WO2005029574A1 - Collet, die bonder, and chip pick-up method - Google Patents

Collet, die bonder, and chip pick-up method Download PDF

Info

Publication number
WO2005029574A1
WO2005029574A1 PCT/JP2003/011936 JP0311936W WO2005029574A1 WO 2005029574 A1 WO2005029574 A1 WO 2005029574A1 JP 0311936 W JP0311936 W JP 0311936W WO 2005029574 A1 WO2005029574 A1 WO 2005029574A1
Authority
WO
WIPO (PCT)
Prior art keywords
collet
chip
vacuum suction
bonding
flake
Prior art date
Application number
PCT/JP2003/011936
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiro Nagamoto
Original Assignee
Nec Machinery Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Machinery Corporation filed Critical Nec Machinery Corporation
Priority to CN03826807.8A priority Critical patent/CN1802735A/en
Priority to PCT/JP2003/011936 priority patent/WO2005029574A1/en
Priority to JP2005509046A priority patent/JPWO2005029574A1/en
Priority to AU2003266534A priority patent/AU2003266534A1/en
Publication of WO2005029574A1 publication Critical patent/WO2005029574A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • H01L2221/68322Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Definitions

  • the present invention relates to a collet, a die bonder using the collet, and a method of picking up a chip in the die bonder.
  • a flaky semiconductor chip die
  • a pick-up method particularly suitable for a semiconductor chip having a flake shape, which is bonded through a bonding material such as a hard solder, a silver paste, and a resin.
  • semiconductor devices bond the back surface of a semiconductor chip (die) to a substrate such as a printed circuit board or a lead frame via a bonding material such as soft solder, hard solder, silver paste, or resin. ).
  • a big chip and a bonding tool (hereinafter referred to as a tool) that move between a pickup position P1 and a bonding position P2 of the semiconductor chip. 40) is used.
  • a tool a big chip and a bonding tool that move between a pickup position P1 and a bonding position P2 of the semiconductor chip. 40.
  • the operation will be described in detail.
  • the column 40 descends (a), and the tool 40 which vacuum-adsorbs the semiconductor chip 65 from the semiconductor chip assembly 60 is moved.
  • the semiconductor chip assembly 60 is horizontally moved by one pitch 7 and the next semiconductor chip 65 to be picked up is moved to the peak position P1.
  • Can be Substrate 1 also moves horizontally by one pitch, and the next bonding area Is moved to the bonding position P2.
  • the same operation is repeated, and the semiconductor chips 65 are sequentially picked up and bonded to the substrate 1.
  • the above-mentioned rail 40 is configured by attaching a collet 42 to a collet holder 41.
  • the collet holder 41 has a vacuum suction hole 43 at the center to which a vacuum or compressed gas system is connected, a set screw 44 for attaching to the pipe connecting the collet holder 41, and a lower end. It has a lower part 45 and a concave part 46 in the lower part 45.
  • the collet 42 has a vacuum suction hole 47 at the center, a convex portion 48 fitted into the concave portion 46, and a flange portion 49 joined to the lower end of the standing portion 45.
  • the vacuum suction hole 43 of the collet holder 41 and the vacuum suction hole 47 of the collet 42 form a space 50 formed between the ceiling of the recess 46 and the upper surface of the projection 48. Is communicated through. Contrary to the illustrated example, a concave portion may be provided on the collet 42 side and a convex portion may be provided on the collet holder 41 side.
  • a semiconductor chip assembly 60 as shown in FIG. 6C is usually arranged at the pickup position P1 in the conventional die bonder.
  • the semiconductor chip assembly 60 has a semiconductor wafer 63 attached to a wafer 62 having an adhesive layer on the surface attached to the wafer ring 61 and a semiconductor wafer 63 attached thereto.
  • the wafer 63 is cut lengthwise and breadthwise by a dicer 64 to divide it into individual semiconductor chips 65, and then, as shown in FIG.
  • the wafer hash 6 2 is stretched and the individual semiconductor chips 6 5 In addition, the distance between the semiconductor chip 65 and the wafer sheet 62 has been reduced while increasing the gap.
  • the semiconductor chip 65 When the semiconductor chip 65 is to be picked up from the semiconductor chip assembly 60, as shown in FIG. 4, the semiconductor chip 65 is pushed up from below the semiconductor chip 65 with push-up pins 67, and the semiconductor chip 65 is pushed up.
  • the wafer chip 62 in the peripheral portion of 5 is deformed downward by a vacuum suction force from below to reduce the bonding area between the semiconductor chip 65 and the wafer sheet 62, thereby reducing the semiconductor chip.
  • the adhesive force between the wafer 65 and the wafer sheet 62 is reduced, so that the semiconductor chip 65 can be reliably attracted and picked up by the collet 42 with a small vacuum suction force.
  • the semiconductor chip is sucked and fixed to the collet 42, and the wafer sheet is
  • the semiconductor chip 65 can be picked up from the wafer sheet 62 by a method in which the lower surface of the semiconductor chip is sucked and pulled down by the suction stage.
  • the collet 42 has various configurations shown in FIGS. 7A to 7C.
  • the collet 42A shown in FIG. 7A has a single, large-diameter vacuum suction hole 51 at the center and a flat surface 52 provided on the lower surface.
  • the collet 4 2B shown in FIG. 7B has a single, large-diameter vacuum suction hole 51 at the center, and a standing portion 53 around the lower surface.
  • a concave portion 54 communicating with the vacuum suction hole 51 is provided (for example, see Patent Document 1).
  • the collet 42C shown in FIG. 7C has a single, large-diameter vacuum suction hole 51 at the center, and a standing part 53 around the lower surface.
  • a concave portion 54 communicating with the vacuum suction hole 51 is provided at the bottom, and an inclined surface 55 is formed between the concave portion 54 and the vacuum suction hole 51.
  • the collet 42 shown in FIG. 7A has the lower flat surface 52 abutted against the semiconductor chip 65 and applies a vacuum suction force to the vacuum suction hole 51 to suck the chip 65.
  • the collet 42B shown in FIG. 7B is configured such that the lower surface of the lower part 53 of the peripheral portion is brought into contact with the chip 65, and a vacuum suction force is applied to the vacuum suction hole 51, so that the chip 65 is moved.
  • Adsorb Further, the collet 4 2 C shown in FIG. 7C is configured such that the upper surface shoulder of the chip 65 is brought into contact with the inclined surface 55, and a vacuum suction force is applied to the vacuum suction hole 51, so that the chip 6 Adsorb 5 Disclosure of the invention
  • the thickness is 5 0 ⁇ M following thin semiconductor chips (hereinafter, flakes that the chip) is expanded demand force s, its thin pieces
  • the technology of stacking chips has attracted attention.
  • the conventional collect 42 has a single large diameter at the center.
  • This structure has a vacuum suction hole 51, and the center of the semiconductor chip is vacuum-sucked at the time of picking up a flake chip. Therefore, it occurs at the start of peeling of the wafer sheet at the time of peak-up and at the end of peeling. ⁇ Due to the deformation, can not S avoid giving excessive stress to the semiconductor chip, flake Chidzupu cracking was easy.
  • the reaction force of the bonding material 2 causes the thin chip 65a to receive upward stress.
  • the presence of the vacuum suction hole 51 at the center causes a stress 3 that locally deforms the center of the thin chip 65a upward, so that the thin chip 65a is easily broken.
  • the compressed gas 4 is supplied to the vacuum suction hole 51 as shown in FIG. If the flake tip 65a is easily detached from the flake tip 65a, the compressed pressure of the compressed gas 4 is concentrated at the center of the flake tip 65a, so that the center of the flake tip 65a is deformed downward. There was a problem that the flake tip 65a was liable to crack due to the high stress.
  • the collet 42B shown in Fig. 7B has a larger recess compared to the collet 42A shown in Fig. 7A.
  • FIG. 9A when the thin chip 65 a starts to be separated from the wafer sheet 62 due to the presence of the recesses 54, the presence of the recesses 54 and the push-up pins 67 push up. Therefore, since the central portion of the thin chip 65a receives a large stress that deforms upward, the thin chip 65a is easily broken.
  • the flake chip 65a When bonding the flake chip 65a to the substrate 1 with the collet 42B, as shown in FIG. 9B, the flake chip 65a receives an upward stress due to the reaction force of the bonding material 2. At this time, the presence of the concave portion 54 receives a large stress 3 that locally deforms the central portion of the thin chip 65 a upward, so that the thin chip 65 a is easily damaged.
  • the collector 42 C shown in FIG. 7C is usually a thick semiconductor chip. If it is applied to the sliced chip 65a, it is not shown in the figure, but at the start of peeling when picking up the sliced chip 65a from the wafer sheet 62, similar to Fig. 9A.
  • the presence of the concave portion 54 and the push-up pin 67 push up the central part of the thin chip 65a, so that the thin chip 65a is easily broken.
  • the thin chip 65 a When bonding the thin chip 65 a to the substrate 1 ⁇ : as in FIG. 9B, the thin chip 65 a receives an upward stress 3 due to the reaction force of the bonding material 2. Because of the presence of the concave portion 54, the center of the thin chip 65a receives a stress that deforms upward, so that the thin chip 65a is easily broken.
  • the collet 42C shown in FIG. 7C has a lower portion 53 around the lower surface, and the inclination in the concave portion 54 formed by the lower portion 53. Since the suction is performed by bringing the shoulder of the thin chip 65 a into contact with the surface 55, there are the following specific problems during pickup. That is, as shown in Fig.
  • L 1 is the collet 42 C If the width dimension L is smaller than the width dimension L, the gap g between the flake chip 65 a and the adjacent flake chips 65 b, 65 c is too small, and the rising portion 53 cannot enter the gap g. Adjacent flake chips 65 b and 65 c on the lower surface of 53 may be damaged, or flake chips 65 a to be adsorbed may not be adsorbed.
  • the distance L 2 between the four thin chips 65 b and 65 c adjacent to both sides of the thin chip 65 a to be adsorbed is set to the width of the collet 42 C. If it is larger than the dimension L, a gap g1 is secured between the flake chip 65a to be adsorbed and the adjacent flake chips 65b, 65c so that the standing portion 53 can enter. Although the thin chip 65 a can be picked up, in order to form such a large gap g 1, when the air sheet 62 shown in FIG. It is necessary to greatly expand, the number of flaked chips 65a must be reduced, and the yield of flaked chips 65a decreases.
  • a large-diameter wafer ring 61 and an energy-saving sheet 62 are required, so that the cost of the wafer ring 61 and the wafer sheet 62 becomes high.
  • the horizontal movement distance of the semiconductor chip assembly 60 at the time of pickup is large, not only is the die bonder large and expensive, but also the speed cannot be increased.
  • the periphery of the chip is also deformed by the deformation of the sheet in a collet that has a suction hole only in the center. This occurs when the adhesive force between the sheet and the chip is relatively high with respect to the chip's deformation recovery force.
  • the chip has a deformation recovery force of 5 Omg or less, it is particularly likely to occur, and in some cases, the flaked chip may crack.
  • a collet provided with multiple vacuum holes is effective.
  • a mechanism for adjusting the vacuum pressure of the collect stage and each stage is provided to prevent chip cracking. For example, ⁇ Set the maximum vacuum pressure at the upper part (collet side) to increase the chip holding force, and control the pressure at the lower part (stage side) so that the chip does not break.
  • the present invention provides, for example, a collet that does not break the flake chip during the chip-up and / or bonding, a die bonder and a chip using the collet.
  • the purpose is to provide a big-up method.
  • a collet of the present invention includes a collet for picking up and / or bonding a chip, wherein a lower surface of the collet is formed on a flat surface, and a plurality of vacuum suction portions are formed on the flat surface of the lower surface.
  • the term “collet for picking up and / or bonding chips” above refers to not only the collect in a so-called direct bonding type die bonder that picks up the chip and bonds it as it is, but also Transfer to the position and position correction unit, and then pick up and bond the chip from the tray and position correction unit. This is a so-called indirect bonding type bonder for a big bond or tray. And from the position correction section. It includes a collection for bonding for picking up and bonding.
  • the collet of the present invention is mounted on a collet holder having a vacuum suction hole at a central portion, and includes a plurality of vacuum suction holes penetrating vertically, and a plurality of the vacuum suction holes of the collet holder and the plurality of collets.
  • a sealed space for communicating with the vacuum suction hole is provided (claim 2).
  • the collet of the present invention is mounted on a collet holder having a vacuum suction hole in the center, and this collet has one or more vacuum suction holes and communicates with the vacuum suction hole on the lower surface.
  • a groove is provided, and a closed space is provided for communicating a vacuum suction hole of the collect hood lid with a single or a plurality of vacuum suction holes of the collect (Claim 3).
  • the die bonder of the present invention is provided with the collet described in any one of the above forces (Claim 4).
  • the chip big-up method of the present invention using the die bonder described above, the chip whose back surface is joined to the wafer sheet is vacuum-sucked with a collet, and then the back surface of the chip is placed below the seat sheet.
  • the piston is relatively pushed up by a push-up pin from above, or the eave sheet is deformed downward by a vacuum suction force from below (claim 5).
  • a plurality of vacuum suction portions on the lower surface are used to form a lamella. Since the peripheral portion of the chip can be vacuum-sucked, the vacuum suction force acts only on the central portion of the flake chip as in the related art, so that the peripheral portion does not become free. —When peeling off the sheet and picking up, even if the wafer sheet around the thin chip is deformed downward by the vacuum suction force acting from below, the peripheral part of the thin chip is vacuum-adsorbed by the collect.
  • the periphery of the book chip does not deform downward due to the deformation of the wafer sheet, and only the wafer sheet can be deformed downward, so that the thin chip can be smoothly separated from the wafer chip. It is possible to prevent cracking at the time of picking up the flake chips.
  • the flat surface of the collet can evenly press the thin chip, so that there is a vacuum suction hole provided in the center of the conventional collet and a counterpart of the bonding material.
  • the force prevents the central portion of the thin chip from being stressed such that it deforms upward, so that cracking of the thin chip at the time of bonding can be prevented.
  • the compressed gas is supplied to the vacuum suction part after the bonding of the flake tip to make it easy for the flake chip to separate from the collet, the compressed gas ejected from the plurality of vacuum suction parts is applied to the wide surface of the flake chip.
  • the compressed pressure of the compressed gas is concentrated locally at the center of the flake tip, as in a conventional collet with a vacuum suction hole at the center, causing the center of the flake tip to deform downward.
  • the stress at the time of removing the thin chip from the collet can be prevented.
  • the vacuum suction force acting on the vacuum suction hole at the center of the collet holder is transmitted through the closed space between the collet holder and the collet. It can be evenly distributed in the plurality of vacuum suction holes of the collet, and the peripheral part of the flake tip can be vacuum-sucked. Also, the reaction force of the bonding material can be dispersed and received on a flat surface.
  • the compressed gas can be supplied, the compressed gas can be dispersed and supplied to the flake chip, so that the flake chip can be prevented from being broken at any time during the pickup of the flake chip, the bonding, and the detachment of the flake chip.
  • a collet holder having a vacuum suction hole only in the center can be used in common, and a collet holder having a plurality of vacuum suction holes can be used simply.
  • the configuration is simple and the collet can be manufactured at low cost. Since a plurality of vacuum suction holes of the collet can be formed at the same time when the collet is formed by molding, there is no increase in man-hour and cost due to an increase in the number of vacuum suction holes.
