WO2005028915A1 - フレキシブルフライホイール - Google Patents

フレキシブルフライホイール Download PDF

Info

Publication number
WO2005028915A1
WO2005028915A1 PCT/JP2004/012986 JP2004012986W WO2005028915A1 WO 2005028915 A1 WO2005028915 A1 WO 2005028915A1 JP 2004012986 W JP2004012986 W JP 2004012986W WO 2005028915 A1 WO2005028915 A1 WO 2005028915A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
flywheel
flexible
input
plate
Prior art date
Application number
PCT/JP2004/012986
Other languages
English (en)
French (fr)
Inventor
Kozo Yamamoto
Hiroyoshi Tsuruta
Hiroshi Uehara
Original Assignee
Exedy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003347721A external-priority patent/JP4402934B2/ja
Application filed by Exedy Corporation filed Critical Exedy Corporation
Priority to US10/571,894 priority Critical patent/US20070099710A1/en
Priority to DE112004001721T priority patent/DE112004001721T5/de
Publication of WO2005028915A1 publication Critical patent/WO2005028915A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13142Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by the method of assembly, production or treatment
    • F16F15/1315Multi-part primary or secondary masses, e.g. assembled from pieces of sheet steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/139Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses characterised by friction-damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/129Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13107Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses for damping of axial or radial, i.e. non-torsional vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels

Definitions

  • the present invention relates to a flexible flywheel, and more particularly, to a flexible flywheel in which an inertia member is fixed to a crankshaft by a flexible plate so as to bend in a bending direction.
  • a flywheel is mounted on a crankshaft of an engine in order to absorb vibrations caused by combustion fluctuations of the engine. Further, a clutch device is provided on the transmission side of the flywheel in the axial direction.
  • the clutch device includes a clutch disk assembly connected to an input shaft of a transmission, and a clutch cover assembly for urging a frictional connection portion of the clutch disk assembly to a flywheel.
  • the clutch disk assembly has a damper mechanism for absorbing and attenuating torsional vibration.
  • the damper mechanism has an elastic member such as a coil spring arranged so as to be compressed in the rotational direction.
  • the flywheel is attached to the crankshaft by a flexible plate to absorb bending vibration from the engine.
  • a linked structure is also known (see Patent Document 1 ;;).
  • the flexible plate has high rigidity in the rotational direction to transmit torque, but has low rigidity in the axial and bending directions.
  • the structure in which the flywheel is connected to the crankshaft with a flexible plate is called a flexible flywheel
  • a hub flange that directly engages with the transmission input shaft is fixed to the output side of the damper mechanism, or a second flywheel to which the clutch device is attached is fixed. In the latter case, the torque from the damper mechanism is transmitted to the transmission input shaft through the second flywheel and clutch disc assembly when the clutch is engaged.
  • Patent Document 1 JP 2001-12552 A
  • a flexible flywheel further includes a damper mechanism for transmitting torque from a crankshaft. Damper mechanism. An input-side member to which torque from the crankshaft is input, an output-side member relatively rotatably arranged on the input-side member, and elastically compressed in a rotational direction by the relative rotation of the input-side member and the output-side member. And a member.
  • this damper mechanism When this damper mechanism is engaged with the flywheel, the flexible plate cannot bend sufficiently in the bending direction when bending vibration is transmitted from the engine crankshaft to the first flywheel. Therefore, in this case, the bending vibration suppression (flexible) effect cannot be sufficiently obtained.
  • An object of the present invention is to provide a flexible flywheel in which an inertia member is flexibly fixed in a bending direction with respect to a crankshaft by a flexible plate in a bending direction to sufficiently obtain an effect of suppressing a bending vibration of the engine from the crankshaft.
  • a flexible flywheel according to claim 1 is a flexible flywheel to which torque is input from a crankshaft of an engine, and includes a first flywheel and a damper mechanism.
  • the first flywheel has an inertia member and a flexible plate that is a member for connecting the inertia member to the crank crankshaft and that can bend and deform in a bending direction or an axial direction.
  • the damper mechanism is compressed in the rotational direction by the input member to which the torque from the crankshaft is input, the output member arranged to be rotatable relative to the input member, and the relative rotation of the input member and the output member.
  • an elastic member is compressed in the rotational direction by the input member to which the torque from the crankshaft is input, the output member arranged to be rotatable relative to the input member, and the relative rotation of the input member and the output member.
  • the first flywheel can be displaced within a predetermined range in the bending direction with respect to the damper mechanism.
  • the flexible flywheel according to claim 2 further comprises a friction generating mechanism disposed between the first flywheel and the output side member of the damper mechanism and acting in parallel with the elastic member in the rotation direction. ing.
  • the friction generating mechanism has two members that are capable of transmitting torque but are engaged so as to be relatively displaceable in the bending direction.
  • the two members are a friction member and an engagement member that engages with the friction member.
  • the friction member and the engagement member are engaged with a gap in the rotation direction.
  • the two are in close contact with each other in the rotational direction, so that no large resistance is generated when the two are relatively displaced in the bending direction.
  • the engaging member engages with another member so as to be movable in the axial direction. Therefore, there is little resistance in the axial direction between the two members.
  • the friction member slides in a rotational direction with respect to the first flywheel.
  • the engagement member rotates integrally with the output member of the damper mechanism.
  • the engagement member engages with the output side member of the damper mechanism so as to be movable in the axial direction. Therefore, when the friction member moves in the axial direction together with the first flywheel, resistance is hardly generated in the axial direction between the engagement member and the output side member.
  • the flexible flywheel according to claim 8 has the same structure as the flexible flywheel according to claim 17.
  • FIG. 1 A schematic longitudinal sectional view of a two-mass flywheel as one embodiment of the present invention.
  • FIG. 1 A schematic longitudinal sectional view of a two-mass flywheel as one embodiment of the present invention.
  • FIG. 3 is a plan view of a two-mass flywheel.
  • FIG. 4 is a drawing for explaining a second friction generating mechanism, and is a partially enlarged view of FIG. 1.
  • FIG. 6 is a plan view for explaining a relationship between a friction washer and an engaging member of the second friction generating mechanism.
  • FIG. 7 is a drawing for explaining a first friction generating mechanism, and is a partially enlarged view of FIG. 1;
  • FIG. 8 is a drawing for explaining a first friction generating mechanism, and is a partially enlarged view of FIG. 1.
  • FIG. 9 is a drawing for explaining a first friction generating mechanism, and is a partially enlarged view of FIG.
  • FIG. 11 is a plan view of an input-side disk-shaped plate.
  • FIG. 12 is a plan view of a washer.
  • FIG. 13 is a plan view of a cone spring.
  • FIG. 16 A torsional characteristic diagram of a damper mechanism.
  • FIG. 17 is a torsional characteristic diagram of a damper mechanism.
  • FIG. 18 A torsional characteristic diagram of a damper mechanism.
  • FIG. 19 is a torsional characteristic diagram of a damper mechanism.
  • FIG. 20 is a schematic longitudinal sectional view of a flywheel damper as a second embodiment of the present invention.
  • FIG. 21 is a schematic longitudinal sectional view of a flywheel damper as a third embodiment of the present invention. Explanation of reference numerals
  • the two-mass flywheel 1 as one embodiment of the present invention shown in FIG. 1 is a device for transmitting torque to an input shaft 92 on a transmission side via a cool assembly 94) on the engine side.
  • 2 Mass flywheel 1 is a damper to absorb and attenuate torsional vibration Has a function.
  • the two-mass flywheel 1 mainly includes a first flywheel 2, a second flywheel 3, a damper mechanism 4 between the two flywheels 2, 3, a first friction generating mechanism 5, and a second friction generating mechanism. It is composed of 6.
  • O—O in FIG. 1 is the rotation axis of the two-mass flywheel 1 and the clutch.
  • An engine (not shown) is arranged on the left side of FIG. Is arranged.
  • the left side is called the axial engine side
  • the right side is called the axial transmission side.
  • the direction of arrow R1 is the drive side (positive rotation direction side)
  • the direction of arrow R2 is the opposite drive side (negative rotation direction side).
  • the first flywheel 2 is fixed to a tip of a crankshaft 91.
  • the first flywheel 2 is a member for securing a large moment of inertia on the crankshaft 91 side.
  • the first flywheel 2 mainly includes a flexible plate 11 and an inertia member 13.
  • the flexible plate 11 is a member for transmitting torque from the crankshaft 91 to the inertia member 13 and for absorbing bending vibration from the crankshaft. Therefore, the flexible plate 11 has high rigidity in the rotation direction, but has low rigidity in the axial direction and the bending direction. Specifically, the depth of the flexible plate 11 in the axial direction is 3000 kg / mm or less, and preferably in the range of 600 kg / mm-2200 kg / mm.
  • the flexible plate 11 is a disk-shaped member having a center hole formed therein, and is made of, for example, sheet metal.
  • the inner edge of the flexible plate 11 is fixed to the tip of the crankshaft 91 by a plurality of bolts 22. Bolt through holes are formed in the flexible plate 11 at positions corresponding to the bolts 22.
  • the bolt 22 is attached to the crankshaft 91 from the axial transmission side.
  • the inertia member 13 is a thick block-shaped member, and is fixed to the outer peripheral end of the flexible plate 11 on the axial transmission side.
  • the outermost periphery of the flexible plate 11 is fixed to the inertia member 13 by a plurality of rivets 15 arranged in a circumferential direction. Te ru.
  • a ring gear 14 for starting the engine is fixed to the outer peripheral surface of the inertia member 13.
  • the first flywheel 2 may also be configured as an integral member.
  • the second flywheel 3 is an annular and disk-shaped member, and is disposed on the transmission side in the axial direction of the first flywheel 2.
  • the second flywheel 3 has a clutch friction surface 3a formed on the transmission side in the axial direction.
  • the clutch friction surface 3a is an annular and flat surface, and is a portion to which a clutch disk assembly 93 described later is connected.
  • the second flywheel 3 further has an inner peripheral cylindrical portion 3b that extends on the inner peripheral edge toward the engine in the axial direction. Further, in the inner peripheral portion of the second flywheel 3, through holes 3d through which the bolts 22 pass are formed in a line in the circumferential direction.
  • the damper mechanism 4 is a mechanism for sexually connecting the crankshaft 91 and the second flywheel 3 in the rotational direction. As described above, the second flywheel 3 is connected to the crankshaft 91 by the damper mechanism 4 to form a flywheel assembly (flywheel damper) together with the damper mechanism!
  • the damper mechanism 4 includes a plurality of coil springs 34, 35, 36, a pair of output-side disc-shaped plates 32, 33, and an input-side disc-shaped plate 20. As shown in the mechanical circuit diagram of FIG. 15, the coil springs 34, 35, 36 are arranged so as to act on the friction generating mechanisms 5, 6 in parallel in the rotational direction.
  • the pair of output-side disc-shaped plates 32, 33 are also configured with a first plate 32 on the axial engine side and a second plate 33 on the axial transmission side. Both plates 32 and 33 are disk-shaped members, and are arranged at predetermined intervals in the axial direction. Each of the plates 32, 33 has a plurality of windows 46, 47 arranged in the circumferential direction.
  • the window portions 46 and 47 are structures for supporting coil springs 34 and 35 described later in the axial direction and the rotating direction, respectively, and hold the coil springs 34 and 35 in the axial direction and at both ends in the circumferential direction.
  • the windows 46 and 47 are arranged two by two in the circumferential direction alternately (the windows 46 and 47 are arranged at the same radial position). Further, a plurality of third windows 48 are formed in each of the plates 32 and 33 in a circumferential direction. ing. The third window portion 48 is formed at two radially opposed places, specifically, on the outer peripheral side of the first window portion 46. It is a structure for supporting each direction.
  • the inner peripheral portions of the first plate 32 and the second plate 33 maintain a constant interval in the axial direction, but the outer peripheral portions are closely fixed to each other by rivets 41 and 42 close to each other.
  • the first rivets 41 are arranged side by side in the circumferential direction.
  • the second rivet 42 fixes the cut-and-raised contact portions 43 and 44 formed on the first plate 32 and the second plate 33 to each other.
  • the cut-and-raised abutments 43 and 44 are formed radially opposite each other at two circumferential places of force, and are specifically arranged radially outside the second window 47. As shown in FIG. 2, the axial position of the cut-and-raised abutting portions 43 and 44 is the same as that of the input-side disc-shaped plate 20. It is fixed to the outer periphery of 3.
  • the input-side disk-shaped plate 20 is a disk-shaped member disposed between the output-side disk-shaped plates 32 and 33.
  • the input side disk-shaped plate 20 has a first window hole 38 corresponding to the first window portion 46 and a second window hole 39 corresponding to the second window portion 47.
  • the first and second window holes 38, 39 each have a straight inner peripheral edge, but have notches 38a, 39a recessed inward in the radial direction at a rotationally intermediate portion of the inner peripheral edge. are doing.
  • the input side disk-shaped plate 20 further has a center hole 20a and a plurality of bolt through holes 20b formed therearound.
  • a protrusion 20c is formed at a position between the window holes 38 and 39 on the outer peripheral edge in the circumferential direction, and protrudes outward in the radial direction.
  • the projection 20c is arranged in the rotation direction away from the cut-and-raised abutting portions 43, 44 of the output-side disc-shaped plates 32, 33 and the third coil spring 36, and becomes close to both in the rotation direction. Contact is possible.
  • the projection 20c and the cut-and-raised contact portions 43 and 44 constitute a stopper mechanism of the entire damper mechanism 4.
  • the space in the rotation direction between the projections 20c functions as a third window hole 40 for accommodating the third coil spring 36.
  • holes 20d are formed at a plurality of positions (four points in this embodiment) in the circumferential direction of the input-side disk-shaped plate 20.
  • the hole 20d has a generally circular force slightly longer in the radial direction Yes.
  • the rotation direction position of the hole 20d is between the rotation directions of the window holes 38 and 39, and the radial position of the hole 20d is substantially the same as that of the notches 38a and 39a.
  • the input-side disk-shaped plate 20 is fixed to the crankshaft 91 by bolts 22 together with the flexible plate 11, the reinforcing member 18, and the supporting member 19.
  • the inner peripheral portion of the flexible plate 11 is in contact with the axial transmission side surface of the distal end surface 91a of the crankshaft 91.
  • the reinforcing member 18 is a disk-shaped member, and is in contact with the axial transmission side surface of the inner periphery of the flexible plate 11.
  • the support member 19 includes a cylindrical portion 19a and a disk-shaped portion 19b extending radially from the outer peripheral surface thereof.
  • the disc-shaped portion 19b is in contact with the side face of the reinforcing member 18 in the axial transmission.
  • the inner peripheral surface of the cylindrical portion 19a is centered in contact with the outer peripheral surface of a cylindrical projection 91b formed at the center of the tip of the crankshaft 91.
  • the inner peripheral surface of the flexible plate 11 and the inner peripheral surface of the reinforcing member 18 are aligned with the outer peripheral surface of the tubular portion 19a on the engine side in the axial direction.
  • the inner peripheral surface of the input-side disk-shaped plate 20 is centered by contacting the outer peripheral surface of the cylindrical portion 19a at the root in the axial transmission side.
  • a bearing 23 is mounted on the inner peripheral surface of the cylindrical portion 19a, and the bearing 23 rotatably supports the tip of the input shaft 92 of the transmission.
  • the members 11, 18, 19, and 20 are firmly fixed to each other by screws 21.
  • the support member 19 is fixed in a state where it is radially positioned with respect to the crankshaft 91, and further, the first flywheel 2 and the second flywheel 3 are radially positioned. ! / As described above, a single component has a plurality of functions, thus reducing the number of components and reducing costs.
  • the inner peripheral surface of the cylindrical portion 3b of the second flywheel 3 is supported by the outer peripheral surface of the cylindrical portion 19a of the support member 19 via the bush 30.
  • the bush 30 further has a thrust portion 30a disposed between the inner peripheral portion of the input-side disc-shaped plate 20 and the tip of the cylindrical portion 3b of the second flywheel 3.
  • the thrust load from the second flywheel 3 is received by the members 11, 18, 19, and 20 arranged in the axial direction via the thrust portion 30a.
  • the thrust portion 30a of the bush 30 is supported by the inner peripheral portion of the input side It functions as a thrust bearing that receives an axial load from the ball 3.
  • the inner peripheral portion of the input-side disc-shaped plate 20 is flat and has improved flatness, so that the load generated in the thrust bearing is stabilized. Further, since the inner peripheral portion of the input-side disk-shaped plate 20 is flat, a long thrust bearing portion can be provided, and as a result, the hysteresis torque is stabilized. Further, the inner peripheral portion of the input-side disc-shaped plate 20 is a portion that closely contacts the disc-shaped portion 19b of the support member 19 in the axial direction, so that the rigidity is high.
  • the first coil spring 34 is disposed in the first window hole 38 and the first window 46. Both ends in the rotation direction of the first coil spring 34 are in contact with or close to the rotation direction ends of the first window hole 38 and the first window portion 46.
  • the second coil spring 35 is disposed in the second window hole 39 and the second window portion 47.
  • the second coil spring 35 is a parent-child spring in which large and small springs are combined, and has higher rigidity than the first coil spring 34.
  • the two ends of the second coil spring 35 in the rotation direction are close to or in contact with the two ends of the second window portion 47 in the rotation direction. Both ends in the rotation direction of the second window hole 39 are also separated by a predetermined angle (4 ° in this embodiment) ing.
  • the third coil spring 36 is disposed in the third window hole 40 and the third window portion 48.
  • the third coil spring 36 is smaller than the first coil spring 34 and the second coil spring 35, but is arranged on the outer periphery, so that the rigidity is increased.
  • the first friction generating mechanism 5 is a mechanism that functions in parallel with the coil springs 34, 35, 36 between the rotation directions of the input-side disk-shaped plate 20 and the output-side disk-shaped plates 32, 33 of the damper mechanism 4.
  • a predetermined frictional resistance hysteresis torque
  • the first friction generating mechanism 5 is a device for generating constant friction over the entire operating angle range of the damper mechanism 4, and generates relatively small friction.
  • the first friction generating mechanism 5 is arranged on the inner peripheral side with respect to the damper mechanism 4, and is further arranged between the first plate 32 and the second flywheel 3 in the axial direction.
  • the first friction generating mechanism 5 includes a first friction member 51, a second friction member 52, a cone spring 53, and a pusher 54. It is configured.
  • the first friction member 51 is a member for rotating integrally with the input side disk-shaped plate 20 and sliding on the first plate 32 in the rotation direction. As shown in FIGS. 7-10, the first friction member 51 has an annular portion 51a, and first and second engaging portions 51b and 51c extending from the annular portion 51a toward the transmission in the axial direction. The annular portion 51a is in contact with the inner peripheral portion of the first plate 32 so as to be slidable in the rotational direction. The first engagement portions 51b and the second engagement portions 51c are alternately arranged in the rotation direction. The first engagement portion 51b has an elongated shape in the rotation direction, and is engaged with the inner peripheral side cutouts 38a, 39a of the window holes 38, 39 of the input side disk-shaped plate 20.
  • the second engaging portion 51c has a slightly longer shape in the radial direction, and is engaged with the hole 20d of the input-side disc-shaped plate 20. Therefore, the first friction member 51 cannot rotate relative to the input-side disk-shaped plate 20 and can move in the axial direction.
  • a first protrusion 51d extending in the axial direction is further formed at an intermediate position in the rotation direction at the axial end of the first engagement portion 51b. For this reason, a first axial surface 51e is formed on both sides in the rotation direction of the first protrusion 51d. Further, a second protrusion 51f extending in the axial direction is formed at a radially inner position of the second engagement portion 51c. For this reason, a second axial surface 51g is formed at a radially outer position of the second protrusion 51f.
  • the second friction member 52 is a member for rotating integrally with the input-side disk-shaped plate 20 and sliding on the second flywheel 3 in the rotational direction. As shown in FIG. 14, the second friction member 52 is an annular member, and is in contact with the second friction surface 3c on the inner peripheral portion of the second flywheel 3 so as to be slidable in the rotational direction.
  • the second friction surface 3c is a flat annular surface that is recessed toward the transmission in the axial direction from other portions of the second flywheel 3.
  • a plurality of cutouts 52a are formed in the inner peripheral edge of the second friction member 52 in a line in the rotation direction.
  • the first protrusion 51d of the first engagement portion 51b and the second protrusion 51f of the second engagement portion 51c are engaged in these notches 52a. Therefore, the second friction member 52 cannot rotate relative to the first friction member 51 and can move in the axial direction.
  • the cone spring 53 is disposed between the first friction member 51 and the second friction member 52 in the axial direction, and is a member for biasing both members in a direction away from each other in the axial direction.
  • the cone spring 53 is a conical or disc-shaped spring as shown in FIG. 53a are formed.
  • the first protrusion 51d of the first engagement portion 51b and the second protrusion 5If of the second engagement portion 51c are respectively engaged in these notches 53a. Therefore, the cone spring 53 cannot rotate relative to the first friction member 51 and can move in the axial direction.
  • the washer 54 ensures that the load of the cone spring 53 is transmitted to the first friction member 51. It is a member of. As shown in FIG.
  • the pusher 54 is an annular member, and has a plurality of cutouts 54a arranged in the circumferential direction on the inner peripheral edge.
  • the first protrusion 51d of the first engagement portion 51b and the second protrusion 51f of the second engagement portion 51c are respectively engaged in these notches 54a. Therefore, the washer 54 is not rotatable relative to the first friction member 51 and is movable in the axial direction.
  • the washer 54 is seated on the first axial surface 51e of the first engaging portion 51b and the second axial surface 5lg of the second engaging portion 51c.
  • the cone spring 53 has an inner peripheral portion supported by the washer 54 and an outer peripheral portion supported by the second friction member 52.
  • the second friction generating mechanism 6 is a mechanism that functions in parallel with the coil springs 34, 35, 36 between the rotation directions of the input-side disk-shaped plate 20 and the output-side disk-shaped plates 32, 33 of the damper mechanism 4.
  • a predetermined frictional resistance hysteresis torque
  • the second friction generating mechanism 6 is a device for generating a constant friction over the entire operating angle range of the damper mechanism 4, and generates a relatively large friction.
  • the hysteresis torque generated by the second friction generating mechanism 6 is 5 to 10 times the hysteresis torque generated by the first friction generating mechanism 5.
  • the second friction generating mechanism 6 sequentially moves the friction pusher 57, the input-side friction plate 58, and the like from the flexible plate 11 toward the facing portion 12a of the second disk-shaped plate 12. And a cone spring 59. In this way, flexible Since the seat 11 also has a function of holding the second friction generating mechanism 6, the number of parts is reduced, and the structure is simplified.
  • the cone spring 59 is a member for applying a load to each friction surface in the axial direction.
  • the cone spring 59 is sandwiched between the opposing portion 12a and the input side friction plate 58 and is compressed. To give an urging force in the axial direction.
  • the input side friction plate 58 has a claw 58a formed on the outer peripheral edge thereof engaged with an axially extending notch 12b formed on the second disk-shaped plate 12, and this engagement allows the input side friction plate Numeral 58 cannot move relative to the second disk-shaped plate 12, but can move in the axial direction.
  • the friction washer 57 is, as shown in FIG. 5, a plurality of members arranged side by side in the rotational direction, each of which extends in an arc shape. In this embodiment, a total of six friction washers 57 are provided. Each friction washer 57 is sandwiched between an input-side friction plate 58 and an annular portion 11a which is an outer peripheral portion of the flexible plate 11. That is, the axial engine side surface 57a of the friction pusher 57 slidably abuts the axial transmission side surface of the flexible plate 11, and the axial transmission side surface 57b of the friction pusher 57 has the input side friction plate 58. Is slidably in contact with the side of the engine in the axial direction. As shown in FIG.
  • a recess 63 is formed on the inner peripheral surface of the friction washer 57.
  • the concave portion 63 is formed substantially at the center in the rotational direction of the friction washer 57, and specifically, a bottom surface 63a extending in the rotational direction, and a rotational force extending substantially in the radial direction (at substantially a right angle from the bottom surface 63a).
  • the recess 63 is formed at the axially intermediate portion of the inner peripheral surface of the friction switch 57! For this purpose, it has axial end faces 63c and 63d constituting both sides in the axial direction.
  • a friction engagement member 60 is disposed on the inner peripheral side of each friction pusher 57, more specifically, in the recess 63.
  • the outer peripheral portion of each friction engagement member 60 is disposed in a recess 63 of the friction pusher 57.
  • the friction washer 57 and the friction engaging member 60 are both made of resin.
  • the engagement portion 64 constituted by the friction engagement member 60 and the recess 63 of the friction washer 57 will be described.
  • the friction engagement member 60 has axial end faces 60a and 60b, And a rotation direction end face 60c.
  • the outer peripheral surface 60 g of the friction engagement member 60 is close to the bottom surface 63 a of the recess 63.
  • a predetermined gap in the rotating direction 65 (65A in FIG. 6) is provided between the rotating end face 60c and the rotating end face 63b.
