WO2005029436A1 - ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置 - Google Patents

ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置 Download PDF

Info

Publication number
WO2005029436A1
WO2005029436A1 PCT/JP2004/013353 JP2004013353W WO2005029436A1 WO 2005029436 A1 WO2005029436 A1 WO 2005029436A1 JP 2004013353 W JP2004013353 W JP 2004013353W WO 2005029436 A1 WO2005029436 A1 WO 2005029436A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
unit
wireless sensor
wireless
power
Prior art date
Application number
PCT/JP2004/013353
Other languages
English (en)
French (fr)
Inventor
Koichi Okada
Masatoshi Mizutani
Norihiko Sasaki
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003327699A external-priority patent/JP2005092704A/ja
Priority claimed from JP2003327700A external-priority patent/JP2005092705A/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to US10/572,308 priority Critical patent/US7612665B2/en
Priority to DE112004001732T priority patent/DE112004001732T5/de
Publication of WO2005029436A1 publication Critical patent/WO2005029436A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the present invention relates to a wireless sensor system that wirelessly transmits various sensor signals, for example, a detection signal such as a rotational speed provided in a bearing device for a wheel of a machine or a vehicle, and the wireless sensor system.
  • a detection signal such as a rotational speed provided in a bearing device for a wheel of a machine or a vehicle
  • the present invention relates to a bearing device with a wireless sensor, such as a wheel bearing device using the same.
  • an ABS that performs vehicle braking control by detecting a wheel rotation speed by a rotation sensor.
  • Anti-lock Brake System eliminates the harness between the wheels and the vehicle body to prevent accidents due to damage to the sensor wires in the tire housing and to reduce assembly costs.
  • Has been proposed which transmits the signal as an electromagnetic wave Japanese Patent Laid-Open No. 2002-151090.
  • a multi-pole rotating generator is used to simultaneously supply the sensor power and transmitter power by self-generation and to detect the number of rotations, so that the body power rotation sensor can be used. It is configured to be compact without supplying power (Japanese Patent Laid-Open No. 2002-55113).
  • Japanese Patent Application Laid-Open No. 2003-146196 is an invention in which a self-diagnosis circuit is provided in a wheel bearing with a rotation sensor for wireless transmission, and a power supply for a sensor and a wireless transmitter. The power that is supposed to be done The wireless power supply is also mentioned.
  • Japanese Patent Application Laid-Open No. 2003-58976 proposes that a sensor signal be digitally transmitted. It is.
  • a power source a battery or a generator is used.
  • the battery has a lifetime, and it is necessary to replace the battery as it is consumed, which makes it difficult to manage the battery life. There are also environmental issues associated with battery disposal.
  • rotation sensor that performs self-power generation
  • power is generated only when the wheels rotate, so it operates stably in the ABS operating range of about lOKmZh or more, but detection is unstable at very low speeds near stop. In some cases. Further, it cannot be applied to a detection object other than rotation detection, for example, temperature detection.
  • wireless power supply is not as efficient as power supply by wire or a generator, so it is necessary to transmit large power for power supply.
  • the high power is always transmitted in consideration of the power supply failure when the power consumption of the entire system increases.
  • the wireless sensor system is still insufficient in terms of the reliability of the system in which sensor signals transmitted wirelessly are easily affected by disturbance noise.
  • the device disclosed in Japanese Patent Application Laid-Open No. 2003-146196 performs a wireless power supply, and thus has a problem that the above-described disturbance of the sensor signal is generated due to the power that can always be obtained.
  • the electromagnetic wave for wireless power supply can easily be an unmodulated electromagnetic wave.
  • processing such as making the power supply electromagnetic wave and the sensor signal electromagnetic wave have different frequencies or different polarization planes is performed. There is a need to.
  • the one disclosed in Japanese Patent Application Laid-Open No. 2003-58976 has an advantage that the sensor signal is digitized and transmitted, so that it is less susceptible to disturbances. There is a problem similar to each of the examples.
  • the power source is secured and the sensor signal is transmitted. Reliability is an issue.
  • An object of the present invention is to improve the reliability of sensor signals by being hardly affected by disturbance noise, and to achieve a lightweight and compact configuration including a power supply system, and to enable wireless communication at any time.
  • An object of the present invention is to provide a sensor system and a lightweight and compact bearing device with a wireless sensor having the same.
  • Another object of the present invention is to provide a wireless sensor system capable of obtaining a stable sensor output even when wireless power feeding is unstable and achieving power saving, and a lightweight and compact wireless sensor system having the same.
  • a sensor-equipped bearing device is provided.
  • the wireless sensor system includes a sensor section (6A, 6B) for detecting a detection target and a sensor signal output from the sensor section (6A, 6B) transmitted wirelessly. And a power receiving unit (8A, 8B) for wirelessly receiving operating power for driving the sensor unit (6A, 6B) and the sensor signal transmitting unit (9A, 9B).
  • a power receiving unit (8A, 8B) for wirelessly receiving operating power for driving the sensor unit (6A, 6B) and the sensor signal transmitting unit (9A, 9B).
  • Digitizing the sensor signal output by (7) is provided, the sensor signal transmitter (9A, 9B) sends a sensor signal which is the digital I spoon.
  • the sensor signal is digitally transmitted by the digital broadcasting means (7), it is less likely to be affected by disturbance, and the reliability of the system is improved.
  • power receivers (8A, 8B) that receive operating power wirelessly are provided, so primary batteries and generators are provided as power supplies for the sensor units (6A, 6B) and sensor signal transmitters (9A, 9B).
  • Wireless sensor units (4A, 4B) that can be used can be made compact and lightweight. Since battery replacement is not required, maintenance becomes easier. Also, unlike those using generators, detection is possible at any time, not just during rotation.
  • the wireless sensor unit ( 4A, 4B), and the sensor signal receiving section (13) receives the sensor signals of the plurality of sensor sections (6A, 6B) transmitted from the plurality of wireless sensor units (4A, 4B). It may be possible.
  • the sensor signals of the plurality of wireless sensor units (4A, 4B) can be received by one sensor signal receiving unit (13), so that the entire wireless sensor system has a simple configuration.
  • the power supply power transmitting unit (12) may be provided in a sensor signal receiver (5) including the sensor signal receiving unit (13).
  • the power supply power transmission unit (12) and the sensor signal reception unit (13) may be separately provided separately, but by providing them together in one sensor signal receiver (5), the system configuration can be simplified. It will be.
  • the wireless sensor unit (4A, 4B) may include a plurality of sensors (6a-6c) as the sensor units (6A, 6B). .
  • the plurality of sensors (6a to 6c) may detect the same type of detection target or may detect different types of detection targets.
  • sensor signals from multiple sensors (6a-6c) can be transmitted by a single sensor signal transmission unit (9A, 9B), so a simple configuration is possible while enabling detection of multiple detection targets. , Be compacted.
  • the sensors constituting the sensor units (6A, 6B) are a rotation sensor, a vibration sensor, a temperature sensor, an acceleration sensor, a load sensor, a torque sensor, and At least one of the bearing preload sensors may be used.
  • the detection target is a rotation detection signal, load, torque, acceleration, or the like, for example, rotation control of a device provided with a bearing and other various controls can be performed. If the detection target is temperature, vibration, or preload of the bearing, failure of the bearing, state management, and life management can be performed.
  • one of the sensor units (6A, 6B) has a rotation sensor, and the rotation sensor is opposed to the pulsaring (17) and the pulsaring.
  • the provided magnetoresistive magnetic sensor (18) may be used.
  • a magnetic sensor of the magnetoresistive element type can reduce power consumption by increasing a resistance value, which is advantageous for wireless power supply.
  • the rotation sensor may be a means for generating a pulse
  • the signal digitized by the digitizing means (7) may be a signal indicating a cycle of the pulse
  • the process of digitizing the sensor signal can be easily performed by using the pulse periodic signal as a digital output.
  • the rotation sensor when one of the sensor units (6A, 6B) is a rotation sensor, the rotation sensor may be means for generating two or more pulses having different phases.
  • the signal digitally converted by the digital dangling means (7) may be a signal indicating the period and rotation direction of the pulse.
  • control can be advanced and the types of control can be increased.
  • both the rotation speed and the direction can be transmitted with a small number of bits.
  • each wireless sensor unit (4A, 4B) is controlled by the sensor signal transmitting unit (9A, 9B).
  • An identification signal of each wireless sensor unit (4A, 4B) may be transmitted in addition to the sensor signal.
  • a wireless sensor unit (4A, 4B) has a plurality of sensors as force sensors (6A, 6B), in addition to the sensor signals, identification of each sensor constituting the sensor (6A, 6B) is performed. The number may be transmitted.
  • each wireless sensor unit (4A, 4B) By digitizing the sensor signal, it is possible to easily transmit the identification number of each wireless sensor unit (4A, 4B), and to connect multiple wireless sensor units (4A, 4B) with a single frequency electromagnetic wave. Since the identification is possible, the system configuration is simplified.
  • the sensor unit (6A, 6B) of each wireless sensor unit (4A, 4B) has multiple sensors, adding the identification number of the sensor makes it easy and reliable to identify each sensor.
  • the sensor signal transmitting unit (9A, 9B) may transmit the sensor signal by spread spectrum communication.
  • the spread spectrum method When transmitting by the spread spectrum method, it is easy to distinguish the continuous wave of the unmodulated wave from the electromagnetic wave for power transmission, and the reliability of the system is improved. Also, by transmitting the sensor signal in the spread spectrum method, the same frequency band of electromagnetic waves can be used for transmitting and supplying the sensor signal, and the same high-frequency components can be used for the antenna and the like, resulting in cost reduction. I can do it.
  • the bearing device with a wireless sensor system that works on the first configuration has the wireless sensor units (4A, 4B) of the wireless sensor system of the first configuration mounted on a bearing.
  • the bearing is, for example, an outer member, an inner member, and a rolling bearing in which a plurality of rolling elements are interposed between these outer and inner members.
  • the bearing is equipped with a sensor unit (6A, 6B), a sensor signal transmitting unit (9A, 9B), and a power receiving unit (8A, 8B) to improve the intelligence of the bearing.
  • one of the sensors constituting the sensor units (6A, 6B) may be a preload sensor of a force bearing.
  • the preload of the bearing can be monitored, and the life of the bearing is greatly affected.
  • the rolling bearing faces an outer member having a double-row raceway surface and an inner member having a raceway surface facing the raceway surface.
  • a wheel bearing device that includes a plurality of rolling elements interposed between the track surfaces of both rows and that rotatably supports the wheel with respect to the vehicle body may be used.
  • the intelligence of the wheel bearing device is improved, and the elimination of the harness between the wheel and the vehicle body can improve the reliability of control and the safety by improving the reliability of the sensor signal.
  • the wireless sensor system includes a sensor section (6A, 6B) for detecting a detection target and a sensor signal output from the sensor section (6A, 6B) transmitted wirelessly.
  • Sensor signal transmitting section (9A, 9B), the above sensor section (6A, 6B) and sensor signal One or more wireless sensor units (4A, 4B) each having a power receiving unit (8A, 8B) for wirelessly receiving operating power for driving the transmitting unit (9A, 9B); and the sensor signal transmitting unit (9A, 9B) force A sensor signal receiving unit (13) for receiving the transmitted sensor signal, and a power supply power transmitting unit (12) for wirelessly transmitting operating power to the power receiving unit (8A, 8B).
  • the wireless sensor system includes a power storage means (27) for storing the received power of the power receiving units (8A, 8B) in the wireless sensor units (4A, 4B).
