なくとも Ga、 Sb、 Sn及び Geを含有する合金を用いることが 好ましい。
Ga、 Sb、 Sn及び Geを含有する合金を用いる記録層によれば、記録材料として Ga— Sb系材料の持つ高速結晶化特性に注目し、更に Snと Geを加えた相変化材料を選 択することによって、記録線速が 10. OmZsから 36. OmZsである高速記録におい ても、良好な記録特性及び保存信頼性を有す光記録媒体を提供することができる。 以下、各構成元素について具体的に説明する。
第一の主要構成元素である Sbは、構成材料中の Sb比を変化させることで結晶化速 度を調整することが可能であり、比率を高くすることにより結晶化速度を高速ィヒできる ため、高速記録の実現には不可欠な、非常に優れた相変化材料である。
しかし、 Sb単独で記録線速が 36. OmZs相当の速い光記録媒体を実現しょうとする と繰り返し記録特性や保存信頼性に問題が生じる。その為、繰り返し記録特性や保 存信頼性を損なわずに結晶化速度を向上させる第二の主要構成元素として Gaが必 須となる。 Gaは少な 、添加量で相変化材料の結晶化温度を高める効果を有するた め、マークの安定性に効果的な元素である。
第三の主要構成元素である Snは、 Ga添カ卩により遅くなつた結晶化速度を速める効 果があると同時に融点を降下させる作用があり、 Ga添カ卩により高くなつた結晶化温度 の調整を行うことができる。その結果、 Ga— Sb系材料の高い結晶化温度によりもたら される初期化不良の弊害を改善することができる他、光記録媒体の感度向上、反射 率向上、初期化ノイズ低減に有効であり、従って総合的に記録特性を向上させる非 常に優れた構成元素である。
第四の主要構成元素である Geは、少量の添加で保存信頼性が飛躍的に向上する ため、構成元素として不可欠である。
このような少なくとも Ga、 Sb、 Sn及び Geを含む相変化材料のうち、その組成式を Ga a Sb jS Sn y Ge Sとして、 2≤ α≤20, 40≤ β≤80、 5≤ γ≤25、 2≤ δ≤20〔伹 し、 α、 j8、 γ、 δはそれぞれの元素の組成比(原子0 /ο)であり、 α + β + y + δ = 1 00である〕の範囲にあるものが好ましい。 Snが 5%未満では融点が高くなり感度が悪 くなり、 Snが 25%を超えると結晶化速度が速くなりすぎ非晶質ィ匕が困難となるため好 ましくない。また Sbが 40%未満では融点が高くなり記録感度が悪ィ匕し、 Sbが 80%を 超える場合は保存信頼性が劣化するため好ましくな 、。また Ga及び Geにつ 、ては、 2%未満で保存信頼性が劣化し、 20%を超えると結晶化温度が高くなりすぎ、初期 化が困難となる。
また、記録層に、更に In、 Teゝ Al、 Zn、 Mgゝ Tl、 Pbゝ Biゝ Cdゝ Hgゝ Seゝ Cゝ Nゝ Auゝ Ag、 Cu、 Mn及び希土類元素から選択される少なくとも 1種の元素を含有させること も好ましい。これらの元素の合計含有量は 0. 1— 10原子%が好ましぐ 0. 5— 8原子 %がより好ましい。
Inは高速記録材料における初期化不良を改善する効果がある。しかし、 Inの過剰な 添加は再生光劣化を引き起こし、また反射率低下の原因となるため 10原子%未満と することが好ましい。また Tl、 Pb、 Bi、 Al、 Mg、 Cd、 Hg、 Mn又は希土類元素には 結晶化速度を速くする効果があり、これらの元素のうち Sbと同じ価数を取り易い Biは より好ましい。し力し添加量が多すぎると再生光劣化や初期ジッターの劣化を引き起 すため、組成範囲は何れも 10原子%以下である必要がある。