  • the size of the predetermined angle is relatively rotatable with respect to the member 60. It is preferable that this angle is in a range equal to or slightly greater than the damper operating angle caused by minute torsional vibration caused by combustion fluctuations of the engine.
  • the friction engagement member 60 is disposed at the center of the recess 63 in the rotation direction in the neutral state shown in FIG. Therefore, the size of the gap on each side in the rotation direction of the friction engagement member 60 is the same.
  • the friction engagement member 60 is engaged with the first plate 32 so as to rotate integrally and to be movable in the axial direction.
  • an annular wall 32a extending toward the engine in the axial direction is formed on the outer peripheral edge of the first plate 32, and the annular wall 32a is recessed inward in the radial direction corresponding to each of the friction engagement members 60.
  • a recess 61 is formed.
  • a first slit 61a penetrating in the radial direction is formed at the center in the rotation direction of the concave portion 61, and a second slit 61b penetrating in the radial direction is formed on both sides in the rotation direction.
  • the friction engagement member 60 extends in the first slit 61a from the outside in the radial direction toward the inside and further extends on both sides in the rotational direction to contact the inner peripheral surface of the annular wall 32a. It has a pair of second leg portions 60f extending radially inward from the outside in the radial direction and extending outward in the rotational direction and contacting the inner peripheral surface of the annular wall 32a within 6 lb of the two slits. Thus, the friction engagement member 60 does not move radially outward from the annular wall 32a. Further, the friction engagement member 60 has a convex portion 60d extending radially inward and rotationally engaging the concave portion 61 of the annular wall 32a. Thereby, the friction engagement member 60 rotates integrally as a projection of the first plate 32.
  • the friction engagement member 60 is detachable in the axial direction with respect to the first plate 32.
  • the axial dimension of the friction engagement member 60 is shorter than the axial dimension of the recess 63 (that is, the distance between the axial end faces 63c and 63d of the recess 63 is longer than the distance between the axial end faces 60a and 60b of the friction engagement member 60. ),
  • the friction engagement member 60 is axially It can move in the direction. Further, since a radial gap is secured between the outer peripheral surface 60g of the friction engagement member 60 and the bottom surface 63a of the recess 63, the friction engagement member 60 is inclined at a predetermined angle with respect to the friction pusher 57. It is possible.
  • the friction washer 57 frictionally engages with the flexible plate 11 and the input side friction plate 58, which are members on the input side, so as to be movable in the rotational direction, and Thus, torque is transmitted through the gap 65 in the rotation direction of the engaging portion 64 so that torque can be transmitted. Further, the friction engagement member 60 rotates integrally with the first plate 32 and is movable in the axial direction.
  • the rotational widths (rotational angles) of the friction engagement members 60 are all the same, but the rotational widths (rotational angles) of the recesses 63 are different.
  • it is composed of two first friction washers 57A facing vertically in FIG. 5 and four second friction washers 57B facing left and right.
  • the first friction washer 57A and the second friction washer 57B have substantially the same shape and the same material strength.
  • the only difference between the two is the width in the rotation direction (rotation angle) of the clearance in the rotation direction of the recess 63.
  • the rotational width of the concave portion 63 of the second friction washer 57B is larger than the rotational width of the concave portion 63 of the first friction washer 57A.
  • the second rotational gap 65B of the second engaging portion 64B of the second friction washer 57B is larger than the first rotational gap 65A of the first engaging portion 64A of the first friction washer 57A.
  • the former is 10 °
  • the latter is 8 °
  • the difference is 2 °.
  • Both ends of the friction washers 57A and 57B in the rotation direction are close to each other.
  • the angle between the rotation direction ends secured between the rotation direction ends is the difference between the second rotation direction gap 65B of the second friction washer 57B and the first rotation direction gap 65A of the first friction washer 57A ( For example, it is set larger than 2 °).
  • the clutch disc assembly 93 of the clutch is attached to the clutch friction surface 3a of the second flywheel 3. It has a friction facing 93a disposed in close proximity and a hub 93b spline-engaged with the transmission input shaft 92.
  • the clutch cover assembly 94 has a clutch cover 96, a diaphragm spring 97, and a pressure plate 98.
  • the clutch cover 96 is a disk-shaped and annular member fixed to the second flywheel 3.
  • the pressure plate 98 is an annular member having a pressing surface close to the friction facing 93a, and rotates integrally with the clutch cover 96.
  • the diaphragm spring 97 is a member for sexually biasing the pressure plate 98 toward the second flywheel in a state instructed by the clutch cover 96.
  • a release device not shown
  • the diaphragm spring 97 releases the urging to the pressure plate 98.
  • the torque from the crankshaft 91 of the engine is transmitted to the second flywheel 3 via the damper mechanism 4.
  • the torque is transmitted in the order of the input-side disc-shaped plate 20, the coil springs 34-36, and the output-side disc-shaped plates 32, 33. Further, the torque is transmitted from the two-mass flywheel 1 to the clutch disc assembly 93 in a clutch-engaged state, and finally output to the input shaft 92.
  • the operation of the damper mechanism 4 will be described using the torsional characteristic diagram of FIG.
  • the first coil spring 34 is compressed and compared. Very low rigidity characteristics can be obtained.
  • the first coil spring 34 and the second coil spring 35 are compressed in parallel, and a relatively high rigidity characteristic is obtained.
  • the first coil spring 34, the second coil spring 35, and the third coil spring 36 are compressed in parallel, and the highest rigidity characteristic is obtained at both ends of the torsion characteristic.
  • the first friction generating mechanism 5 operates in all regions of the torsion angle. Note that the second friction generating mechanism 6 does not operate until the predetermined angle because the direction of the torsional operation changes at both ends of the torsional angle.
  • the friction engagement member 60 When the torsion angle increases, the friction engagement member 60 eventually comes into contact with the rotation direction end face 63b of the recess 63 of the first friction washer 57A on the rotation direction R1 side in the first friction washer 57A. At this time, in the second friction washer 57B, the friction engagement member 60 is rotated in the rotational direction by the rotational direction end face 63b of the recess 63 of the second friction washer 57B in the rotational direction R1 side (the second frictional washer 57B). This is half of the difference between the second rotational gap 65B of the washer 57B and the first rotational gap 65A of the first friction washer 57A, and has 1 ° in this embodiment.
  • the friction engagement member 60 drives the first friction washer 57A to slide with respect to the flexible plate 11 and the input side friction plate 58. At this time, the first friction washer 57A approaches the second friction washer 57B in the rotation direction R1 side, but both ends do not abut.
  • the friction engagement member 60 comes into contact with the rotation direction end face 63b of the recess 63 of the second friction washer 57B. Thereafter, the friction engagement member 60 drives both the first and second friction washers 57A, 57B to slide with respect to the flexible plate 11 and the input side friction plate 58.
  • the input-side disc-shaped plate 20 moves in the rotational direction gap 65 between the friction engagement member 60 (convex portion) and the concave portion 63, and friction is generated. It rotates relative to the washer 57. That is, the friction washer 57 is not driven by the first plate 32, so that the friction washer 57 does not rotate with respect to the member on the input side. As a result, a high hysteresis torque is not generated for a small torsional vibration. That is, in the torsional characteristic diagram of FIG. 16, for example, the coil springs 34 and 35 operate at “DCa”, but no slip occurs at the second friction generating mechanism 6.
  • the operation angle of the torsional vibration is within the angle (for example, 8 °) of the first rotational gap 65A of the first engagement portion 64A of the first friction washer 57A.
  • the operation angle of the torsional vibration is within the angle (for example, 8 °) of the first rotational gap 65A of the first engagement portion 64A of the first friction washer 57A.
  • no large frictional resistance high hysteresis torque
  • only the low frictional resistance region A is obtained.
  • the operation angle of the torsional vibration is equal to or greater than the angle (for example, 8 °) of the first rotational gap 65A of the first engagement portion 64A of the first friction washer 57A, but the second friction washer 57B
  • the angle is within the angle (for example, 10 °) of the second rotational gap 65B of the second engaging portion 64B of the second friction portion 64B
  • an intermediate frictional resistance region B is generated at the end of the low frictional resistance region A as shown in FIG.
  • the operation angle of the torsional vibration is equal to or larger than the angle (for example, 10 °) of the second gap 65B in the second rotational direction of the second engagement portion 64B of the second friction washer 57B, as shown in FIG.
  • a region B of intermediate frictional resistance and a region C where constant large frictional resistance occurs are obtained.
  • the friction washer 57 rotates integrally with the friction engagement member 60 and the first plate 32, and relatively rotates with the flexible plate 11 and the friction plate 58. As a result, the friction washer 57 and the friction engagement member 60 slide on the flexible plate 11 and the input-side friction plate 58 to generate frictional resistance. As described above, when the torsional angle of the torsional vibration is large, the friction washer 57 slides on the flexible plate 11 and the input side friction plate 58. As a result, a constant amount of frictional resistance is obtained over the entire torsional characteristic.
  • the friction washer 57 is shifted most in the rotational direction R2 with respect to the first plate 32.
  • a rotational gap 65 between the friction engagement member 60 (convex portion) and the concave portion 63 is formed.
  • the friction washer 57 rotates relative to the first plate 32 over the entire angle of. During this time, the friction washer 57 does not slide on the member on the input side, so that a low frictional resistance region A (for example, 8 °) is obtained.
  • the first plate 32 drives the first friction washer 57A. Then, the first friction washer 57A relatively rotates with respect to the flexible plate 11 and the input-side friction plate 58. As a result, as described above, an intermediate frictional resistance region B (for example, 2 °) is generated. Subsequently, when the second gap 65B in the second rotation direction of the second engagement portion 64B of the second friction washer 57B disappears, the first plate 32 drives the second friction washer 57B. Then, the second friction washer 57B relatively rotates with respect to the flexible plate 11 and the input-side friction plate 58.
  • an intermediate frictional resistance region B for example, 2 °
  • the friction washer 57 since a single kind of friction washer 57 is used to generate intermediate frictional resistance, the number of kinds of friction members can be reduced. Further, the friction washer 57 has a simple structure extending in an arc shape. Further, the friction washer 57 has no axial through-hole, so that the manufacturing cost can be reduced.
  • the friction engagement member 60 rotates relative to the friction washer 57 in the minute rotation direction gap 65. That is, the friction washer 57 is not driven by the friction engagement member 60, and therefore, the friction washer 57 does not rotate with respect to the input side member.
  • a high hysteresis torque is not generated for a small torsional vibration. That is, within a predetermined torsional angle range, a hysteresis torque much smaller than a normal hysteresis torque cannot be obtained.
  • the vibration and noise levels can be significantly reduced.
  • the first friction generating mechanism 5 uses a part of the second flywheel 3 as a friction surface, the area of the sliding surface can be increased. Specifically, since the second friction member 52 is urged toward the second flywheel 3 by the cone spring 53, the area of the sliding surface can be increased. Therefore, the surface pressure of the sliding surface is reduced, and the life of the first friction generating mechanism 5 is improved.
  • the outer peripheral portion of the second friction member 52 and the inner peripheral portions of the first and second coil springs 34 and 35 are arranged so as to overlap in the axial direction, and the outer peripheral edge of the second friction member 52 is positioned in the first and second radial directions. 2 pcs It is located radially outward from the radial position of the inner peripheral edge of the coil springs 34, 35. Therefore, a sufficient friction surface can be secured in the second friction generating mechanism 6 even though the second friction member 52 and the first and second coil springs 34 and 35 are close to each other in the radial direction.
  • the outer peripheral portion of the annular portion 51a of the first friction member 51 and the inner peripheral portions of the first and second coil springs 34 and 35 are arranged so as to overlap in the axial direction, and the radial position of the outer peripheral edge of the annular portion 5la is the first position. And radially outward from the radial position of the inner peripheral edge of the second coil springs 34, 35. Therefore, a sufficient friction surface can be secured in the second friction generating mechanism 6 even though the annular portion 51a and the first and second coil springs 34 and 35 are close to each other in the radial direction.
  • the first friction member 51 includes an annular portion 51a that slidably abuts on the first plate 32 in the rotational direction, and an axial portion extending from the annular portion 5la in the axial direction with respect to the input side circular plate 20. It has a plurality of engagement portions 5 lb, 51c that are movably and non-rotatably engaged.
  • the second friction member 52 has a plurality of notches 52a which engage with the plurality of engaging portions 51b and 51c so as to be relatively non-rotatable and movably in the axial direction.
  • the first friction member 51 has the plurality of engagement portions 51b and 51c extending in the axial direction, the annular portion 51a of the first friction member 51 and the second friction member 52 are separated from each other in the axial direction.
  • the arranged arrangement can be easily realized.
  • the cone spring 53 is disposed between the second friction member 52 and the engagement portions 51b and 51c of the first friction member 51, and urges both in the axial direction. Therefore, the structure is simplified.
  • the washer 54 is seated on the tips of the engaging portions 51b and 51c of the first friction member 51, and functions as a receiving member that receives the urging force from the cone spring 53. Therefore, the axial load applied to the friction sliding surface is stabilized, and as a result, the friction resistance generated on the sliding surface is stabilized.
  • the first friction generating mechanism 5 is arranged on the inner peripheral side (away inward in the radial direction) from the clutch friction surface 3a of the second flywheel 3. Therefore, the first friction generating mechanism 5 is stable in frictional resistance to the influence of the heat from the clutch friction surface 3a.
  • the first friction generating mechanism 5 is disposed on the inner peripheral side from the radial center position of the first and second coil springs 34, 35 of the damper mechanism 4, and is disposed on the outer peripheral side from the outermost peripheral edge of the bolt 22. Have been. Therefore, a space saving structure is obtained.
  • the second friction generating mechanism 6 Since the second friction generating mechanism 6 is held by the first flywheel 2 (specifically, the flexible plate 11), the second friction generating mechanism 6 generates heat from the clutch friction surface 3a of the second flywheel 3. Less susceptible. Therefore, the performance of the second friction generating mechanism 6 is stabilized. In particular, since the first flywheel 2 is not connected to the second flywheel 3 via the coil springs 34-36, heat from the second flywheel 3 is also less likely to be transmitted to the first flywheel 2. .
  • the second friction generating mechanism 6 uses an annular portion 1 la that is an outer peripheral portion of the flexible plate 11 as a friction surface. Since the flexible plate 11 is used, the number of parts of the second friction generating mechanism 6 is reduced, and the structure is simplified.
  • the second friction generating mechanism 6 Since the second friction generating mechanism 6 is arranged on the outer peripheral side of the clutch clutch friction surface 3a and is radially away from the clutch friction surface 3a, the second friction generating mechanism 6 reduces the influence of heat from the clutch friction surface 3a. Hard to receive.
  • the first flywheel 2 is a member for connecting the inertia member 13 and the inertia member 13 to the crankshaft 91. And a flexible plate 11 capable of bending and deforming in the axial direction.
  • the damper mechanism 4 includes an input-side disk-shaped plate 20 to which the torque from the crankshaft 91 is input, and output-side disk-shaped plates 32 and 33 that are relatively rotatably disposed on the input-side disk-shaped plate 20.
  • the coil springs 34, 35, and 36 are compressed in the rotation direction by the relative rotation between the two.
  • the damper mechanism 4 is directly connected to the crankshaft 91 without passing through the first flywheel 2.
  • the first flywheel 2 can be displaced within a predetermined range with respect to the damper mechanism 4 in the bending direction.
  • the combination of the first flywheel 2 and the damper mechanism 4 described above is called a flexible flywheel 66.
  • the flexible plate 11 bends in the bending direction. Therefore, bending vibration from the engine is suppressed.
  • This flexible fly In the wheel since the first flywheel 2 can be displaced within a predetermined range in the bending direction with respect to the damper mechanism 4, the bending vibration suppressing effect of the flexible plate 11 is sufficiently high.
  • the flexible flywheel 66 is disposed between the first flywheel 2 and the disk-shaped plate 32 on the output side of the damper mechanism 4, and generates a second friction acting in parallel with the coil springs 34, 35, 36 in the rotational direction.
  • a mechanism 6 is further provided.
  • the second friction generating mechanism 6 has a friction pusher 57 and a friction engagement member 60 that can transmit torque but engage in relative displacement in the bending direction.
  • the two members are engaged with the second friction generating mechanism 6 so as to be relatively displaceable in the bending direction.
  • it can be displaced within a predetermined range in the bending direction.
  • the flexural vibration suppressing effect of the flexible plate 11 is sufficiently high!
  • the friction washer 57 and the friction engagement member 60 are engaged with a gap in the rotation direction. That is, since they are not in close contact with each other in the rotational direction, no large resistance is generated when they are relatively displaced in the bending direction.
  • the friction engagement member 60 is movably engaged with the first plate 32 of the output side disk-shaped plates 32, 33 in the axial direction. Therefore, when the friction washer 57 moves in the axial direction together with the first flywheel 2, resistance is hardly generated in the axial direction between the friction engagement member 60 and the output-side disk-shaped plates 32 and 33.
  • the third coil spring 36 is a member for starting operation in a region where the torsion angle of the torsion characteristic is the largest, and for applying a sufficient stopper torque to the damper mechanism 4.
  • the third coil spring 36 is disposed so as to act in parallel with the first and second coil springs 34 and 35 in the rotation direction.
  • the third coil spring 36 has a wire diameter and a coil diameter that are significantly smaller (about half) than those of the first and second coil springs 34 and 35, so that the space for the axial direction is also small. As shown in FIG. 1, the third coil spring 36 is disposed on the outer peripheral side of the first and second coil springs 34 and 35, and is disposed at a position corresponding to the clutch friction surface 3a of the second flywheel 3. It is. In other words, the radial position of the third coil spring 36 is in an annular region between the inner diameter and the outer diameter of the clutch friction surface 3a.
  • the stopper torque is sufficiently increased to improve the performance, and the space-saving structure is improved by devising the dimensions and the arrangement position of the third coil spring 36.
  • the shaft of that portion is not required.
  • the dimension in the direction is sufficiently small, and is smaller than the dimension in the axial direction of the portion where the first and second coil springs 34 and 35 are arranged.
  • the third coil spring 36 has the same radial position as the protrusion 20c of the input-side disk-shaped plate 20, the cut-and-raised abutment portions 43, 44 of the output-side disk-shaped plates 32, 33, and the stopper that also exerts force. Are located in Therefore, the diameter of the entire structure is smaller than the structure in which each mechanism is arranged at a different position in the radial direction.
  • FIG. 20 shows a flexible flywheel 101 as a second embodiment of the present invention.
  • the flexible flywheel 101 is a device for transmitting torque from the crankshaft 91 of the engine to the input shaft 92 of the transmission.
  • the flexible flywheel 101 also includes a first flywheel 102, a damper mechanism 103, and a force.
  • the damper mechanism 103 is directly fixed to the crankshaft 91, so that no torque is input from the first flywheel 102!
  • the first flywheel 102 has an inertia member 113 and a flexible plate 111 that is a member for connecting the inertia member 113 to the crankshaft 91 and that can bend and deform in the bending direction.
  • the damper mechanism 103 includes input-side disk-shaped plates 132 and 133 to which torque from the crankshaft 91 is input, and output-side disk-shaped plates 120 that are rotatably disposed on the plates 132 and 133.
  • a coil spring 134 compressed in the rotational direction by the relative rotation. Plates 132 and 133 are firmly fixed to each other.
  • the inner periphery 1 32a of the plate 132 extends further inward in the radial direction than the inner periphery of the plate 133, and is flexible. It is fixed to the crankshaft 91 by a crank bolt 122 together with the inner peripheral portion of the plate 111.
  • the inner peripheral portion 120a of the output side disk-shaped plate 120 extends to the vicinity of the outer peripheral surface of the hub 121, and engages with each other so that they cannot rotate relatively. Further, the plate 120 and the hub 121 are immovable in the axial direction with respect to each other by an axial contact surface, a snap ring, or the like.
  • the flexible flywheel 101 outputs torque directly to the input shaft 92 of the transmission via the hub 121 which is not a clutch or a second flywheel.
  • the first flywheel 102 is apart from the damper mechanism 103 except for the inner peripheral part, and the first flywheel 102 can be displaced within a predetermined range in the bending direction with respect to the damper mechanism 103. It is.
  • the flexible plate 111 bends in the bending direction. Therefore, bending vibration from the engine is suppressed.
  • the first flywheel 102 can be displaced within a predetermined range in the bending direction with respect to the damper mechanism 103, so that the bending vibration suppressing effect of the flexible plate 111 is sufficiently high.
  • FIG. 21 shows a flexible flywheel 101 'as a third embodiment of the present invention. Since the basic structure is the same as that of the second embodiment, only different points will be described here.
  • the damper mechanism 103 ′ includes an input-side disc-shaped plate 120 ′ into which torque from the crankshaft 91 is input, and output-side disc-shaped plates 132 ′ and 133 ′ that are arranged to be rotatable relative to the plate 120 ′. And a coil spring 134 that is compressed in the direction of rotation by the relative rotation of the two.
  • the plates 132, 133 are firmly fixed to each other.
  • the inner periphery 133a of the plate 133 extends further inward in the radial direction than the inner periphery of the plate 132, and is fixed to the flange 121a of the hub 121 'by a plurality of rivets 124.
  • the inner periphery 120a of the plate 120 is fixed to the crank shaft 91 by crank bolts 122.
  • the plates 132 'and 133' are output-side members, and the plate 120 'is an input-side member.
  • the first flywheel 102 is apart from the damper mechanism 103 'except for the inner peripheral portion, and the first flywheel 102 is displaced within a predetermined range in the bending direction with respect to the damper mechanism 103'. It is possible.
  • the flexible plate 111 bends in the bending direction. Therefore, bending vibration from the engine is suppressed.
  • the first flywheel 102 can be displaced in the bending direction within a predetermined range with respect to the damper mechanism 103 ′, so that the bending vibration suppressing effect of the flexible plate 111 is sufficiently high.
  • the number of types of the size of the gap in the rotational direction of the engagement portion is two, but may be three or more 1S. In the case of three types, the magnitude of the intermediate frictional resistance becomes two levels.
  • the first friction member and the second friction member have the same friction coefficient, but may have different friction coefficients.
  • the frictional resistance generated between the first frictional member and the second frictional member the ratio between the intermediate frictional resistance and the large frictional resistance can be freely set.
  • an intermediate frictional resistance is generated by providing recesses having different sizes by making the sizes of the protrusions all the same, but the protrusions having different sizes are made by making the sizes of the recesses all the same. It may be provided. Further, different size convex portions and different size concave portions may be combined.
  • the recess of the friction washer faces radially inward, but may face radially outward.
  • the friction washer had a concave portion.
  • the washer may have a convex portion.
  • the input-side disk-shaped plate has a concave portion.
  • the friction washer may have a friction surface that frictionally engages with the force output side member instead of having a friction surface that frictionally engages with the input side member.
  • an engagement partial force S having a rotational gap is formed between the friction washer and the input-side member.