  • a capacitor or a secondary battery is used as the power storage means (27).
  • the transmission and reception of the sensor signal and the operating power can be performed not only by electromagnetic waves, but also by magnetic coupling, transmission and reception using light waves, infrared rays, ultrasonic waves, etc., as long as they can be transmitted and received wirelessly.
  • the power receiving units (8A, 8B) for receiving the operating power wirelessly are provided, the primary batteries are used as power sources for the sensor units (6A, 6B) and the sensor signal transmitting units (9A, 9B).
  • Wireless sensor units (4A, 4B) which do not require the installation of a power supply or a generator, can be made compact and lightweight. Since battery replacement is not required, maintenance becomes easy.
  • a power storage means (27) such as a capacitor or a secondary battery for storing the received power of the power reception units (8A, 8B) is provided, the excess power received by the power reception units (8A, 8B) during normal times is stored in the power storage means.
  • the bearing device with a wireless sensor that works on the second configuration is a rolling device that includes an inner member, an outer member, and a plurality of rolling elements interposed between the inner and outer members.
  • a bearing device with a wireless sensor mounted on a bearing wherein a power storage means (27) such as a capacitor or a secondary battery for storing received power of the power receiving units (8A, 8B) is provided in the rolling bearing.
  • the bearing is equipped with a sensor unit (6A, 6B), a sensor signal transmitting unit (9A, 9B), and a power receiving unit (8A, 8B) to improve the intelligence of the bearing.
  • the storage means (27) such as the above-mentioned capacitor or secondary battery while keeping the wiring system simple and lightweight and compact, a stable power supply can be secured and the power consumption of wireless power supply is reduced. it can.
  • the sensor is a detection target that is selected from among rotation, temperature, vibration, acceleration, load, torque, and bearing preload of the rolling bearing.
  • One type of detection target may be detected.
  • the detection target is a rotation detection signal
  • acceleration, load, torque, etc. rotation control of the equipment in which the bearing is installed and other various controls can be performed. If the object to be detected is temperature, vibration, or preload of the bearing, failure of the bearing, state management, and life management can be performed.
  • the rolling bearing includes: an outer member having a double-row raceway surface; an inner member having a raceway surface facing the raceway surface; A wheel bearing device that includes a plurality of rolling elements interposed between the opposing rows of raceway surfaces and that rotatably supports the wheel with respect to the vehicle body may be used.
  • the sensor unit (6A, 6B) and the sensor signal transmission unit (9A, 9B) can be supplied stably while increasing the intelligence of the wheel bearing device and eliminating the harness between the wheel and the vehicle body. Therefore, the control can be stabilized, and the power consumption of the wireless power supply can be reduced.
  • FIG. 1 is a block diagram showing a conceptual configuration of a wireless sensor system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of an example of an internal configuration of the digital camera.
  • FIG. 3 (A) Description of an example of a rotation sensor of the sensor unit in the wireless sensor system
  • FIG. 3B is a waveform diagram of the output pulse
  • FIG. 3C is a block diagram of an example of an internal configuration that is a modified example of the digital audio device.
  • FIG. 4 is a longitudinal sectional view showing an example of a bearing device to which the wireless sensor system is applied.
  • FIG. 5 is a longitudinal sectional view showing an example of a wheel bearing device to which the wireless sensor system is applied.
  • FIG. 6 is a longitudinal sectional view showing another example of the wheel bearing device to which the wireless sensor system is applied.
  • FIG. 7 is a sectional view showing still another example of the wheel bearing device to which the wireless sensor system is applied.
  • FIG. 8 is a block diagram showing a conceptual configuration of a wireless sensor system according to a second embodiment of the present invention.
  • a wireless sensor system according to the first embodiment of the present invention will be described with reference to FIG.
  • This wireless sensor system includes a plurality of wireless sensor units 4A and 4B, and a sensor signal receiver 5 that wirelessly supplies power to the plurality of wireless sensor units 4A and 4B and receives each sensor signal.
  • the number of wireless sensor units is not particularly limited, and may be one or three or more.
  • FIG. 1 shows the case of two wireless sensor units.
  • Each wireless sensor unit 4A, 4B includes a sensor unit 6A, 6B for detecting a detection target, a digital illuminating unit 7 for converting a sensor signal output from the sensor unit 6A, 6B into a digital signal, and It includes sensor signal transmitting units 9A and 9B for wirelessly transmitting the digitalized sensor signals, power receiving units 8A and 8B for receiving driving power transmitted wirelessly, and a power supply circuit 10.
  • the sensor units 6A and 6B may each be composed of one sensor, or may have a plurality of sensors.
  • the sensors constituting the sensor units 6A and 6B are, for example, a rotation sensor, an acceleration sensor, a temperature sensor, a vibration sensor, a load sensor, a torque sensor, a preload sensor for detecting a preload of a bearing, and the like.
  • the power supply circuit 10 converts the power received by the power receiving units 8A and 8B into sensor units 6A and 6B, This is a circuit for supplying power to the converting means 7 and the sensor signal transmitting units 9A and 9B.
  • the power supply circuit 10 may include a capacitor for storing received power, a secondary battery, and a charging circuit (none of which is shown).
  • the sensor signal receiver 5 includes a sensor signal receiving unit 13 that receives a sensor signal that also transmits the sensor signal transmitting units 9A and 9B of the wireless sensor units 4A and 4B, and a wireless sensor unit 4A and 4B.
  • a power supply power transmission unit 12 that wirelessly transmits operating power to the power reception units 8A and 8B is provided.
  • Transmission and reception between the sensor signal transmission units 9A and 9B and the sensor signal reception unit 13 and between the power supply transmission unit 12 and the operation power reception units 8A and 8B are performed by electromagnetic waves, but also by light waves, infrared rays, and ultrasonic waves. Or magnetic coupling.
  • the power transmission unit 12 is, for example, an electromagnetic wave that is a continuous wave of an unmodulated wave.
  • the power receiving units 8A and 8B include a tuning circuit, a detection and rectification circuit, and the like.
  • the frequency of the sensor signal to be transmitted wirelessly and the frequency of the power supply are, for example, different from each other, and the plurality of sensor signals provided are also at different frequencies from each other.
  • the frequency of the supplied power is fl
  • the frequencies of the sensor signals are f2 and f3.
  • the frequency of the sensor signal and the power supply may be the same frequency. In that case, the sensor signal shall be transmitted by spread spectrum communication as described later.
  • the digital camera 7 has a data switch 7a, a data converter 7b, and a signal processor 7c as shown in Fig. 2, for example.
  • the data switch 7a is provided when the sensor section 6A (6B) has a plurality of sensors 6a, 6b, 6c, and switches data input from each of the sensors 6a, 6b, 6c to transmit the data to the data conversion section 7b.
  • the plurality of sensors 6a to 6c provided are a rotation sensor, a temperature sensor, and a vibration sensor, respectively.
  • the switching by the data switch 7a is performed, for example, periodically by a timer, or in response to an appropriate switching command.
  • the data converter 7b converts the input analog signal into a digital signal.
  • the signal processing unit 7c provides an identification number for each wireless sensor unit 4A and 4B. Add a number. If there is one wireless sensor unit, no identification number is required.
  • the signal processing unit 7c adds an identification number for identifying each of the sensors 6a to 6c. These wireless sensor unit identification numbers and sensor identification numbers are added to the sensor signals to be transmitted.
  • the signal processing unit 7c may further add a redundant bit such as an error correction code.
  • the signals digitized by the digitalization means 7 are wirelessly transmitted from the sensor signal transmitting units 9A and 9B using electromagnetic waves of predetermined frequencies fl and f2. This transmission may be performed by light waves, infrared rays, ultrasonic waves, or magnetic coupling in addition to the electromagnetic waves as described above.
  • Transmission by the sensor signal transmitting units 9A and 9B is performed, for example, by spread spectrum communication.
  • a frequency hopping method, a direct spreading method, or the like is used as the method.
  • the sensor signal transmitting units 9A and 9B may transmit the wireless sensor units 4A and 4B sequentially in time division.
  • a communication request transmitting unit (not shown) provided in the sensor signal receiver 5 issues a data communication request command to the wireless sensor units 4A and 4B, and the wireless sensor units 4A and 4B that receive the command transmit the sensor commands.
  • a signal may be transmitted.
  • time division or a request command communication can be performed without interference even if the frequencies transmitted from the wireless sensor units 4A and 4B are the same.
  • each of the wireless sensor units 4A and 4B transmits the signal with the identification number added thereto, the signals of the plurality of wireless sensor units 4A and 4B can be identified.
  • the frequency of the electromagnetic wave for sensor signal transmission is determined for each wireless sensor unit 4A, 4B, and the sensor signal receiving unit 13 of the sensor signal receiver 5 corresponds to the natural frequency of each wireless sensor unit 4A, 4B. It may have an individual receiving unit (not shown).
  • the sensor signal transmission units 9A and 9B transmit the sensor signal to the carrier using ASK (Amplitude Shift Keying), FSK (Frequency Shift Keying), PSK (Phase Shift Keying), QPSK (Quadrature PSK), or the like. May be performed by applying digital modulation.
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • PSK Phase Shift Keying
  • QPSK Quadadrature PSK
  • the operating power is supplied wirelessly to each of the wireless sensor units 4A and 4B.
  • the wireless sensor units 4A and 4B which do not require a generator, can be made compact and lightweight. Maintenance is easy because no battery replacement is required. Also, unlike power generation, communication is always possible.
  • the sensor signal is transmitted digitally by the digital dangling means 7, it is hardly affected by disturbance and the reliability of the system is improved.
  • the identification number of each wireless sensor unit 4A, 4B can be easily transmitted, and a plurality of wireless sensor units 4A, 4B can be identified by a single frequency electromagnetic wave.
  • the system configuration is simplified.
  • the sensor unit 6 of each wireless sensor unit 4A, 4B has a plurality of sensors 6a-6c, when the identification numbers of the sensors 6a-6c are added, the identification of the sensors 6a-6c becomes easy.
  • the digitized sensor signal When the digitized sensor signal is transmitted by the spread spectrum method, it is easy to distinguish it from the power transmission electromagnetic wave, which is a continuous wave with no modulation, and the reliability of the system is improved.
  • the power transmission electromagnetic wave which is a continuous wave with no modulation
  • the reliability of the system is improved.
  • radio waves in the same frequency band can be used for transmission and power supply of sensor signals, and costs can be reduced by using common components.
  • a plurality of bearings 51, 52 are equipped with wireless sensor units 4A, 4B, respectively, and one sensor signal receiver 5 wirelessly supplies power to each wireless sensor unit 4A, 4B and receives sensor signals.
  • the plurality of rolling bearings 51 and 52 are installed in each part of the mechanical equipment 53.
  • the mechanical equipment 53 is, for example, a conveyer line such as a roller conveyer or a belt conveyer, and a rotating shaft 59 serving as a shaft of a transfer roller or a belt driving roller is rotatably supported by the bearings 51 and 52.
  • the bearings 51 and 52 are rolling bearings, and are formed with the inner ring 54 and the outer ring 55.
  • a rolling element 56 is interposed therebetween and a seal 58 is provided.
  • Each rolling element 56 is held by a holder 57.
  • the inner ring 54 and the outer ring 55 are an inner member and an outer member, respectively.
  • the sensor signal receiver 5 is installed at a location away from the bearings 51 and 52.
  • the sensor section 6A of one of the wireless sensor units 4A and 4B installed in the bearings 51 and 52 is a rotation sensor
  • the wireless sensor unit 4B installed in the other bearing 52 is a rotation sensor