  • the vacuum suction force acting on the vacuum suction hole at the center of the collet holder is applied to the groove through one or more vacuum suction holes of the collet. Since it is evenly distributed, the periphery of the thin chip can be vacuum-sucked during pick-up, and the reaction force of the bonding material can be dispersed and received on the flat surface during bonding, and compressed gas is ejected when the thin chip is detached Since the pressure can be spread over a wider surface of the flaked chip, no stress that locally deforms the flaked chip at the time of pick-up, bonding, or detachment is applied. Cracks can be prevented.
  • a collet holder having a vacuum suction hole only at the center can be used in common, and a collet holder having a groove communicating with the vacuum suction hole on the lower surface of the collet simply needs to be adopted.
  • the configuration is much simpler, and the collet can be manufactured at low cost. Since the vacuum suction hole and the groove of the collet can be formed at the same time when the collet is formed by injection molding, the provision of the groove does not increase the man-hour and cost.
  • the thin chip attached to the wafer sheet is pushed up from below by a push-up pin, or
  • the adhesive force is reduced by reducing the bonding area between the thin chip and the wafer sheet by, for example, deforming the chip downward by vacuum suction
  • the periphery of the upper surface of the thin chip is Suction can be achieved with multiple vacuum suction holes or grooves and thin Since the chip is received on a flat surface, the center of the chip does not deform upward, and the periphery of the chip does not deform downward due to the deformation of the wafer sheet. Only the wafer sheet of the part is deformed downward, the adhesive force between the thin chip and the wafer sheet is reduced, the peeling starts smoothly, and the thin chip can be reliably picked up without breaking.
  • the compressed gas is supplied from the plurality of vacuum suction holes or grooves of the collet to the wide surface of the flake tip.
  • the compressed gas ejection pressure is concentrated at the center of the flake tip, such as a conventional collet with a vacuum suction hole at the center, and the center of the flake tip is deformed downward
  • the flake tip is prevented from cracking, and the flake tip can be separated from the collet.
  • the periphery of the chip is vacuum-adsorbed by the collet, and then the back surface of the chip is relatively pushed up by the push-up pin, or the chip is pushed up. Since the wafer sheet joining the chips is deformed downward by vacuum suction, the center of the chips is relatively free while the periphery of the chips is free, as in the conventional method of picking up chips. This prevents the chip from being lifted up and the chip around the chip from deforming downward, effectively preventing chip breakage during chip pickup without stressing the chip.
  • FIG.1A is a longitudinal sectional side view of a bonding tool according to a first embodiment of the present invention
  • Figure 1B is a bottom view of the bonding tool of Figure 1A
  • FIG. 1C is a front view of the collect at the bonding tool of FIG. 1A
  • FIG. 2A is an enlarged vertical sectional view of a principal part of a die bonder provided with the collect of FIG. 1 in a state of pick-up of a thin chip for explaining operation
  • FIG. 2B is an enlarged vertical cross-sectional view of a main part in a state of bonding a thin chip
  • FIG. 2C is an enlarged vertical sectional view of a main part of the die bonder provided with the collet shown in FIG. 1 in a state where the thin chip is detached from the collet for explaining the operation.
  • FIG. 3A is a longitudinal sectional side view of a bonding tool according to a second embodiment of the present invention.
  • Figure 3B is a bottom view of the bonding tool of Figure 3A
  • FIG. 3C is a front view of the collect in the bonding tool of FIG. 3A.
  • FIG. 4 is an explanatory view of a pick-up and bonding operation in a die bonder
  • FIG. 5A is a longitudinal rear view of a bonding tool in a conventional die bonder.
  • FIG. 5B is a front view of a large vertical section of a portion of the bonding tool shown in FIG. 5A.
  • FIG. 6A is an explanatory view showing a state in which a semiconductor chip is attached to an ash in a manufacturing process of the semiconductor chip assembly shown in FIG. 4;
  • FIG. 6B is an explanatory view showing a state where the semiconductor wafer is divided into individual semiconductor chips by a dicer in a manufacturing process of the semiconductor chip assembly shown in FIG. 4,
  • FIG. 6C is an explanatory view showing a state where a sheet is stretched in a manufacturing process of the semiconductor chip assembly shown in FIG. 4,
  • Fig. 7A is a longitudinal sectional view of a collet in a conventional die bonder.
  • Fig. 7B is a longitudinal sectional view of another collet in the conventional die bonder.
  • FIG. 7C is a longitudinal sectional view of still another collet in the conventional die bonder
  • FIG. 8A is an enlarged vertical sectional view of a main part of a state of a thin chip for explaining operation by the collector of FIG. 7A in a big cup state
  • FIG. 8B is an enlarged longitudinal sectional view of a main part in a state of bonding a thin chip for explanation of operation using the collet of FIG. 7A,
  • FIG. 8C is an enlarged longitudinal sectional view of an essential part in a state at the time of detachment of the thin chip for explanation of the operation by the collect of FIG.
  • FIG. 9A shows a state in which a thin chip for pick-up operation by the collet of FIG. 7B is picked up.
  • FIG. 9B is an enlarged longitudinal sectional view of an essential part in a state in which the thin chip is detached for explanation of operation by the collet of FIG. 7B,
  • Fig. 9C is an enlarged vertical cross-sectional view of the main part when the thin chip is adhered to the bonding material for explaining the operation by the collet of Fig. 7B.
  • Fig. 1OA is the main part for explaining the problem with the collet of Fig. 7C. Explanatory drawing of the first problem when the chip spacing is small in the enlarged longitudinal sectional view,
  • FIG. 10B is an enlarged vertical cross-sectional view of a main part for describing a problem caused by the collet shown in FIG. 7C, and is an explanatory diagram of a second problem when the chip interval is increased.
  • the tool 10 includes a collet holder 20 and a collet 30 mounted on the collet holder 20, as shown in FIGS. 1A to 1C.
  • the collect holder 20 is made of, for example, stainless steel and has a vacuum suction hole 21 connected to a vacuum system at the center, and two mounting screw holes 22 for attaching the collect holder 20 to a support member.
  • the collet 30 is made of, for example, stainless steel, nitrile rubber, fluoro rubber, heat-resistant resin, or the like depending on the application, and has a flat surface 31 on the lower surface and a plurality of vertically penetrating (in the illustrated example, a rectangular A small-diameter vacuum suction hole 32 of 3 pieces in length and 5 pieces in width and 5 pieces for a thin chip, a convex part 3 3 fitted into the concave part 25 of the collet holder 20, and a collet holder 20.
  • Lower surface 24 of lower portion 24 has flange portion 34 to be in contact with.
  • the depth dimension H1 of the concave portion 25 of the collet holder 20 is set larger than the height dimension H2 of the convex portion 33 of the collet 30.
  • a space 26 between H 1 and H 2 is formed between the upper surface and the upper surface. Therefore, the vacuum suction holes 2 1 and the vacuum suction hole 32 of the collet 30 communicate with each other through a space 26.
  • the vacuum suction force is applied to the vacuum suction 21 of the collet holder 20
  • the vacuum suction force is applied to the plurality of vacuum suction holes 32 of the collet 30 via the space 26.
  • a compressed gas is supplied to the vacuum suction holes 21 of the collet holder 20, the compressed gas is dispersed and ejected from the plurality of vacuum suction holes 32 of the collet 30 via the space 26.
  • the collet 30 of the roll 10 is attached to the flake tip 65 a bonded to the wafer sheet 62.
  • a vacuum suction force is applied to the vacuum suction holes 21 of the collet holder 20.
  • the vacuum suction force is dispersed to the plurality of vacuum suction holes 32 of the collet 30 via the space 26, and the peripheral portion of the thin chip 65a can be suctioned by vacuum.
  • the thin chip 65 a whose peripheral portion is peeled off from the wafer sheet 62 is moved from the peeled peripheral portion to the central portion as described above. It is gradually peeled off from the hasheet 62 and completely peeled off.
  • the central portion of the flake tip 65 a is sucked by the vacuum suction hole 32 of the collet 30, the central portion of the flake tip 65 a does not deform downward, and the wafer sheet 6 2 smoothly.
  • the flake tip 65a is broken up without cracking.
  • a description will be given of a case where the flake chip 65a adsorbed on the plate 10 is bonded to the substrate 1. As shown in FIG.
  • the lamella is supplied by the bonding material 2 supplied to the substrate 1.
  • the chip 65a receives a reaction force directed upward, but since the collet 30 has a flat surface 31 on the lower surface, the reaction force due to the bonding material 2 is uniformly distributed over the entire back surface of the thin chip 65a. As a result, the local reaction force is not applied only to the central portion of the thin chip 65a as in the related art, and the crack of the thin chip 65a is eliminated.
  • the compressed gas 4 is collected as shown in FIG. 2C.
  • the center of the flake tip 65a Since the compressed gas does not concentrate and blow out only at the portion, the center of the flake tip 65a does not deform downward, preventing the flake tip 65a from cracking and detaching the flake tip 65a. It can be done.
  • the collet 1OA includes a collet holder 20 and a collet 3OA. Since the collet holder 20 is the same as the collet holder 20 shown in FIG. 1A, the same parts are denoted by the same reference numerals and the description thereof will be omitted.
  • the collet 3 OA has a flat surface 31 on the lower surface, a plurality of small-diameter vacuum suction holes 32, a convex portion 33 fitted into the concave portion 25 of the collet holder 20, and a rising portion 24 of the collet holder 20.
  • the point having a flange portion 34 in contact with the lower surface is the same as that of the collet 30 in FIG. 1A, but further includes a groove portion 35 communicating in one direction with the lower ends of the plurality of vacuum suction holes 32. A different point is that it has a lower end of the vacuum suction hole 32 and a groove 36 communicating with the other direction.
  • the vacuum suction holes 24 and the grooves 35, 36 penetrating the collet 30A can be formed in advance in the production mold by forming protrusions corresponding to the shapes of the vacuum suction holes 24 and the grooves 35, 36. Since the vacuum suction holes 24 and the grooves 35, 36 can be formed at the same time during the molding of the collet 3OA, by forming a plurality of vacuum suction holes 32, grooves 35, 36 There is no increase in manufacturing man-hours or cost. Next, the operation of the reel 1 OA including the collet 3 OA having the grooves 35 and 36 will be described.
  • the collet 3 OA of the tool 10 A is brought into contact with the upper surface of the flake chip 65 a joined to the wafer sheet 62, A vacuum suction force is applied to the vacuum suction holes 21 of the collet holder 20. Then, the vacuum suction force is distributed to the plurality of vacuum suction holes 32 of the collet 3 OA through the space 26, and further, the grooves 35, 36 communicating with these vacuum suction holes 32 are formed.
  • the peripheral portion of the thin chip 65a can be vacuum-adsorbed on a wider surface.
  • the flake chip 65a adsorbed on the tool 1OA is bonded to the substrate 1.
  • the bonding material 2 supplied to the substrate 1 causes the flake chip 65a to move upward.
  • the collet 3 has a flat surface 3 1 on the lower surface of the OA, so the reaction force due to the bonding material 2 is evenly distributed over the entire back surface of the thin chip 65 a, so that the conventional thin chip 6 5a no longer receives a local reaction force only at the center, thin section chip 6 5 The crack of a disappears.
  • the compressed gas 4 is supplied to the plurality of grooves 3 5, 3 of the collet 3 OA. Because it is dispersed and ejected on the wide surface of the flake chip 65a from 6, it is localized only at the center of the flake chip 65a, like a conventional collet with a single vacuum suction hole at the center. Since the compressed gas does not concentrate and blow out, the center of the flake tip 65a does not deform downward, preventing the flake tip 65a from cracking and allowing the flake tip 65a to separate. it can.
  • Embodiment 2 described above a case was described in which a plurality of vacuum suction holes 32 were formed in the collet 3 OA.
  • the flat surface 31 was formed.
  • the number of the vacuum suction holes 32 communicating with the grooves 35 and 36 can be made smaller than that in the illustrated example.
  • a configuration having 24 may be adopted.
  • the bonding material 2 is supplied to the substrate 1 by coating or the like and the flake chips are bonded through the bonding material 2 has been described. After being adhered, bonding may be performed via this bonding material.
  • the lower portion 24 and the concave portion 25 are provided on the collet holder 20 side, and the convex portion 33 fitted into the concave portion 25 is provided on the collet 30 or 30A side.
  • the case where the flange portion 34 is provided to contact the lower surface of the rising portion 24 has been described. Contrary to the illustrated example, a rising portion and a concave portion are provided on the collets 30 and 3OA, and the collet holder 20 is provided.
  • a side may be provided with a convex portion that fits into the concave portion and a flange portion that contacts the upper surface of the rising portion.
  • 2A to 2C show the case where the size of the collet 30 is equal to the size of the thin chip 65a, but in order to vacuum-adsorb the peripheral portion of the thin chip 65a, The size of the collet 30 may be larger than the flake tip 65a. By making the collet 30 larger than the thin chip 65a, air bubbles of the bonding material around the thin chip 65a can be more completely removed, and good bonding can be realized.
  • the specific size of the collet 30 (the amount of protrusion from the chip size) varies depending on the chip size and the thickness of the bonding tape interposed between the chip and the lead frame or substrate.
  • the diameter of the central vacuum suction hole is large.
  • the pressure applied to the flake chips is made different, bonding is performed while pushing the gas under the flake chips by gradually applying pressure from the center to the periphery of the flake chips when bonding the flake chips to the substrate. It is possible to realize good bonding without bubbles in the bonding material. Also, in FIGS.
  • the contact surface of the collet 30 with the chip is a flat surface, but the deformation of the sheet interposed between the lower surface of the chip and the push-up pin or the 21 dollarless slider is used.
  • the central part of the lower surface of the collet 30 into a curved surface that is slightly convex downward, synergistic action with the plurality of vacuum suction holes 32 improves the releasability and extrudes the atmosphere gas during bonding. It can be smooth.
  • a so-called direct bonding type die bonder in which a chip is picked up and bonded as it is has been described.
  • the picked up chip is temporarily transferred to a tray or a position correcting section, and the tray and the position corrected are transferred.
  • the present invention can also be applied to a so-called indirect bonding type die bonder in which a chip is picked up from a part and bonded, and is used for a pickup collet and a bonding collet.
  • the present invention is particularly suitable for a die bonder for a semiconductor chip. It can also be applied to die bonders for various electronic components such as chips and capacitor chips

Abstract

PROBLEM TO BE SOLVED: To prevent semiconductor chips from cracking during pick-up and during bonding. SOLUTION: A bonding tool (10) is constituted of a collet holder (20) and a collet (30). The collet holder (20) comprises a vacuum suction hole (21) at the center, attaching threaded holes (22, 23) for attaching the collet holder (20) to a support member, a depending section (24) at the bottom, and a recess (25) in the depending section (24). The collet (30) comprises a flat surface (31) at the lower end, a plurality of vertically extending vacuum suction through-holes (32), a projection (33) adapted to fit in the recess (25), and a flange (34) abutted against the lower surface of the depending section (24). A space (26) is defined such that the depth dimension H1 of the recess (25) and the height dimension H2 of the projection (33) are set H1 > H2, and communication is established between the vacuum suction holes (21, 32) through the space (26). The plurality of vacuum suction holes (32) vacuum-suck the periphery of a chip, whereby pick-up and bonding are effected.