Abstract

 フレキシブルフライホイールは、エンジンのクランクシャフト91からトルクが入力されるものであって、第1フライホイール2と、ダンパー機構4とを備えている。第1フライホイール2は、イナーシャ部材13と、イナーシャ部材13をクランクランクシャフト91に連結するための部材であり曲げ方向にたわみ変形可能なフレキシブルプレート11とを有する。ダンパー機構は、クランクシャフト91からのトルクが入力される入力側円板状プレート20と、入力側円板状プレート20に相対回転可能に配置された出力側円場状プレート32,33と、両プレートの相対回転によって回転方向に圧縮されるコイルスプリング34,35,36とを有する。第1フライホイール2は、ダンパー機構4に対して曲げ方向に所定範囲で変位可能である。  

Description

技術分野
[0001] 本発明は、フレキシブルフライホイール、具体的には、クランクシャフトに対してイナ ーシャ部材をフレキシブルプレートによって曲げ方向にたわみ可能に固定したフレキ シブルフライホイールに関する。
背景技術
[0002] エンジンのクランクシャフトには、エンジンの燃焼変動に起因する振動を吸収するた めに、フライホイールが装着されている。さらに、フライホイールの軸方向トランスミツ シヨン側にクラッチ装置を設けている。クラッチ装置は、トランスミッションの入力シャフ トに連結されたクラッチディスク組立体と、クラッチディスク組立体の摩擦連結部をフラ ィホイールに付勢するクラッチカバー組立体とを備えて 、る。クラッチディスク組立体 は、捩り振動を吸収 ·減衰するためのダンパー機構を有している。ダンパー機構は、 回転方向に圧縮されるように配置されたコイルスプリング等の弾性部材を有して ヽる また、エンジンからの曲げ振動の吸収するためにフライホイールをフレキシブルプレ ートによってクランクシャフトに連結した構造も知られている(特許文献 1を参照。;)。フ レキシブルプレートは、トルクを伝達するために回転方向の剛性は高いが、軸方向及 び曲げ方向には剛性が低くなつている。以下、フライホイールをフレキシブルプレート でクランクシャフト連結した構造をフレキシブルフライホイールという。
なお、ダンパー機構の出力側には、トランスミッション入力シャフトに直接係合する ハブフランジが固定されていたり、又はクラッチ装置が装着される第 2フライホイール が固定されていたりする。後者の場合は、ダンパー機構からのトルクは、クラッチ連結 時に第 2フライホイール、クラッチディスク組立体を通って、トランスミッション入力シャ フトに伝達される。
特許文献 1:特開 2001-12552号公報
発明の開示 フレキシブルフライホイールにお 、て、クランクシャフトからのトルクが伝達されるダ ンパー機構をさらに設けたものが知られている。ダンパー機構は。クランクシャフトか らのトルクが入力される入力側部材と、入力側部材に相対回転可能に配置された出 力側部材と、入力側部材と出力側部材の相対回転によって回転方向に圧縮される 弾性部材とを有する。このダンパー機構がフライホイールと係合している場合は、ェ ンジンのクランクシャフトから曲げ振動が第 1フライホイールに伝達された場合に、フ レキシブルプレートが曲げ方向に十分にたわむことができない。したがって、その場 合は曲げ振動抑制(フレキシブル)効果を十分に得られな 、。
本発明の課題は、クランクシャフトに対してイナーシャ部材をフレキシブルプレート によって曲げ方向にたわみ可能に固定したフレキシブルフライホイールにおいて、ェ ンジンのクランクシャフトからの曲げ振動抑制効果を十分に得ることにある。
請求項 1に記載のフレキシブルフライホイールは、エンジンのクランクシャフトからト ルクが入力されるフレキシブルフライホイールであって、第 1フライホイールと、ダンバ 一機構とを備えている。第 1フライホイールは、イナーシャ部材と、イナ一シャ部材をク ランクランクシャフトに連結するための部材であり曲げ方向や軸方向にたわみ変形可 能なフレキシブルプレートとを有する。ダンパー機構は、クランクシャフトからのトルク が入力される入力側部材と、入力側部材に相対回転可能に配置された出力側部材 と、入力側部材と出力側部材の相対回転によって回転方向に圧縮される弾性部材と を有する。第 1フライホイールは、ダンパー機構に対して曲げ方向に所定範囲で変位 可能である。
このフレキシブルフライホイールでは、エンジンのクランクシャフトからのトルクは、第
1フライホイールとダンパー機構とに伝達される。ダンパー機構に捩り振動が発生す ると、入力側部材と出力側部材が相対回転し、弾性部材が両部材間で回転方向に 圧縮される。このため、捩り振動が吸収される。第 1フライホイールに曲げ振動が発生 すると、フレキシブルプレートが曲げ方向にたわむ。このため、エンジンからの曲げ振 動が抑制される。このフレキシブルフライホイールでは、第 1フライホイールがダンバ 一機構に対して曲げ方向に所定範囲で変位可能であるため、フレキシブルプレート による曲げ振動抑制効果が十分に高 、。 請求項 2に記載のフレキシブルフライホイールは、請求項 1において、第 1フライホ ィールとダンパー機構の出力側部材との間に配置され、弾性部材と回転方向に並列 に作用する摩擦発生機構をさらに備えている。摩擦発生機構は、トルク伝達可能で あるが曲げ方向に相対変位可能に係合する 2つの部材を有して 、る。
このフレキシブルフライホイールでは、ダンパー機構に捩り振動が発生すると、入力 側部材と出力側部材が相対回転し、弾性部材が両部材間で回転方向に圧縮される 。また、同時に摩擦発生機構が作動して摩擦を発生する。このフレキシブルフライホ ィールでは、摩擦発生機構において 2つの部材が曲げ方向に相対変位可能に係合 しているため、第 1フライホイールがダンパー機構に対して摩擦発生機構を介して係 合して ヽるにもかかわらず、第 1フライホイールがダンパー機構に対して曲げ方向に 所定範囲で変位可能である。この結果、フレキシブルプレートによる曲げ振動抑制効 果が十分に高い。
請求項 3に記載のフレキシブルフライホイールでは、請求項 2において、 2つの部材 は、摩擦部材と、摩擦部材に係合する係合部材である。
請求項 4に記載のフレキシブルフライホイールでは、請求項 3において、摩擦部材と 係合部材は回転方向に隙間を空けて係合している。つまり、両者は回転方向に密着 して 、な 、ため、両者が曲げ方向に相対変位する際に大きな抵抗が生じな 、。
請求項 5に記載のフレキシブルフライホイールでは、請求項 3又は 4において、係合 部材はさらに他の部材に軸方向に移動可能に係合する。そのため、両部材間で軸 方向に抵抗が生じにくい。
請求項 6に記載のフレキシブルフライホイールでは、請求項 3又は 4において、摩擦 部材は、第 1フライホイールに対して回転方向に摺動するようになつている。係合部 材は、ダンパー機構の出力側部材と一体回転するようになっている。
請求項 7に記載のフレキシブルフライホイールでは、請求項 6において、係合部材 は、ダンパー機構の出力側部材に対して軸方向に移動可能に係合する。そのため、 摩擦部材が第 1フライホイールと共に軸方向移動した際に、係合部材と出力側部材と の間で軸方向に抵抗が生じにく 、。
請求項 8に記載のフレキシブルフライホイールは、請求項 1一 7のいずれかにおい て、ダンパー機構の出力側部材に固定された第 2フライホイールをさらに備えている 請求項 9に記載のフレキシブルフライホイールでは、請求項 8おいて、第 2フライホ ィールは、クラッチが摩擦連結される摩擦面を有して ヽる。
本発明に係るダンパー機構では、クランクシャフトに対してイナーシャ部材をフレキ シブルプレートによって曲げ方向にたわみ可能に固定したダンパー機構において、 エンジンのクランクシャフトからの曲げ振動抑制効果を十分に得ることができる。 図面の簡単な説明
圆 1]本発明の一実施形態としての 2マスフライホイールの縦断面概略図。
圆 2]本発明の一実施形態としての 2マスフライホイールの縦断面概略図。
[図 3]2マスフライホイールの平面図。
圆 4]第 2摩擦発生機構を説明するための図面であり、図 1の部分拡大図。
圆 5]第 2摩擦発生機構の構成を説明するための平面模式図。
圆 6]第 2摩擦発生機構のフリクションヮッシャと係合部材の関係を説明するための平 面図。
圆 7]第 1摩擦発生機構を説明するための図面であり、図 1の部分拡大図。
圆 8]第 1摩擦発生機構を説明するための図面であり、図 1の部分拡大図。
圆 9]第 1摩擦発生機構を説明するための図面であり、図 3の部分拡大図。
圆 10]第 1摩擦部材の平面図。
[図 11]入力側円板状プレートの平面図。
[図 12]ヮッシャの平面図。
[図 13]コーンスプリングの平面図。
圆 14]第 2摩擦部材の平面図。
圆 15]ダンパー機構及び摩擦発生機構の機械回路図。
[図 16]ダンパー機構の捩り特性線図。
[図 17]ダンパー機構の捩り特性線図。
[図 18]ダンパー機構の捩り特性線図。
[図 19]ダンパー機構の捩り特性線図。 圆 20]本発明の第 2実施形態としてのフライホイールダンパーの縦断面概略図。 圆 21]本発明の第 3実施形態としてのフライホイールダンパーの縦断面概略図。 符号の説明
1 2マスフライホイ一ノレ
2 第 1フライホイール
3 第 2フライホイール
4 ダンパー機構
5 第 1摩擦発生機構
6 第 2摩擦発生機構 (摩擦発生機構)
11 フレキシブルプレート
12 第 2円板状プレート
13 イナーシャ部材
20 入力側円板状プレート (入力側部材)
32 出力側円板状プレート(出力側部材)
33 出力側円板状プレート(出力側部材)
34 第 1コイルスプリング (弾性部材)
35 第 2コイルスプリング (弾性部材)
36 第 3コイルスプリング (弾性部材)
57 フリクションヮッシャ(摩擦部材)
60 フリクション係合部材 (係合部材)
発明を実施するための最良の形態
1.第 1実施形態
(1)構成
ί)全体構诰
図 1に示す本発明の一実施形態としての 2マスフライホイール 1は、エンジン側のク 一組立体 94)を介してトランスミッション側の入力シャフト 92にトルクを伝達するため の装置である。 2マスフライホイール 1は、捩り振動を吸収'減衰するためのダンパー 機能を有している。 2マスフライホイール 1は、主に第 1フライホイール 2と、第 2フライ ホイール 3と、両フライホイール 2, 3の間のダンパー機構 4と、第 1摩擦発生機構 5と、 第 2摩擦発生機構 6から構成されて ヽる。
なお、図 1の O— Oが 2マスフライホイール 1及びクラッチの回転軸線であり、図 1の左 側にはエンジン(図示せず)が配置されており、右側にはトランスミッション(図示せず )が配置されている。以後、図 1において左側を軸方向エンジン側といい、右側を軸 方向トランスミッション側という。また、図 3において矢印 R1の向きが駆動側(回転方 向正側)であり、矢印 R2の向きが反駆動側(回転方向負側)である。
なお、以下に述べる実施形態における実際の数値は一実施例に関するものであつ て、本発明を限定するものではない。
2)第 ίフライホイール
第 1フライホイール 2は、クランクシャフト 91の先端に固定されている。第 1フライホイ ール 2は、クランクシャフト 91側に大きな慣性モーメントを確保するための部材である 。第 1フライホイール 2は、主に、フレキシブルプレート 11と、イナーシャ部材 13とから 構成されている。
フレキシブルプレート 11は、クランクシャフト 91からイナーシャ部材 13に対してトル クを伝達すると共に、クランクシャフトからの曲げ振動を吸収するための部材である。 したがって、フレキシブルプレート 11は、回転方向には剛性が高いが軸方向及び曲 げ方向には剛性が低くなつている。具体的には、フレキシブルプレート 11の軸方向 の岡 は、 3000kg/mm以下であり、 600kg/mm— 2200kg/mmの範囲にある ことが好ましい。フレキシブルプレート 11は、中心孔が形成された円板状の部材であ り、例えば板金製である。フレキシブルプレート 11は内周端が複数のボルト 22によつ てクランクシャフト 91の先端に固定されている。フレキシブルプレート 11には、ボルト 22に対応する位置にボルト貫通孔が形成されている。ボルト 22はクランクシャフト 91 に対して軸方向トランスミッション側から取り付けられている。
イナーシャ部材 13は、厚肉ブロック状の部材であり、フレキシブルプレート 11の外 周端の軸方向トランスミッション側に固定されている。フレキシブルプレート 11の最外 周部は、円周方向に並んだ複数のリベット 15によってイナーシャ部材 13に固定され て 、る。イナーシャ部材 13の外周面にはエンジン始動用リングギア 14が固定されて いる。なお、第 1フライホイール 2は一体の部材カも構成されていてもよい。
3)第 2フライホイール
第 2フライホイール 3は、環状かつ円板状の部材であり、第 1フライホイール 2の軸方 向トランスミッション側に配置されている。第 2フライホイール 3には、軸方向トランスミ ッシヨン側にクラッチ摩擦面 3aが形成されている。クラッチ摩擦面 3aは、環状かつ平 坦な面であり、後述するクラッチディスク組立体 93が連結される部分である。第 2フラ ィホイール 3は、さらに、内周縁において軸方向エンジン側に延びる内周筒状部 3b を有している。また、第 2フライホイール 3の内周部には、ボルト 22が貫通するための 貫通孔 3dが円周方向に並んで形成されて 、る。
4)ダンパー機構
ダンパー機構 4について説明する。ダンパー機構 4は、クランクシャフト 91と第 2フラ ィホイール 3とを回転方向に弹性的に連結するための機構である。このように第 2フラ ィホイール 3はダンパー機構 4によってクランクシャフト 91に連結されることで、ダンバ 一機構と共にフライホイール組立体 (フライホイールダンパー)を構成して!/、る。ダン パー機構 4は、複数のコイルスプリング 34, 35, 36と、一対の出力側円板状プレート 32, 33と、入力側円板状プレート 20とから構成されている。なお、図 15の機械回路 図に示すように、コイルスプリング 34, 35, 36は摩擦発生機構 5, 6に対して回転方 向に並列に作用するように配置されて 、る。
一対の出力側円板状プレート 32, 33は、軸方向エンジン側の第 1プレート 32と、軸 方向トランスミッション側の第 2プレート 33と力も構成されている。両プレート 32, 33は 、円板状部材であり、軸方向に所定の間隔を空けて配置されている。各プレート 32, 33には、円周方向に並んだ複数の窓部 46, 47がそれぞれ形成されている。窓部 46 , 47は、後述するコイルスプリング 34, 35を軸方向及び回転方向にそれぞれ支持す るための構造であり、コィノレスプリング 34, 35を軸方向に保持しかつその円周方向両 端に当接する切り起こし部を有している。窓部 46, 47は、それぞれ 2個ずつ、円周方 向に交互に並んで配置されて 、る(同一半径方向位置に配置されて 、る)。さらに、 各プレート 32, 33には、円周方向に並んだ複数の第 3窓部 48がそれぞれ形成され ている。第 3窓部 48は、半径方向対向する 2力所に形成され、具体的には第 1窓部 4 6の外周側に形成されており、後述する第 3コイルスプリング 36を軸方向及び回転方 向にそれぞれ支持するための構造である。