  • the sensor section 6B is a sensor for detecting a detection target other than rotation, for example, a temperature sensor, a vibration sensor, an acceleration sensor, a load sensor, a torque sensor, a bearing preload sensor, and the like.
  • Each wireless sensor unit 4A, 4B is provided with an identification number, and transmits with the identification number added.
  • the sensor section 6A, 6B of each wireless sensor unit 4A, 4B has a plurality of sensors, the sensor signal is transmitted by adding the identification number of each sensor.
  • the sensor unit 6A serving as a rotation sensor includes a pulsar ring 17 and a magnetic sensor 18 mounted opposite to the pulsar ring.
  • the pulsar ring 17 has a circumferential change in the circumferential direction, such as a multi-pole magnetized magnet in which magnetic poles are arranged in the circumferential direction, or a magnetic ring having a gear-like unevenness.
  • the magnetic sensor 18 detects a periodic magnetic change in the circumferential direction of the pulsar ring 17, detects relative rotation between the inner wheel 54 and the outer wheel 55, and outputs a rotation signal.
  • This rotation signal is transmitted by digitalizing the periodic data of the force pulse train, which is a pulse train, by the digitizing means 7 (FIG. 1).
  • the magnetic sensor 18 is a magnetic field sensor, and may use an active magnetic sensor such as a Hall element type sensor, a flux gate type magnetic sensor, or an Ml sensor in addition to a magnetic resistance element type sensor (referred to as an “MR sensor”). .
  • the magnetic sensor 18 is disposed at two places where the phase is separated by approximately 90 ° with respect to the period of the magnetic change in the circumferential direction of the pulsar ring 17 so that the rotation direction is changed. Detection may be performed, and rotation direction data other than the cycle data may be transmitted.
  • the rotation signal forces of two pulse trains (A phase and B phase) whose phases are shifted by approximately 90 ° are output from the magnetic sensors 18 and 18, respectively, as shown in FIG.
  • the rotation direction is detected, for example, as shown in Fig. 3 (C).
  • the rotation direction detector 7d provided in the digital camera 7 compares the rotation signals of the two pulse trains.
  • the process of obtaining data of the period T from the pulse train is performed by, for example, the data conversion unit 7b.
  • the signal processing unit 7c combines the rotation direction data with the cycle data.
  • the magnetic sensor 18 is preferably of a magnetoresistive element type.
  • the magnetoresistive element type magnetic sensor is advantageous in performing wireless power supply because the power consumption can be reduced by increasing the resistance value.
  • the intelligence of the bearings 51 and 52 can be improved by the sensor units 6A and 6B, and the wiring system can be simplified by making the sensor signals and power supply wireless.
  • the sensor signal is transmitted in a digital manner, it is less susceptible to disturbance and the reliability of the system is improved.
  • FIG. 5 shows an embodiment in which the wireless sensor system of the first embodiment is applied to a vehicle wheel bearing device.
  • the wheel bearing device 33 includes an outer member 1 having a double-row raceway surface, an inner member 2 having a raceway surface facing the above-mentioned raceway surface, and a plurality of raceways interposed between both facing raceway surfaces. And a rolling element 3 for rotatably supporting the wheel with respect to the vehicle body.
  • the wheel bearing device 33 in the figure is a fourth-generation type, and the inner member 2 is composed of a hub wheel 2A and an outer ring 15a of a constant velocity joint 15, and these hub wheel 2A and constant velocity joint
  • the raceway surface of each row on the inner member 2 side is formed on the outer race 15a.
  • One wireless sensor unit 4A is provided on the outer member 1 of the wheel bearing device 33.
  • the other wireless sensor unit 4B in FIG. 1 may be installed, for example, on a wheel for detecting tire pressure, separately from the wheel bearing device 33 which may be omitted.
  • the wireless sensor unit 4A has a rotation sensor 6Aa as one sensor constituting the sensor unit 6A.
  • This rotation sensor 6Aa is composed of a noise ring 17 and a magnetic sensor 18 mounted opposite thereto.
  • the pulsar ring 17 has a periodic change in the circumferential direction, such as a magnet magnetized into multiple poles in which magnetic poles are arranged in the circumferential direction, or a magnetic ring provided with a gear-like unevenness.
  • a magnetic sensor 18 detects a periodic magnetic change in the circumferential direction of the pulsar ring 17 and detects a relative rotation between the inner member 2 and the outer member 1. And outputs a rotation signal.
  • This rotation signal is transmitted by digitally converting periodic data of a force pulse which is a pulse train.
  • the magnetic sensor 18 is a magnetic field sensor, and may use an active magnetic sensor such as a Hall element type sensor, a flux gate type magnetic sensor, or an Ml sensor in addition to the magnetoresistive element type sensor.
  • the magnetic sensor 18 detects the rotation direction by arranging two force points where the phase is separated by approximately 90 ° with respect to the period of the magnetic change in the circumferential direction of the pulsar ring 17, and transmits the rotation direction data in addition to the cycle data. You may.
  • the wireless sensor unit 4A is a unit in which the circuit box section 24 and the sensor installation section 23 are integrated, and the circuit box section 24 is installed on the outer surface of the outer member 1.
  • the sensor installation part 23 faces the inner space of the bearing through a radial hole provided in the outer member 1.
  • a communication function section composed of the power receiving section 8A and the sensor signal transmitting section 9A of FIG. 1, the digitizing means 7, and the power supply circuit 10 are provided.
  • Sensor 18 is installed.
  • a sensor 22 for detecting information other than rotation is installed as another sensor constituting the sensor section 6A.
  • the sensor 22 is, for example, a temperature sensor, a vibration sensor, a load sensor, a preload sensor, or the like.
  • the sensor signal receiver 5 is mounted on the vehicle body side. For example, it is installed in the tire house of the vehicle body.
  • the sensor signal received by the sensor signal receiver 5 is sent to an electric control unit (ECU) provided on the vehicle body for controlling the entire vehicle, and is used for various controls and abnormality monitoring.
  • ECU electric control unit
  • the rotation sensor 6Aa detects rotation with the pulsar ring 17 and the magnetic sensor 18 and supplies power wirelessly, so rotation can be detected up to O-speed, and it is used for anti-lock brake systems, traction control, etc. And control of automobiles can be advanced. By detecting the rotation direction, it can be used for hill hold control, for example, control corresponding to detection of backward movement during upward movement and vice versa.
  • the bearing By performing detection other than rotation, such as a load sensor or a temperature sensor, using another sensor 22, the bearing can be made intelligent, and can be used for bearing failure diagnosis and various automobile controls.
  • the wheel bearing device 33 when the present invention is applied to the wheel bearing device 33, the wheel bearing device 33 In addition, by using sensor signals wirelessly and wirelessly, it is possible to perform highly reliable vehicle control by digitally converting sensor signals while eliminating the harness between the wheels and the vehicle body.
  • FIG. 6 shows an example in which the wireless sensor system of the first embodiment is applied to another type of wheel bearing device 33.
  • the wheel bearing device 33 is of the third generation type.
  • the inner member 2 is composed of a hub wheel 2A and an inner ring 2B fitted to the outer periphery of one end of the hub wheel 2A.
  • the track surface of each row on the inner member 2 side is formed on the outer periphery of the inner member 2.
  • the constant velocity joint 15 has a shaft portion provided on the outer ring 15a inserted through the hub wheel 2A and connected to the hub wheel 2A with a nut.
  • the wireless sensor unit 4A is attached to an end of the outer member 1.
  • the sensor section 6A of the wireless sensor unit 4A includes a rotation sensor 6Aa, and has a sepulsor ring 17 attached to the inner member 2, and a magnetic sensor 18 provided to face the pulsar ring 17.
  • the pulsaring 17 also has a multi-pole magnet.
  • the pulsar ring 17 is provided on a component of a seal that seals a bearing space between the outer member 1 and the inner member 2.
  • a magnetoresistive sensor, a Hall element sensor, or the like is used as the magnetic sensor 18, a magnetoresistive sensor, a Hall element sensor, or the like is used. Other configurations are the same as those in the example shown in FIG.
  • FIG. 7 shows an example in which the wireless sensor system according to the first embodiment is applied to a wheel bearing device 33 of still another type.
  • the wheel bearing device 33 is for a third generation type driven wheel.
  • the wireless sensor unit 4A is attached to a cover 25 that covers the bearing end.
  • the wireless sensor unit 4A includes, as a sensor unit 6A, a rotation sensor 6Aa that also acts as a pulser ring 17 and a magnetic sensor 18.
  • the tip of the sensor section 6A having the magnetic sensor 18 is inserted into a hole provided in the cover 25, and the circuit box 24 is installed on the outer surface of the cover 25.
  • Other configurations in this embodiment are the same as those in the example shown in FIG.
  • the inner ring 2B is connected to the hub wheel 2A by a squeezing portion 100 formed by pressing the end of the hub wheel 2A.
  • FIG. 8 shows a wireless sensor system according to a second embodiment of the present invention.
  • the wireless sensor system according to the second embodiment does not include the digital camera 7 according to the first embodiment.
  • the drive power transmitted wirelessly is used.
  • a power supply unit 20 including power receiving units 8A and 8B for receiving power is provided.
  • Other configurations are the same as those of the first embodiment.
  • the power supply unit 20 is a means for feeding the received power of the power receiving units 8A and 8B to the sensor units 6A and 6B and the sensor signal transmitting units 9A and 9B, and stores excess power among the received power.
  • Power storage means 27 and charging circuit 21 for charging power storage means 27 are provided.
  • Power storage means 27 is a capacitor or a secondary battery. When a capacitor is used, a capacitor capable of storing a large amount of power that can compensate for the instability of wireless power supply is preferable.
  • the power receiving units 8A and 8B include a tuning circuit, a detection rectifier circuit, and the like when wireless power feeding is performed by electromagnetic waves.
  • the power storage unit 27 for storing the received power of the power receiving units 8A and 8B since the power storage unit 27 for storing the received power of the power receiving units 8A and 8B is provided, the power is received by the power receiving units 8A and 8B during normal times, that is, when the wireless power supply is stabilized.
  • the power stored in the power storage means 7 is used for driving the sensor units 6A and 6B and the sensor signal transmission units 9A and 9B. Therefore, it is not necessary to constantly transmit a large amount of power from the power supply transmission unit 12 in preparation for unstable wireless power supply, and the power consumption of the wireless sensor system can be reduced.
  • a common sensor signal receiver 5 supplies wireless power and receives wireless sensor signals to a plurality of wireless sensor units 4A and 4B, the entire wireless sensor system has a simple configuration. .
  • the sensor units 6A and 6B improve the intelligence of the bearings 51 and 52, while simplifying the wiring system by making the sensor signals and power supply wireless, and using capacitors, secondary batteries, etc.
  • the power storage means 27 By providing the power storage means 27, a stable power source can be secured. This eliminates the need to constantly transmit high power in the event of a wireless power supply failure, thus reducing the power consumption of the wireless sensor system.
  • the wireless sensor system of the second embodiment can be applied to the above-described wheel bearing of FIG. 5 to provide a wheel sensor device with a wireless sensor.
  • the power storage means 27 is provided as shown in FIG. Power can be stably supplied to the sensor unit 6A and the sensor signal transmission unit 9A, and control can be stabilized, and the power consumption of wireless power supply can be reduced. That is, it is not necessary to constantly transmit a large amount of power in preparation for instability of wireless power supply, and the power consumption of the wireless sensor system can be reduced. This leads to improved fuel efficiency.
  • the wireless sensor system of the second embodiment can be applied to the above-described wheel bearing of FIGS. 6 and 7 to obtain a wheel bearing device with a wireless sensor.
  • the present invention can be applied to wireless detection of a bearing of each part and a detection target of other parts in various industrial machines, machine tools, transport machines, and the like, in addition to the wheel bearing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