また、保存信頼性に関しては、 Ge以外に Te、 Al、 Zn、 Se、 C、 N、 Se及び Au、 Ag、 Cuの添カ卩によっても改善できる。このうち Al、 Seの場合は高速結晶化を更に向上さ せ、また Seは記録感度の向上にも効果がある。 Au、 Ag、 Cuは保存信頼性に優れ、 かつ高速記録材料の初期化不良を改善する有効な元素であるが、反面、結晶化速 度を低下させ、高速記録特性を妨げる特性も備えている。そのため Au、 Ag、 Cuの 合計添加量の上限は 10原子%が好ましい。一方、少なすぎると添加効果が不明瞭と なってしまうため、 Au、 Ag及び Cuの添カ卩量の下限は 0. 1原子%が好ましい。
更に Mnや希土類元素も、 Inと同様の効果を奏することが判り、特に Mnは Ge添加量 をそれほど増やす必要のな 、保存信頼性にも優れた添加元素である。最適 Mn添加 量は 1一 5原子%である。 1原子%より低いと結晶化速度を速くする効果が現われず 、多すぎると未記録状態 (結晶状態)の反射率が低くなり過ぎるからである。
このように、 Ga— Sb— Sn— Ge系材料と上記添加元素とを適当に組み合わせることに より、記録線速が 10. OmZsから 36. OmZsである高速記録においても、良好な記 録特性及び保存信頼性を有す光記録媒体を設計することができる。
記録層の膜厚は 6— 20nmとすることが好ましい。 6nmよりも薄いと繰り返し記録に よる記録特性の劣化が著しぐまた 20nmよりも厚いと、繰り返し記録による記録層の 移動が起こり易くジッター増加が激しくなるためである。また、結晶とアモルファスの吸 収率差をなるベく小さくして消去特性を向上させるためには記録層の厚さは薄い方 が好ましぐより好ましい厚さは 8— 17nmである。
第一保護層及び、光学調整を補う第二保護層として ZnSと SiOの混合物を用いる
2
ことが好まし ヽ。この材料は低熱伝導率層を設ける事で調整が必要となるディスクの 光学特性を修正するのに適切であるばかりか、耐熱性、低熱伝導率性、化学的安定 性に優れているので保護層としても適切であり、また、膜の残留応力が小さぐ記録 Z消去の繰り返しによっても記録感度、消去比などの特性劣化が起き難 、ので好ま しい。
第一保護層の膜厚は、熱的及び光学的条件から最適な範囲が選定されるが、好ま しくは 40— 200nm、より好ましくは 40— 90nmである。
第二保護層の膜厚については、記録層の冷却に関係し直接的な影響が大きいた め、良好な消去特性及び繰り返し記録耐久性を得るために 0. 5nm以上は必要であ る。これより薄いとクラック等の欠陥を生じ繰り返し記録耐久性が低下するほか、記録 感度が悪くなるため好ましくない。また 8nmを越えると記録層の冷却速度が遅くなる ためマークが形成し難くなり、マーク面積は小さくなつてしまうので好ましくない。
本発明の基板としては、溝ピッチ 0. 74 ± 0. 03 μ m、溝深さ 22— 40nm、溝幅 0. 2-0. 4 /z mの蛇行溝を有する基板等を用いることができる。これにより、現状の DV D +RW媒体の規格に準拠し、 3倍速以上 (具体的には 3— 10倍速相当)の高速記 録が可能な DVD +RW媒体を提供することができる。溝を蛇行させる目的としては、 未記録の特定トラックにアクセスさせることや基板を一定線速度で回転させることなど がある。
[0023] 低熱伝導率層による高蓄熱性及び高靱性と、高熱伝導率反射層による急冷効果の「 相乗効果」により、記録感度の飛躍的な改善が成され、かつ、繰り返し記録特性や保 存信頼性の劣化のない、記録特性にも優れた最高記録線速が 10. OmZs以上であ り、 10. OmZsから 36. OmZsの間の少なくともいずれかの線速で書き換えが可能 な光記録媒体を提供できる。
実施例
[0024] 以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれ らの実施例や使用した初期化装置等により何ら限定されるものではない。なお、実施 例 1一 13の低熱伝導率層に用いた材料は、何れも、 κ≤10W/m -K, α≤10 Χ 1 0— 6Z°Cを満たす材料である。また、実施例及び比較例の評価結果は纏めて表 1に 示した。