第 1プレート 32と第 2プレート 33は、内周部同士は軸方向に一定の間隔を維持して いるが、外周部同士は互いに近接してリベット 41, 42によって堅く固定されている。 第 1リベット 41は、円周方向に並んで配置されている。第 2リベット 42は、第 1プレート 32と第 2プレート 33において形成された切り起こし当接部 43, 44同士を固定してい る。切り起こし当接部 43, 44は、円周方向の 2力所において半径方向に対向して形 成され、具体的には第 2窓部 47の半径方向外側に配置されている。図 2に示すよう に、切り起こし当接部 43, 44の軸方向位置は入力側円板状プレート 20と同一である 第 2プレート 33は、外周部が複数のリベット 49によって、第 2フライホイール 3の外 周部に固定されている。
入力側円板状プレート 20は、出力側円板状プレート 32, 33の間に配置された円板 状の部材である。入力側円板状プレート 20には、第 1窓部 46に対応した第 1窓孔 38 と、第 2窓部 47に対応した第 2窓孔 39が形成されている。また、第 1及び第 2窓孔 38 , 39は、それぞれ、直線状の内周縁を有しているが、内周縁の回転方向中間部分に は半径方向内側に凹んだ切り欠き 38a, 39aを有している。入力側円板状プレート 2 0は、図 11に示すように、さらに、中心孔 20aと、その回りに形成された複数のボルト 貫通孔 20bが形成されている。また、外周縁の各窓孔 38, 39の円周方向間にあたる 位置には、半径方向外側に突出する突起 20cが形成されている。突起 20cは、出力 側円板状プレート 32, 33の切り起こし当接部 43, 44と第 3コイルスプリング 36から回 転方向に離れて配置されており、かつ、回転方向に接近するといずれにも当接可能 となっています。言い換えると、突起 20cと切り起こし当接部 43, 44はダンパー機構 4 全体のストッパー機構を構成している。また、突起 20c同士の回転方向の空間は第 3 コイルスプリング 36を収納するための第 3窓孔 40として機能している。さらに、入力側 円板状プレート 20の円周方向の複数箇所 (この実施形態では 4力所)には、孔 20d が形成されている。孔 20dは概ね円形状である力 わずかに半径方向に長くなつて いる。孔 20dの回転方向位置は窓孔 38, 39の回転方向間であり、孔 20dの半径方 向位置は切り欠き 38a, 39aとほぼ同じである。
入力側円板状プレート 20は、フレキシブルプレート 11,補強部材 18,及び支持部 材 19と共に、ボルト 22によってクランクシャフト 91に固定されている。フレキシブルプ レート 11の内周部は、クランクシャフト 91の先端面 91aの軸方向トランスミッション側 面に当接している。補強部材 18は、円板状の部材であり、フレキシブルプレート 11の 内周部の軸方向トランスミッション側面に当接している。支持部材 19は、筒状部 19a と、その外周面から半径方向に延びる円板状部 19bとから構成されている。円板状 部 19bは、補強部材 18の軸方向トランスミッション側面に当接している。筒状部 19a の内周面は、クランクシャフト 91の先端中心に形成された円柱突起 91bの外周面に 当接して芯出しされている。フレキシブルプレート 11の内周面及び補強部材 18の内 周面は、筒状部 19aの軸方向エンジン側の外周面に当接して芯出しされている。入 力側円板状プレート 20の内周面は、筒状部 19aの軸方向トランスミッション側根元の 外周面に当接して芯出しされている。筒状部 19aの内周面には軸受 23が装着され、 軸受 23はトランスミッションの入力シャフト 92の先端を回転自在に支持している。また 、各部材 11, 18, 19, 20はネジ 21によって互いに堅く固定されている。
以上に述べたように、支持部材 19は、クランクシャフト 91に対して半径方向位置決 めされた状態で固定され、さらに第 1フライホイール 2と第 2フライホイール 3の半径方 向位置決めを行って!/、る。このように一つの部品に複数の機能を持たせて!/、るため、 部品点数が少なくなり、コスト低減につながる。
第 2フライホイール 3の筒状部 3bの内周面は、ブッシュ 30を介して、支持部材 19の 筒状部 19aの外周面に支持されている。このようにして、第 2フライホイール 3は支持 部材 19によって第 1フライホイール 2及びクランクシャフト 91に対して芯出しされてい る。ブッシュ 30は、さらに、入力側円板状プレート 20の内周部と、第 2フライホイール 3の筒状部 3b先端との間に配置されたスラスト部 30aを有している。このように、第 2フ ライホイール 3からのスラスト荷重は、スラスト部 30aを介して、軸方向に並んで配置さ れた各咅材 11, 18, 19, 20によって受けられるようになっている。つまり、ブッシュ 30 のスラスト部 30aが、入力側円板状プレート 20の内周部に支持されて第 2フライホイ ール 3からの軸方向の荷重を受けるスラスト軸受として機能している。入力側円板状 プレート 20の内周部は平板状であって平面度が向上しているため、スラスト軸受にお ける発生荷重が安定する。また、入力側円板状プレート 20の内周部は平面状である ため、スラスト軸受部を長く取ることができ、その結果ヒステリシストルクが安定する。さ らに、入力側円板状プレート 20の内周部は支持部材 19の円板状部 19bに対して軸 方向に密に当接する部分であるため、剛性が高 、。
第 1コイルスプリング 34は、第 1窓孔 38及び第 1窓部 46内に配置されている。第 1 コイルスプリング 34の回転方向両端は、第 1窓孔 38及び第 1窓部 46の回転方向端 に当接又は近接している。
第 2コイルスプリング 35は、第 2窓孔 39及び第 2窓部 47内に配置されている。第 2 コイルスプリング 35は、大小のばねが組み合わせられた親子ばねであり、第 1コイル スプリング 34より剛性が高い。第 2コイルスプリング 35の回転方向両端は、第 2窓部 4 7の回転方向両端に近接又は当接している力 第 2窓孔 39の回転法両端力も所定 角度 (この実施形態では 4° )離れている。
第 3コイルスプリング 36は、第 3窓孔 40及び第 3窓部 48内に配置されている。第 3 コイルスプリング 36は、第 1コイルスプリング 34及び第 2コイルスプリング 35より小型 ではあるが外周に配置されて 、るため、剛性は高くなつて!/、る。
5)麾擦 牛機構
5 - ί)第 ί塵擦 牛機構 5
第 1摩擦発生機構 5は、ダンパー機構 4の入力側円板状プレート 20と出力側円板 状プレート 32, 33との回転方向間でコイルスプリング 34, 35, 36と並列に機能する 機構であり、クランクシャフト 91と第 2フライホイール 3が相対回転すると所定の摩擦 抵抗 (ヒステリシストルク)を発生する。第 1摩擦発生機構 5は、ダンパー機構 4の作動 角範囲全体で一定の摩擦を発生するための装置であり、比較的小さな摩擦を発生 するようになっている。
第 1摩擦発生機構 5は、ダンパー機構 4より内周側に配置されており、さらに第 1プ レート 32と第 2フライホイール 3との軸方向間に配置されている。第 1摩擦発生機構 5 は、第 1摩擦部材 51と、第 2摩擦部材 52と、コーンスプリング 53と、ヮッシャ 54とから 構成されている。
第 1摩擦部材 51は、入力側円板状プレート 20と一体回転して第 1プレート 32に回 転方向に摺動するための部材である。図 7— 10に示すように、第 1摩擦部材 51は、 環状部 51aと、環状部 51aから軸方向トランスミッション側に延びる第 1及び第 2係合 部 51b、 51cとを有している。環状部 51aは、第 1プレート 32の内周部に対して回転 方向に摺動可能に当接している。第 1係合部 51bと第 2係合部 51cは、回転方向に 交互に配置されている。第 1係合部 51bは、回転方向に細長い形状を有しており、入 力側円板状プレート 20の窓孔 38, 39の内周側切り欠き 38a, 39aに係合している。 第 2係合部 51cは、半径方向にわずかに長い形状を有しており、入力側円板状プレ ート 20の孔 20dに係合している。このため、第 1摩擦部材 51は、入力側円板状プレ ート 20に対して相対回転不能にかつ軸方向に移動可能になって 、る。
なお、第 1係合部 51bの軸方向先端の回転方向中間位置にさらに軸方向に延びる 第 1突起 51dが形成されている。このため、第 1突起 51dの回転方向両側には第 1軸 方向面 51eが形成されている。また、第 2係合部 51cの半径方向内側位置にさらに軸 方向に延びる第 2突起 51fが形成されている。このため、第 2突起 51fの半径方向外 側位置には第 2軸方向面 51gが形成されている。
第 2摩擦部材 52は、入力側円板状プレート 20と一体回転して第 2フライホイール 3 に回転方向に摺動するための部材である。第 2摩擦部材 52は、図 14に示すように、 環状の部材であり、第 2フライホイール 3の内周部の第 2摩擦面 3cに対して回転方向 に摺動可能に当接している。第 2摩擦面 3cは第 2フライホイール 3における他の部分 より軸方向トランスミッション側に凹んだ平坦な環状面である。
第 2摩擦部材 52の内周縁には、回転方向に並んだ複数の切り欠き 52aが形成され ている。これら切り欠き 52a内には、第 1係合部 51bの第 1突起 51dと第 2係合部 51c の第 2突起 51fが各々係合している。そのため、第 2摩擦部材 52は、第 1摩擦部材 5 1に対して相対回転不能にかつ軸方向に移動可能になって 、る。
コーンスプリング 53は、第 1摩擦部材 51と第 2摩擦部材 52との軸方向間に配置さ れ、両部材を軸方向に離れる方向に付勢するための部材である。コーンスプリング 5 3は、図 13に示すように、円錐状又は円板状のばねであり、内周縁に複数の切り欠き 53aが形成されている。これら切り欠き 53a内には、第 1係合部 51bの第 1突起 51dと 第 2係合部 51cの第 2突起 5 Ifが各々係合している。そのため、コーンスプリング 53 は、第 1摩擦部材 51に対して相対回転不能にかつ軸方向に移動可能になって 、る ヮッシャ 54は、コーンスプリング 53の荷重を第 1摩擦部材 51に確実に伝えるための 部材である。ヮッシャ 54は、図 14に示すように、環状の部材であり、内周縁に円周方 向に並んだ複数の切り欠き 54aを有している。これら切り欠き 54a内には、第 1係合部 51bの第 1突起 51dと第 2係合部 51cの第 2突起 51fが各々係合している。そのため、 ヮッシャ 54は、第 1摩擦部材 51に対して相対回転不能にかつ軸方向に移動可能に なっている。ヮッシャ 54は、第 1係合部 51bの第 1軸方向面 51eと第 2係合部 51cの 第 2軸方向面 5 lgに着座している。コーンスプリング 53は、内周部がヮッシャ 54に支 持され、外周部が第 2摩擦部材 52に支持されている。
5— 2)第 2麾擦 牛機構 6
第 2摩擦発生機構 6は、ダンパー機構 4の入力側円板状プレート 20と出力側円板 状プレート 32, 33との回転方向間でコイルスプリング 34, 35, 36と並列に機能する 機構であり、クランクシャフト 91と第 2フライホイール 3が相対回転すると所定の摩擦 抵抗 (ヒステリシストルク)を発生する。第 2摩擦発生機構 6は、ダンパー機構 4の作動 角範囲全体で一定の摩擦を発生するための装置であり、比較的大きな摩擦を発生 するようになつている。この実施形態では、第 2摩擦発生機構 6が発生するヒステリシ ストルクは、第 1摩擦発生機構 5が発生するヒステリシストルクの 5— 10倍となっている 第 2摩擦発生機構 6は、フレキシブルプレート 11の外周部である環状部 11aと、第 2 円板状プレート 12との軸方向間に形成された空間内に配置され互!、に当接する複 数のヮッシャによって構成されている。第 2摩擦発生機構の各ヮッシャ」は、イナーシ ャ部材 13及びリベット 15内周側に近接して配置されて 、る。
第 2摩擦発生機構 6は、図 4に示すように、フレキシブルプレート 11から第 2円板状 プレート 12の対向部分 12aに向力つて順番に、フリクションヮッシャ 57、入力側フリク シヨンプレート 58、及びコーンスプリング 59を有している。このようにフレキシブルプレ ート 11は第 2摩擦発生機構 6を保持する機能も有しているため、部品点数が少なくな り、構造が簡単になる。
コーンスプリング 59は、各摩擦面に対して軸方向に荷重を付与するための部材で あり、対向部分 12aと入力側フリクションプレート 58との間に挟まれて圧縮されており 、そのため両部材に対して軸方向に付勢力を与えている。入力側フリクションプレート 58は外周縁に形成された爪部 58aが、第 2円板状プレート 12に形成された軸方向に 延びる切り欠き 12bに係合しており、この係合によって入力側フリクションプレート 58 は、第 2円板状プレート 12に対して、相対回転は不能であるが軸方向に移動可能と なっている。
フリクションヮッシャ 57は、図 5に示すように、回転方向に並んで配置された複数の 部材であり、それぞれが弧状に延びている。この実施形態ではフリクションヮッシャ 57 は合計 6個である。各フリクションヮッシャ 57は、入力側フリクションプレート 58とフレ キシブルプレート 11の外周部である環状部 11aの間に挟まれている。つまり、フリクシ ヨンヮッシャ 57の軸方向エンジン側面 57aはフレキシブルプレート 11の軸方向トラン スミッション側面に摺動可能に当接しており、フリクションヮッシャ 57の軸方向トランス ミッション側面 57bは入力側フリクションプレート 58の軸方向エンジン側面に摺動可 能に当接している。図 6に示すように、フリクションヮッシャ 57の内周面には、凹部 63 が形成されている。凹部 63は、フリクションヮッシャ 57の概ね回転方向中心に形成さ れ、具体的には、回転方向に延びる底面 63aと、その両端力 概ね半径方向に (底 面 63aから概ね直角に)延びる回転方向端面 63bとを有している。凹部 63は、フリク シヨンヮッシャ 57の内周面の軸方向中間に形成されて!、るため、軸方向両側を構成 する軸方向端面 63c、 63dを有している。
各フリクションヮッシャ 57の内周側、より具体的には凹部 63内には、それぞれ、フリ クシヨン係合部材 60が配置されている。各フリクション係合部材 60の外周部は、フリク シヨンヮッシャ 57の凹部 63内に配置されている。なお、フリクションヮッシャ 57とフリク シヨン係合部材 60はともに榭脂製である。
フリクション係合部材 60とフリクションヮッシャ 57の凹部 63とによって構成される係 合部分 64について説明する。フリクション係合部材 60は、軸方向端面 60a, 60bと、 回転方向端面 60cとを有している。フリクション係合部材 60の外周面 60gは凹部 63 の底面 63aに近接して 、る。回転方向端面 60cと回転方向端面 63bのそれぞれとの 間には所定角度の回転方向隙間 65 (図 6における 65A)が確保されており、両角度 の合計がそのフリクションヮッシャ 57がフリクション係合部材 60に対して相対回転可 能な所定角度の大きさとなる。なお、この角度はエンジンの燃焼変動に起因する微少 捩り振動により生じるダンパー作動角に等しい又はわずかに越える範囲にあることが 好ましい。なお、この実施形態では、フリクション係合部材 60は、図 6に示す中立状 態において、凹部 63の回転方向中心に配置されている。したがって、フリクション係 合部材 60の回転方向各側の隙間の大きさは同じである。