Description

コレット、 タ、、ィボンダぉよびチヅプのピックァップ方法 How to pick up collets, taps, i-bonders and chips
技術分野 Technical field
本発明はコレツト、 このコレツトを用いたダイボンダおよびダイボンダにおけるチップ のピックァヅプ方法に関し、 例えば、 薄片状の半導体チヅプ (ダイ) をゥェ一ハシートか らピックァヅプして、 リードフレームなどの基板に軟ろう, 硬ろう, 銀ペースト, 樹脂な どの接合材を介してボンディングするコレツト、 ダイボンダおよび特に薄片状の半導体チ ヅプに好適なピヅクァヅプ方法に関するものである。  The present invention relates to a collet, a die bonder using the collet, and a method of picking up a chip in the die bonder. For example, a flaky semiconductor chip (die) is picked up from a wafer sheet to be softened on a substrate such as a lead frame. TECHNICAL FIELD The present invention relates to a method of bonding, a die bonder, and a pick-up method particularly suitable for a semiconductor chip having a flake shape, which is bonded through a bonding material such as a hard solder, a silver paste, and a resin.
背景技術 Background art
半導体デノヾイスは、 一般に、 半導体チップ (ダイ) の裏面を、 軟ろう, 硬ろう, 銀ぺ一 スト, 樹脂などの接合材を介して、 プリント基板やリードフレームなどの基板にボンディ ング (接合) して製造している。  In general, semiconductor devices bond the back surface of a semiconductor chip (die) to a substrate such as a printed circuit board or a lead frame via a bonding material such as soft solder, hard solder, silver paste, or resin. ).
このような半導体チップを基板にボンディングするダイボンダにおいては、 図 4に示す ように、 半導体チップのピックァヅプ位置 P 1と、 ボンディング位置 P 2との間を移動す るビックァヅプおよびボンディングヅール (以下、 ツールという) 4 0を用いる。 以下、 その動作を詳述すると、半導体チップのピヅクァヅプ位置 P 1で、ヅ一ル 4 0が下降し( a )、 半導体チヅフ°集合体 6 0から半導体チヅプ 6 5を真空吸着したツール 4 0が上昇 (ピック アップ) しすこ後 ( b ) 、 水平移動し (c ) 、 ボンディング位置 P 2で、 ツール 4 0が下降 して (d ) 半導体チップ 6 5を基板 1に接合材 2を介してボンディングし、 ボンディング が終了すると、 ヅール 4 0が上昇した後 (e ) 、 水平移動して (f ) 、 元のピックアップ 位置 P 1の上方に復帰する。  In such a die bonder for bonding a semiconductor chip to a substrate, as shown in FIG. 4, a big chip and a bonding tool (hereinafter referred to as a tool) that move between a pickup position P1 and a bonding position P2 of the semiconductor chip. 40) is used. Hereinafter, the operation will be described in detail. At the peak position P1 of the semiconductor chip, the column 40 descends (a), and the tool 40 which vacuum-adsorbs the semiconductor chip 65 from the semiconductor chip assembly 60 is moved. After raising (picking up) a little bit (b), it moves horizontally (c), and the tool 40 descends at the bonding position P2 (d) bonding the semiconductor chip 65 to the substrate 1 via the bonding material 2 Then, when the bonding is completed, the pile 40 rises (e), moves horizontally (f), and returns to the position above the original pickup position P1.
上記のツール 4 0における a〜fの動作の間に、 半導体チップ集合体 6 0は 1ピッチ分 だけ水平移 ¾7して、 次のピヅクアツプすべき半導体チヅプ 6 5がピヅクァヅプ位置に P 1 に移動させられる。 また、 基板 1も 1ピッチ分だけ水平移動して、 次のボンディング領域 がボンディング位置 P 2に移動させられる。 以下、 同様の動作を繰り返して、 順次、 半導 体チップ 6 5をピックァヅプして、 基板 1にボンディングするようにしている。 During the operation of a to f in the tool 40, the semiconductor chip assembly 60 is horizontally moved by one pitch 7 and the next semiconductor chip 65 to be picked up is moved to the peak position P1. Can be Substrate 1 also moves horizontally by one pitch, and the next bonding area Is moved to the bonding position P2. Hereinafter, the same operation is repeated, and the semiconductor chips 65 are sequentially picked up and bonded to the substrate 1.
上記のヅ一ル 4 0は、 図 5 A, 図 5 Bに示すように、 コレヅトホルダ 4 1 にコレット 4 2が取り付けて構成されている。 コレットホルダ 4 1は、 中心部に真空系または圧縮気体 系が接続される真空吸引孔 4 3を有し、 コレットホルダ 4 1を連結するパイ プに取り付け るための止めねじ 4 4と、 下端に立下部 4 5と、 この立下部 4 5内の凹部 4 6とを備えて いる。コレッ ト 4 2は、中心部に真空吸引孔 4 7と、前記凹部 4 6に嵌り込む凸部 4 8と、 立下部 4 5の下端に接合されたフランジ部 4 9とを有する。 そして、 コレツ トホルダ 4 1 の真空吸引孔 4 3と、 コレット 4 2の真空吸引孔 4 7とは、 凹部 4 6の天井部と凸部 4 8 の上面との間に形成された空間部 5 0を介して連通している。 なお、 図示例とは逆に、 凹 部をコレット 4 2側に設け、 凸部をコレットホルダ 4 1側に設ける場合もある。  As shown in FIGS. 5A and 5B, the above-mentioned rail 40 is configured by attaching a collet 42 to a collet holder 41. The collet holder 41 has a vacuum suction hole 43 at the center to which a vacuum or compressed gas system is connected, a set screw 44 for attaching to the pipe connecting the collet holder 41, and a lower end. It has a lower part 45 and a concave part 46 in the lower part 45. The collet 42 has a vacuum suction hole 47 at the center, a convex portion 48 fitted into the concave portion 46, and a flange portion 49 joined to the lower end of the standing portion 45. The vacuum suction hole 43 of the collet holder 41 and the vacuum suction hole 47 of the collet 42 form a space 50 formed between the ceiling of the recess 46 and the upper surface of the projection 48. Is communicated through. Contrary to the illustrated example, a concave portion may be provided on the collet 42 side and a convex portion may be provided on the collet holder 41 side.
また、 上記従来のダイボンダにおけるピックアップ位置 P 1では、 通常、 図 6 Cに示す ような、 半導体チヅプ集合体 6 0が配置されている。 この半導体チップ集合体 6 0は、 図 6 Aに示すように、 ゥヱーハリング 6 1に貼り付けた表面に粘着層を有するゥヱーハシ一 ト 6 2に半導体ゥェ一ハ 6 3を貼り付け、 この半導体ゥェ一ハ 6 3を、 図 6 Bに示すよう に、 ダイサ 6 4によって縦横に切断して個々の半導体チップ 6 5に分割した後、 図 6 Cに 示すように、 ゥ工一ハシート 6 2を固定リング 6 6の上に配置して、 ゥェ一ハリング 6 1 を押し下げる (あるいは固定リング 6 6を押し上げる) ことによって、 ゥェ一ハシ一ト 6 2を引き伸ばして、 個々の半導体チップ 6 5の間隔を拡大するとともに、 半導体チップ 6 5とゥヱーハシート 6 2との接着力を低下させたものが用いられていた。  Further, at the pickup position P1 in the conventional die bonder, a semiconductor chip assembly 60 as shown in FIG. 6C is usually arranged. As shown in FIG. 6A, the semiconductor chip assembly 60 has a semiconductor wafer 63 attached to a wafer 62 having an adhesive layer on the surface attached to the wafer ring 61 and a semiconductor wafer 63 attached thereto. As shown in FIG. 6B, the wafer 63 is cut lengthwise and breadthwise by a dicer 64 to divide it into individual semiconductor chips 65, and then, as shown in FIG. By disposing it on the fixing ring 6 6 and pushing down the wafer ring 6 1 (or pushing up the holding ring 6 6), the wafer hash 6 2 is stretched and the individual semiconductor chips 6 5 In addition, the distance between the semiconductor chip 65 and the wafer sheet 62 has been reduced while increasing the gap.
この半導体チヅプ集合体 6 0から、 半導体チヅプ 6 5をピヅクアツプする場合、 図 4に 示すように、 半導体チップ 6 5の下方から突上げピン 6 7で半導体チップ 6 5を突上げる とともに、 半導体チップ 6 5の周辺部のゥェ一ハシート 6 2を下方からの真空吸引力によ り下方に変形させて、 半導体チップ 6 5とゥヱ一ハシート 6 2との接着面積を減少させる ことによって、 半導体チヅプ 6 5とゥェ一ハシート 6 2との接着力を低減させて、 コレヅ ト 4 2により半導体チップ 6 5を小さい真空吸引力で確実に吸着してピックァップできる ようにしている。 もしくは、 半導体チヅプをコレット 4 2に吸着固定し、 ゥエーハシート の下面を吸着ステージで吸引して引下げる方法で半導体チヅプ 6 5をゥェ一ハシート 6 2 からピックァヅプできるようにしている。 When the semiconductor chip 65 is to be picked up from the semiconductor chip assembly 60, as shown in FIG. 4, the semiconductor chip 65 is pushed up from below the semiconductor chip 65 with push-up pins 67, and the semiconductor chip 65 is pushed up. The wafer chip 62 in the peripheral portion of 5 is deformed downward by a vacuum suction force from below to reduce the bonding area between the semiconductor chip 65 and the wafer sheet 62, thereby reducing the semiconductor chip. The adhesive force between the wafer 65 and the wafer sheet 62 is reduced, so that the semiconductor chip 65 can be reliably attracted and picked up by the collet 42 with a small vacuum suction force. Alternatively, the semiconductor chip is sucked and fixed to the collet 42, and the wafer sheet is The semiconductor chip 65 can be picked up from the wafer sheet 62 by a method in which the lower surface of the semiconductor chip is sucked and pulled down by the suction stage.
ここで、 前記コレット 4 2には、 図 7 A〜図 7 Cに示す各種の構成のものがある。 図 7 Aに示すコレット 4 2 Aは、 中心部に単一かつ大径の真空吸引孔 5 1を有し、 下面に平坦 面 5 2を設けたものである。 図 7 Bに示すコレット 4 2 Bは、 中心部に単一かつ大径の真 空吸引孔 5 1を有するとともに、 下面の周辺部に立下部 5 3を設けて、 この立下部 5 3内 に真空吸引孔 5 1に連通する凹部 5 4を設けたものである(例えば、特許文献 1参照。 )。 図 7 Cに示すコレット 4 2 Cは、 中心部に単一かつ大径の真空吸引孔 5 1を有するととも に、 下面の周辺部に立下部 5 3を設けて、 この立下部 5 3内に真空吸引孔 5 1と連通する 凹部 5 4を設け、 さらに、 この凹部 5 4と真空吸引孔 5 1との間に、 傾斜面 5 5を形成し たものである。  Here, the collet 42 has various configurations shown in FIGS. 7A to 7C. The collet 42A shown in FIG. 7A has a single, large-diameter vacuum suction hole 51 at the center and a flat surface 52 provided on the lower surface. The collet 4 2B shown in FIG. 7B has a single, large-diameter vacuum suction hole 51 at the center, and a standing portion 53 around the lower surface. A concave portion 54 communicating with the vacuum suction hole 51 is provided (for example, see Patent Document 1). The collet 42C shown in FIG. 7C has a single, large-diameter vacuum suction hole 51 at the center, and a standing part 53 around the lower surface. A concave portion 54 communicating with the vacuum suction hole 51 is provided at the bottom, and an inclined surface 55 is formed between the concave portion 54 and the vacuum suction hole 51.
そして、 図 7 Aに示すコレット 4 2 Aは、 下面の平坦面 5 2を半導体チップ 6 5に当接 させて、 真空吸引孔 5 1に真空吸引力を作用させて、 チヅプ 6 5を吸着する。 また、 図 7 Bに示すコレット 4 2 Bは、 周辺部の立下部 5 3の下面をチップ 6 5に当接させて、 真空 吸引孔 5 1に真空吸引力を作用させて、 チップ 6 5を吸着する。 さらに、 図 7 Cに示すコ レット 4 2 Cは、 傾斜面 5 5の途中にチップ 6 5の上面肩部を当接させて、 真空吸引孔 5 1に真空吸引力を作用させて、 チップ 6 5を吸着する。 発明の開示  Then, the collet 42 shown in FIG. 7A has the lower flat surface 52 abutted against the semiconductor chip 65 and applies a vacuum suction force to the vacuum suction hole 51 to suck the chip 65. . In addition, the collet 42B shown in FIG. 7B is configured such that the lower surface of the lower part 53 of the peripheral portion is brought into contact with the chip 65, and a vacuum suction force is applied to the vacuum suction hole 51, so that the chip 65 is moved. Adsorb. Further, the collet 4 2 C shown in FIG. 7C is configured such that the upper surface shoulder of the chip 65 is brought into contact with the inclined surface 55, and a vacuum suction force is applied to the vacuum suction hole 51, so that the chip 6 Adsorb 5 Disclosure of the invention
最近、 半導体パッケージの小型 ·軽量化に加え、 大容量化が進むにつれ、 厚さ寸法が 5 0〃m以下の薄型の半導体チップ (以下、 薄片チップという) の需要力 s拡大され、 その薄 片チヅプを積層する技術が注目されている。 Recently, in addition to the size and weight of the semiconductor package, as a large capacity proceeds, the thickness is 5 0〃M following thin semiconductor chips (hereinafter, flakes that the chip) is expanded demand force s, its thin pieces The technology of stacking chips has attracted attention.
薄片チップは機械的強度が小さいため、 その取り扱いには細心の注意を必要とする。 と ころが、 従来のコレツト 4 2は、 前記図 7 Aの 4 2 A, 図 7 Bの 4 2 B , 図 7 Cの 4 2 C に示すように、 いずれも中心部に単一かつ大径の真空吸引孔 5 1を有する構造であり、 薄 片チヅプのピックァヅプ時に半導体チヅプの中央部を真空吸着するものであるため、 ピヅ クアツプ時におけるゥェ一ハシートの剥離開始時や剥離終了時に起きるゥエーハシ一トの 変形に起因して、 半導体チップに過大なストレスを与えること S回避できず、 薄片チヅプ が割れ易かった。 Since flake tips have low mechanical strength, they must be handled with great care. However, as shown in 42A in FIG. 7A, 42B in FIG. 7B, and 42C in FIG. 7C, the conventional collect 42 has a single large diameter at the center. This structure has a vacuum suction hole 51, and the center of the semiconductor chip is vacuum-sucked at the time of picking up a flake chip. Therefore, it occurs at the start of peeling of the wafer sheet at the time of peak-up and at the end of peeling.ゥ Due to the deformation, can not S avoid giving excessive stress to the semiconductor chip, flake Chidzupu cracking was easy.
また、 ボンディング時に、 中央部の真空吸引孔による吸着のため、 剥離後の半導体チッ プを安定してハンドリングできないだけでなく、 半導体チップ中央部分が浮上がり全面に 気泡が残留する等により所定の接合品質を得ることができないという問題点があった。 以下、 それらの問題点について、 各コレット別に詳述する。 まず、 図 7 Aに示すコレツ ト 4 2 Aは、 薄片チヅプ 6 5 aをゥエーハシート 6 2からピックアツプする際の剥離開始 時に、 図 8 Aに示すように、 薄片チップ 6 5 aの中央部が上方に変形するような応力を受 けるとともに、 ゥエーハシート 6 2の下方への変形力によって、 薄片チヅプ 6 5 aの周辺 部がゥヱ一ハシート 6 2と一緒に下方に変形されるような応力を受けるため、 薄片チップ 6 5 aが割れ易い。  In addition, the semiconductor chip after peeling cannot be handled stably because of the suction by the vacuum suction hole at the center during bonding, and the semiconductor chip is lifted up at the center part and bubbles are left on the entire surface. There was a problem that quality could not be obtained. Hereinafter, those problems will be described in detail for each collet. First, as shown in FIG. 8A, at the beginning of peeling when the flake chip 65a is picked up from the wafer sheet 62, the center of the flake chip 65a is upward. And the peripheral portion of the flake tip 65a is subjected to a stress such that the peripheral portion of the flake chip 65a is deformed downward together with the flat sheet 62 by the downward deformation force of the wafer sheet 62. Therefore, the flake tip 65a is easily broken.
また、 コレット 4 2 Aで薄片チップ 6 5 aを基板 1にボンディングする際に、 図 8 Bに 示すように、 接合材 2の反力によって薄片チヅプ 6 5 aが上方に向かう応力を受けるが、 このとき、 中心部の真空吸引孔 5 1の存在によって、 薄片チップ 6 5 aの中央部が局部的 に上方に変形するような応力 3を受けるため、 薄片チップ 6 5 aが割れ易い。  When bonding the thin chip 65a to the substrate 1 with the collet 42A, as shown in FIG. 8B, the reaction force of the bonding material 2 causes the thin chip 65a to receive upward stress. At this time, the presence of the vacuum suction hole 51 at the center causes a stress 3 that locally deforms the center of the thin chip 65a upward, so that the thin chip 65a is easily broken.