[0025] [実施例 1]
基板 1の上に、スパッタリング法により第一保護層 2、相変化記録層 3、第二保護層 8、低熱伝導率層 4、反射層 5をこの順に成膜し、その上にスピンコート法により榭脂 保護層 6を成膜し、最後に貼り合せ用基板 7を貼り合せて、図 1に示す層構成の光記 録媒体を作製し初期化した。
基板 1には、直径 12cm、厚さ 0. 6mmのポリカーボネート製で、トラックピッチ 0. 74 μ mの案内溝付き基板を用いた。
第一保護層 2には、厚さ 60nmの ZnS— SiO (80 : 20モル%) ( κ = 8. 6W/m-K
2
)を用いた。
相変化記録層 3には、厚さ 16nmの Ga Sb を用いた。 第二保護層 8には、厚さ 7nmの ZnSSiO (80 : 20モル0 /0)を用いた。
2
低熱伝導率層 4には、厚さ 4nmの ZrO (3モル%Y Οを含む)( κ 5. lW/m-
2 2 3
Κ, α 9. 5 X 10— 6Z°C)を用いた。
反射層 5には、厚さ 140nmの Ag ( κ 430WZm'K)を用いた。
榭脂保護層 6には紫外線硬化榭脂 (大日本インキ化学工業社製 SD318)を用いた 貼り合せ用基板 7には、直径 12cm、厚さ 0. 6mmのポリカーボネート製基板を用い た。
初期化は、日立コンピュータ機器製の初期化装置「PCR DISK INITIALIZER 」を用い、上記光記録媒体を一定線速度で回転させ、パワー密度 10— 20mWZ m2のレーザ光を、半径方向に一定の送り量で移動させながら照射して行った。 次いで、この光記録媒体の CZN比、記録感度、保存信頼性を評価した。
評価は、波長 660nm、 NA0. 65のピックアップを有する光ディスク評価装置(パル ステック社製 DDU— 1000)を用い、記録線速度 28mZs(DVDの 8倍速に相当)、 線密度 0. 267 mZbitの条件で、 EFM +変調方式により 3Tシングルパターンを 1 0回及び 1000回オーバーライトしたときの CZN比を評価することで行った。また、上 記光記録媒体を 80°C85%RH恒温槽に 300時間放置後に、再び記録特性を評価 する「保存信頼性」につ ヽても評価を行った。
評価基準は次の通りである。
記録特性については、書換え型の光ディスクシステムを実現する場合、その CZN 比は少なくとも 45dB以上は必要であるとされており、 50dB以上、好ましくは 55dB以 上あれば、より安定したシステムが実現できるとされている。
保存信頼性にっ 、ては、初期化後の光記録媒体を 80°C85%RH恒温槽で 300時 間放置後に、同様の記録を行った場合の記録特性 (シェルフ特性)を評価対象とし、 また、未評価のサンプルにつ ヽては「一」を付与した。
記録感度については、ディスクの最適記録パワーが 34mW以下のものを「〇」、 34 mWを越えるが 36mW以下のものを「△」、 36mWを越えるものを「 X」とした。
[実施例 2] 低熱伝導率層 4の材料を ZrO (3モル0 /oY Οを含む)— 20モル0 /0TiO ( κ = 2. 0
2 2 3 2
W/m-K)に変えた点以外は、実施例 1と同様にして光記録媒体を作製し初期化し た後、評価した。
[0027] [実施例 3]
低熱伝導率層 4の材料を ZrO (3モル0 /oY Οを含む)ー10モル0 /0SiO ( κ =3. 5
2 2 3 2
W/m-K)に変えた点以外は、実施例 1と同様にして光記録媒体を作製し初期化し た後、評価した。
[0028] [実施例 4]
低熱伝導率層 4の材料を ZrO (3モル0 /oY Οを含む)ー20モル0 /oAl O ( κ = 3.