フリクション係合部材 60は、第 1プレート 32に対して、一体回転するようにかつ軸方 向に移動可能となるように係合している。具体的には、第 1プレート 32の外周縁には 軸方向エンジン側に延びる環状壁 32aが形成されており、環状壁 32aには各フリクシ ヨン係合部材 60に対応して半径方向内側に凹んだ凹部 61が形成されている。さらに 、凹部 61の回転方向中心には半径方向に貫通する第 1スリット 61aが形成されており 、回転方向両側には半径方向に貫通する第 2スリット 61bが形成されている。フリクシ ヨン係合部材 60は、第 1スリット 61a内に半径方向外側から内側に向力つて延びさら に回転方向両側に延び環状壁 32aの内周面に当接する第 1脚部 60eと、各第 2スリツ ト 6 lb内に半径方向外側から内側に向力つて延びさらに回転方向外側に延びて環 状壁 32aの内周面に当接する一対の第 2脚部 60fを有している。これにより、フリクシ ヨン係合部材 60が環状壁 32aから半径方向外方に移動することがない。さらに、フリ クシヨン係合部材 60は、半径方向内側に延び環状壁 32aの凹部 61に対して回転方 向に係合する凸部 60dを有している。これにより、フリクション係合部材 60は、第 1プ レート 32の凸部として一体回転する。
なお、フリクション係合部材 60は、第 1プレート 32に対して軸方向に着脱可能であ る。
また、フリクション係合部材 60の軸方向寸法が凹部 63の軸方向寸法より短い(つま り、凹部 63の軸方向端面 63c, 63d間がフリクション係合部材 60の軸方向端面 60a, 60b間より長い)ため、フリクション係合部材 60はフリクションヮッシャ 57に対して軸方 向に移動可能である。さらに、フリクション係合部材 60の外周面 60gと凹部 63の底面 63aとの間には半径方向隙間が確保されているため、フリクション係合部材 60はフリ クシヨンヮッシャ 57に対して所定角度ではあるが傾くことが可能である。
以上に述べたように、フリクションヮッシャ 57は、入力側の部材であるフレキシブル プレート 11と入力側フリクションプレート 58に対して回転方向に移動可能に摩擦係 合し、フリクション係合部材 60に対して係合部分 64の回転方向隙間 65を介してトル ク伝達可能に係合している。さらに、フリクション係合部材 60は、第 1プレート 32と一 体回転すると共に、軸方向に移動可能となっている。
次に、フリクションヮッシャ 57とフリクション係合部材 60との関係について、さらに詳 細に説明する。フリクション係合部材 60の回転方向幅(回転方向角度)は全て同じで あるが、凹部 63の回転方向幅(回転方向角度)が異なるものがある。言い換えると、 凹部 63の回転方向幅が異なる少なくとも 2種類のフリクションヮッシャ 57がある。この 実施形態では、図 5の上下方向に対向する 2つの第 1フリクションヮッシャ 57Aと、左 右方向に対向する 4つの第 2フリクションヮッシャ 57Bとから構成されて 、る。第 1フリク シヨンヮッシャ 57Aと第 2フリクションヮッシャ 57Bは概ね同一形状であり、又同一材料 力らなる。両者が異なる点は、凹部 63の回転方向隙間の回転方向幅(回転方向角 度)のみである。具体的には、第 2フリクションヮッシャ 57Bの凹部 63の回転方向幅が 、第 1フリクションヮッシャ 57Aの凹部 63の回転方向幅より大きくなつている。この結果 、第 2フリクションヮッシャ 57Bにおける第 2係合部分 64Bの第 2回転方向隙間 65Bが 、第 1フリクションヮッシャ 57Aにおける第 1係合部分 64Aの第 1回転方向隙間 65Aよ り大きくなつている。この実施形態では、例えば、前者が 10° であり、後者が 8° であ り、その差は 2° である。
各フリクションヮッシャ 57A, 57Bの両回転方向端は互いに近接している。回転方 向端間に確保された回転方向端間の角度は、第 2フリクションヮッシャ 57Bにおける 第 2回転方向隙間 65Bと第 1フリクションヮッシャ 57Aにおける第 1回転方向隙間 65 Aの差 (例えば、 2° )より、大きく設定されている。
6)クラッチディスク組立体
クラッチのクラッチディスク組立体 93は、第 2フライホイール 3のクラッチ摩擦面 3aに 近接して配置される摩擦フエ一シング 93aと、トランスミッション入力シャフト 92にスプ ライン係合するハブ 93bとを有して 、る。
7)クラッチカバー組立体
クラッチカバー組立体 94は、クラッチカバー 96と、ダイヤフラムスプリング 97と、プレ ッシャープレート 98とを有している。クラッチカバー 96は、第 2フライホイール 3に固定 された円板状かつ環状部材である。プレッシャープレート 98は、摩擦フエ一シング 93 aに近接する押圧面を有する環状の部材であり、クラッチカバー 96と一体回転するよ うになつている。ダイヤフラムスプリング 97は、クラッチカバー 96に指示された状態で プレッシャープレート 98を第 2フライホイール側に弹性的に付勢するための部材であ る。図示しないレリーズ装置がダイヤフラムスプリング 97の内周端を軸方向エンジン 側に押すと、ダイヤフラムスプリング 97はプレッシャープレート 98への付勢を解除す る。
(2)動作
1)トルク伝 i幸
この 2マスフライホイール 1では、エンジンのクランクシャフト 91からのトルクは、第 2 フライホイール 3に対してダンパー機構 4を介して伝達される。ダンパー機構 4では、ト ルクは、入力側円板状プレート 20、コイルスプリング 34— 36、出力側円板状プレート 32, 33の順番で伝達される。さらに、トルクは、 2マスフライホイール 1から、クラッチ連 結状態でクラッチディスク組立体 93に伝達され、最後に入力シャフト 92に出力される
2)捩り振動の吸収'減宭
2マスフライホイール 1にエンジン力 の燃焼変動が入力されると、ダンパー機構 4 において入力側円板状プレート 20と出力側円板状プレート 32, 33とが相対回転し、 その間でコイルスプリング 34— 36が並列に圧縮される。さらに、第 1摩擦発生機構 5 及び第 2摩擦発生機構 6が所定のヒステリシストルクを発生する。以上の作用により捩 じり振動が吸収 '減衰される。
次に、図 16の捩り特性線図を用いてダンパー機構 4の動作を説明する。捩り角度 の小さな領域 (角度ゼロ付近)では、第 1コイルスプリング 34のみが圧縮されて比較 的低剛性の特性が得られる。捩り角度が大きくなると、第 1コイルスプリング 34と第 2コ ィルスプリング 35が並列に圧縮され、比較的高剛性の特性が得られる。捩り角度がさ らに大きくなると、第 1コイルスプリング 34と第 2コイルスプリング 35と第 3コイルスプリ ング 36が並列に圧縮され、捩り特性の両端に最も高い剛性の特性が得られる。第 1 摩擦発生機構 5は、捩り角度の全ての領域において作動している。なお、第 2摩擦発 生機構 6は、捩り角度の両端において捩り動作の向きが変わって力も所定角度まで は作動していない。
次に、フリクションヮッシャ 57がフリクション係合部材 60によって駆動されるときの動 作を説明する。中立状態から、フリクション係合部材 60がフリクションヮッシャ 57に対 して回転方向 R1側に捩れていく動作を説明する。
捩り角度が大きくなると、やがて、第 1フリクションヮッシャ 57Aにおいてフリクション 係合部材 60が第 1フリクションヮッシャ 57Aの凹部 63の回転方向 R1側の回転方向 端面 63bに当接する。このとき、第 2フリクションヮッシャ 57Bにおいて、フリクション係 合部材 60が第 2フリクションヮッシャ 57Bの凹部 63の回転方向 R1側の回転方向端 面 63bに対して回転方向隙間(第 2フリクションヮッシャ 57Bの第 2回転方向隙間 65B と第 1フリクションヮッシャ 57Aの第 1回転方向隙間 65Aとの差の半分であり、この実 施形態では 1° )を有している。
さらに捩り角度が大きくなると、フリクション係合部材 60は第 1フリクションヮッシャ 57 Aを駆動して、フレキシブルプレート 11及び入力側フリクションプレート 58に対して摺 動させる。このときに、第 1フリクションヮッシャ 57Aは第 2フリクションヮッシャ 57Bに対 して回転方向 R1側に接近するが、両者の端部が当接することはない。
やがて捩り角度が所定の大きさになると、フリクション係合部材 60が、第 2フリクショ ンヮッシャ 57Bの凹部 63の回転方向端面 63bに当接する。これ以降は、フリクション 係合部材 60は、第 1及び第 2フリクションヮッシャ 57A, 57Bをともに駆動して、フレキ シブルプレート 11及び入力側フリクションプレート 58に対して摺動させる。
以上をまとめると、フリクションヮッシャ 57が第 1プレート 32によって駆動される時に は、捩り特性において一定の枚数が駆動されて中間摩擦抵抗が発生する領域が、 全ての枚数が駆動される大摩擦抵抗の領域の開始前に発生する。 2 - 1)微少捩り振動
次に、エンジンの燃焼変動に起因する微小捩り振動が 2マスフライホイール 1に入 力されたときのダンパー機構 4の動作を、図 15の機械回路図と図 16—図 19の捩り特 性線図を用いて説明する。
微少捩り振動が入力されると、第 2摩擦発生機構 6において、入力側円板状プレー ト 20は、フリクション係合部材 60 (凸部)と凹部 63との間の回転方向隙間 65において 、フリクションヮッシャ 57に対して相対回転する。つまり、フリクションヮッシャ 57は、第 1プレート 32によって駆動されず、したがってフリクションヮッシャ 57は入力側の部材 に対して回転しない。この結果、微小捩じり振動に対しては高ヒステリシストルクが発 生しな 、。すなわち図 16の捩り特性線図にお 、て例えば「DCa」ではコイルスプリン グ 34, 35が作動するが、第 2摩擦発生機構 6では滑りが生じない。つまり、所定の捩 り角度範囲では、通常のヒステリシストルクよりはるかに小さなヒステリシストルクし力得 られない。このように、捩じり特性において第 2摩擦発生機構 6を所定角度範囲内で は作動させない微少回転方向隙間を設けたため、振動,騒音レベルを大幅に低くす ることがでさる。
この結果、捩り特性 2段目において、捩り振動の動作角度が第 1フリクションヮッシャ 57Aの第 1係合部分 64Aの第 1回転方向隙間 65Aの角度 (例えば、 8° )以内であ る場合は、図 17のように大摩擦抵抗 (高ヒステリシストルク)は一切発生せず、低摩擦 抵抗の領域 Aのみが得られる。また、捩り振動の動作角度が第 1フリクションヮッシャ 5 7Aの第 1係合部分 64Aの第 1回転方向隙間 65Aの角度 (例えば、 8° )以上である がそれに第 2フリクションヮッシャ 57Bの第 2係合部分 64Bの第 2回転方向隙間 65B の角度 (例えば 10° )以内である場合は、図 18のように低摩擦抵抗の領域 Aの端に 中間摩擦抵抗の領域 Bが発生する。そして、捩り振動の動作角度が第 2フリクションヮ ッシャ 57Bの第 2係合部分 64Bの第 2回転方向隙間 65Bの角度 (例えば 10° )以上 である場合は、図 19のように低摩擦抵抗の領域 Aの両端に、中間摩擦抵抗の領域 B と、一定の大摩擦抵抗が発生する領域 Cとがそれぞれ得られる。
2 - 1)大捩り振動入力時の動作
大捩り振動が入力された場合の第 2摩擦発生機構 6の動作を説明する。第 2摩擦 発生機構 6では、フリクションヮッシャ 57は、フリクション係合部材 60及び第 1プレート 32と一体回転し、フレキシブルプレート 11及びフリクションプレート 58と相対回転す る。この結果、フリクションヮッシャ 57及びフリクション係合部材 60がフレキシブルプレ ート 11と入力側フリクションプレート 58に摺動して摩擦抵抗を発生する。先に述べた ように、捩り振動の捩り角度が大きい場合は、フリクションヮッシャ 57がフレキシブルプ レート 11及び入力側フリクションプレート 58に摺動する。その結果、一定の大きさの 摩擦抵抗が捩り特性の全体にわたって得られる。
ここで、捩り角度の端部 (振動の向きが変わる位置)での動作について説明する。図 16の捩り特性線図の右側端では、フリクションヮッシャ 57は第 1プレート 32に対して 最も回転方向 R2側にずれている。この状態力 第 1プレート 32が出力側円板状プレ ート 32, 33に対して、回転方向 R2側にねじれていくと、フリクション係合部材 60 (凸 部)と凹部 63の回転方向隙間 65の全角度にわたって、フリクションヮッシャ 57が第 1 プレート 32に対して相対回転する。この間では、フリクションヮッシャ 57は入力側の部 材に対して摺動しないため、低摩擦抵抗の領域 A (例えば、 8° )が得られる。続いて 、第 1フリクションヮッシャ 57Aの第 1係合部分 64Aの第 1回転方向隙間 65Aがなくな ると、次に第 1プレート 32が第 1フリクションヮッシャ 57Aを駆動する。すると、第 1フリ クシヨンヮッシャ 57Aがフレキシブルプレート 11及び入力側フリクションプレート 58に 対して相対回転する。この結果、先に述べたように、中間の摩擦抵抗の領域 B (例え ば、 2° )が発生する。続いて、第 2フリクションヮッシャ 57Bの第 2係合部分 64Bの第 2回転方向隙間 65Bがなくなると、次に第 1プレート 32が第 2フリクションヮッシャ 57B を駆動する。すると、第 2フリクションヮッシャ 57Bがフレキシブルプレート 11及び入力 側フリクションプレート 58に対して相対回転する。この時には、第 1フリクションヮッシャ 57Aと第 2フリクションヮッシャ 57Bがともに摺動するため、比較的大きな摩擦抵抗の 領域 Cが発生する。なお、第 1フリクションヮッシャ 57Aによって発生するヒステリシスト ルクは、第 2フリクションヮッシャ 57Bによって発生するヒステリシストルクより小さぐ実 際には半分程度である。
以上に述べたように、大きな摩擦抵抗が発生する初期の段階には、中間の摩擦抵 抗の領域 Bが設けられて 、る。このように大摩擦抵抗の立ち上がりを段階的にして!/ヽ るため、大摩擦抵抗発生時の高ヒステリシストルクの壁が存在しない。そのため、微少 捩り振動を吸収するために微少回転方向隙間を設けた摩擦発生機構において、高ヒ ステリシストルク発生時のッメのたたき音が減少する。
特に、本発明において、中間の摩擦抵抗を発生させるのに単一種類のフリクション ヮッシャ 57を用いているため、摩擦部材の種類を少なく抑えることができる。また、フリ クシヨンヮッシャ 57は、弧状に延びる簡単な構造である。また、フリクションヮッシャ 57 は、軸方向貫通孔が形成されておらず、製造コストを低く抑えることができる。
2— 2)微小捩り振動入力時の動作
次に、エンジンの燃焼変動に起因する微小捩り振動がフライホイールダンパーに入 力されたときの第 2摩擦発生機構 6の動作を説明する。
微少捩り振動が入力されると、第 2摩擦発生機構 6において、フリクション係合部材 60は、微少回転方向隙間 65において、フリクションヮッシャ 57に対して相対回転す る。つまり、フリクションヮッシャ 57は、フリクション係合部材 60によって駆動されず、し たがってフリクションヮッシャ 57は入力側の部材に対して回転しない。この結果、微小 捩じり振動に対しては高ヒステリシストルクが発生しない。つまり、所定の捩り角度範 囲では、通常のヒステリシストルクよりはるかに小さなヒステリシストルクし力得られない 。このように、捩じり特性において第 2摩擦発生機構 6を所定角度範囲内では作動さ せない微少回転方向隙間を設けたため、振動 ·騒音レベルを大幅に低くすることがで きる。