 外乱ノイズの影響を受け難くてセンサ信号の信頼性が向上し、かつ電源系を含めて軽量,コンパクトな構成とでき、また何時でも通信が可能なワイヤレスセンサシステムと、これを備えた軽量,コンパクトな構成のワイヤレスセンサ付軸受装置とを提供する。このワイヤレスセンサシステムは、ワイヤレスセンサユニット4A,4Bとセンサ信号受信機5とを備える。ワイヤレスセンサユニット4A,4Bは、検出対象を検出するセンサ部6A,6Bと、そのセンサ信号をディジタル化するディジタル化手段7と、センサ信号送信部9A,9Bとをそれぞれ有する。

Description

明 細 書
ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
技術分野
[0001] この発明は、各種のセンサ信号、例えば各種機械設備や、自動車における車輪用 軸受装置に設けられた回転数等の検出信号をワイヤレスで送信するようにしたワイヤ レスセンサシステム、および同システムを用いた車輪用軸受装置等のワイヤレスセン サ付軸受装置に関する。
背景技術
[0002] 自動車や、各種産業機械等において、種々のセンサを設けることで、軸受ゃ他の 各部の回転速度、温度、振動等の各種の検出対象を検出し、機器の制御や状態管 理等に用いられている。このようなセンサの出力は、一般的には有線で検出信号を 送信するが、適切な配線場所が得難い場合がある。そのような場合に、検出信号を 電磁波で送信するようにしたワイヤレスセンサシステムが用いられて 、る。送信機は、 小型電池を備えたものとされている。
[0003] また、一方で、回転センサにより車輪回転数を検出して車両の制動制御を行う ABS
(Anti-lock Brake System)では、タイヤハウジング内でのセンサ電線の破損による事 故の防止や組立コストの低減を図るために、車輪と車体との間のハーネスを無くし、 回転センサとしてその検出信号を電磁波などとして送信するワイヤレス式のものが提 案されている(特開 2002-151090公報)。この種の回転センサの代表例では、多極 の回転発電機を利用して、自己発電によるセンサ用電力および送信機用電力の供 給と回転数検出を同時に行うことで、車体力 回転センサへ電力供給を行うことなぐ コンパクトに構成されて ヽる(特開 2002— 55113公報)。
[0004] また、特開 2003— 146196公報はワイヤレス送信する回転センサ付き車輪用軸受 において、自己診断回路を設けた発明であり、センサおよび無線送信機の電力供給 力 回転センサを兼ねた発電機で行われることを前提としている力 ワイヤレス給電を 行うことにつ 、ても触れられて 、る。
特開 2003— 58976公報にはセンサ信号をディジタルィ匕して送信することが提案さ れている。電源としては、電池または発電機が用いられる。
[0005] 上記の電池を電源としたワイヤレスセンサシステムでは、電池に寿命があり、消耗に 応じて電池交換の必要があって、電池の寿命管理が煩わしい。電池の処分に伴う環 境の問題もある。
上記の自己発電を行う回転センサでは、車輪が回転して初めて発電が行われるた め、 ABSの動作領域である約 lOKmZh以上では安定に動作するものの、停止に近 い超低速では検出が不安定になる場合がある。また、回転検出以外の検出対象、例 えば温度検出等の場合には適用することができない。
また、ワイヤレス給電では、配線による給電や発電機に比べて効率が良くないため 、給電のために大きな電力を送信する必要がある。しかし、給電不良を考慮して常に 大電力を送信し続けるのは、システム全体の消費電力が大きくなつてしまうと 、う問題 点がある。
このように、ワイヤレスセンサシステムでは、その安定した電源の確保が課題となつ ている。
[0006] 一方、ワイヤレスセンサシステムでは、ワイヤレス送信されるセンサ信号が外乱ノィ ズの影響を受け易ぐシステムの信頼性の面で、今一つ不十分である。例えば、特開 2003— 146196号公報に開示のものは、ワイヤレス給電を行うため、常時電源が得 られる力 上記のセンサ信号の外乱の問題がある。また、複数のワイヤレスセンサュ ニットが設けられる場合、各ワイヤレスセンサユニットを識別するために、ワイヤレスセ ンサユニット毎にセンサ信号送信周波数を変え、その周波数に対応した複数の受信 回路を設ける必要があった。ワイヤレス給電用の電磁波は、無変調の電磁波とするこ とが簡単である。しかし、その場合、給電用電磁波とセンサ信号用の電磁波との混信 を避けるために、給電用電磁波とセンサ信号用電磁波とで周波数を異ならせたり、偏 波面を互 、に異ならせる等の処理をする必要がある。
特開 2003— 58976号公報に開示のものは、センサ信号をディジタル化して送信す るため、外乱の影響を受け難くなるという利点が得られるが、電源として電池または発 電機が用いられるため、上記の各例と同様な課題がある。
このように、ワイヤレスセンサシステムでは、その電源の確保、およびセンサ信号の 信頼'性が課題となっている。
発明の開示
[0007] この発明の目的は、外乱ノイズの影響を受け難くてセンサ信号の信頼性が向上し、 かつ電源系を含めて軽量,コンパクトな構成とでき、また何時でも通信が可能なワイ ャレスセンサシステムと、これを備えた軽量,コンパクトな構成のワイヤレスセンサ付軸 受装置とを提供することである。
この発明の他の目的は、ワイヤレス給電が不安定なときでも安定したセンサ出力を 得ることができ、かつ省電力を図ることのできるワイヤレスセンサシステムと、これを備 えた軽量,コンパクトな構成のワイヤレスセンサ付軸受装置とを提供することである。
[0008] この発明の第 1構成に力かるワイヤレスセンサシステムは、検出対象を検出するセ ンサ部(6A, 6B)と、このセンサ部(6A, 6B)の出力するセンサ信号をワイヤレスで送 信するセンサ信号送信部(9A, 9B)と、上記センサ部(6A, 6B)およびセンサ信号 送信部(9A, 9B)を駆動する動作電力をワイヤレスで受信する電力受信部(8A, 8B )をそれぞれ有する 1つまたは複数のワイヤレスセンサユニット(4A, 4B)と、上記セン サ信号送信部(9A, 9B)力 送信されたセンサ信号を受信するセンサ信号受信部( 13)と、上記電力受信部(8A, 8B)へ動作電力をワイヤレスで送信する給電電力送 信部(12)とを備えたワイヤレスセンサシステムにおいて、上記ワイヤレスセンサュ-ッ ト (4A, 4B)に、上記センサ部(6A, 6B)の出力するセンサ信号をディジタルィ匕する ディジタル化手段(7)を設け、上記センサ信号送信部(9A, 9B)はこのディジタルィ匕 されたセンサ信号を送信する。
この構成〖こよると、ディジタルィ匕手段(7)によりセンサ信号をディジタルィ匕して送信 するため、外乱の影響を受け難くなり、システムの信頼性が向上する。また、動作電 力をワイヤレスで受信する電力受信部(8A, 8B)を設けたので、センサ部(6A, 6B) およびセンサ信号送信部(9A, 9B)の電源として一次電池や発電機を設ける必要が なぐワイヤレスセンサユニット (4A, 4B)をコンパクトで軽量に構成できる。電池交換 が不要なため、メンテナンスも容易になる。また、発電機を用いるものと異なり、回転 時に限らず、いつでも検出が可能である。
[0009] 上記第 1構成のワイヤレスセンサシステムにおいて、上記ワイヤレスセンサユニット( 4A, 4B)が複数であり、上記センサ信号受信部(13)は、上記複数のワイヤレスセン サユニット (4A, 4B)より送信される複数のセンサ部(6A, 6B)のセンサ信号の受信 が可能なものであっても良い。
この構成の場合、複数のワイヤレスセンサユニット(4A, 4B)のセンサ信号を一つの センサ信号受信部(13)で受信できるため、ワイヤレスセンサシステムの全体が簡素 な構成となる。
[0010] 上記第 1構成のワイヤレスセンサシステムにおいて、上記給電電力送信部(12)は 、上記センサ信号受信部(13)を有するセンサ信号受信機 (5)に設けられたものであ つて 良い。
給電電力送信部(12)とセンサ信号受信部(13)は、それぞれ別に離れて設けても 良いが、一つのセンサ信号受信機(5)にまとめて設けることで、システムの構成が簡 易なものとなる。
[0011] 上記第 1構成のワイヤレスセンサシステムは、上記ワイヤレスセンサユニット(4A, 4 B)が、上記センサ部(6A, 6B)として複数のセンサ(6a— 6c)を有するものであって も良い。これら複数のセンサ(6a— 6c)は、互いに同種類の検出対象を検出するもの であっても、また異種の検出対象を検出するものであっても良い。
この構成の場合、複数のセンサ(6a— 6c)のセンサ信号を一つのセンサ信号送信 部(9A, 9B)で送信できるため、複数の検出対象の検出を可能としながら、簡単な構 成で済み、コンパクトィヒされる。
[0012] 上記第 1構成のワイヤレスセンサシステムにお 、て、上記センサ部(6A, 6B)を構 成するセンサが、回転センサ、振動センサ、温度センサ、加速度センサ、荷重センサ 、トルクセンサ、および軸受の予圧センサのうちの少なくとも一つであっても良い。 検出対象が回転検出信号、荷重、トルク、加速度等である場合は、例えば軸受を設 置した機器の回転制御やその他の各種の制御が行える。検出対象が温度,振動, 軸受の予圧である場合は、軸受の故障や、状態管理、寿命管理等が行える。
[0013] また、上記第 1構成のワイヤレスセンサシステムにおいて、上記センサ部(6A, 6B) の一つが回転センサを有し、この回転センサが、パルサリング(17)とこのパルサリン グに対畤して設けられた磁気抵抗型の磁気センサ(18)であっても良 、。 磁気抵抗素子型の磁気センサは、抵抗値を大きくすることで、消費電力を小さくす ることができるので、ワイヤレス給電を行うには有利である。
[0014] この場合に、上記回転センサが、パルスを発生する手段であって、上記ディジタル 化手段 (7)でディジタル化された信号が上記パルスの周期を示す信号であっても良 い。
回転センサの出力がパルス列である場合、パルスの周期信号をディジタルィ匕出力 とすることで、センサ信号のディジタル化処理が容易に行える。
[0015] 上記第 1構成において、上記センサ部(6A, 6B)の一つが回転センサである場合 に、その回転センサが、位相の異なる 2つ以上のパルスを発生する手段であっても良 い。その場合、上記ディジタルィ匕手段(7)でディジタルィ匕された信号は、ノ ルスの周 期と回転方向を示す信号であっても良い。