また、 コレット 4 2 Aで薄片チップ 6 5 aを基板 1にボンディングする際に、 図 8 Bに 示すように、 コレツト 4 2 Aにより所定の圧力を加えて薄片チップ 6 5 aを基板 1に押え 付けているため、 薄片チヅプ 6 5 aが割れないまでも、 真空吸引孔 5 1から圧力が上方に 逃げてしまうため、 薄片チップ 6 5 aの中央部分が上方に変形してボンディングされるこ とがある。 このような現象は、 後述する図 7 Bのコレツト 4 2 Bや、 図 7 Cのコレツト 4 2 Cにおいても同様である。  When bonding the thin chip 65a to the substrate 1 with the collet 42A, a predetermined pressure is applied by the collet 42A to press the thin chip 65a onto the substrate 1, as shown in FIG. 8B. Since the pressure is released from the vacuum suction hole 51 upward even if the flake tip 65a does not break, the central part of the flake tip 65a is deformed upward and bonded. There is. Such a phenomenon is the same in the later-described collect 42B in FIG. 7B and the collect 42C in FIG. 7C.
さらに、 ボンディング終了後、 コレット 4 2 Aから離脱し難い薄片チヅプ 6 5 aがある 場合、 図 8 Cに示すように、 真空吸引孔 5 1に圧縮気体 4を供給して、 コレット 4 2 Aか ら薄片チップ 6 5 aを離脱し易くするようにすると、 圧縮気体 4の噴出圧力が薄片チップ 6 5 aの中央部に集中するために、 薄片チップ 6 5 aの中央部が下方に変形するような応 力を受けるので、 薄片チヅプ 6 5 aが割れ易いという問題点がおった。  In addition, after bonding, if there is a thin chip 65a that is difficult to detach from the collet 42A, the compressed gas 4 is supplied to the vacuum suction hole 51 as shown in FIG. If the flake tip 65a is easily detached from the flake tip 65a, the compressed pressure of the compressed gas 4 is concentrated at the center of the flake tip 65a, so that the center of the flake tip 65a is deformed downward. There was a problem that the flake tip 65a was liable to crack due to the high stress.
図 7 Bに示すコレット 4 2 Bは、 図 7 Aに示すコレット 4 2 Aに比較して、 大きな凹部 5 4を有するため、 薄片チヅプ 6 5 aをゥエーハシート 6 2からビックアツプする際の剝 離開始時に、 図 9 Aに示すように、 凹部 5 4の存在および突上げピン 6 7の突上げによつ て、 薄片チップ 6 5 aの中央部が上方に変形するような大きな応力を受けるために、 薄片 チップ 6 5 aが割れ易い。 The collet 42B shown in Fig. 7B has a larger recess compared to the collet 42A shown in Fig. 7A. As shown in FIG. 9A, when the thin chip 65 a starts to be separated from the wafer sheet 62 due to the presence of the recesses 54, the presence of the recesses 54 and the push-up pins 67 push up. Therefore, since the central portion of the thin chip 65a receives a large stress that deforms upward, the thin chip 65a is easily broken.
また、 コレット 4 2 Bで薄片チヅプ 6 5 aを基板 1にボンディングする際に、 図 9 Bに 示すように、 接合材 2の反力によって薄片チヅプ 6 5 aが上方に向かう応力を受けるが、 このとき、 凹部 5 4の存在によって、 薄片チップ 6 5 aの中央部が局部的に上方に変形す るような大きな応力 3を受けるため、 薄片チップ 6 5 aが害 Uれ易い。  When bonding the flake chip 65a to the substrate 1 with the collet 42B, as shown in FIG. 9B, the flake chip 65a receives an upward stress due to the reaction force of the bonding material 2. At this time, the presence of the concave portion 54 receives a large stress 3 that locally deforms the central portion of the thin chip 65 a upward, so that the thin chip 65 a is easily damaged.
さらに、 ボンディング終了後に、 真空吸引孔 5 1に圧縮気体 4を供給すると、 図 9 Cに 示すように、 薄片チップ 6 5 aの中央部が下方に変形するような応力を受けるため、 薄片 チヅプ 6 5 aが割れ易いという問題点があつた。  Further, when the compressed gas 4 is supplied to the vacuum suction holes 51 after the bonding is completed, as shown in FIG. 9C, a stress such that the central portion of the thin chip 65 a is deformed downward is applied. There was a problem that 5a was easily broken.
図 7 Cに示すコレヅ ト 4 2 Cは、 通常、 厚い半導体チヅフ。用のものであるが、 仮に、 薄 片チップ 6 5 aに適用した場合、 図示は省略するが、 ゥエーハシート 6 2から薄片チヅプ 6 5 aをピックアツプする際の剥離開始時に、 図 9 Aと同様に、 凹部 5 4の存在および突 上げピン 6 7の突上げによって、 薄片チップ 6 5 aの中央部が上方に変形するような応力 を受けるために、 薄片チップ 6 5 aが割れ易い。  The collector 42 C shown in FIG. 7C is usually a thick semiconductor chip. If it is applied to the sliced chip 65a, it is not shown in the figure, but at the start of peeling when picking up the sliced chip 65a from the wafer sheet 62, similar to Fig. 9A. The presence of the concave portion 54 and the push-up pin 67 push up the central part of the thin chip 65a, so that the thin chip 65a is easily broken.
また、 薄片チップ 6 5 aを基板 1にボンディングする際^:、 図 9 Bと同様に、 接合材 2 の反力によって薄片チップ 6 5 aが上方に向かう応力 3を受けるが、 このとき、 中央部の 凹部 5 4の存在によって、 薄片チップ 6 5 aの中央部が上方に変形するような応力を受け るため、 薄片チヅプ 6 5 aが割れ易い。  When bonding the thin chip 65 a to the substrate 1 ^: as in FIG. 9B, the thin chip 65 a receives an upward stress 3 due to the reaction force of the bonding material 2. Because of the presence of the concave portion 54, the center of the thin chip 65a receives a stress that deforms upward, so that the thin chip 65a is easily broken.
さらに、 ボンディング終了後に、 薄片チヅプ 6 5 aを接合材 2に密着させるため真空吸 引孔 5 1に圧縮気体 4を供給すると、 図 9 Cと同様に、 薄片チップ 6 5 aの中央部が下方 に変形するような応力を受けるため、薄片チップ 6 5 aが害 Uれ易いという問題点があった。 さらに、 図 7 Cに示すコレッ ト 4 2 Cは、 上記の問題点の他に、 下面の周辺部に立下部 5 3を有し、 この立下部 5 3によって形成される凹部 5 4内の傾斜面 5 5に薄片チヅプ 6 5 aの肩部を当接させて吸着するので、 ピックアップ時に、 次のような特有の問題点を有 する。 すなわち、 図 1 O Aに示すように、 吸着しょうとする薄片チップ 6 5 aの両側に隣接す る 4個の薄片チップ 6 5 b , 6 5 cの間隔寸法: L 1が、 コレット 4 2 Cの幅寸法 Lよりも 小さいと、 薄片チヅプ 6 5 aと隣接する薄片チヅプ 6 5 b, 6 5 cとの隙間 gが小さ過ぎ て、 この隙間 gに立下部 5 3が入り込めないため、 立下部 5 3の下面で隣接する薄片チヅ プ 6 5 b , 6 5 cを破損したり、 吸着しょうとする薄片チップ 6 5 aを吸着することがで きなかったりする。 Further, after the bonding is completed, when the compressed gas 4 is supplied to the vacuum suction hole 51 to bring the flake chip 65a into close contact with the bonding material 2, as shown in FIG. 9C, the center of the flake chip 65a is lowered. However, there is a problem in that the thin chip 65 a is easily damaged by the stress that deforms the chip. Further, in addition to the above-described problems, the collet 42C shown in FIG. 7C has a lower portion 53 around the lower surface, and the inclination in the concave portion 54 formed by the lower portion 53. Since the suction is performed by bringing the shoulder of the thin chip 65 a into contact with the surface 55, there are the following specific problems during pickup. That is, as shown in Fig. 1OA, the distance between the four flake chips 65 b and 65 c adjacent to both sides of the flake chip 65 a to be adsorbed: L 1 is the collet 42 C If the width dimension L is smaller than the width dimension L, the gap g between the flake chip 65 a and the adjacent flake chips 65 b, 65 c is too small, and the rising portion 53 cannot enter the gap g. Adjacent flake chips 65 b and 65 c on the lower surface of 53 may be damaged, or flake chips 65 a to be adsorbed may not be adsorbed.
一方、 図 1 0 Bに示すように、 吸着しょうとする薄片チップ 6 5 aの両側に隣接する 4 個の薄片チップ 6 5 b , 6 5 cの間隔寸法 L 2を、 コレット 4 2 Cの幅寸法 Lよりも大き くすると、 吸着しょうとする薄片チヅプ 6 5 aと隣接する薄片チップ 6 5 b , 6 5 cとの 間に、 立下部 5 3が入り込めるだけの間隔 g 1が確保されて、 薄片チップ 6 5 aのピック アップは可能になるが、 このように大きな隙間 g 1を形成するためには、 図 6 Cに示すゥ ヱ一ハシート 6 2の伸張時に、 ゥェ一ハシート 6 2を大きく伸張させる必要があり、 薄片 チップ 6 5 aの数を少なくしなければならず、 薄片チップ 6 5 aの収率が低くなる。 ある いは、 大径のゥェ一ハリング 6 1およびゥエーノヽシート 6 2を必要とするため、 ゥヱ一ハ リング 6 1やゥェ一ハシート 6 2が高額化する。 しかも、 ピックアップ時に、 半導体チヅ プ集合体 6 0の水平移動距離が大きくなるため、 ダイボンダが大型、 かつ高価になるのみ ならず、 高速化ができないといった問題点もあった。 また、 二一ドルレスピックアップと の組合せでも、 中央部分にのみ吸引穴を持つコレツトではシートの変形によりチップ周辺 も変形する。 これはチップの変形回復力に対してシート ·チップ間の粘着力が比較的高い 時に発生する。 チップの変形回復力が 5 O m g以下であれば特に発生しやすく、 場合によ つては薄片チップが割れることがある。 この対策としては複数の真空穴を設けたコレツト が有効である。 更に、 コレヅ ト ·ステージそれそれの真空圧力を調整する機構を設けてチ ップ割れを防止することも行われている。 例え ί 上部 (コレット側) を最大真空圧として チヅプ保持力を高くし、 下部 (ステージ側) でチップが割れないように圧力コントロール を行う。  On the other hand, as shown in FIG. 10B, the distance L 2 between the four thin chips 65 b and 65 c adjacent to both sides of the thin chip 65 a to be adsorbed is set to the width of the collet 42 C. If it is larger than the dimension L, a gap g1 is secured between the flake chip 65a to be adsorbed and the adjacent flake chips 65b, 65c so that the standing portion 53 can enter. Although the thin chip 65 a can be picked up, in order to form such a large gap g 1, when the air sheet 62 shown in FIG. It is necessary to greatly expand, the number of flaked chips 65a must be reduced, and the yield of flaked chips 65a decreases. Alternatively, a large-diameter wafer ring 61 and an energy-saving sheet 62 are required, so that the cost of the wafer ring 61 and the wafer sheet 62 becomes high. In addition, since the horizontal movement distance of the semiconductor chip assembly 60 at the time of pickup is large, not only is the die bonder large and expensive, but also the speed cannot be increased. Also, even in combination with a $ 21 pick-up, the periphery of the chip is also deformed by the deformation of the sheet in a collet that has a suction hole only in the center. This occurs when the adhesive force between the sheet and the chip is relatively high with respect to the chip's deformation recovery force. If the chip has a deformation recovery force of 5 Omg or less, it is particularly likely to occur, and in some cases, the flaked chip may crack. As a countermeasure, a collet provided with multiple vacuum holes is effective. In addition, a mechanism for adjusting the vacuum pressure of the collect stage and each stage is provided to prevent chip cracking. For example, 上部 Set the maximum vacuum pressure at the upper part (collet side) to increase the chip holding force, and control the pressure at the lower part (stage side) so that the chip does not break.
そこで、 本発明は、 例えば、 薄片チップのビックアップおよび/またはボンディング時 に、 薄片チップが破損しないコレット、 このコレットを用いたダイボンダおよびチヅプの ビックアップ方法を提供することを目的とするものである。 Therefore, the present invention provides, for example, a collet that does not break the flake chip during the chip-up and / or bonding, a die bonder and a chip using the collet. The purpose is to provide a big-up method.
本発明のコレットは、 上記の課題を解決するために、 チップをピックアップおよび/ま たはボンディングするコレツトにおいて、 コレツトの下面を平坦面に形成するとともに、 この下面の平坦面に複数の真空吸引部を設けたことを特徴としている (請求項 1 ) 。 上記の「チップをピックアツプぉよび/また ボンディングするコレット」なる用語は、 チップをピックアップしてそのままボンディンク"する、 所謂、 ダイレクトボンディング方 式のダイボンダにおけるコレヅトのみならず、 チヅプをビックアップして一旦トレ一や位 置修正部などに移載し、 このトレ一や位置修正部などからチヅプをビックアップしてボン ディングする、 所謂、 間接ボンディング方式のタ"ィボンダにおけるビックァヅプ用のコレ ヅト、 またはトレーや位置修正部などからチヅフ。をピックァヅプしてボンディングするボ ンデイング用のコレツトを含むものである。  In order to solve the above-mentioned problems, a collet of the present invention includes a collet for picking up and / or bonding a chip, wherein a lower surface of the collet is formed on a flat surface, and a plurality of vacuum suction portions are formed on the flat surface of the lower surface. (Claim 1). The term “collet for picking up and / or bonding chips” above refers to not only the collect in a so-called direct bonding type die bonder that picks up the chip and bonds it as it is, but also Transfer to the position and position correction unit, and then pick up and bond the chip from the tray and position correction unit. This is a so-called indirect bonding type bonder for a big bond or tray. And from the position correction section. It includes a collection for bonding for picking up and bonding.
また、 本発明のコレットは、 中心部に真空吸引孔を有するコレットホルダに装着されて おり、 上下に貫通する複数の真空吸引孔を備え、 前記コレットホルダの真空吸引孔とコレ ットの複数の真空吸引孔とを連通させる密閉された空間部を設けたことを特徴としている (請求項 2 ) 。  Further, the collet of the present invention is mounted on a collet holder having a vacuum suction hole at a central portion, and includes a plurality of vacuum suction holes penetrating vertically, and a plurality of the vacuum suction holes of the collet holder and the plurality of collets. A sealed space for communicating with the vacuum suction hole is provided (claim 2).
また、 本発明のコレットは、 中心部に真空吸引孔を有するコレットホルダに装着されて おり、 このコレットが単一または複数の真空吸弓ほしを有するとともに、 下面にその真空吸 引孔に連通する溝部とを備え、 前記コレツトホノレダの真空吸引孔とコレツトの単一または 複数の真空吸引孔とを連通させる密閉された空間部を設けたことを特徴としている (請求 項 3 ) 。  Further, the collet of the present invention is mounted on a collet holder having a vacuum suction hole in the center, and this collet has one or more vacuum suction holes and communicates with the vacuum suction hole on the lower surface. A groove is provided, and a closed space is provided for communicating a vacuum suction hole of the collect hood lid with a single or a plurality of vacuum suction holes of the collect (Claim 3).
また、 本発明のダイボンダは、 上記のいずれ力に記載のコレットを備えたことを特徴と している (請求項 4 ) 。  Further, the die bonder of the present invention is provided with the collet described in any one of the above forces (Claim 4).
さらに、 本発明のチップのビックアップ方法 ¾:、 上記のダイボンダを用いて、 裏面がゥ ェ一ハシートに接合されたチップをコレヅトで真空吸着した後、 チヅプの裏面をゥヱ一ハ シートの下方から突上げピンで相対的に突上げるか、 ゥエーハシートを下方からの真空吸 引力によって下方に変形させることを特徴としている (請求項 5 ) 。  Further, the chip big-up method of the present invention: using the die bonder described above, the chip whose back surface is joined to the wafer sheet is vacuum-sucked with a collet, and then the back surface of the chip is placed below the seat sheet. The piston is relatively pushed up by a push-up pin from above, or the eave sheet is deformed downward by a vacuum suction force from below (claim 5).