2 2 3 2 3
5W/m-K)に変えた点以外は、実施例 1と同様にして光記録媒体を作製し初期化 した後、評価した。
[0029] [実施例 5]
相変化記録層 3の材料を Ga Sb Snに変えた点以外は、実施例 1と同様にして
12 80 8
光記録媒体を作製した。
実施例 1に比べて本実施例では、記録層材料中の Sb比率を下げ、代りに結晶化 速度を速め、かつ記録感度の改善にも効果のある Snを添加した記録層を用いた。 この光記録媒体を初期化した後、同様にして評価したところ、記録線速度 28mZs にお 、て高 、CZN比が得られ、また 80°C85%RHの環境試験後も殆ど劣化がな ヽ ことが分った。また実施例 1よりも、一層低い初期化パワーで、均一かつ高反射率な 光記録媒体を得ることができ、また、 Snを添加したことにより結晶化速度を一層速め ることができたため、記録線速度 35mZs (DVDの 10倍速)での記録も良好であった
[0030] [実施例 6]
相変化記録層 3の材料を Ge Sb Snに変えた点以外は、実施例 1と同様にして
12 80 8
光記録媒体を作製した。
実施例 1に比べて本実施例では、記録層材中の Gaを保存信頼性に有効な Geへと 置換し、更に Sb比率を下げて、代りに結晶化速度を速め、かつ記録感度の改善にも 効果のある Snを添加した記録層を用いた。 この光記録媒体を初期化した後、同様にして評価したところ、実施例 1よりも更に低 い初期化パワーで、均一かつ高反射率な初期化を実現でき、また記録線速度 28m Zsにおける高い CZN比が得られることが分った。更に、 80°C85%RHの環境試験 下で 500時間放置しても特性が殆ど劣化せず、非常に高!ヽ保存信頼性を有するもの であった。
[0031] [実施例 7]
相変化記録層 3の材料を Ga Sb Sn Geに変えた点以外は、実施例 1と同様にし
9 83 5 3
て光記録媒体を作製した。
実施例 1に比べて本実施例では、記録層材料中の Gaの一部を保存信頼性向上に 効果のある Geへと置換し、更に Sb比率を下げて、代りに結晶化速度を速め、かつ記 録感度の改善にも効果のある Snを添加した記録層を用いた。
この光記録媒体を初期化した後、同様にして評価したところ、記録線速度 28mZs において非常に高い CZN比が得られ、また 80°C85%RHの環境試験下で 500時 間放置しても特性が殆ど劣化せず、非常に高 ヽ保存信頼性を有して ヽることも分つ た。
[0032] [実施例 8]
相変化記録層 3の材料を Ga Sb Mnに変えた点以外は、実施例 1と同様にして
12 80 8
光記録媒体を作製した。
実施例 1に比べて本実施例では、記録層材料中の Sb比率を下げ、代りに結晶化 速度を速め、かつ保存信頼性の向上にも効果のある Mnを添加した記録層を用いた この光記録媒体を初期化した後、同様にして評価したところ、記録線速度 28mZs にお 、て高 、CZN比が得られ、また 80°C85%RH環境下で 500時間放置しても特 性が殆ど劣化せず、非常に高!、保存信頼性を有するものであった。
また、 Mnを添加したことで保存信頼性を損なわずに結晶化速度を速めることがで き、記録線速度 35mZs (DVDの 10倍速)での記録も良好であった。
[0033] [実施例 9]
相変化記録層 3を厚さ 14nmの Ga Sb Sn Geに、反射層 5の厚さを 200nmに 変えた点以外は、実施例 1と同様にして光記録媒体を作製し初期化した後、評価し た。
[0034] [実施例 10]
低熱伝導率層 4の材料を ZrO (3モル%Y Οを含む)— 20モル0 /0TiOに変えた点
2 2 3 2 以外は、実施例 9と同様にして光記録媒体を作製し初期化した後、評価した。
[0035] [実施例 11]
低熱伝導率層 4の材料を ZrO (3モル%Y Οを含む) 10モル0 /0SiOに変えた点
2 2 3 2 以外は、実施例 9と同様にして光記録媒体を作製し初期化した後、評価した。
[0036] [実施例 12]
低熱伝導率層 4の材料を ZrO (3モル0 /oY Οを含む)ー20モル0 /oAl Oに変えた
2 2 3 2 3 点以外は、実施例 9と同様にして光記録媒体を作製し初期化した後、評価した。
[実施例 13]
低熱伝導率層 4の材料を ZrO (3モル0 /oY Οを含む)— 20モル0 /0TiO 10モル0 /0
2 2 3 2
SiOに変えた点以外は、実施例 9と同様にして光記録媒体を作製し初期化した後、
2
評価した。
[0037] 実施例 9一 12は、実施例 1一 4に比べて、相変化記録層の膜厚が 2nm薄ぐ反射 層の膜厚が 60nm厚くなつている。これらの実施例により、相変化記録層の膜厚が薄 くなることで光記録媒体の保存信頼性 (特にシェルフ特性)が改善され、また反射層 の膜厚が厚くなることでオーバーライト 1000回後の C/N比が更に改善されることが 確認された。また実施例 13においては、実施例 10と比べて記録感度や記録特性を 損なうことなぐオーバーライト 1000回後の CZN比が更に改善されることも確認され た。
[実施例 14]
低熱伝導率層 4の材料を ZrO (3モル0 /oY Οを含む)— 50モル0 /0TiO ( κ = 1. 7
2 2 3 2
W/m-K)に変えた点以外は、実施例 9と同様にして光記録媒体を作製し初期化し た後、評価した。