回転方向の検出が行えると、制御の高度化が図れ、また制御可能な種類が増加す る。この場合に、周期信号に回転方向を示す信号を付加することで、少ないビット数 で回転速度と方向との両方を送信することができる。
[0016] 上記第 1構成において、上記のようにワイヤレスセンサユニット (4A, 4B)を複数設 ける場合に、各ワイヤレスセンサユニット (4A, 4B)が、上記センサ信号送信部(9A, 9B)によりセンサ信号に加えて、各々のワイヤレスセンサユニット(4A, 4B)の識別信 号を送信するものとしても良い。
また、ワイヤレスセンサユニット(4A, 4B)力 センサ部(6A, 6B)として複数のセン サを有する場合に、センサ信号に加えて、センサ部(6A, 6B)を構成する各々のセン サの識別番号を送信するものとしても良い。
センサ信号をディジタル化することで、各ワイヤレスセンサユニット (4A, 4B)毎の識 別番号を容易に送信できるようになり、単一周波数の電磁波で複数のワイヤレスセン サユニット (4A, 4B)を識別できるようになるので、システム構成が簡単になる。個々 のワイヤレスセンサユニット(4A, 4B)のセンサ部(6A, 6B)が複数のセンサを持つ 場合に、そのセンサの識別番号を付加するときは、各々のセンサの識別が容易で確 実になる。
[0017] 上記第 1構成のワイヤレスセンサシステムにおいて、上記センサ信号送信部(9A, 9B)は、センサ信号をスペクトラム拡散通信で送信するものであっても良い。
スペクトラム拡散方式で送信する場合は、無変調波の連続波である電力送信用電 磁波との識別が容易となり、システムの信頼性が向上する。また、スペクトラム拡散方 式でセンサ信号を送信することで、センサ信号の送信と給電に同一周波数帯の電磁 波を使用することができ、アンテナ等に同一の高周波部品が使用できて、コスト低下 が図れる。
[0018] 上記第 1構成に力かるワイヤレスセンサシステム付軸受装置は、上記第 1構成のヮ ィャレスセンサシステムにおけるワイヤレスセンサユニット(4A, 4B)を軸受に搭載し たものである。上記軸受は、例えば外方部材、内方部材、およびこれら外内の部材の 間に複数の転動体が介在した転がり軸受である。
この構成の場合、軸受にセンサ部(6A, 6B)、センサ信号送信部(9A, 9B)、およ び電力受信部(8A, 8B)を搭載することで、軸受の知能化を図り、また配線系の簡素 化を図り、軽量,コンパクトな構成としながら、ディジタルィ匕手段 (7)を設けたことで、 外乱の影響を受け難くなり、センサ信号の信頼性が向上する。
[0019] 上記第 1構成のワイヤレスセンサシステム付軸受装置において、上記センサ部(6A , 6B)を構成するセンサの一つ力 軸受の予圧センサであっても良い。この場合、軸 受の予圧が監視できて、軸受寿命等に影響の大き!、予圧の不良への対処が迅速に 行える。
[0020] 上記第 1構成のワイヤレスセンサシステム付軸受装置において、上記転がり軸受が 、複列の軌道面を有する外方部材と、上記軌道面に対向する軌道面を有する内方 部材と、対向する両列の軌道面間に介在した複数の転動体とを備え、車体に対して 車輪を回転自在に支持する車輪用軸受装置であって良い。
この構成の場合、車輪用軸受装置の知能化を図り、また車輪と車体間のハーネス を無くしながら、センサ信号の信頼性の向上による制御の信頼性向上、安全性向上 が図れる。
[0021] この発明の第 2構成に力かるワイヤレスセンサシステムは、検出対象を検出するセ ンサ部(6A, 6B)と、このセンサ部(6A, 6B)が出力するセンサ信号をワイヤレスで送 信するセンサ信号送信部(9A, 9B)と、上記センサ部(6A, 6B)およびセンサ信号 送信部(9A, 9B)を駆動する動作電力をワイヤレスで受信する電力受信部(8A, 8B )とをそれぞれ有する 1つまたは複数のワイヤレスセンサユニット(4A, 4B)と、上記セ ンサ信号送信部(9A, 9B)力 送信されたセンサ信号を受信するセンサ信号受信部 (13)と、上記電力受信部(8A, 8B)へ動作電力をワイヤレスで送信する給電電力送 信部(12)とを備えたワイヤレスセンサシステムであって、上記電力受信部(8A, 8B) の受信電力を蓄える蓄電手段(27)を上記ワイヤレスセンサユニット (4A, 4B)に設け ている。上記蓄電手段(27)としてはキャパシタまたは二次電池を用いる。センサ信号 および動作電力の送受信は、電磁波による他に、磁気結合や、光波、赤外線、超音 波等を用いた送受信であっても良ぐワイヤレスで送受信できれば良 、。
この構成〖こよると、動作電力をワイヤレスで受信する電力受信部(8A, 8B)を設け たので、センサ部(6A, 6B)およびセンサ信号送信部(9A, 9B)の電源として一次電 池や発電機を設ける必要がなぐワイヤレスセンサユニット (4A, 4B)をコンパクトで 軽量に構成できる。電池交換が不要なため、メンテナンスも容易になる。また、電力 受信部(8A, 8B)の受信電力を蓄えるキャパシタまたは二次電池等の蓄電手段(27 )を設けたので、通常時に電力受信部 (8A, 8B)で受信した余剰電力を蓄電手段 (2 7)に蓄えておき、ワイヤレス給電の不安定なときに、そのキャパシタまたは二次電池 に蓄えられている電力をセンサ部(6A, 6B)やセンサ信号送信部(9A, 9B)の駆動 に用いることができる。そのため、ワイヤレス給電の不安定に備えて大電力を常時送 信する必要がなくなり、ワイヤレスセンサシステムの消費電力を少なくすることができる 。蓄電手段(27)としてキャパシタを用いる場合、このようなワイヤレス給電の不安定を 解消できる程度の容量を持つものを用いる。二次電池を用いる場合であっても、ワイ ャレス給電の不安定を補える程度の蓄電容量のもので足りるため、一次電池を用い る場合よりも小型,軽量のもので済み、また電池交換も不要である。
上記第 2構成に力かるワイヤレスセンサ付軸受装置は、上記第 2構成のワイヤレス センサシステムを、内方部材、外方部材、およびこれら内外の部材の間に介在した複 数の転動体を有する転がり軸受に搭載したワイヤレスセンサ付き軸受装置であって、 上記電力受信部(8A, 8B)の受信電力を蓄えるキャパシタまたは二次電池等の蓄電 手段(27)を上記転がり軸受に設けている。 この構成の場合、軸受にセンサ部(6A, 6B)、センサ信号送信部(9A, 9B)、およ び電力受信部(8A, 8B)を搭載することで、軸受の知能化を図り、また配線系の簡素 化を図り、軽量,コンパクトな構成としながら、上記キャパシタまたは二次電池等の蓄 電手段(27)を設けたことで、安定した電源が確保でき、ワイヤレス給電の電力消費 を少なくできる。
[0023] 上記第 2構成のワイヤレスセンサ付軸受装置にぉ 、て、上記センサが、検出対象と して、転がり軸受の回転、温度、振動、加速度、荷重、トルク、および軸受予圧のうち の少なく 1種の検出対象を検出するものとしても良い。
検出対象が回転検出信号、加速度、荷重、トルク等である場合は、軸受を設置した 機器の回転制御やその他の各種の制御が行える。検出対象が温度,振動,軸受の 予圧である場合は、軸受の故障や、状態管理、寿命管理等が行える。
[0024] また、上記第 2構成のワイヤレスセンサ付軸受装置において、上記転がり軸受が、 複列の軌道面を有する外方部材と、上記軌道面に対向する軌道面を有する内方部 材と、対向する両列の軌道面間に介在した複数の転動体とを備え、車体に対して車 輪を回転自在に支持する車輪用軸受装置であって良い。
この構成の場合、車輪用軸受装置の知能化を図り、また車輪と車体間のハーネス を無くしながら、センサ部(6A, 6B)やセンサ信号送信部(9A, 9B)に安定して給電 できて、制御の安定が図れ、し力もワイヤレス給電の消費電力が少なくて済む。 図面の簡単な説明
[0025] この発明は、添付の図面を参考にした以下の好適な実施形態の説明から明瞭に理 解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のた めのものであり、この発明の範囲を定めるために利用されるべきものではない。この発 明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面にお ける同一の部品番号は同一部分を示す。
[図 1]この発明の第 1実施形態に力かるワイヤレスセンサシステムの概念構成を示す ブロック図である。
[図 2]そのディジタルィ匕手段の内部構成例のブロック図である。
[図 3] (A)は同ワイヤレスセンサシステムにおけるセンサ部の回転センサの例の説明 図、(B)はその出力パルスの波形図、(C)はディジタルィ匕手段の変形例となる内部 構成例のブロック図である。
[図 4]同ワイヤレスセンサシステムを適用した軸受装置の例を示す縦断面図である。
[図 5]同ワイヤレスセンサシステムを適用した車輪用軸受装置の一例を示す縦断面図 である。
[図 6]同ワイヤレスセンサシステムを適用した車輪用軸受装置の他の例を示す縦断面 図である。
[図 7]同ワイヤレスセンサシステムを適用した車輪用軸受装置のさらに他の例を示す 断面図である。
[図 8]この発明の第 2実施形態に力かるワイヤレスセンサシステムの概念構成を示す ブロック図である。 発明を実施するための最良の形態
[0026] この発明の第 1実施形態に力かるワイヤレスセンサシステムを図 1と共に説明する。
このワイヤレスセンサシステムは、複数のワイヤレスセンサユニット 4A, 4Bと、これら 複数のワイヤレスセンサユニット 4A, 4Bに対してワイヤレスで電力を供給しかつ各セ ンサ信号を受信するセンサ信号受信機 5とを備える。ワイヤレスセンサユニットの個数 は特に制限がなぐ 1個であっても、 3個以上であっても良いが、図 1は 2個の場合を 示している。
[0027] 各ワイヤレスセンサユニット 4A, 4Bは、それぞれ検出対象を検出するセンサ部 6A , 6Bと、このセンサ部 6A, 6Bが出力するセンサ信号をディジタル信号に変換するデ イジタルィ匕手段 7と、そのディジタルィ匕されたセンサ信号をワイヤレスで送信するセン サ信号送信部 9A, 9Bと、ワイヤレスで送信された駆動電力を受信する電力受信部 8 A, 8Bと、電源回路 10とを備える。
[0028] センサ部 6A, 6Bは、それぞれ一つのセンサからなるものであっても、また複数のセ ンサを有するものであっても良い。センサ部 6A, 6Bを構成するセンサは、例えば回 転センサ、加速度センサ、温度センサ、振動センサ、荷重センサ、トルクセンサ、軸受 の予圧を検出する予圧センサ等である。