本発明の請求項 1に記載のコレツトによれば、 下面の複数の真空吸引部によって薄片チ ヅプの周辺部を真空吸着することができるため、 従来のように薄片チヅプの中央部のみに 真空吸引力が作用して周辺部がフ リーになることがなくなり、 例えば、 薄片チップをゥェ —ハシートから剥離してピヅクァヅプする際に、 薄片チップの周辺部のゥェ一ハシートが 下方から作用する真空吸引力によって下方に変形されても、 薄片チップの周辺部がコレツ トで真空吸着されているので、 簿片チップの周辺部がゥェーハシートの変形に伴って下方 に変形することがなく、 ゥエーハシートのみを下方に変形させることが可能になり、 薄片 チップのゥエーハシ一卜からの剥離開始がスムーズに行われ、 薄片チヅプのピックァヅプ 時の割れを防止することができる。 According to the collet according to claim 1 of the present invention, a plurality of vacuum suction portions on the lower surface are used to form a lamella. Since the peripheral portion of the chip can be vacuum-sucked, the vacuum suction force acts only on the central portion of the flake chip as in the related art, so that the peripheral portion does not become free. —When peeling off the sheet and picking up, even if the wafer sheet around the thin chip is deformed downward by the vacuum suction force acting from below, the peripheral part of the thin chip is vacuum-adsorbed by the collect. As a result, the periphery of the book chip does not deform downward due to the deformation of the wafer sheet, and only the wafer sheet can be deformed downward, so that the thin chip can be smoothly separated from the wafer chip. It is possible to prevent cracking at the time of picking up the flake chips.
また、例えば、薄片チップを基板にボンディングする際に、コレツトの平坦面によって、 薄片チップを均等に押圧することができるので、 従来のコレツト中央部に設けた真空吸引 孔の存在および接合材の反力によって、 薄片チップの中央部が上方に変形するような応力 を受けることがなくなり、 薄片チップのボンディング時の割れを防止することができる。 さらに、 薄片チップのボンディング終了後、 真空吸引部に圧縮気体を供給して、 薄片チ ップがコレツトから離れ易くする場合、 複数の真空吸引部から噴出される圧縮気体が薄片 チップの広い面に分散されることによって、 従来の中央部に真空吸引孔を有するコレツト のように、 薄片チップの中央部に局部的に圧縮気体の噴出圧力が集中して、 薄片チップの 中央部が下方に変形しょうとする応力がなくなり、 薄片チップのコレツトから離脱時の割 れを防止することができる。  In addition, for example, when bonding a thin chip to a substrate, the flat surface of the collet can evenly press the thin chip, so that there is a vacuum suction hole provided in the center of the conventional collet and a counterpart of the bonding material. The force prevents the central portion of the thin chip from being stressed such that it deforms upward, so that cracking of the thin chip at the time of bonding can be prevented. Furthermore, when the compressed gas is supplied to the vacuum suction part after the bonding of the flake tip to make it easy for the flake chip to separate from the collet, the compressed gas ejected from the plurality of vacuum suction parts is applied to the wide surface of the flake chip. By being dispersed, the compressed pressure of the compressed gas is concentrated locally at the center of the flake tip, as in a conventional collet with a vacuum suction hole at the center, causing the center of the flake tip to deform downward. The stress at the time of removing the thin chip from the collet can be prevented.
また、 本発明の請求項 2に記載のコレットによれば、 コレットホルダの中心部の真空吸 引孔に作用する真空吸引力は、 コレツトホルダとコレツトとの間の密閉された空間部を介 して、 コレットの複数の真空吸引孔に均等に分散させて、 薄片チップの周辺部を真空吸着 することができ、 また、 平坦面で接合材の反力を分散して受けることができ、 さらに、 圧 縮気体の供給時には、 圧縮気体を分散して薄片チップに供給できるので、 薄片チップのピ ヅクアップ時、 ボンディング時および薄片チップの離脱時のいずれにおいても、 薄片チヅ プが割れることを防止できる。 しかも、 コレットホルダは、 従来と同様に、 中心部のみに 真空吸引孔を有するものが共用でき、 単に、 コレットに複数の真空吸引孔を有するものを 採用すればよいので、 複数の真空吸引孔を蟻溝などによって形成する場合に比較して、 格 段に構成が簡単になり、 コレットを安価に製作することができる。 なお、 コレットの複数 の真空吸引孔は、 コレットの錶込み成形時に同時に形成することができるので、 真空吸引 孔の増加による工数ァヅプゃコストアップはない。 According to the collet described in claim 2 of the present invention, the vacuum suction force acting on the vacuum suction hole at the center of the collet holder is transmitted through the closed space between the collet holder and the collet. It can be evenly distributed in the plurality of vacuum suction holes of the collet, and the peripheral part of the flake tip can be vacuum-sucked. Also, the reaction force of the bonding material can be dispersed and received on a flat surface. When the compressed gas can be supplied, the compressed gas can be dispersed and supplied to the flake chip, so that the flake chip can be prevented from being broken at any time during the pickup of the flake chip, the bonding, and the detachment of the flake chip. Moreover, as in the conventional case, a collet holder having a vacuum suction hole only in the center can be used in common, and a collet holder having a plurality of vacuum suction holes can be used simply. Compared to the case where it is formed by dovetails, The configuration is simple and the collet can be manufactured at low cost. Since a plurality of vacuum suction holes of the collet can be formed at the same time when the collet is formed by molding, there is no increase in man-hour and cost due to an increase in the number of vacuum suction holes.
また、 コレットの真空吸引孔の孔径ゃ密度を、 中央部と周辺部とで異ならせることによ つて、 薄片チップのボンディング時に、 薄片チップの中央部から周辺部へと圧力が加わる ようにすることができ、 薄片チップの下部の雰囲気ガスを押し出しながら基板にボンディ ングすることが可倉 になり、 雰囲気ガスを巻き込むことなく薄片チップをボンディングす ることができる。 これによりチップと母材の間に巻き込むガスを確実に除去し、 所定の接 着強度ならびに製品品質を得ることができる。  In addition, by making the hole diameter and density of the vacuum suction holes of the collet different between the central portion and the peripheral portion, pressure is applied from the central portion to the peripheral portion of the thin chip when bonding the thin chip. This makes it possible to bond the substrate to the substrate while extruding the atmosphere gas below the flake chip, and to bond the flake chip without involving the atmosphere gas. As a result, gas trapped between the chip and the base material can be reliably removed, and a predetermined bonding strength and product quality can be obtained.
また、 本発明の請求項 3に記載のコレットによれば、 コレットホルダの中心部の真空吸 引孔に作用する真空吸引力は、 コレットの単一または複数の真空吸引孔を介して、 溝部に 均等に分散されるので、ピックァップ時に薄片チップの周辺部を真空吸着することができ、 ボンディング時に接合材の反力を平坦面で分散して受けることができ、 薄片チップの離脱 時に圧縮気体の噴出圧力を薄片チップのより広い面に分散することができるので、 ピック アップ時、 ボンディング時および離脱時のいずれにおいても、 薄片チップを局部的に変形 させるような応力^^作用しないため、 薄片チップの割れを防止できる。 しかも、 コレット ホルダは、 従来と同様に、 中心部のみに真空吸引孔を有するものが共用でき、 単に、 コレ ットの下面に真空吸引孔に連通する溝部を有するものを採用すればよいので、 複数の真空 吸引孔を蟻溝などによって形成する場合に比較して、 格段に構成が簡単になり、 コレット を安価に製作することができる。 なお、 コレットの真空吸引孔および溝部は、 コレットの 錶込み成形時に同時に形成することができるので、 溝部を設けることによる工数ァップゃ コストアップは生じない。  According to the collet according to the third aspect of the present invention, the vacuum suction force acting on the vacuum suction hole at the center of the collet holder is applied to the groove through one or more vacuum suction holes of the collet. Since it is evenly distributed, the periphery of the thin chip can be vacuum-sucked during pick-up, and the reaction force of the bonding material can be dispersed and received on the flat surface during bonding, and compressed gas is ejected when the thin chip is detached Since the pressure can be spread over a wider surface of the flaked chip, no stress that locally deforms the flaked chip at the time of pick-up, bonding, or detachment is applied. Cracks can be prevented. In addition, as in the conventional case, a collet holder having a vacuum suction hole only at the center can be used in common, and a collet holder having a groove communicating with the vacuum suction hole on the lower surface of the collet simply needs to be adopted. Compared to the case where a plurality of vacuum suction holes are formed by dovetails or the like, the configuration is much simpler, and the collet can be manufactured at low cost. Since the vacuum suction hole and the groove of the collet can be formed at the same time when the collet is formed by injection molding, the provision of the groove does not increase the man-hour and cost.
また、 本発明の請求項 4に記載のダイボンダによれば、 薄片チップをゥエーハシートか ら剥離するピックァップ時に、 ゥェ一ハシートに貼り付けられた薄片チップを下方から突 上げピンで突上げたり、 ゥエーハシ一トを真空吸引して下方に変形させたりすることによ つて、薄片チップとゥェ一ハシートとの接着面積を減少させて接着力を低減させる場合に、 薄片チップの上面周辺部をコレットの複数の真空吸引孔または溝部で吸着でき、 かつ、 薄 片チップを平坦面で受けるので、 薄片チップの中央部が上方に変形したり、 薄片チップの 周辺部がゥェ一ハシートの変形に伴って下方に変形したりすることがなく、 薄片チップの 周辺部のゥヱーハシートのみが下方に変形して、 薄片チップとゥエーハシートとの接着力 を低減させて、 スムーズに剥離開始して、 薄片チップを割ることなく確実にピックアップ することができる。 Further, according to the die bonder according to the fourth aspect of the present invention, at the time of pick-up in which the thin chip is peeled off from the wafer sheet, the thin chip attached to the wafer sheet is pushed up from below by a push-up pin, or When the adhesive force is reduced by reducing the bonding area between the thin chip and the wafer sheet by, for example, deforming the chip downward by vacuum suction, the periphery of the upper surface of the thin chip is Suction can be achieved with multiple vacuum suction holes or grooves and thin Since the chip is received on a flat surface, the center of the chip does not deform upward, and the periphery of the chip does not deform downward due to the deformation of the wafer sheet. Only the wafer sheet of the part is deformed downward, the adhesive force between the thin chip and the wafer sheet is reduced, the peeling starts smoothly, and the thin chip can be reliably picked up without breaking.
また、 薄片チップを基板にボンディングする際に、 接合材の反カをコレッ トの平坦面に 分散して受けるため、 従来のコレツト中央部に設けた真空吸引孔の存在および接合材によ る反力によって、 薄片チップの中央部が上方に変形する現象がなくなり、 薄片チップの割 れをなくしてボンディングすることができる。  In addition, when bonding the thin chip to the substrate, the reaction of the bonding material is dispersed and received on the flat surface of the collet. By the force, the phenomenon that the central portion of the thin chip is not deformed upward is eliminated, and the bonding can be performed without breaking the thin chip.
さらに、 薄片チップのボンディング後、 真空吸引孔に圧縮気体を供給して、 薄片チップ をコレツトから離れ易くする場合には、 コレツトの複数の真空吸引孔または溝部から圧縮 気体が薄片チップの広い面に分散して噴出されることによって、 従来の中央部に真空吸引 孔を有するコレットのような、 薄片チップの中央部に圧縮気体の噴出圧力が集中して、 薄 片チップの中央部が下方に変形することがなくなり、 薄片チップの割れを防止して、 薄片 チップをコレヅトから離脱させることができる。  In addition, after bonding the flake tip, if the compressed gas is supplied to the vacuum suction hole to make the flake tip easily separate from the collet, the compressed gas is supplied from the plurality of vacuum suction holes or grooves of the collet to the wide surface of the flake tip. By being dispersed and ejected, the compressed gas ejection pressure is concentrated at the center of the flake tip, such as a conventional collet with a vacuum suction hole at the center, and the center of the flake tip is deformed downward The flake tip is prevented from cracking, and the flake tip can be separated from the collet.
さらに、 本発明の請求項 5に記載のチップのピックアップ方法によれば、 コレットでチ ヅプの周辺部を真空吸着してから、 チヅプの裏面を突上げピンで相対的に突上げたり、 チ ップを接合しているゥェ一ハシートを真空吸引して下方に変形させたりするので、 従来の チヅプのピックァップ方法のように、 チヅプの周辺部がフリ一の状態でチヅプの中央部が 相対的に突上 (ゴられたり、 チップの周辺部のゥエーハシ一トが下方に変形したりすること がなくなり、 チヅプにストレスを与えることなく、 チヅプのピックァヅプ時の割れを効果 的に防止することが可能になる。 図面の簡単な説明  Further, according to the chip pick-up method according to the fifth aspect of the present invention, the periphery of the chip is vacuum-adsorbed by the collet, and then the back surface of the chip is relatively pushed up by the push-up pin, or the chip is pushed up. Since the wafer sheet joining the chips is deformed downward by vacuum suction, the center of the chips is relatively free while the periphery of the chips is free, as in the conventional method of picking up chips. This prevents the chip from being lifted up and the chip around the chip from deforming downward, effectively preventing chip breakage during chip pickup without stressing the chip. Brief description of the drawings
図 1 Aは、 本発明の第 1実施例に係るボンディングヅ一ルの縦断側面図、  FIG.1A is a longitudinal sectional side view of a bonding tool according to a first embodiment of the present invention,
図 1 Bは、 図 1 Aのボンディングツールの下面図、  Figure 1B is a bottom view of the bonding tool of Figure 1A,
図 1 Cは、 図 1 Aのボンディングヅ一ルにおけるコレツ卜の正面図、 図 2 Aは、 図 1のコレツトを備えたダイボンダにおける動作説明用の薄片チップのピ ックアツプ時の状態の要部拡大縦断面図、 FIG. 1C is a front view of the collect at the bonding tool of FIG. 1A, FIG. 2A is an enlarged vertical sectional view of a principal part of a die bonder provided with the collect of FIG. 1 in a state of pick-up of a thin chip for explaining operation,
図 2 Bは、 薄片チップのボンディング時の状態の要部拡大縦断面図、  FIG. 2B is an enlarged vertical cross-sectional view of a main part in a state of bonding a thin chip,
図 2 Cは、 図 1のコレツトを備えたダイボンダにおける動作説明用の薄片チップのコ レットからの離脱時の状態の要部拡大縦断面図、  FIG. 2C is an enlarged vertical sectional view of a main part of the die bonder provided with the collet shown in FIG. 1 in a state where the thin chip is detached from the collet for explaining the operation.
図 3 Aは、 本発明の第 2実施例に係るボンディングヅ一ルの縦断側面図、  FIG. 3A is a longitudinal sectional side view of a bonding tool according to a second embodiment of the present invention,
図 3 Bは、 図 3 Aのボンディングヅールの下面図、  Figure 3B is a bottom view of the bonding tool of Figure 3A,