実施例 14は実施例 10と比較すると、オーバーライト 1000回後の C/N比がわずか に低下したが、 60dBを越える良好な記録特性が得られた。 [実施例 15]
低熱伝導率層 4の材料を TiO ( κ =6. 5WZm'K)に変えた点以外は、実施例 9
2
と同様にして光記録媒体を作製し初期化した後、評価した。
実施例 15は実施例 10と比較するとオーバーライト 1000回後の CZN比が低下し た力 50dBを越える良好な記録特性が得られた。
[0038] [比較例 1]
低熱伝導率層 4の材料を Si Nに変えた点以外は、実施例 1と同様にして光記録
3 4
媒体を作製した。
Si Nの熱伝導率は凡そ 25WZm'K、熱膨張係数は 3. 2 X 10— 6Z°Cで、熱伝導
3 4
率が本発明の範囲外の材料である。
この光記録媒体を初期化した後、同様にして評価したところ、本発明の目的とする「 低熱伝導率層による高蓄熱作用及び高靱性と、高熱伝導率反射層による急冷作用 の協働作用」が効果的に発揮されず、また、記録感度の低下が確認された。高速記 録を実現するに当り、現状の記録パワーとしては、本発明で例示される結晶化速度 の速い相変化材料を記録層に用いる場合、変調度を高くする目的力も凡そ 30mW 以上の記録パワーが必要となっている。そのため記録感度が低下すると、より高出力 の記録パワーが必要となるため実用性に乏しくなるばかりか、光記録媒体そのものに もダメージを与えてしまう。
[0039] [比較例 2]
低熱伝導率層 4の材料を Al Oに変えた点以外は、実施例 1と同様にして光記録
2 3
媒体を作製した。
Al Oの熱伝導率は凡そ 30WZm'K、熱膨張係数は 6. 5 X 10— 6Z°Cで、熱伝導
2 3
率が本発明の範囲外の材料である。
この光記録媒体を初期化した後、同様にして評価したところ、比較例 1と同様に本発 明の目的とする「低熱伝導率層による高蓄熱作用及び高靱性と、高熱伝導率反射層 による急冷作用の協働作用」が効果的に発揮されず、また、記録感度の低下が確認 された。
[0040] [比較例 3] 低熱伝導率層 4の材料を CaOに変えた点以外は、実施例 1と同様にして光記録媒 体を作製した。
CaOの熱伝導率は凡そ 14. 4W/m-K,熱膨張係数は 13. 6 X 10— 6Z°Cで、熱 伝導率 (及び本発明 2においては熱膨張係数)が本発明の範囲外の材料である。 この光記録媒体を初期化した後、同様にして評価したところ、比較例 1と同様に本 発明の目的とする「低熱伝導率層による高蓄熱作用及び高靱性と、高熱伝導率反射 層による急冷作用の協働作用」が効果的に発揮されず、また、記録感度の低下、及 びオーバーライト特性の劣化が確認された。
[0041] [比較例 4]
反射層の材料を A1に変えた点以外は、実施例 1と同様に光記録媒体を作製した。 A1の熱伝導率は約 240WZm'Kで、 Agの約 430WZm.Kに比べて低ぐ従って 反射層に求められる急冷効果が弱まることが予想される。
この光記録媒体を初期化した後、同様にして評価したところ、急冷効果が弱まった 事で良好なアモルファスマークを記録できず、充分な CZN比を得ることはできなか つた o
[0042] [比較例 5]
第二保護層 8を厚さ 4nmの ZrO (3モル%Y Οを含む)に変え、低熱伝導率層 4を
2 2 3
厚さ 7nmの ZnS (80モル%)— SiO (20モル%)に変えた点以外は、実施例 1と同様
2
にして光記録媒体を作製し初期化した後、評価したところ、 80°C85%RHの環境試 験後の CZN比は 45dBであり、実施例 1に比べて保存信頼性が著しく劣化すること が分った。
[0043] [比較例 6]
低熱伝導率層 4の厚さを 0. 4nmに変えた点以外は、実施例 1と同様にして光記録 媒体を作製し初期化した後、評価したところ、充分な記録特性が得られないばかりか 、オーバーライト特性の著しい劣化が確認された。
[0044] [比較例 7]
低熱伝導率層 4の厚さを 9nmに変えた点以外は、実施例 1と同様にして光記録媒 体を作製し初期化した後、評価したところ、充分な記録特性が得られないばかりか、 本発明の目的とする「低熱伝導率層による高蓄熱作用及び高靱性と、高熱伝導率反 射層による急冷作用の協働作用」が効果的に発揮されず、オーバーライト特性も改 善されなかった。
[0045] [比較例 8]
第二保護層 8を設けなカゝつた点以外は、実施例 1と同様にして光記録媒体を作製し 初期化した後、評価したところ、 80°C85%RH環境試験後の CZN比は 45dBであり 、実施例 1に比べて保存信頼性が著しく劣化することが分った。
[0046] [比較例 9]
低熱伝導率層は設けず、第二保護層の厚さを llnmに変えた点以外は、実施例 1 と同様にして光記録媒体を作製し初期化した後、評価したところ、記録感度が改善さ れる傾向は見られず、またオーバーライト 1000回後の C/N比は劣化してしまった。
[0047] [表 1]
オーバ一ライ H 0回 オーバ一ライト 100回 記録感度 保存信頼性
C/N比 (dB) C/N比 (dB)
実施例 1 58 55 Δ 55
実施例 2 57 57 Δ 54
実施例 3 55 55 Δ 52
実施例 4 55 55 A 52
実施例 5 61 58 O 59
実施例 6 58 55 O 57
実施例 7 63 60 o 60
実施例 8 57 54 A 56