(3)効果
3— 1)第 1摩擦発牛.機構 5の効
第 1摩擦発生機構 5が第 2フライホイール 3の一部を摩擦面として利用しているため 、摺動面の面積を大きくすることができる。具体的には、第 2摩擦部材 52がコーンス プリング 53によって第 2フライホイール 3に付勢されているため、摺動面の面積を大き くすることができる。したがって、摺動面の面圧が低下し、第 1摩擦発生機構 5の寿命 が向上する。
第 2摩擦部材 52の外周部と第 1及び第 2コイルスプリング 34, 35の内周部は軸方 向に重なって配置され、第 2摩擦部材 52の外周縁の半径方向位置は第 1及び第 2コ ィルスプリング 34, 35の内周縁の半径方向位置より半径方向外側にある。このため、 第 2摩擦部材 52と第 1及び第 2コイルスプリング 34, 35とが半径方向に近接している にもかかわらず第 2摩擦発生機構 6において摩擦面を十分に確保できる。
第 1摩擦部材 51の環状部 51aの外周部と第 1及び第 2コイルスプリング 34, 35の内 周部は軸方向に重なって配置され、環状部 5 laの外周縁の半径方向位置は第 1及 び第 2コイルスプリング 34, 35の内周縁の半径方向位置より半径方向外側にある。こ のため、環状部 51aと第 1及び第 2コイルスプリング 34, 35が半径方向に近接してい るにもかかわらず、第 2摩擦発生機構 6において摩擦面を十分に確保できる。
第 1摩擦部材 51のみが入力側円板状プレート 20に相対回転不能に係合しており、 第 1摩擦部材 51と第 2摩擦部材 52が互いに相対回転不能に係合している。このため 、入力側円板状プレート 20と第 2摩擦部材 52とを係合させる必要がなくなり、構造が 簡単になる。
第 1摩擦部材 51は、第 1プレート 32に対して回転方向に摺動可能に当接する環状 部 51aと、環状部 5 laから軸方向に延び入力側円場状プレート 20に対して軸方向に 移動可能に且つ相対回転不能に係合する複数の係合部 5 lb, 51cとを有している。 第 2摩擦部材 52は、複数の係合部 51b, 51cに相対回転不能に且つ軸方向に移動 可能に係合する複数の切り欠き 52aを有している。このように、第 1摩擦部材 51が軸 方向に延びる複数の係合部 51b, 51cを有しているため、第 1摩擦部材 51の環状部 51aと第 2摩擦部材 52とが軸方向に離れた配置した構造を簡単に実現できる。
コーンスプリング 53は、第 2摩擦部材 52と、第 1摩擦部材 51の係合部 51b, 51cと の間に配置されて、両者を軸方向に付勢している。そのため、構造が簡単になる。 ヮッシャ 54は、第 1摩擦部材 51の係合部 51b, 51cの先端に着座し、コーンスプリ ング 53からの付勢力を受ける受け部材として機能している。そのため、摩擦摺動面に 付与される軸方向の荷重が安定し、その結果、摺動面で発生する摩擦抵抗が安定 する。
第 1摩擦発生機構 5は第 2フライホイール 3のクラッチ摩擦面 3aから内周側に(半径 方向内側に離れて)配置されている。したがって、第 1摩擦発生機構 5はクラッチ摩擦 面 3aからの熱の影響を受けにくぐ摩擦抵抗が安定する。 第 1摩擦発生機構 5は、ダンパー機構 4の第 1及び第 2コイルスプリング 34, 35の半 径方向中心位置より内周側に配置されており、ボルト 22の最外周縁より外周側に配 置されている。したがって、省スペースの構造になる。
3-2)第 2摩擦発牛.機構 6の効
第 2摩擦発生機構 6が第 1フライホイール 2 (具体的には、フレキシブルプレート 11) に保持されているため、第 2摩擦発生機構 6は第 2フライホイール 3のクラッチ摩擦面 3aからの熱の影響を受けにくい。したがって、第 2摩擦発生機構 6の性能が安定する 。特に、第 1フライホイール 2は第 2フライホイール 3とコイルスプリング 34— 36を介し て連結されていないため、第 1フライホイール 2にも第 2フライホイール 3からの熱は伝 わりにくくなつている。
第 2摩擦発生機構 6は、フレキシブルプレート 11の外周部である環状部 1 laを摩擦 面として利用している。フレキシブルプレート 11を利用しているため、第 2摩擦発生機 構 6は部品点数が少なくなり、構造が簡単になる。
第 2摩擦発生機構 6は、クラッチクラッチ摩擦面 3aより外周側に配置されてクラッチ 摩擦面 3aから半径方向に離れているため、第 2摩擦発生機構 6がクラッチ摩擦面 3a からの熱の影響を受けにくい。
3-3)フレキシブルフライホイール (第 1フライホイール 2 ダンパー機構 4)の効菓 第 1フライホイール 2は、イナーシャ部材 13と、イナーシャ部材 13をクランクシャフト 91に連結するための部材であり曲げ方向や軸方向にたわみ変形可能なフレキシブ ルプレート 11とを有する。ダンパー機構 4は、クランクシャフト 91からのトルクが入力さ れる入力側円板状プレート 20と、入力側円板状プレート 20に相対回転可能に配置 された出力側円板状プレート 32, 33と、両者の相対回転によって回転方向に圧縮さ れるコイルスプリング 34, 35, 36とを有する。ダンパー機構 4は、第 1フライホイール 2 を介さずに直接クランクシャフト 91に連結されている。第 1フライホイール 2は、ダンバ 一機構 4に対して曲げ方向に所定範囲で変位可能である。以上に述べた第 1フライ ホイール 2とダンパー機構 4の組み合わせをフレキシブルフライホイール 66という。 第 1フライホイール 2に曲げ振動が発生すると、フレキシブルプレート 11が曲げ方向 にたわむ。このため、エンジンからの曲げ振動が抑制される。このフレキシブルフライ ホイールでは、第 1フライホイール 2がダンパー機構 4に対して曲げ方向に所定範囲 で変位可能であるため、フレキシブルプレート 11による曲げ振動抑制効果が十分に 高い。
フレキシブルフライホイール 66は、第 1フライホイール 2とダンパー機構 4の出力側 円板状プレート 32との間に配置され、コイルスプリング 34, 35, 36と回転方向に並 列に作用する第 2摩擦発生機構 6をさらに備えている。第 2摩擦発生機構 6は、トルク 伝達可能であるが曲げ方向に相対変位可能に係合するフリクションヮッシャ 57及び フリクション係合部材 60とを有している。このフレキシブルフライホイール 66では、第 2摩擦発生機構 6にお 、て 2つの部材が曲げ方向に相対変位可能に係合して 、るた め、第 1フライホイールがダンパー機構 4に対して第 2摩擦発生機構 6を介して係合し ているにもかかわらず、曲げ方向に所定範囲で変位可能である。この結果、フレキシ ブルプレート 11による曲げ振動抑制効果が十分に高!、。
フリクションヮッシャ 57とフリクション係合部材 60は回転方向に隙間を空けて係合し ている。つまり、両者は回転方向に密着していないため、曲げ方向に相対変位する 際に大きな抵抗が生じない。
フリクション係合部材 60は、出力側円板状プレート 32, 33の第 1プレート 32に対し て軸方向に移動可能に係合する。そのため、フリクションヮッシャ 57が第 1フライホイ ール 2と共に軸方向移動した際に、フリクション係合部材 60と出力側円板状プレート 32, 33との間で軸方向に抵抗が生じにくい。
3-4)第 3コイルスプリング 36の効果
3コイルスプリング 36は、捩り特性の捩り角度が最も大きくなつた領域で作動を開 始し、ダンパー機構 4に十分なストッパートルクを付与するための部材である。第 3コ ィルスプリング 36は、第 1及び第 2コイルスプリング 34, 35に対して回転方向に並列 に作用する配置されている。
第 3コイルスプリング 36は、線径及びコイル径が第 1及び第 2コイルスプリング 34, 3 5に対して大幅に小さく(半分程度)、そのため軸方向にしめるスペースも小さい。図 1 に示すよう〖こ、第 3コイルスプリング 36は、第 1及び第 2コイルスプリング 34, 35の外 周側に配置され、第 2フライホイール 3のクラッチ摩擦面 3aに対応する位置に配置さ れている。言い換えると、第 3コイルスプリング 36の半径方向位置は、クラッチ摩擦面 3aの内径と外径の間の環状の領域内にある。
この実施形態では、第 3コイルスプリング 36を設けることで、ストッパートルクを十分 に高くして性能を向上させつつ、第 3コイルスプリング 36の寸法や配置位置を工夫す ることで省スペースの構造を実現している。特に、第 3コイルスプリング 36は第 2フライ ホイール 3のクラッチ摩擦面 3a (クラッチ摩擦面 3a部分は軸方向厚みが大き 、)に対 応する位置に配置されているにかかわらず、その部分の軸方向寸法は十分に小さく なっており、第 1及び第 2コイルスプリング 34, 35が配置されている部分の軸方向寸 法より小さくなつている。
また、第 3コイルスプリング 36は、入力側円板状プレート 20の突起 20cと出力側円 板状プレート 32, 33の切り起こし当接部 43, 44と力もなるストッパーと、概ね同一の 半径方向位置に配置されている。そのため、各機構が半径方向の異なる位置に配置 された構造に比べて、全体の構造の径が小さくなる。
2.第 2実施形態
図 20に、本発明の第 2実施形態としてのフレキシブルフライホイール 101を示す。 フレキシブルフライホイール 101は、エンジンのクランクシャフト 91からトランスミツショ ンの入力シャフト 92にトルクを伝達するための装置である。フレキシブルフライホイ一 ル 101は、第 1フライホイール 102と、ダンパー機構 103と力も構成されている。ダン パー機構 103は、クランクシャフト 91に直接固定されており、第 1フライホイール 102 からはトルクが入力されな 、ようになって!/、る。
第 1フライホイール 102は、イナーシャ部材 113と、イナーシャ部材 113をクランクシ ャフト 91に連結するための部材であり曲げ方向にたわみ変形可能なフレキシブルプ レート 111とを有する。
ダンパー機構 103は、クランクシャフト 91からのトルクが入力される入力側円板状プ レート 132, 133と、プレート 132, 133に相対回転可能に配置された出力側円板状 プレート 120と、両者の相対回転によって回転方向に圧縮されるコイルスプリング 13 4とを有する。プレート 132, 133は互い堅く固定されている。プレート 132の内周部 1 32aは、プレート 133の内周部よりさらに半径方向内側に延びており、フレキシブル プレート 111の内周部と共にクランクボルト 122によってクランクシャフト 91に固定さ れている。出力側円板状プレート 120の内周部 120aは、ハブ 121の外周面近傍ま で延び、互いに相対回転不能に係合している。また、プレート 120とハブ 121は、軸 方向当接面やスナップリング等によって、互いに軸方向に移動不能となるようになつ ている。
以上より、前記第 1実施形態とは異なり、フレキシブルフライホイール 101は、第 2フ ライホイールやクラッチではなぐハブ 121を介して直接トランスミッションの入力シャ フト 92にトルクを出力するようになっている。
図 20から明らかなように、第 1フライホイール 102は内周部以外がダンパー機構 10 3と離れており、第 1フライホイール 102は、ダンパー機構 103に対して曲げ方向に所 定範囲で変位可能である。
第 1フライホイール 102に曲げ振動が発生すると、フレキシブルプレート 111が曲げ 方向にたわむ。このため、エンジンからの曲げ振動が抑制される。このフレキシブル フライホイール 101では、第 1フライホイール 102がダンパー機構 103に対して曲げ 方向に所定範囲で変位可能であるため、フレキシブルプレート 111による曲げ振動 抑制効果が十分に高い。
3.第 3実施形態
図 21に、本発明の第 3実施形態としてのフレキシブルフライホイール 101 'を示す。 基本的な構造は前記第 2実施形態と同様であるので、ここでは異なる点のみを説明 する。
ダンパー機構 103 'は、クランクシャフト 91からのトルクが入力される入力側円板状 プレート 120'と、プレート 120'に相対回転可能に配置された出力側円板状プレート 132' , 133 'と、両者の相対回転によって回転方向に圧縮されるコイルスプリング 13 4とを有する。プレート 132,, 133,は互い堅く固定されている。プレート 133の内周 部 133aは、プレート 132の内周部よりさらに半径方向内側に延びており、ハブ 121 ' のフランジ 121aに複数のリベット 124によって固定されている。プレート 120,の内周 部 120aは、フレキシブルプレート 111の内周部と共にクランクボルト 122によってクラ ンクシャフト 91に固定されて!、る。 このように、前記第 2実施形態と異なり、プレート 132' , 133 'が出力側部材となつ ており、プレート 120'が入力側部材となっている。
図 21から明らかなように、第 1フライホイール 102は内周部以外がダンパー機構 10 3 'と離れており、第 1フライホイール 102は、ダンパー機構 103 'に対して曲げ方向に 所定範囲で変位可能である。
第 1フライホイール 102に曲げ振動が発生すると、フレキシブルプレート 111が曲げ 方向にたわむ。このため、エンジンからの曲げ振動が抑制される。このフレキシブル フライホイール 101 'では、第 1フライホイール 102がダンパー機構 103 'に対して曲 げ方向に所定範囲で変位可能であるため、フレキシブルプレート 111による曲げ振 動抑制効果が十分に高い。
4.他の実施形態
以上、本発明に従うクラッチ装置の一実施形態について説明したが、本発明はか かる実施形態に限定されるものではなぐ本発明の範囲を逸脱することなく種々の変 形乃至修正が可能である。特に、本発明は前述の具体的な角度の数値等に限定さ れない。
前記実施形態では、係合部分の回転方向隙間の大きさの種類を 2種類としていた 1S 3種類又はそれ以上にしても良い。 3種類の場合は、中間の摩擦抵抗の大きさが 2段階になる。
前記実施形態では第 1摩擦部材と第 2摩擦部材の摩擦係数を同一としているが、 異ならせてもよい。このように、第 1摩擦部材と第 2摩擦部材とで発生する摩擦抵抗を 調整することで、中間摩擦抵抗と大摩擦抵抗の比を自由に設定できる。
前記実施形態では凸部の大きさを全て同じにして異なる大きさの凹部を設けること で中間の摩擦抵抗を発生させていたが、凹部の大きさを全て同じにして異なる大きさ の凸部を設けてもよい。さらには、異なる大きさの凸部と、異なる大きさの凹部とを組 み合わせてもよい。
前記実施形態ではフリクションヮッシャの凹部は半径方向内側を向 、て 、たが、逆 に半径方向外側に向いていてもよい。
さらに、前記実施形態ではフリクションヮッシャが凹部を有していた力 フリクションヮ ッシャが凸部を有していてもよい。その場合は、例えば、入力側円板状プレートが凹 部を有することになる。
さらに、前記実施形態ではフリクションヮッシャは入力側部材に摩擦係合する摩擦 面を有していた力 出力側部材に摩擦係合する摩擦面を有していてもよい。その場 合は、フリクションヮッシャと入力側部材との間に、回転方向隙間を有する係合部分 力 S形成されること〖こなる。