図 3 Cは、 図 3 Aのボンディングヅールにおけるコレツトの正面図、  FIG. 3C is a front view of the collect in the bonding tool of FIG. 3A,
図 4は、 ダイボンダにおけるピックァップぉよびボンディング動作説明図、 図 5 Aは、 従来のダイボンダにおけるボンディングヅ一ルの縦断背面図、  FIG. 4 is an explanatory view of a pick-up and bonding operation in a die bonder, and FIG. 5A is a longitudinal rear view of a bonding tool in a conventional die bonder.
図 5 Bは、 図 5 Aのボンディングヅールの部分 ¾大縦断正面図、  FIG. 5B is a front view of a large vertical section of a portion of the bonding tool shown in FIG. 5A.
図 6 Aは、 図 4に示す半導体チヅプ集合体の製造工程のゥエーハシ一トに半導体ゥェ 一ノヽを貼り付けた状態の説明図、  FIG. 6A is an explanatory view showing a state in which a semiconductor chip is attached to an ash in a manufacturing process of the semiconductor chip assembly shown in FIG. 4;
図 6 Bは、 図 4に示す半導体チヅプ集合体の製造工程のダイサによつて半導体ゥェ一 ハを個々の半導体チップに分割した状態の説明図、  FIG. 6B is an explanatory view showing a state where the semiconductor wafer is divided into individual semiconductor chips by a dicer in a manufacturing process of the semiconductor chip assembly shown in FIG. 4,
図 6 Cは、 図 4に示す半導体チップ集合体の製造工程のゥヱ一ハシートを引き伸ばし た状態の説明図、  FIG. 6C is an explanatory view showing a state where a sheet is stretched in a manufacturing process of the semiconductor chip assembly shown in FIG. 4,
図 7 Aは、 従来のダイボンダにおけるコレッ トの縦断面図、  Fig. 7A is a longitudinal sectional view of a collet in a conventional die bonder.
図 7 Bは、 従来のダイボンダにおける他のコレツ卜の縦断面図、  Fig. 7B is a longitudinal sectional view of another collet in the conventional die bonder.
図 7 Cは、 従来のダイボンダにおけるさらに他のコレットの縦断面図、  FIG. 7C is a longitudinal sectional view of still another collet in the conventional die bonder,
図 8 Aは、 図 7 Aのコレヅ トによる動作説明用の薄片チヅプのビックァヅプ時の状態 の要部拡大縦断面図、  FIG. 8A is an enlarged vertical sectional view of a main part of a state of a thin chip for explaining operation by the collector of FIG. 7A in a big cup state,
図 8 Bは、 図 7 Aのコレットによる動作説明用の薄片チップのボンディング時の状態 の要部拡大縦断面図、  FIG. 8B is an enlarged longitudinal sectional view of a main part in a state of bonding a thin chip for explanation of operation using the collet of FIG. 7A,
図 8 Cは、 図 7 Aのコレツトによる動作説明用の薄片チップの離脱時の状態の要部拡 大縦断面図、  FIG. 8C is an enlarged longitudinal sectional view of an essential part in a state at the time of detachment of the thin chip for explanation of the operation by the collect of FIG.
図 9 Aは、 図 7 Bのコレットによる動作説明用の薄片チップのピックァヅプ時の状態 の要部拡大縦断面図、 FIG. 9A shows a state in which a thin chip for pick-up operation by the collet of FIG. 7B is picked up. Main part enlarged longitudinal sectional view of
図 9 Bは、 図 7 Bのコレットによる動作説明用の薄片チップの離脱時の状態の要部拡 大縦断面図、  FIG. 9B is an enlarged longitudinal sectional view of an essential part in a state in which the thin chip is detached for explanation of operation by the collet of FIG. 7B,
図 9 Cは、 図 7 Bのコレツトによる動作説明用の薄片チップの接合材に対する密着時 の要部拡大縦断面図、 図 1 O Aは、 図 7 Cのコレツトによる問題点の説明用の要部拡 大縦断面図で、 チップ間隔が小さい場合における第 1の問題点の説明図、  Fig. 9C is an enlarged vertical cross-sectional view of the main part when the thin chip is adhered to the bonding material for explaining the operation by the collet of Fig. 7B. Fig. 1OA is the main part for explaining the problem with the collet of Fig. 7C. Explanatory drawing of the first problem when the chip spacing is small in the enlarged longitudinal sectional view,
図 1 0 Bは、 図 7 Cのコレットによる問題点の説明用の要部拡大縦断面図で、 チップ 間隔を大きくした場合における第 2の問題点の説明図である。 発明を実施するための最良の形態  FIG. 10B is an enlarged vertical cross-sectional view of a main part for describing a problem caused by the collet shown in FIG. 7C, and is an explanatory diagram of a second problem when the chip interval is increased. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明のコレットを備えたダイボンダの実施形態について、 図面を参照して説明 する。  Hereinafter, embodiments of a die bonder including a collet of the present invention will be described with reference to the drawings.
(実施例 1 )  (Example 1)
本発明の第 1の実施例に係るヅール 1 0は、 図 1 A〜図 1 Cに示すように、 コレットホ ルダ 2 0と、 このコレツトホルダ 2 0に装着されるコレツト 3 0とを備えている。 コレヅ トホルダ 2 0は、 例えば、 ステンレス製で、 中心部に真空系に接続される真空吸引孔 2 1 を有し、このコレヅトホルダ 2 0を支持部材に取り付けるための 2箇所の取付ねじ孔 2 2 , The tool 10 according to the first embodiment of the present invention includes a collet holder 20 and a collet 30 mounted on the collet holder 20, as shown in FIGS. 1A to 1C. The collect holder 20 is made of, for example, stainless steel and has a vacuum suction hole 21 connected to a vacuum system at the center, and two mounting screw holes 22 for attaching the collect holder 20 to a support member.
2 3と、 下端部の周辺部に立下部 2 4と、 この立下部 2 4によって囲まれた凹部 2 5とを 有する。 23, a lower portion 24 around the lower end portion, and a concave portion 25 surrounded by the lower portion 24.
コレヅ ト 3 0は、 例えば、 用途に応じて、 ステンレス, 二トリルゴム, フッ素ゴム, 耐 熱性樹脂製その他でなり、 下面の平坦面 3 1と、 上下に貫通する複数 (図示例は、 矩形状 の薄片チヅプ用のもので縦 3個 X横 5個の 1 5個) の小径の真空吸引孔 3 2と、 前記コレ ヅトホルダ 2 0の凹部 2 5に嵌り込む凸部 3 3と、 コレツトホルダ 2 0の立下部 2 4の下 面^:当接するフランジ部 3 4とを有する。  The collet 30 is made of, for example, stainless steel, nitrile rubber, fluoro rubber, heat-resistant resin, or the like depending on the application, and has a flat surface 31 on the lower surface and a plurality of vertically penetrating (in the illustrated example, a rectangular A small-diameter vacuum suction hole 32 of 3 pieces in length and 5 pieces in width and 5 pieces for a thin chip, a convex part 3 3 fitted into the concave part 25 of the collet holder 20, and a collet holder 20. Lower surface 24 of lower portion 24: has flange portion 34 to be in contact with.
前記コレツトホルダ 2 0の凹部 2 5の深さ寸法 H 1は、 コレット 3 0の凸部 3 3の高さ 寸法 H 2よりも大きく設定されており、 凹部 2 5の天井面と凸部 3 3の上面との間に、 H 1—H 2の空間部 2 6が形成されている。 このため、 コレヅ トホルダ 2 0の真空吸引孔 2 1と、 コレヅ ト 3 0の真空吸引孔 3 2とは、 空間部 2 6を介して連通している。 それによ り、 コレットホルダ 2 0の真空吸引 2 1に真空吸引力を作用させると、 空間部 2 6を介 してコレット 3 0の複数の真空吸引孔 3 2に真空吸引力が作用する。 また、 コレットホル ダ 2 0の真空吸引孔 2 1に圧縮気体を供給すると、 前記空間部 2 6を介して、 コレツト 3 0の複数の真空吸引孔 3 2から圧縮気体が分散して噴出される。 The depth dimension H1 of the concave portion 25 of the collet holder 20 is set larger than the height dimension H2 of the convex portion 33 of the collet 30. A space 26 between H 1 and H 2 is formed between the upper surface and the upper surface. Therefore, the vacuum suction holes 2 1 and the vacuum suction hole 32 of the collet 30 communicate with each other through a space 26. Thereby, when a vacuum suction force is applied to the vacuum suction 21 of the collet holder 20, the vacuum suction force is applied to the plurality of vacuum suction holes 32 of the collet 30 via the space 26. When a compressed gas is supplied to the vacuum suction holes 21 of the collet holder 20, the compressed gas is dispersed and ejected from the plurality of vacuum suction holes 32 of the collet 30 via the space 26.
次に、 上記のヅ一ル 1 0による薄片チップのピックァップ動作、 ボンディング動作およ びコレヅトからの離脱動作について、 図面を参照して説明する。  Next, the pick-up operation, the bonding operation, and the detachment operation from the collet of the thin chip by the above rule 10 will be described with reference to the drawings.
まず、 ピックアップ位置 P 1で、 薄片チヅプをピックアップする場合について説明する と、 図 2 Aに示すように、 ヅ一ル 1 0のコレット 3 0を、 ゥエーハシート 6 2に接着され た薄片チップ 6 5 aの上面に当接させて、 コレヅトホルダ 2 0の真空吸引孔 2 1に真空吸 引力を作用させる。 すると、 この真空吸引力は、 空間部 2 6を介して、 コレット 3 0の複 数の真空吸引孔 3 2に分散されて、 薄片チップ 6 5 aの周辺部を真空吸着することができ る。  First, the case of picking up a flake chip at the pick-up position P 1 will be described. As shown in FIG. 2A, the collet 30 of the roll 10 is attached to the flake tip 65 a bonded to the wafer sheet 62. And a vacuum suction force is applied to the vacuum suction holes 21 of the collet holder 20. Then, the vacuum suction force is dispersed to the plurality of vacuum suction holes 32 of the collet 30 via the space 26, and the peripheral portion of the thin chip 65a can be suctioned by vacuum.
この状態で、 ゥェ一ハシート 6 2の下方から突上げピン 6 7で薄片チヅプ 6 5 aの中央 部を突上げたり、 ゥェーハシート 6 2を下方からの真空吸引力によって下方に変形させた りすると、 薄片チヅプ 6 5 aが平坦面 3 1に当接しており、 かつ周辺部がコレット 3 0の 真空吸引孔 3 2によって吸着されているので、 薄片チップ 6 5 aの中央部が突上げピン 6 7によって上方に湾曲することがないとともに、 薄片チヅプ 6 5 aの周辺部がゥエーハシ —ト 6 2の変形に伴って下方に変形することがなく、 薄片チップ 6 5 aの周辺部がゥェ一 ハシート 6 2からスムーズに剥離を開始して、 薄片チップ 6 5 aとゥェ一ハシート 6 2と の接着面積が減少して接着力が減少する。  In this state, if the push-up pin 67 pushes up the center of the flake chip 65a from below the wafer sheet 62, or the wafer sheet 62 is deformed downward by the vacuum suction force from below. Since the flake tip 65 a is in contact with the flat surface 31 and the peripheral portion is sucked by the vacuum suction hole 32 of the collet 30, the center of the flake tip 65 a is pushed up by the push-up pin 6. 7 does not bend upward, and the periphery of the flake tip 65 a does not deform downward with the deformation of the evacuation sheet 62, and the periphery of the flake tip 65 a does not deform. Peeling starts smoothly from the sheet 6 2, and the adhesive area between the thin chip 65 a and the wafer sheet 62 decreases, thereby reducing the adhesive strength.
そのまま、 ヅ一ル 1 0を上昇させると、 前述のように、 周辺部がゥェ一ハシート 6 2か ら剥離している薄片チップ 6 5 aは、 この剥離している周辺部から中心部に向かってゥェ —ハシート 6 2から次第に剥離されていき、 完全に剥離される。 このとき、 薄片チップ 6 5 aの中央部がコレヅト 3 0の真空吸引孔 3 2によって吸着されているので、 薄片チヅプ 6 5 aの中央部が下方に変形することがなく、 スムーズにゥエーハシート 6 2から剥離さ れ、 薄片チヅプ 6 5 aが割れることなくビックァヅプされる。 次に、 このヅ一ル 1 0に吸着された薄片チヅプ 6 5 aを基板 1にボンディングする場合 について説明すると、 図 2 Bに示すように、 基板 1に供給されている接合材 2によって、 薄片チップ 6 5 aは上方に向かう反力を受けるが、 コレット 3 0の下面に平坦面 3 1を有 するので、接合材 2による反力は、薄片チップ 6 5 aの裏面全体に均一に分散される結果、 従来のような薄片チップ 6 5 aの中央部のみに局部的な反力を受けることがなくなり、 薄 片チップ 6 5 aの割れがなくなる。 When the level 10 is raised as it is, as described above, the thin chip 65 a whose peripheral portion is peeled off from the wafer sheet 62 is moved from the peeled peripheral portion to the central portion as described above. It is gradually peeled off from the hasheet 62 and completely peeled off. At this time, since the central portion of the flake tip 65 a is sucked by the vacuum suction hole 32 of the collet 30, the central portion of the flake tip 65 a does not deform downward, and the wafer sheet 6 2 smoothly. The flake tip 65a is broken up without cracking. Next, a description will be given of a case where the flake chip 65a adsorbed on the plate 10 is bonded to the substrate 1. As shown in FIG. 2B, the lamella is supplied by the bonding material 2 supplied to the substrate 1. The chip 65a receives a reaction force directed upward, but since the collet 30 has a flat surface 31 on the lower surface, the reaction force due to the bonding material 2 is uniformly distributed over the entire back surface of the thin chip 65a. As a result, the local reaction force is not applied only to the central portion of the thin chip 65a as in the related art, and the crack of the thin chip 65a is eliminated.
また、 ボンディング終了後、 ツール 1 0から薄片チップ 6 5 aを離脱させるために、 真 空吸引孔 2 1に圧縮気体を供給した場合、 図 2 Cに示すように、 圧縮気体 4はコレツト 3 0の複数の真空吸引孔 3 2から薄片チヅプ 6 5 aに分散して噴出されるために、 従来の中 央部に単一の真空吸引孔を有するコレツトのように、 薄片チップ 6 5 aの中央部のみに圧 縮気体が集中して噴出されないので、 薄片チヅプ 6 5 aの中央部が下方に変形することが なくなり、 薄片チップ 6 5 aの割れを防止して、 薄片チップ 6 5 aを離脱させることがで きる。  After the bonding is completed, if compressed gas is supplied to the vacuum suction hole 21 to detach the thin chip 65a from the tool 10, the compressed gas 4 is collected as shown in FIG. 2C. To be scattered and ejected from the plurality of vacuum suction holes 32 into the flake chip 65a, as in a conventional collet having a single vacuum suction hole in the center, the center of the flake tip 65a Since the compressed gas does not concentrate and blow out only at the portion, the center of the flake tip 65a does not deform downward, preventing the flake tip 65a from cracking and detaching the flake tip 65a. It can be done.
(実施例 2 )  (Example 2)
次に、 本発明の第 2の実施例に係るコレヅ ト 1 O Aを、 図 3 A , 図 3 B, 図 3 Cを参照 して説明する。 コレヅ ト 1 O Aは、 コレットホルダ 2 0と、 コレヅ ト 3 O Aとを備えてい る。 コレットホルダ 2 0は、 図 1 Aに示すコレットホルダ 2 0と同様であるため、 同一部 分には同一参照符号を付してその説明を省略する。  Next, a collect 1OA according to a second embodiment of the present invention will be described with reference to FIGS. 3A, 3B, and 3C. The collet 1OA includes a collet holder 20 and a collet 3OA. Since the collet holder 20 is the same as the collet holder 20 shown in FIG. 1A, the same parts are denoted by the same reference numerals and the description thereof will be omitted.