実施例 9 66 63 O 63
実施例 1 0 65 65 O 62
実施例 1 1 63 63 o 60
実施例 1 2 63 63 o 60
実施例 13 66 65 o 63
実施例 1 4 63 60 o 60
実施例 1 5 58 53 Δ 55
比較例 1 55 49 X ―
比較例 2 54 48 X ―
比較例 3 52 46 X 43
比較例 4 47 44 X
比較例 5 53 45 A 1
比較例 6 57 44 X 50
比較例 7 47 44 X
比較例 8 56 49 A 1
比較例 9 55 44 X 49
実施例 1一 15では何れもオーバーライト 10回後に 55dB以上の高い CN比が得ら れ、 1000回オーバーライト後の CZN比の評価においても 50dB以上の良好な結果 が得られた。
また、 80°C85%RH恒温槽で 300時間放置した後も劣化は小さぐ良好な保存信 頼性を有することが確認された。
更に、実施例 2— 4、 10— 13では、低熱伝導率層に含まれる SiO l O
2、 TiO
2、 A 2 3 の優れた耐熱性及び高硬度性により相変化記録層の劣化が効果的に抑制され、ォ 一バーライト 1000回後においても全く劣化がないことが確認された。
また図 2に、実施例 9及び比較例 1、 2、 4、 9の光記録媒体について、市販の熱 計算ソフト TEMPROFILE 5. 0 ( *注)を用い、相変化記録層内部の熱拡散の様 子を計算した結果を示す。
TEMPROFILEでは平らな基板上の多層膜をモデルとし、基板に平行な面を X—
Y平面に、また基板に垂直な方向を Z軸方向として定義する。各層は、膜厚、複素屈 折率、比熱、熱伝導率で定義され、照射光は基板側から Z軸の正方向に向かい垂直 入射する。
入力データとして各層の複素屈折率はえ =660nmの時の値、比熱及び熱伝導率 は 0°C— 200°Cの一般的なバルタ値 (文献値)を使用し、また照射光のノ ルス波形は 回転対称のガウシアンプロファイルを持つレーザービームを、 DVD8倍速記録にお V、て最小マーク(3Tシングルパターン; 3Tマーク)を記録する場合を想定して波形を 入力した。
( *注)
米国アリゾナ大学教授、 M. Mansuripurによって開発され、 MM Research, Inc .カゝら発売されている光ディスク用の熱解析ソフト
図 2に示す熱計算の結果からも、実施例 9においては相変化記録層内部の温度 上昇が比較例に比べて高ぐ感度が改善されており、また熱の到達温度が高いにも 関わらず、低温まで冷却される時間が比較例とほぼ同じであることから、急冷効果に 優れ、アモルファスマークの形成に一層適した構成であることが分かる。

Claims

請求の範囲
[1] 透明基板上に少なくとも第一保護層と、最高記録線速が 10. OmZs以上であり、 1 0. OmZsから 36. OmZsの間の少なくともいずれかの線速で書き換えが可能な相 変化記録層と、第二保護層と、熱伝導率が 300WZm,K以上の反射層とを有し、か つ、第二保護層と反射層との間に膜厚が 0. 5nm以上 8nm以下であって、かつ熱伝 導率が 7WZm'K以下の低熱伝導率材料からなる層を設けたことを特徴とする光記 録媒体。
[2] 低熱伝導率材料力もなる層の熱膨張係数が 10 X 10"V°C以下である請求の範囲 第 1項に記載の光記録媒体。
[3] 低熱伝導率材料が、酸化物材料である請求の範囲第 1項及び第 2項の何れかに記 載の光記録媒体。
[4] 低熱伝導率材料が、硫黄を含まな!/、請求の範囲第 1項から第 3項の何れかに記載 の光記録媒体。
[5] 低熱伝導率材料が、 Ila族一 IVa族及び lib族一 IVb族から選ばれた少なくとも一種 の元素の酸ィ匕物又は複合酸ィ匕物である請求の範囲第 1項力 第 4項の何れかに記 載の光記録媒体。
[6] 低熱伝導率材料の融点が、記録層材料の融点以上である請求の範囲第 1項から 第 5項の何れかに記載の光記録媒体。
[7] 低熱伝導率材料が、下記組成式で示される請求の範囲第 1項から第 6項の何れか に記載の光記録媒体。
(ZrO ) a (TiO ) b (SiO ) c (Xl) d
2 2 2
〔式中、 a— dは各酸化物の割合(モル0 /0)を表し、 50≤a≤100, 0≤b< 50、 0≤c< 30、 0≤d< 10 (a+b + c + d= 100)であり、 XIは希土類酸化物力も選ばれる少なく とも 1種である。〕
[8] 低熱伝導率材料が、金属の炭化物、半金属の炭化物、金属の窒化物、及び、半金 属の窒化物の少なくとも 、ずれかを材料全体の 50モル%未満含有する請求の範囲 第 1項から第 7項の何れかに記載の光記録媒体。
[9] 反射層が、純 Ag又は Agを主成分とする合金力 なる請求の範囲第 1項力 第 8項 の何れかに記載の光記録媒体。
[10] 反射層の膜厚力 100— 300nmである請求の範囲第 1項力も第 9項の何れかに記 載の光記録媒体。
[11] 記録層が、少なくとも Ga、 Sb、 Sn及び Geを含有する請求の範囲第 1項力 第 10 項の何れかに記載の光記録媒体。
[12] 合金力 更に In、 Teゝ Al、 Zn、 Mgゝ Tl、 Pbゝ Biゝ Cdゝ Hgゝ Seゝ Cゝ Nゝ Auゝ Agゝ C u、 Mn、希土類元素から選択される少なくとも 1種の元素を含有し、該元素の合計含 有量が、 0. 1一 10原子%である請求の範囲第 11項に記載の光記録媒体。