[0029] 電源回路 10は、電力受信部 8A, 8Bで受信した電力をセンサ部 6A, 6B,ディジタ ル化手段 7、およびセンサ信号送信部 9A, 9Bに給電する回路である。電源回路 10 は、受信電力を蓄えるキャパシタ、 2次電池、およびそれらの充電回路 (いずれも図 示せず)を有して 、ても良 、。
[0030] センサ信号受信機 5は、各ワイヤレスセンサユニット 4A, 4Bのセンサ信号送信部 9 A, 9B力も送信されたセンサ信号を受信するセンサ信号受信部 13と、ワイヤレスセン サユニット 4A, 4Bの電力受信部 8A, 8Bへ動作電力をワイヤレスで送信する給電電 力送信部 12とを備えている。
センサ信号送信部 9A, 9Bとセンサ信号受信部 13間、および給電電力送信部 12と 動作電力受信部 8A, 8B間の送受は、電磁波により行うものであっても、また光波、 赤外線、超音波によるもの、あるいは磁気結合により行うものであっても良い。
給電電力送信部 12は、例えば無変調波の連続波である電磁波とされる。電力受信 部 8A, 8Bは、ワイヤレス給電を電磁波で行うものである場合、同調回路と、検波整 流回路等により構成される。
ワイヤレス送信するセンサ信号と給電電力の周波数は、例えば互いに異なる周波 数とされ、複数設けられる各センサ信号も、互いに異なる周波数とされる。ここでは、 給電電力の周波数を flとし、各センサ信号の周波数を f2 , f3としている。センサ信 号と給電電力の周波数は、同じ周波数としても良ぐその場合、後述のようにセンサ 信号をスペクトラム拡散通信で送信するものとする。
[0031] ディジタルィ匕手段 7は、例えば図 2のようにデータ切替器 7a,データ変換部 7b、お よび信号処理部 7cを有するものとされる。データ切替器 7aは、センサ部 6A(6B)に 複数のセンサ 6a, 6b, 6cを有する場合に設けられ、各センサ 6a, 6b, 6cから入力す るデータを切り換えてデータ変換部 7bに伝える。同図の例において、複数設けたら れた各センサ 6a— 6cは、それぞれ回転センサ、温度センサ、および振動センサとさ れている。データ切替器 7aによる切替えは、例えばタイマにより定期的に切替えるも のとされ、または適宜の切替指令に応答して切替えるものとされる。
データ変換部 7bは、入力されたアナログ信号をディジタル信号に変換する。
[0032] 信号処理部 7cは、共通のセンサ信号受信部 13 (図 1)に対して複数のワイヤレスセ ンサユニット 4A, 4Bを設ける場合に、ワイヤレスセンサユニット 4A, 4B毎の識別番 号を付加する。ワイヤレスセンサユニットが一つの場合は、識別番号は不要である。 また、信号処理部 7cは、同じワイヤレスセンサユニット 4A, 4B内のセンサ部 6A, 6B に複数のセンサ 6a— 6cを有する場合に、各センサ 6a— 6cを識別する識別番号を付 加する。これらワイヤレスセンサユニット識別番号およびセンサ識別番号は、送信す るセンサ信号に付加する。信号処理部 7cは、さらに、誤り訂正符号などの冗長ビット を付加するものとしても良い。
[0033] このディジタルィ匕手段 7でディジタル化された信号を、センサ信号送信部 9A, 9Bか ら、所定の周波数 fl, f 2の電磁波等でワイヤレス送信する。この送信は、上記のよう に電磁波による他に、光波、赤外線、超音波、または磁気結合によって行うものとし ても良い。
[0034] センサ信号送信部 9A, 9Bによる送信は、例えばスペクトラム拡散通信で行う。その 方式として、周波数ホッピング方式、直接拡散方式等が使用される。
センサ信号送信部 9A, 9Bは、時分割で各ワイヤレスセンサユニット 4A, 4B毎に順 番に送信するものとしても良い。また、センサ信号受信機 5に設けられた通信要求送 信部(図示せず)力 ワイヤレスセンサユニット 4A, 4Bにデータ通信の要求指令を出 し、指令を受けたワイヤレスセンサユニット 4A, 4Bがセンサ信号を送信するものとし ても良い。このように時分割や要求指令による場合、各ワイヤレスセンサユニット 4A, 4Bから送信する周波数が同じであっても、混信することなく通信を行うことができる。 また、各ワイヤレスセンサユニット 4A, 4Bが上記の識別番号を付加して送信するもの であると、複数のワイヤレスセンサユニット 4A, 4Bの信号を識別することができる。
[0035] スペクトラム拡散通信は、外乱や干渉に強いので、無変調波の連続波である電力 送信用電磁波と同じ周波数帯の電波を使用しても、十分な信頼性を確保することが できる。同一周波数帯の電磁波を使用することで、電力受信部 8A, 8Bとセンサ信号 送信部 9A, 9Bとで、アンテナ等の部品につき、同一の高周波部品が使用できるの で、部品コストを下げることができる。
[0036] また、各ワイヤレスセンサユニット 4A, 4Bにセンサ信号送信用電磁波の周波数を 決め、センサ信号受信機 5のセンサ信号受信部 13が、各ワイヤレスセンサユニット 4 A, 4Bの固有周波数に対応した個別受信部(図示せず)を有するものとしても良い。 [0037] センサ信号送信部 9A, 9Bは、センサ信号の送信を、搬送波に ASK (Amplitude Shift Keying)や、 FSK (Frequency Shift Keying) 、 PSK (Phase Shift Keying)、また は QPSK (Quadrature PSK)等のディジタル変調をかけて行うものとしても良い。
[0038] この構成のワイヤレスセンサシステムによると、各ワイヤレスセンサユニット 4A, 4B は、動作電力がワイヤレスで供給されるので、センサ部 6A, 6Bやセンサ信号送信部 9A, 9Bの電源として一次電池や発電機を設ける必要がなぐワイヤレスセンサュ- ット 4A, 4Bをコンパクトで軽量に構成できる。電池交換が不要なため、メンテナンスも 容易になる。また、発電と異なり、常時、通信が可能になる。
また、ディジタルィ匕手段 7によりセンサ信号をディジタルィ匕して送信するため、外乱 の影響を受け難くなり、システムの信頼性が向上する。センサ信号をディジタル化す ることで、各ワイヤレスセンサユニット 4A, 4B毎の識別番号を容易に送信できるよう になり、単一周波数の電磁波で複数のワイヤレスセンサユニット 4A, 4Bを識別できる ようになるので、システム構成が簡単になる。個々のワイヤレスセンサユニット 4A, 4B のセンサ部 6が複数のセンサ 6a— 6cを持つ場合に、そのセンサ 6a— 6cの識別番号 を付加するときは、センサ 6a— 6cの識別も容易になる。
ディジタル化されたセンサ信号を、スペクトラム拡散方式で送信する場合は、無変 調波の連続波である電力送信用電磁波との識別が容易となり、システムの信頼性が 向上する。また、スペクトラム拡散方式でセンサ信号を送信することで、センサ信号の 送信と給電に同一周波数帯の電波を使用することができ、部品の共通化によりコスト 低下が図れる。
[0039] つぎに、第 1実施形態のワイヤレスセンサシステムを適用したワイヤレスセンサ付軸 受装置の一例を図 4と共に説明する。複数の軸受 51, 52にワイヤレスセンサユニット 4A, 4Bがそれぞれ搭載されており、 1つのセンサ信号受信機 5が、各ワイヤレスセン サユニット 4A, 4Bにワイヤレスで給電およびセンサ信号の受信を行う。上記複数の 転がり軸受 51, 52は、機械設備 53の各部に設置されたものである。機械設備 53は 、例えばローラコンペャまたはベルトコンペャ等のコンペャラインであって、搬送ロー ラまたはベルト駆動ローラ等の軸となる回転軸 59が、上記軸受 51, 52によって回転 自在に支持されている。軸受 51, 52は、転がり軸受であって、内輪 54,外輪 55との 間に転動体 56を介在させ、シール 58を設けたものである。各転動体 56は、保持器 5 7に保持されている。上記内輪 54および外輪 55は、それぞれ請求項で言う内方部材 および外方部材となる。センサ信号受信機 5は、軸受 51, 52と離れた所に設置され る。
[0040] 各軸受 51, 52に設置されたワイヤレスセンサユニット 4A, 4Bのうちの一つのワイヤ レスセンサユニット 4Aのセンサ部 6Aは回転センサとされ、他の軸受 52に設置された ワイヤレスセンサユニット 4Bのセンサ部 6Bは、回転以外の検出対象を検出するセン サ、例えば、温度センサ、振動センサ、加速度センサ、荷重センサ、トルクセンサ、軸 受の予圧センサ等である。これらのセンサを取付けて軸受 51, 52の状態を検出する ことで、軸受 51, 52の故障診断や工場ライン監視等に使用することができる。
[0041] 各ワイヤレスセンサユニット 4A, 4Bは識別番号が付されていて、その識別番号を 付加して送信する。各ワイヤレスセンサユニット 4A, 4Bのセンサ部 6A, 6Bに複数の センサを有する場合は、その各センサの識別番号を付加してセンサ信号を送信する ようにする。
[0042] 回転センサとなるセンサ部 6Aは、パルサリング 17と、それに対向して取付けられて いる磁気センサ 18とで構成される。パルサリング 17は、円周方向に磁極が並ぶ多極 に着磁された磁石、またはギヤ一状の凹凸を施した磁性体リングなど、周方向に周 期的な変化を有するものである。磁気センサ 18が、パルサリング 17の周方向の周期 的な磁気的変化を検出して、内輪 54と外輪 55の相対回転を検出し、回転信号を出 力する。この回転信号はパルス列である力 パルス列の周期データをディジタル化手 段 7 (図 1)でディジタルィ匕して送信する。磁気センサ 18は磁界センサであり、磁気抵 抗素子型センサ(「MRセンサ」と呼ばれる)以外に、ホール素子型センサ、フラックス ゲート型磁気センサ、 Mlセンサ等のアクティブ磁気センサを使用することができる。
[0043] 磁気センサ 18は、例えば図 3 (A)に示すようにパルサリング 17の周方向の磁気的 変化の周期に対して位相が略 90° 離れたところに 2力所配置して回転方向を検出し 、周期データ以外に回転方向データを送信するようにしても良い。この場合、同図(B )のように位相が略 90° ずれた 2つのパルス列 (A相, B相)の回転信号力 各磁気セ ンサ 18, 18からそれぞれ出力される。回転方向の検出は、例えば図 3 (C)に示すよう に、ディジタルィ匕手段 7に設けられた回転方向検出部 7dにより、上記 2つのパルス列 の回転信号を比較して行われる。上記パルス列からその周期 Tのデータを得る処理 は、例えばデータ変換部 7bにより行うようにする。この周期データに、上記回転方向 データを信号処理部 7cで纏める処理を行う。