コレット 3 O Aは、 下面の平坦面 3 1と、 複数の小径の真空吸引孔 3 2と、 コレットホ ルダ 2 0の凹部 2 5に嵌り込む凸部 3 3と、 コレヅトホルダ 2 0の立下部 2 4の下面に当 接するフランジ部 3 4とを有する点は、 図 1 Aのコレット 3 0と同様であるが、 さらに、 複数の真空吸引孔 3 2の下端と一方向に連通する溝部 3 5と、 複数の真空吸引孔 3 2の下 端と他方向に連通する溝部 3 6とを有する点が異なっている。 コレット 3 0 Aを貫通する 真空吸引孔 2 4および溝部 3 5, 3 6は、 製作型に予め真空吸引孔 2 4および溝部 3 5 , 3 6の形状に対応する凸部を形成しておけば、 コレット 3 O Aの錶込み成形時に、 同時に 真空吸引孔 2 4および溝部 3 5 , 3 6を形成することができるので、 複数の真空吸引孔 3 2や溝部 3 5 , 3 6を形成することによる製造工数アップやコストアップはない。 次に、 この溝部 3 5, 3 6を有するコレット 3 O Aを備えたヅ一ル 1 O Aの動作につい て説明する。 The collet 3 OA has a flat surface 31 on the lower surface, a plurality of small-diameter vacuum suction holes 32, a convex portion 33 fitted into the concave portion 25 of the collet holder 20, and a rising portion 24 of the collet holder 20. The point having a flange portion 34 in contact with the lower surface is the same as that of the collet 30 in FIG. 1A, but further includes a groove portion 35 communicating in one direction with the lower ends of the plurality of vacuum suction holes 32. A different point is that it has a lower end of the vacuum suction hole 32 and a groove 36 communicating with the other direction. The vacuum suction holes 24 and the grooves 35, 36 penetrating the collet 30A can be formed in advance in the production mold by forming protrusions corresponding to the shapes of the vacuum suction holes 24 and the grooves 35, 36. Since the vacuum suction holes 24 and the grooves 35, 36 can be formed at the same time during the molding of the collet 3OA, by forming a plurality of vacuum suction holes 32, grooves 35, 36 There is no increase in manufacturing man-hours or cost. Next, the operation of the reel 1 OA including the collet 3 OA having the grooves 35 and 36 will be described.
まず、 ヅール 1 O Aで薄片チップ 6 5 aを吸着する場合は、 ツール 1 0 Aのコレット 3 O Aを、 ゥェ一ハシート 6 2に接合された薄片チヅプ 6 5 aの上面に当接させて、 コレヅ トホルダ 2 0の真空吸引孔 2 1に真空吸引力を作用させる。 すると、 この真空吸引力は、 空間部 2 6を介して、 コレット 3 O Aの複数の真空吸引孔 3 2に分散され、 さらに、 これ らの真空吸引孔 3 2に連通する溝部 3 5, 3 6に分散されて、 薄片チップ 6 5 aの周辺部 をより広い面で真空吸着することができる。  First, when adsorbing the flake tip 65 a with the tool 1 OA, the collet 3 OA of the tool 10 A is brought into contact with the upper surface of the flake chip 65 a joined to the wafer sheet 62, A vacuum suction force is applied to the vacuum suction holes 21 of the collet holder 20. Then, the vacuum suction force is distributed to the plurality of vacuum suction holes 32 of the collet 3 OA through the space 26, and further, the grooves 35, 36 communicating with these vacuum suction holes 32 are formed. The peripheral portion of the thin chip 65a can be vacuum-adsorbed on a wider surface.
この状態で、 ゥエーハシート 6 2の下方から突上げピン 6 7で薄片チップ 6 5 aの中央 部を突上げたり、 ゥエーハシート 6 2を下方からの真空吸引力によって下方に変形させた りすると、 薄片チップ 6 5 aが平坦面 3 1に当接しており、 かつ周辺部がコレット 3 O A の溝部 3 5 , 3 6によって真空吸着されているので、 薄片チップ 6 5 aの中央部が突上げ ピン 6 7によって上方に変形することがないとともに、 薄片チップ 6 5 aの周辺部がゥェ —ハシート 6 2の変形に伴って下方に変形することがなく、 薄片チップ 6 5 aの周辺部が ゥェ一ハシート 6 2からスムーズに剥離を開始して、 薄片チップ 6 5 aとゥエーハシート 6 2との接着面積が減少して接着力が減少する。  In this state, if the push-up pin 67 pushes up the center of the thin chip 65a from below the wafer sheet 62, or if the wafer sheet 62 is deformed downward by the vacuum suction force from below, 6a is in contact with the flat surface 31 and the periphery is vacuum-sucked by the grooves 3 5 and 36 of the collet 3OA. As a result, the peripheral portion of the thin chip 65 a is not deformed downward due to the deformation of the ha sheet 62, and the peripheral portion of the thin chip 65 a is not deformed. The peeling starts smoothly from the sheet 6 2, and the adhesive area between the thin chip 65 a and the wafer sheet 62 decreases, and the adhesive strength decreases.
そのまま、 ヅール 1 O Aを上昇させると、 前述のように、 周辺部がゥヱ一八シート 6 2 から剥離している薄片チップ 6 5 aは、 この剥離している周辺部から中心部に向かってゥ エーハシート 6 2から次第に剥離されていき、 完全に剥離される。 このとき、 薄片チップ 6 5 aの中央部がコレット 3 O Aの溝部 3 5, 3 6によって吸着されているので、 薄片チ ヅプ 6 5 aの中央部が下方に変形することがなく、 スムーズにゥェ一ハシート 6 2から剥 離され、 薄片チップ 6 5 aが割れることなくピックアップされる。  When the roll 1 OA is raised as it is, as described above, the flake chips 65 a peeled off from the peripheral sheet 62 from the peripheral part toward the center from the peeled peripheral part as described above.ゥ The film is gradually peeled off from the wafer sheet 62 and completely peeled off. At this time, since the central portion of the thin chip 65a is adsorbed by the grooves 35, 36 of the collet 3OA, the central portion of the thin chip 65a does not deform downward, so that it is smooth. Peeled from wafer sheet 62, thin chip 65a is picked up without cracking.
次に、 このツール 1 O Aに吸着された薄片チヅプ 6 5 aを基板 1にボンディングする場 合について説明すると、 基板 1に供給されている接合材 2によって、 薄片チップ 6 5 aは 上方に向かう反力 3を受けるが、 コレット 3 O Aの下面に平坦面 3 1を有するので、 接合 材 2による反力は、 薄片チップ 6 5 aの裏面全体に均一に分散される結果、 従来のような 薄片チップ 6 5 aの中央部のみに局部的な反力を受けることがなくなり、 薄片チップ 6 5 aの割れがなくなる。 Next, a description will be given of a case where the flake chip 65a adsorbed on the tool 1OA is bonded to the substrate 1. The bonding material 2 supplied to the substrate 1 causes the flake chip 65a to move upward. Although the force 3 is received, the collet 3 has a flat surface 3 1 on the lower surface of the OA, so the reaction force due to the bonding material 2 is evenly distributed over the entire back surface of the thin chip 65 a, so that the conventional thin chip 6 5a no longer receives a local reaction force only at the center, thin section chip 6 5 The crack of a disappears.
また、 ボンディング終了後、 ヅール 1 O Aから薄片チップ 6 5 aを離脱させるために、 真空吸引孔 2 1に圧縮気体 4を供給した場合、 圧縮気体 4はコレツト 3 O Aの複数の溝部 3 5, 3 6から薄片チヅプ 6 5 aの広い面に分散して噴出されるために、 従来の中央部に 単一の真空吸引孔を有するコレツトのように、 薄片チップ 6 5 aの中央部のみに局部的に 圧縮気体が集中して噴出されないので、 薄片チップ 6 5 aの中央部が下方に変形すること がなくなり、 薄片チップ 6 5 aの割れを防止して、 薄片チヅプ 6 5 aを離脱させることが できる。  After the bonding is completed, if compressed gas 4 is supplied to the vacuum suction holes 21 to separate the thin chip 65 a from the roll 1 OA, the compressed gas 4 is supplied to the plurality of grooves 3 5, 3 of the collet 3 OA. Because it is dispersed and ejected on the wide surface of the flake chip 65a from 6, it is localized only at the center of the flake chip 65a, like a conventional collet with a single vacuum suction hole at the center. Since the compressed gas does not concentrate and blow out, the center of the flake tip 65a does not deform downward, preventing the flake tip 65a from cracking and allowing the flake tip 65a to separate. it can.
なお、 上記の各実施例は、 本発明の特定の形態について説明したもので、 本発明はこれ らの実施例に限定されるものではなく、 各種の変形が可能である。  Each of the embodiments described above describes a specific embodiment of the present invention. The present invention is not limited to these embodiments, and various modifications are possible.
例えば、 上記実施例 2では、 コレット 3 O Aに、 複数の真空吸引孔 3 2を形成した場合 について説明したが、 図 3 A , 図 3 Bに示すコレット 3 O Aのように、 平坦面 3 1に溝部 3 5 , 3 6を形成する場合には、この溝部 3 5 , 3 6に連通する真空吸引孔 3 2の本数を、 図示例よりも少なくすることができ、 例えば、 単一の真空吸引孔 2 4を有する構成にして もよい。  For example, in Embodiment 2 described above, a case was described in which a plurality of vacuum suction holes 32 were formed in the collet 3 OA. However, as in the collet 3 OA shown in FIGS. 3A and 3B, the flat surface 31 was formed. When the grooves 35 and 36 are formed, the number of the vacuum suction holes 32 communicating with the grooves 35 and 36 can be made smaller than that in the illustrated example. A configuration having 24 may be adopted.
また、 上記実施例は、 特に顕著な効果が発揮される薄片チヅプのピックアップ、 ボンデ イングおよびコレツトからの離脱について説明したが、 通常の 5 0 zm以上の厚さ寸法を 有する半導体チップのピックアップ、 ボンディングおよびコレヅトからの離脱についても 適用できることはいうまでもない。  In the above embodiment, the description has been given of the pick-up, bonding and detachment from the collage of a thin chip, which exerts a particularly remarkable effect, but the pick-up and bonding of a semiconductor chip having a thickness of 50 zm or more are usually performed. Needless to say, the present invention can also be applied to the withdrawal from the collet.
また、 上記実施例は、 基板 1に接合材 2を塗布などにより供給して、 この接合材 2を介 して薄片チヅプをボンディングする場合について説明したが、 予め、 薄片チップの裏面に 接合材を被着させておいて、 この接合材を介してボンディングするようにしてもよい。 また、上記実施例 1, 2では、コレットホルダ 2 0側に、立下部 2 4と凹部 2 5を設け、 コレット 3 0, 3 0 A側に、 前記凹部 2 5に嵌り込む凸部 3 3と、 前記立下部 2 4の下面 に当接するフランジ部 3 4を設ける場合について説明したが、 図示例とは逆に、 コレット 3 0, 3 O A側に、 立上部および凹部を設け、 コレットホルダ 2 0側に、 前記凹部に嵌り 込む凸部および前記立上部の上面に当接するフランジ部を設けてもよい。 また、 図 2 A〜図 2 Cでは、 コレット 3 0の大きさが薄片チップ 6 5 aの大きさと同等 の場合について示しているが、より薄片チップ 6 5 aの周辺部分を真空吸着するためには、 コレッ ト 3 0の大きさが薄片チヅプ 6 5 aより大きいものでもよい。 このようにコレッ ト 3 0を薄片チップ 6 5 aより大きくすることにより、 薄片チップ 6 5 a周辺部における接 合材の気泡をより完全に除去し、 良好なボンディングを実現することができる。 コレット 3 0の具体的な大きさ (チップサイズからのはみ出し量) は、 チヅプサイズや、 チップと リードフレーム、 もしくは基板等の間に介在する接合テープの厚さにより異なる。 Further, in the above embodiment, the case where the bonding material 2 is supplied to the substrate 1 by coating or the like and the flake chips are bonded through the bonding material 2 has been described. After being adhered, bonding may be performed via this bonding material. In the first and second embodiments, the lower portion 24 and the concave portion 25 are provided on the collet holder 20 side, and the convex portion 33 fitted into the concave portion 25 is provided on the collet 30 or 30A side. The case where the flange portion 34 is provided to contact the lower surface of the rising portion 24 has been described. Contrary to the illustrated example, a rising portion and a concave portion are provided on the collets 30 and 3OA, and the collet holder 20 is provided. A side may be provided with a convex portion that fits into the concave portion and a flange portion that contacts the upper surface of the rising portion. 2A to 2C show the case where the size of the collet 30 is equal to the size of the thin chip 65a, but in order to vacuum-adsorb the peripheral portion of the thin chip 65a, The size of the collet 30 may be larger than the flake tip 65a. By making the collet 30 larger than the thin chip 65a, air bubbles of the bonding material around the thin chip 65a can be more completely removed, and good bonding can be realized. The specific size of the collet 30 (the amount of protrusion from the chip size) varies depending on the chip size and the thickness of the bonding tape interposed between the chip and the lead frame or substrate.
また、 上記実施例 1では、 コレット 3 0の複数の真空吸引孔 3 2を、 同一径で、 かつ、 均一に形成する場合について説明したが、 例えば、 中央部の真空吸引孔の孔径は大きく、 周辺部の真空吸引孔の孔径は小さく形成したり、 中央部の真空吸引孔の密度を大きく、 周 辺部の真空吸引孔の密度を小さく形成したりすることによって、 中央部と周辺部とで薄片 チップに加わる圧力が異なるようにすると、 薄片チップの基板へのボンディング時に、 薄 片チップの中央部から周辺部へと次第に圧力を加えて、 薄片チップの下方の雰囲気ガスを 押し出しながらボンディングすることが可能になり、 接合材に気泡を含まない良好なボン デイングを実現することができる。 また、 図 1及び図 2ではコレット 3 0のチップとの接 触面を平坦面としているが、 チップ下面と突上げピンや二一ドルレススライダーとの間に 介在するシートの変形を利用し、 コレツト 3 0の下面中央部分を下向きに僅かに凸を成す 曲面に成形することで、複数の真空吸引孔 3 2との相乗作用でより剥離性を向上させたり、 ボンディング時の雰囲気ガスの押出しをスムーズにしたりすることができる。  In the first embodiment, the case where the plurality of vacuum suction holes 32 of the collet 30 have the same diameter and are formed uniformly has been described.For example, the diameter of the central vacuum suction hole is large. By reducing the diameter of the vacuum suction holes in the peripheral area, or increasing the density of the vacuum suction holes in the central area and decreasing the density of the vacuum suction holes in the peripheral area, If the pressure applied to the flake chips is made different, bonding is performed while pushing the gas under the flake chips by gradually applying pressure from the center to the periphery of the flake chips when bonding the flake chips to the substrate. It is possible to realize good bonding without bubbles in the bonding material. Also, in FIGS. 1 and 2, the contact surface of the collet 30 with the chip is a flat surface, but the deformation of the sheet interposed between the lower surface of the chip and the push-up pin or the 21 dollarless slider is used. By forming the central part of the lower surface of the collet 30 into a curved surface that is slightly convex downward, synergistic action with the plurality of vacuum suction holes 32 improves the releasability and extrudes the atmosphere gas during bonding. It can be smooth.
また、 上記実施例は、 チップをピックアップしてそのままボンディングする、 所謂、 ダ ィレクトボンディング方式のダイボンダについて説明したが、 ピックアップしたチップを 一旦トレーや位置修正部に移載し、 このトレーや位置修正部からチップをピックァヅプし てボンディングする、 所謂、 間接ボンディング方式のダイボンダにおけるピックアップ用 のコレヅトゃ、 ボンディング用のコレヅトにも適用することができる。 産業上の利用可能性  In the above-described embodiment, a so-called direct bonding type die bonder in which a chip is picked up and bonded as it is has been described. However, the picked up chip is temporarily transferred to a tray or a position correcting section, and the tray and the position corrected are transferred. The present invention can also be applied to a so-called indirect bonding type die bonder in which a chip is picked up from a part and bonded, and is used for a pickup collet and a bonding collet. Industrial applicability
本発明は、 半導体チップのダイボンダに特に好適なものであるが、 それ以外に、 抵抗器 チップやコンデンサチップなどの各種電子部品のダイボンダにも適用することができる The present invention is particularly suitable for a die bonder for a semiconductor chip. It can also be applied to die bonders for various electronic components such as chips and capacitor chips