[13] 記録層の膜厚力 6— 20nmである請求の範囲第 1項力も第 12項の何れかに記載 の光記録媒体。
[14] 第二保護層が、 ZnSと SiOの混合物力もなる請求の範囲第 1項力 第 13項に記載
2
の光記録媒体。
[15] 透明基板力 溝ピッチ 0. 74±0. 03 μ m、溝深さ 22— 40nm、溝幅 0. 2-0. 4 μ mの蛇行溝を有し、 DVD3— 10倍速(lOmZs— 36mZs)の記録線速度で記録可 能である請求の範囲第 1項力 第 14項の何れかに記載の光記録媒体。
PCT/JP2004/014114 2003-09-25 2004-09-27 光記録媒体 WO2005031725A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04788210A EP1669988A1 (en) 2003-09-25 2004-09-27 Optical recording medium
US11/385,674 US20060228649A1 (en) 2003-09-25 2006-03-22 Optical recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003334028 2003-09-25
JP2003-334028 2003-09-25
JP2004042605 2004-02-19
JP2004-042605 2004-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/385,674 Continuation US20060228649A1 (en) 2003-09-25 2006-03-22 Optical recording medium

Publications (1)

Publication Number Publication Date
WO2005031725A1 true WO2005031725A1 (ja) 2005-04-07

Family

ID=34395589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014114 WO2005031725A1 (ja) 2003-09-25 2004-09-27 光記録媒体

Country Status (4)

Country Link
US (1) US20060228649A1 (ja)
EP (1) EP1669988A1 (ja)
TW (1) TW200514076A (ja)
WO (1) WO2005031725A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105662A1 (en) * 2006-03-10 2007-09-20 Ricoh Company, Ltd. Optical recording medium
CN102623027A (zh) * 2007-11-27 2012-08-01 索尼公司 一次写入光学记录介质及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513193C (zh) * 2004-02-05 2009-07-15 株式会社理光 相变型信息记录媒体及其制法、溅射靶以及相变型信息记录媒体的使用方法及光记录装置
EP1959377A4 (en) * 2005-11-16 2009-12-02 Kyodo Printing Co Ltd INTEGRATED CIRCUIT BOARD WITHOUT CONTACT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151175A (ja) * 2001-11-12 2003-05-23 Ricoh Co Ltd 光記録媒体
JP2003242683A (ja) * 2002-02-14 2003-08-29 Hitachi Ltd 情報記録媒体
JP2004255698A (ja) * 2003-02-26 2004-09-16 Victor Co Of Japan Ltd 光記録媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237096A (ja) * 2001-02-09 2002-08-23 Ricoh Co Ltd 光記録媒体
US6846611B2 (en) * 2001-02-28 2005-01-25 Ricoh Company, Ltd. Phase-change optical recording medium
EP1343154B1 (en) * 2002-03-05 2006-10-25 Mitsubishi Kagaku Media Co., Ltd. Phase-change recording material used for an information recording medium and an information recording medium employing it
KR100906056B1 (ko) * 2002-03-19 2009-07-03 파나소닉 주식회사 정보 기록매체와 그 제조 방법