[0044] 上記磁気センサ 18は、磁気抵抗素子型のものであることが好ましい。磁気抵抗素 子型磁気センサは、抵抗値を大きくすることで、消費電力を小さくすることができるの で、ワイヤレス給電を行うには有利である。
[0045] このワイヤレスセンサ付軸受装置によると、センサ部 6A, 6Bによって、軸受 51, 52 の知能化を図り、またセンサ信号および給電のワイヤレス化によって配線系の簡素化 を図れる。また、センサ信号をディジタルィ匕して送信するため、外乱の影響を受け難 くなり、システムの信頼性が向上する。
[0046] 図 5は、第 1実施形態のワイヤレスセンサシステムを自動車の車輪用軸受装置に適 用した実施形態を示す。この車輪用軸受装置 33は、複列の軌道面を有する外方部 材 1と、上記軌道面に対向する軌道面を有する内方部材 2と、対向する両列の軌道 面間に介在した複数の転動体 3とを備え、車体に対して車輪を回転自在に支持する ものである。同図の車輪用軸受装置 33は第 4世代型のものであり、内方部材 2は、ハ ブ輪 2Aと等速ジョイント 15の外輪 15aとで構成され、これらハブ輪 2Aおよび等速ジョ イント外輪 15aに、内方部材 2側の各列の軌道面が形成されている。
[0047] この車輪用軸受装置 33の外方部材 1に、一つのワイヤレスセンサユニット 4Aが設 置されている。図 1における他のワイヤレスセンサユニット 4Bは、省略されても良ぐま た車輪用軸受装置 33とは別に、例えば、車輪にタイヤ空気圧検出用として設置して も良い。
ワイヤレスセンサユニット 4Aは、センサ部 6Aを構成する一つのセンサとして回転セ ンサ 6Aaを有している。この回転センサ 6Aaは、ノ レサリング 17と、それに対向して 取付けられている磁気センサ 18とで構成される。パルサリング 17は、円周方向に磁 極が並ぶ多極に磁ィ匕された磁石、またはギヤ一状の凹凸を施した磁性体リングなど 、周方向に周期的な変化を有するものである。磁気センサ 18が、パルサリング 17の 周方向の周期的な磁気的変化を検出して、内方部材 2と外方部材 1の相対回転を検 出し、回転信号を出力する。この回転信号はパルス列である力 パルスの周期データ をディジタルィ匕して送信する。磁気センサ 18は磁界センサであり、磁気抵抗素子型 センサ以外に、ホール素子型センサ、フラックスゲート型磁気センサ、 Mlセンサ等の アクティブ磁気センサを使用することができる。磁気センサ 18は、パルサリング 17の 周方向の磁気的変化の周期に対して位相が略 90° 離れたところに 2力所配置して回 転方向を検出し、周期データ以外に回転方向データを送信しても良い。
[0048] ワイヤレスセンサユニット 4Aは、回路ボックス部 24とセンサ設置部 23とが一体化さ れてユニットとなったものであり、回路ボックス部 24は外方部材 1の外面に設置されて いる。センサ設置部 23は、外方部材 1に設けられた径方向の孔を通って軸受内空間 に臨んでいる。回路ボックス部 24内に、図 1の電力受信部 8Aやセンサ信号送信部 9 Aで構成される通信機能部、ディジタル化手段 7、および電源回路 10が設けられ、セ ンサ設置部 23に上記磁気センサ 18が設置されている。センサ設置部 23には、上記 センサ部 6Aを構成する他のセンサとして、回転以外の別の情報を検出するセンサ 2 2が設置されている。このセンサ 22は、例えば温度センサ、振動センサ、荷重センサ 、予圧センサ等である。
[0049] センサ信号受信機 5は、車体側に取付けられる。例えば車体のタイヤハウス内等に 取付けられる。センサ信号受信機 5で受信したセンサ信号は、車体に設けられた車 両全体を制御する電気制御ユニット (ECU)に送られ、各種制御や異常監視などに 使用される。
回転センサ 6Aaは、パルサリング 17と磁気センサ 18とで回転を検出し、ワイヤレス で給電しているので、 O速まで回転を検出することができ、アンチロックブレーキシス テムやトラクシヨンコントロール等に使用することができ、自動車制御の高度化を図る ことができる。回転方向を検出することで、ヒルホールドコントロール、例えば上り動作 時の後退検出やその逆の検出に対応する制御等に使用することができる。
他のセンサ 22により、荷重センサや温度センサなど、回転以外の検出も行うことで、 軸受のインテリジェント化ができ、軸受の故障診断や各種自動車制御に使用すること ができる。
[0050] このように、このように車輪用軸受装置 33に適用した場合は、車輪用軸受装置 33 の知能化を図り、またセンサ信号のワイヤレス送信とワイヤレス給電の併用により、車 輪と車体間のハーネスを無くしながら、センサ信号のディジタルィ匕によって信頼性の 高い自動車制御が行える。
[0051] 図 6は、第 1実施形態のワイヤレスセンサシステムを他の形式の車輪用軸受装置 33 に適用した例を示す。この車輪用軸受装置 33は、第 3世代型のものであり、内方部 材 2が、ハブ輪 2Aと、その一端の外周に嵌合した内輪 2Bとで構成され、ハブ輪 2A および内輪 2Bの外周に、内方部材 2側の各列の軌道面が形成されている。等速ジョ イント 15は、その外輪 15aに設けられた軸部がハブ輪 2A内に挿通され、ハブ輪 2A にナットで結合されている。
ワイヤレスセンサユニット 4Aは、外方部材 1の端部に取付けられている。ワイヤレス センサユニット 4Aのセンサ部 6Aは、回転センサ 6Aaで構成され、内方部材 2に取付 けられたセパルサリング 17と、このパルサリング 17に対向して設けられた磁気センサ 18を有する。パルサリング 17は、多極の磁石等力もなる。パルサリング 17は、外方部 材 1と内方部材 2の間の軸受空間を密封するシールの構成部品に設けられている。 磁気センサ 18は、磁気抵抗型センサまたはホール素子型センサ等が用いられる。そ の他の構成は図 3に示す例と同様である。
[0052] 図 7は、第 1実施形態のワイヤレスセンサシステムをさらに他の形式の車輪用軸受 装置 33に適用した例を示す。この車輪用軸受装置 33は、第 3世代型の従動輪用の ものである。この例では、軸受端部を覆うカバー 25に、ワイヤレスセンサユニット 4Aが 取付けられている。ワイヤレスセンサユニット 4Aは、センサ部 6Aとして、パルサリング 17と磁気センサ 18と力もなる回転センサ 6Aaを有して 、る。カバー 25に設けられた 孔に磁気センサ 18を有するセンサ部 6Aの先端が挿入され、回路ボックス 24がカバ 一 25の外面に設置されている。この実施形態における他の構成は、図 6に示す例と 同様である。なお、内輪 2Bはハブ輪 2Aの端部を力しめて形成された力しめ部 100 により、ハブ輪 2Aと結合されている。
[0053] 図 8は、この発明の第 2実施形態に力かるワイヤレスセンサシステムである。第 2実 施形態のワイヤレスセンサシステムは、第 1実施形態のディジタルィ匕手段 7を備えて いない。また、第 1実施形態の電源回路 10に代えて、ワイヤレスで送信された駆動電 力を受信する電力受信部 8A, 8Bを含めた電源部 20を備えている。その他の構成は 第 1実施形態と同一である。
[0054] 電源部 20は、電力受信部 8A, 8Bの受信電力をセンサ部 6A, 6Bおよびセンサ信 号送信部 9A, 9Bに給電する手段であって、受信した電力のうち、余剰電力を蓄える 蓄電手段 27と、蓄電手段 27に充電する充電回路 21とを有する。蓄電手段 27は、キ ャパシタまたは二次電池とされる。キャパシタを用いる場合、ワイヤレス給電の不安定 を補える程度の大電力を蓄電可能なものが好ましい。電力受信部 8A, 8Bは、ワイヤ レス給電を電磁波で行うものである場合、同調回路と、検波整流回路等により構成さ れる。
[0055] この構成のワイヤレスセンサシステムによると、電力受信部 8A, 8Bの受信電力を蓄 える蓄電手段 27を設けたので、通常時、つまりワイヤレス給電の安定時に電力受信 部 8A, 8Bで受信した余剰電力が蓄電手段 27に蓄えられ、ワイヤレス給電の不安定 なときに、蓄電手段 7に蓄えられている電力がセンサ部 6A, 6Bやセンサ信号送信部 9A, 9Bの駆動に用いられる。そのため、ワイヤレス給電の不安定に備えて給電電力 送信部 12から大電力を常時送信する必要がなくなり、ワイヤレスセンサシステムの消 費電力を少なくすることができる。また、複数のワイヤレスセンサユニット 4A, 4Bに対 して共通のセンサ信号受信機 5からワイヤレスの電力供給とワイヤレスセンサ信号の 受信とを行うようにしたため、ワイヤレスセンサシステムの全体が簡素な構成となる。
[0056] 第 2実施形態のワイヤレスセンサシステムを上述した図 4の軸受に適用してワイヤレ スセンサ付軸受装置とすることができる。
このワイヤレスセンサ付軸受装置によると、センサ部 6A, 6Bによって、軸受 51, 52 の知能化を図り、またセンサ信号および給電のワイヤレス化によって配線系の簡素化 を図りながら、キャパシタ,二次電池等の蓄電手段 27を設けたことにより、安定した電 源が確保できる。そのため、ワイヤレス給電の不良の場合に備えて大電力を常時送 信する必要がなくなり、ワイヤレスセンサシステムの消費電力を小さくすることができる
[0057] また、第 2実施形態のワイヤレスセンサシステムを上述した図 5の車輪用軸受に適 用してワイヤレスセンサ付車輪用軸受装置とすることができる。 このように車輪用軸受装置 33に適用した場合は、車輪用軸受装置 33の知能化を 図り、また車輪と車体間のハーネスを無くしながら、図 8のように蓄電手段 27を設けた ことにより、センサ部 6Aやセンサ信号送信部 9Aに安定して給電できて、制御の安定 が図れ、し力もワイヤレス給電の消費電力が少なくて済む。すなわち、ワイヤレス給電 の不安定に備えて大電力を常時送信する必要が無くなり、ワイヤレスセンサシステム の消費電力を小さくすることができる。このことは、燃費の向上につながる。
[0058] さらに、第 2実施形態のワイヤレスセンサシステムを上述した図 6および図 7の車輪 用軸受に適用してワイヤレスセンサ付車輪用軸受装置とすることができる。
[0059] この発明は、車輪用軸受装置の他、各種産業機械、工作機械、運搬機械等におい て、各部の軸受や、その他の部位の検出対象のワイヤレス検出に適用することができ る。