Claims

請求の範囲 The scope of the claims
1 . チップをピックアップおよび/またはボンディングするコレツ卜において、 1. In the collet for picking up and / or bonding chips,
コレツトの下面を平坦面に形成するとともに、 この下面の平坦面に複数の真空吸引部を 設けたことを特徴とするコレツト。  A collet, wherein the lower surface of the collet is formed as a flat surface, and a plurality of vacuum suction portions are provided on the flat surface of the lower surface.
2 . 前記コレットが、 中心部に真空吸引孔を有するコレットホルダに装着されており、 上下に貫通する複数の真空吸引孔を備え、  2. The collet is mounted on a collet holder having a vacuum suction hole in the center, and includes a plurality of vacuum suction holes penetrating vertically.
前記コレツトホルダの真空吸引孔とコレツトの複数の真空吸引孔とを連通させる密閉さ れた空間部を設けたことを特徴とする請求項 1に記載のコレット。  2. The collet according to claim 1, wherein a closed space is provided for communicating a vacuum suction hole of the collet holder with a plurality of vacuum suction holes of the collet.
3 . 前記コレットが、 中心部に真空吸引孔を有するコレットホルダに装着されており、 このコレツ卜が単一または複数の真空吸引孔を有するとともに、 下面にその真空吸引孔 に連通する溝部とを備え、  3. The collet is mounted on a collet holder having a vacuum suction hole in the center, and the collet has a single or a plurality of vacuum suction holes, and a groove communicating with the vacuum suction hole on the lower surface. Prepare,
前記コレツトホルダの真空吸引孔とコレツトの単一または複数の真空吸引孔とを連通さ せる密閉された空間部を設けたことを特徴とする請求項 1に記載のコレツト。  2. The collet according to claim 1, wherein a closed space is provided for communicating a vacuum suction hole of the collet holder with one or more vacuum suction holes of the collet.
4 . 前記請求項 1力 ら 3のいずれかに記載のコレヅトを備えたことを特徴とするダイボン ダ。 4. A die bonder comprising the collet according to any one of claims 1 to 3.
5 . 前記請求項 4に記載のダイボンダを用いて、 裏面がゥヱ一ハシートに接合されたチッ プの周辺部をコレツトで真空吸着した後、 チップの裏面をゥヱーハシートの下方から突上 げピンで相対的に突上げるか、 ゥェ一ハシートを下方から真空吸引して下方に変形させる ことを特徴とするチップのビックァヅプ方法。  5. After using a die bonder according to claim 4, the periphery of the chip whose back surface is joined to the sheet is vacuum-sucked with a collet, and the back surface of the chip is pushed up from below the wafer sheet with a pin. A chip big-chip method characterized in that the chip is relatively pushed up or the wafer sheet is vacuumed from below and deformed downward.
PCT/JP2003/011936 2003-09-18 2003-09-18 Collet, die bonder, and chip pick-up method WO2005029574A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN03826807.8A CN1802735A (en) 2003-09-18 2003-09-18 Collet, chip bonder and chip pick-up method
PCT/JP2003/011936 WO2005029574A1 (en) 2003-09-18 2003-09-18 Collet, die bonder, and chip pick-up method
JP2005509046A JPWO2005029574A1 (en) 2003-09-18 2003-09-18 Collet, die bonder and chip pickup method
AU2003266534A AU2003266534A1 (en) 2003-09-18 2003-09-18 Collet, die bonder, and chip pick-up method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011936 WO2005029574A1 (en) 2003-09-18 2003-09-18 Collet, die bonder, and chip pick-up method

Publications (1)

Publication Number Publication Date
WO2005029574A1 true WO2005029574A1 (en) 2005-03-31

Family

ID=34362493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011936 WO2005029574A1 (en) 2003-09-18 2003-09-18 Collet, die bonder, and chip pick-up method

Country Status (4)

Country Link
JP (1) JPWO2005029574A1 (en)
CN (1) CN1802735A (en)
AU (1) AU2003266534A1 (en)
WO (1) WO2005029574A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289785A (en) * 2008-05-27 2009-12-10 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device
EP2381465A1 (en) * 2010-04-22 2011-10-26 Kulicke & Soffa Die Bonding GmbH Tool tip interface for a die handling tool
JP2012256931A (en) * 2012-08-24 2012-12-27 Renesas Electronics Corp Manufacturing method of semiconductor integrated circuit device
CN102881622A (en) * 2012-01-11 2013-01-16 日月光半导体制造股份有限公司 Heater tip used for flip chip
KR20190114128A (en) * 2018-03-29 2019-10-10 삼성전자주식회사 Chip transfer device and chip transfering method using the same
WO2021039566A1 (en) 2019-08-26 2021-03-04 リンテック株式会社 Method of manufacturing laminate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676997A (en) * 2012-06-11 2012-09-19 上海宏力半导体制造有限公司 Physical vapor deposition equipment
CN103066001B (en) * 2012-12-28 2015-04-22 无锡中微高科电子有限公司 Universal leveling suction nozzle for collecting co-crystallizing welding machine chips
KR101570764B1 (en) * 2014-02-27 2015-11-20 주식회사 페코텍 Collet for boding semiconductor die
JP5929947B2 (en) * 2014-02-28 2016-06-08 株式会社安川電機 Suction pad, robot hand and robot
JP6316873B2 (en) * 2016-05-31 2018-04-25 株式会社新川 Die mounting method
JP6889614B2 (en) * 2017-05-31 2021-06-18 ファスフォードテクノロジ株式会社 Semiconductor manufacturing equipment and manufacturing method of semiconductor equipment
JP2019046961A (en) * 2017-09-01 2019-03-22 Tdk株式会社 Suction nozzle, visual inspection device including the same, and method of manufacturing circuit board
JP6967411B2 (en) * 2017-09-19 2021-11-17 ファスフォードテクノロジ株式会社 Semiconductor manufacturing equipment, semiconductor equipment manufacturing methods and collets
CN109366348A (en) * 2018-11-28 2019-02-22 沛顿科技(深圳)有限公司 A kind of removable ceramic sucker base
CN110039566B (en) * 2019-04-11 2021-07-16 深圳市森镁环保回收有限公司 Chip sorting equipment with dust removal function and high reliability
CN110328764A (en) * 2019-04-15 2019-10-15 南宁聚信众信息技术咨询有限公司 A kind of stable type chip pickup apparatus of the high reliablity for cutting action
CN110323175B (en) * 2019-04-16 2023-01-06 深圳市正鸿泰科技有限公司 Convenient type chip sorting equipment with suction regulatory function
CN111702797A (en) * 2020-06-28 2020-09-25 江苏核电有限公司 Tool and method for grabbing foreign matters on collecting pipe of steam generator for nuclear power station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233592A (en) * 1998-02-12 1999-08-27 Rohm Co Ltd Structure of vacuum chucking collet
JPH11300673A (en) * 1998-04-17 1999-11-02 Rohm Co Ltd Vacuum suction type collet structure
JP2001196443A (en) * 2000-01-14 2001-07-19 Sharp Corp Apparatus and method for picking up semiconductor chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233592A (en) * 1998-02-12 1999-08-27 Rohm Co Ltd Structure of vacuum chucking collet
JPH11300673A (en) * 1998-04-17 1999-11-02 Rohm Co Ltd Vacuum suction type collet structure
JP2001196443A (en) * 2000-01-14 2001-07-19 Sharp Corp Apparatus and method for picking up semiconductor chip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289785A (en) * 2008-05-27 2009-12-10 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device
EP2381465A1 (en) * 2010-04-22 2011-10-26 Kulicke & Soffa Die Bonding GmbH Tool tip interface for a die handling tool
CN102881622A (en) * 2012-01-11 2013-01-16 日月光半导体制造股份有限公司 Heater tip used for flip chip
JP2012256931A (en) * 2012-08-24 2012-12-27 Renesas Electronics Corp Manufacturing method of semiconductor integrated circuit device
KR20190114128A (en) * 2018-03-29 2019-10-10 삼성전자주식회사 Chip transfer device and chip transfering method using the same
KR102486822B1 (en) 2018-03-29 2023-01-10 삼성전자주식회사 Chip transfer device and chip transfering method using the same
WO2021039566A1 (en) 2019-08-26 2021-03-04 リンテック株式会社 Method of manufacturing laminate

Also Published As

Publication number Publication date
AU2003266534A1 (en) 2005-04-11
CN1802735A (en) 2006-07-12
JPWO2005029574A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
WO2005029574A1 (en) Collet, die bonder, and chip pick-up method
KR101135903B1 (en) Device for thin die detachment and pick-up
KR101156475B1 (en) Control and monitoring system for thin die detachment and pick-up
JP5652940B2 (en) Semiconductor chip attaching apparatus and semiconductor chip attaching method
TWI419213B (en) Universal die detachment apparatus
CN107622955B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
US20050224965A1 (en) Method for detaching a semiconductor chip from a foil and apparatus for mounting semiconductor chips
TW200539302A (en) Peeling device for chip detachment
KR20030052986A (en) Pick-up tool for mounting semiconductor chips
JP2003203964A (en) Pickup tool for mounting semiconductor chip
JP2000353710A (en) Manufacture of pellet pickup device and semiconductor device
JP2005322815A (en) Manufacturing apparatus and manufacturing method of semiconductor apparatus
US20100077590A1 (en) Die pickup method
US6843879B1 (en) Separation method for object and glue membrane
KR100950250B1 (en) Apparatus for supporting chip for ejector
JP2006278519A (en) Method of manufacturing laminated semiconductor device
KR100769111B1 (en) Collet, die bonder, and chip pick-up method
JP4369298B2 (en) DIE PICKUP DEVICE AND DIE PICKUP METHOD
KR100876965B1 (en) Chip pick-up tool for manufacturing semiconductor package
JP4134774B2 (en) Electronic component supply method
JP5005403B2 (en) Electronic component mounting tools and mounting equipment
JP3945331B2 (en) Semiconductor chip pickup device and adsorption peeling tool
JP2004259811A (en) Die pick-up method and device
JP5214739B2 (en) Chip peeling method, semiconductor device manufacturing method, and chip peeling apparatus
JP4180329B2 (en) Pickup method of semiconductor chip

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 03826807.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE EG ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NI NO NZ OM PG PH PL RO RU SC SD SE SG SK SL SY TJ TM TR TT TZ UA UG US UZ VC VN YU ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LU NL PT RO SE SI SK TR BF BJ CF CI CM GA GN GQ GW ML MR NE SN TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005509046

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067005105

Country of ref document: KR

122 Ep: pct application non-entry in european phase