US7260053B2 (en) * 2002-04-02 2007-08-21 Ricoh Company, Ltd. Optical recording medium, process for manufacturing the same, sputtering target for manufacturing the same, and optical recording process using the same
EP1385160B1 (en) * 2002-07-22 2006-10-11 Ricoh Company, Ltd. Phase change optical recording medium
WO2004032131A1 (ja) * 2002-10-02 2004-04-15 Mitsubishi Chemical Corporation 光記録媒体
EP1439532A3 (en) * 2003-01-17 2005-02-09 Ricoh Company Method of initializing phase change optical recording medium
JP2006044215A (ja) * 2003-11-10 2006-02-16 Ricoh Co Ltd 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151175A (ja) * 2001-11-12 2003-05-23 Ricoh Co Ltd 光記録媒体
JP2003242683A (ja) * 2002-02-14 2003-08-29 Hitachi Ltd 情報記録媒体
JP2004255698A (ja) * 2003-02-26 2004-09-16 Victor Co Of Japan Ltd 光記録媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105662A1 (en) * 2006-03-10 2007-09-20 Ricoh Company, Ltd. Optical recording medium
US8075974B2 (en) 2006-03-10 2011-12-13 Ricoh Company, Ltd. Optical recording medium
CN102623027A (zh) * 2007-11-27 2012-08-01 索尼公司 一次写入光学记录介质及其制造方法

Also Published As

Publication number Publication date
EP1669988A1 (en) 2006-06-14
US20060228649A1 (en) 2006-10-12
TW200514076A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
JP4064905B2 (ja) 相変化光記録媒体
US20060228649A1 (en) Optical recording medium
WO2005051672A1 (ja) 光記録媒体
WO2003090218A2 (fr) Support d&#39;enregistrement optique
JP4124535B2 (ja) 光学情報記録媒体およびその記録再生方法
JP4127789B2 (ja) 相変化光記録媒体
JP4272934B2 (ja) 相変化型光記録媒体
JP4248323B2 (ja) 相変化型光記録媒体とその製造方法及び記録方法
JP4227091B2 (ja) 相変化光記録媒体
JP2006155847A5 (ja)
JP2005267832A (ja) 光記録媒体
JP2005537156A (ja) 書き換え可能な光学データ記憶媒体及びこのような媒体の使用
JP4104128B2 (ja) 光記録媒体
JP3151848B2 (ja) 光学情報記録媒体
JP2004005767A (ja) 光記録媒体
JP4109011B2 (ja) 光記録媒体
JP2000339764A (ja) 光記録媒体
EP1683143B1 (en) Rewritable optical data storage medium and use of such a medium
WO2005044578A1 (ja) 光記録媒体及びその製造方法、スパッタリングターゲット、並びに光記録媒体の使用方法及び光記録装置
JP3955007B2 (ja) 相変化型光記録媒体
JP4214155B2 (ja) 光学情報記録媒体及びその記録再生方法
JP2007237437A (ja) 光記録媒体
JP2004306583A (ja) 光情報記録媒体
JP2000348380A (ja) 光記録媒体
JP2004164806A (ja) 光記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027873.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11385674

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004788210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004788210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11385674

Country of ref document: US