Claims

請求の範囲
[1] 検出対象を検出するセンサ部と、このセンサ部の出力するセンサ信号をワイヤレス で送信するセンサ信号送信部と、上記センサ部およびセンサ信号送信部を駆動する 動作電力をワイヤレスで受信する電力受信部をそれぞれ有する 1つまたは複数のヮ ィャレスセンサユニットと、上記センサ信号送信部力 送信されたセンサ信号を受信 するセンサ信号受信部と、上記電力受信部へ動作電力をワイヤレスで送信する給電 電力送信部とを備えたワイヤレスセンサシステムであって、上記ワイヤレスセンサュ- ットに、上記センサ部の出力するセンサ信号をディジタルィ匕するディジタルィ匕手段を 設け、上記センサ信号送信部はこのディジタル化されたセンサ信号を送信するワイヤ レスセンサシステム。
[2] 請求項 1において、上記ワイヤレスセンサユニットが複数であり、上記センサ信号受 信部は、上記複数のワイヤレスセンサユニットより送信される複数のセンサ部のセン サ信号の受信が可能なものであるワイヤレスセンサシステム。
[3] 請求項 1にお 、て、上記給電電力送信部は、上記センサ信号受信部を有するセン サ信号受信機に設けられたものであるワイヤレスセンサシステム。
[4] 請求項 1にお 、て、上記ワイヤレスセンサユニットは、上記センサ部を構成する複数 のセンサを有するワイヤレスセンサシステム。
[5] 請求項 1にお 、て、上記センサ部を構成するセンサ力 回転センサ、加速度センサ
、振動センサ、温度センサ、荷重センサ、トルクセンサ、および軸受の予圧センサのう ちの少なくとも一つであるワイヤレスセンサシステム。
[6] 請求項 1において、上記センサ部の一つが回転センサを有し、この回転センサが、 パルサリングとこのパルサリングに対畤して設けられた磁気抵抗型の磁気センサであ るワイヤレスセンサシステム。
[7] 請求項 6において、上記回転センサが、パルスを発生する手段であり、上記ディジ タルィ匕手段でディジタル化された信号が上記パルスの周期を示す信号であるワイヤ レスセンサシステム。
[8] 請求項 6において、上記回転センサが、位相の異なる 2つ以上のパルスを発生する 手段であり、上記ディジタルィ匕手段でディジタルィ匕された信号は、パルスの周期と回 転方向を示す信号であるワイヤレスセンサシステム。
[9] 請求項 2において、各ワイヤレスセンサユニットが、上記センサ信号送信部によりセ ンサ信号に加えて、各々のワイヤレスセンサユニットの識別信号を送信するものとした ワイヤレスセンサシステム。
[10] 請求項 4において、ワイヤレスセンサユニットが、センサ信号に加えて、センサ部を 構成する各々のセンサの識別番号を送信するものとしたワイヤレスセンサシステム。
[11] 請求項 1において、上記センサ信号送信部は、センサ信号をスペクトラム拡散通信 で送信するワイヤレスセンサシステム。
[12] 請求項 1に記載のワイヤレスセンサシステムにおけるワイヤレスセンサユニットを軸 受に搭載したワイヤレスセンサシステム付軸受装置。
[13] 請求項 12において、上記センサ部を構成するセンサの一つが、軸受の予圧センサ であるワイヤレスセンサシステム付軸受装置。
[14] 請求項 12において、上記転がり軸受が、複列の軌道面を有する外方部材と、上記 軌道面に対向する軌道面を有する内方部材と、対向する両列の軌道面間に介在し た複数の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装 置であるワイヤレスセンサ付軸受装置。
[15] 検出対象を検出するセンサ部と、このセンサ部が出力するセンサ信号をワイヤレス で送信するセンサ信号送信部と、上記センサ部およびセンサ信号送信部を駆動する 動作電力をワイヤレスで受信する電力受信部とをそれぞれ有する 1つまたは複数の ワイヤレスセンサユニットと、上記センサ信号送信部力 送信されたセンサ信号を受 信するセンサ信号受信部と、上記電力受信部へ動作電力をワイヤレスで送信する給 電電力送信部とを備えたワイヤレスセンサシステムであって、上記電力受信部の受信 電力を蓄えるキャパシタまたは二次電池等の蓄電手段を上記ワイヤレスセンサュ-ッ トに設けたワイヤレスセンサシステム。
[16] 請求項 15に記載のワイヤレスセンサシステムを、内方部材、外方部材、およびこれ ら内外の部材の間に介在した複数の転動体を有する転がり軸受に搭載したワイヤレ スセンサ付き軸受装置であって、上記電力受信部の受信電力を蓄えるキャパシタま たは二次電池等の蓄電手段を上記転がり軸受に設けたワイヤレスセンサ付軸受装置
[17] 請求項 16において、上記センサが、上記検出対象として、転がり軸受の回転、温 度、振動、加速度、荷重、トルク、軸受予圧のうちの少なく 1種の検出対象を検出する ものであるワイヤレスセンサ付軸受装置。
[18] 請求項 16において、上記転がり軸受が、複列の軌道面を有する外方部材と、上記 軌道面に対向する軌道面を有する内方部材と、対向する両列の軌道面間に介在し た複数の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装 置であるワイヤレスセンサ付軸受装置。
PCT/JP2004/013353 2003-09-19 2004-09-14 ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置 WO2005029436A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/572,308 US7612665B2 (en) 2003-09-19 2004-09-14 Wireless sensor system and bearing assembly having built-in wireless sensor
DE112004001732T DE112004001732T5 (de) 2003-09-19 2004-09-14 Drahtloses Sensorsystem und Lagerbaugruppe mit eingebautem drahtlosen Sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-327700 2003-09-19
JP2003327699A JP2005092704A (ja) 2003-09-19 2003-09-19 ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
JP2003-327699 2003-09-19
JP2003327700A JP2005092705A (ja) 2003-09-19 2003-09-19 ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置

Publications (1)

Publication Number Publication Date
WO2005029436A1 true WO2005029436A1 (ja) 2005-03-31

Family

ID=34380335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013353 WO2005029436A1 (ja) 2003-09-19 2004-09-14 ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置

Country Status (2)

Country Link
DE (1) DE112004001732T5 (ja)
WO (1) WO2005029436A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072712A1 (ja) * 2006-12-15 2008-06-19 National Institute Of Advanced Industrial Science And Technology 無線式センサシステム、生体の健康管理システム
CN103226029A (zh) * 2013-03-20 2013-07-31 杭州休普电子技术有限公司 光能无线传感器
WO2020218004A1 (ja) * 2019-04-24 2020-10-29 Jsr株式会社 データ解析システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016709A1 (de) * 2006-04-08 2007-10-11 Festo Ag & Co. Vorrichtung zur Überwachung und/oder Regelung der Bewegung einer fluidischen Komponente in einem fluidischen System
DE102010020759B4 (de) * 2010-05-17 2018-05-03 Schaeffler Technologies AG & Co. KG Sensierter Wälzkörper
DE102011085415B4 (de) * 2011-10-28 2013-07-18 Aktiebolaget Skf Anordnung zweier rotierender Bauteile
DE102014015129A1 (de) * 2014-10-14 2016-04-14 Wabco Gmbh Verfahren zur Identifikation einer Sensorvorrichtung zur Drehzahlmessung, Sensorvorrichtung zur Drehzahlmessung und Fahrzeug mit wenigstens einer Sensorvorrichtung zur Drehzahlmessung
DE102019125667A1 (de) * 2019-08-08 2021-02-11 Schaeffler Technologies AG & Co. KG Radanordnung für ein Fahrzeug, Fahrzeug mit einer Radanordnung und Verfahren zur Ansteuerung eines Fahrzeugs auf Basis von radbezogenen Daten
DE102021124968A1 (de) 2021-09-27 2023-03-30 INNIRION GmbH Messeinheit und Messsystem

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465800A (ja) * 1990-07-06 1992-03-02 Yamatake Honeywell Co Ltd 流速計
JPH0810232A (ja) * 1994-06-29 1996-01-16 Casio Comput Co Ltd 生体情報処理システム
JPH1010141A (ja) * 1996-04-26 1998-01-16 Toyota Motor Corp 磁気式回転検出装置
JP2002364661A (ja) * 2001-06-11 2002-12-18 Nsk Ltd 軸受の予圧測定方法及びスピンドルユニット
JP2003146196A (ja) * 2001-11-12 2003-05-21 Nsk Ltd 車輪用回転速度検出装置
JP2003151063A (ja) * 2001-11-16 2003-05-23 Honda Motor Co Ltd タイヤ監視システム
JP2003187368A (ja) * 2001-12-14 2003-07-04 Ntn Corp 車両用軸受装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465800A (ja) * 1990-07-06 1992-03-02 Yamatake Honeywell Co Ltd 流速計
JPH0810232A (ja) * 1994-06-29 1996-01-16 Casio Comput Co Ltd 生体情報処理システム
JPH1010141A (ja) * 1996-04-26 1998-01-16 Toyota Motor Corp 磁気式回転検出装置
JP2002364661A (ja) * 2001-06-11 2002-12-18 Nsk Ltd 軸受の予圧測定方法及びスピンドルユニット
JP2003146196A (ja) * 2001-11-12 2003-05-21 Nsk Ltd 車輪用回転速度検出装置
JP2003151063A (ja) * 2001-11-16 2003-05-23 Honda Motor Co Ltd タイヤ監視システム
JP2003187368A (ja) * 2001-12-14 2003-07-04 Ntn Corp 車両用軸受装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072712A1 (ja) * 2006-12-15 2008-06-19 National Institute Of Advanced Industrial Science And Technology 無線式センサシステム、生体の健康管理システム
JP2008152432A (ja) * 2006-12-15 2008-07-03 National Institute Of Advanced Industrial & Technology 無線式センサシステム、生体の健康管理システム
CN103226029A (zh) * 2013-03-20 2013-07-31 杭州休普电子技术有限公司 光能无线传感器
WO2020218004A1 (ja) * 2019-04-24 2020-10-29 Jsr株式会社 データ解析システム

Also Published As

Publication number Publication date
DE112004001732T5 (de) 2006-08-31

Similar Documents

Publication Publication Date Title
US7612665B2 (en) Wireless sensor system and bearing assembly having built-in wireless sensor
US7688216B2 (en) Wireless sensor system and wheel support bearing assembly utilizing the same
JP4963006B2 (ja) ワイヤレスセンサシステムおよびワイヤレスセンサ付車輪用軸受装置
EP1241067B1 (en) Anti-skid braking device with wheel speed detection means in wheel support bearing assembly
EP1342633B1 (en) Rotation detecting device and anti-skid braking system using the same
US20030110860A1 (en) Vehicle mounted bearing assembly
US6892587B2 (en) Rotation detecting device and wheel support bearing assembly utilizing the same
CN100559035C (zh) 带有无线传感器的轴承装置
JP2004127276A (ja) ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
WO2005029436A1 (ja) ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
JP2005078341A (ja) ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
JP2006005978A (ja) ワイヤレスセンサシステムおよびワイヤレスイセンサ付軸受装置
JP2005100164A (ja) ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
JP2006039911A (ja) 外部入力機能付icタグ・ワイヤレスセンサおよび軸受装置
JP2003187368A (ja) 車両用軸受装置
JP2006170625A (ja) 回転センサ付き軸受
JP2005092705A (ja) ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
JP2005084998A (ja) ワイヤレスセンサ付軸受装置
JP2005301645A (ja) ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置
JP2006170626A (ja) 回転センサ付き軸受
JP2007327645A (ja) 車両用軸受装置
JP2003262646A (ja) ワイヤレス回転検出装置および無線スイッチ装置
JP2005304154A (ja) レクテナおよびレクテナ付軸受装置
EP0864450B1 (en) A bearing assembly with an integrated current generator
JP2002264786A (ja) アンチロックブレーキ装置およびその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026968.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007030162

Country of ref document: US

Ref document number: 10572308

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120040017327

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10572308

Country of ref document: US