Claims

請求の範囲
[1] エンジンのクランクシャフトからトルクが入力されるフレキシブルフライホイールであ つて、
イナーシャ部材と、前記イナーシャ部材を前記クランクランクシャフトに連結するた めの部材であり曲げ方向や軸方向にたわみ変形可能なフレキシブルプレートとを有 する第 1フライホイールと、
前記クランクシャフトからのトルクが入力される入力側部材と、前記入力側部材に相 対回転可能に配置された出力側部材と、前記入力側部材と前記出力側部材の相対 回転によって回転方向に圧縮される弾性部材とを有するダンパー機構とを備え、 前記第 1フライホイールは、前記ダンパー機構に対して曲げ方向に所定範囲で変 位可能である、
フレキシブノレフライホイ一ノレ。
[2] 前記第 1フライホイールと前記ダンパー機構の前記出力側部材との間に配置され、 前記弾性部材と回転方向に並列に作用する摩擦発生機構をさらに備え、
前記摩擦発生機構は、トルク伝達可能であるが曲げ方向に相対変位可能に係合 する 2つの部材を有して 、る、請求項 1に記載のフレキシブルフライホイール。
[3] 前記 2つの部材は、摩擦部材と、前記摩擦部材に係合する係合部材である、請求 項 2に記載のフレキシブルフライホイール。
[4] 前記摩擦部材と前記係合部材は回転方向に隙間を空けて係合して 、る、請求項 3 に記載のフレキシブルフライホイール。
[5] 前記係合部材はさらに他の部材に軸方向に移動可能に係合する、請求項 3又は 4 に記載のフレキシブルフライホイール。
[6] 前記摩擦部材は、前記第 1フライホイールに対して回転方向に摺動するようになつ ており、
前記係合部材は、前記ダンパー機構の前記出力側部材と一体回転するようになつ て 、る、請求項 3又は 4に記載のフレキシブルフライホイール。
[7] 前記係合部材は、前記ダンパー機構の前記出力側部材に対して軸方向に移動可 能に係合する、請求項 6に記載のフレキシブルフライホイール。
[8] 前記ダンパー機構の前記出力側部材に固定された第 2フライホイールをさらに備え ている、請求項 1一 7のいずれかに記載のフレキシブルフライホイール。
[9] 前記第 2フライホイールは、クラッチが摩擦連結される摩擦面を有して!/、る、請求項 8に記載のフレキシブルフライホイール。
PCT/JP2004/012986 2003-09-16 2004-09-07 フレキシブルフライホイール WO2005028915A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/571,894 US20070099710A1 (en) 2003-09-16 2004-09-07 Flexible flywheel
DE112004001721T DE112004001721T5 (de) 2003-09-16 2004-09-07 Flexibles Schwungrad

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003323630 2003-09-16
JP2003-323630 2003-09-16
JP2003324294 2003-09-17
JP2003-324294 2003-09-17
JP2003347721A JP4402934B2 (ja) 2003-10-07 2003-10-07 フレキシブルフライホイール
JP2003-347721 2003-10-07

Publications (1)

Publication Number Publication Date
WO2005028915A1 true WO2005028915A1 (ja) 2005-03-31

Family

ID=34381769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012986 WO2005028915A1 (ja) 2003-09-16 2004-09-07 フレキシブルフライホイール

Country Status (4)

Country Link
US (1) US20070099710A1 (ja)
KR (1) KR100854000B1 (ja)
DE (1) DE112004001721T5 (ja)
WO (1) WO2005028915A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200292005A1 (en) * 2019-03-15 2020-09-17 Exedy Corporation Damper device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028912A1 (ja) * 2003-09-16 2005-03-31 Exedy Corporation フライホイール組立体
US8701851B2 (en) 2010-10-08 2014-04-22 GM Global Technology Operations LLC Selectable mass flywheel
US10030739B2 (en) 2013-01-30 2018-07-24 Aisin Aw Co., Ltd. Damper device and starting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282641A (ja) * 1985-04-04 1986-12-12 ル−ク・ラメレン・ウント・クツプルングスバウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 相対回動可能な少なくとも2つのはずみ質量体の間に設けられた緩衝装置を有する装置
JPS63285330A (ja) * 1987-02-14 1988-11-22 ダイムラー−ベンツ・アクチエンゲゼルシヤフト 分割はずみ車
JPH01126453U (ja) * 1988-02-22 1989-08-29
JPH08170650A (ja) * 1994-12-15 1996-07-02 Exedy Corp フレキシブルプレート

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3502229A1 (de) * 1985-01-24 1986-07-24 Fichtel & Sachs Ag, 8720 Schweinfurt Indirekte lagerung fuer ein geteiltes schwungrad
US5355747A (en) * 1991-09-04 1994-10-18 Kabushiki Kaisha Daikin Seisakusho Flywheel assembly
JP3679901B2 (ja) * 1997-07-08 2005-08-03 株式会社エクセディ フライホイール組立体、及びトルクコンバータ
JP3669664B2 (ja) 1997-07-31 2005-07-13 株式会社エクセディ フライホイール組立体
JP3410934B2 (ja) * 1997-08-01 2003-05-26 株式会社エクセディ 連結機構
FR2794832B1 (fr) * 1999-06-10 2001-09-14 Valeo Double volant amortisseur pour vehicule automobile
JP3739670B2 (ja) * 2001-05-17 2006-01-25 本田技研工業株式会社 原動機のフライホイール装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282641A (ja) * 1985-04-04 1986-12-12 ル−ク・ラメレン・ウント・クツプルングスバウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 相対回動可能な少なくとも2つのはずみ質量体の間に設けられた緩衝装置を有する装置
JPS63285330A (ja) * 1987-02-14 1988-11-22 ダイムラー−ベンツ・アクチエンゲゼルシヤフト 分割はずみ車
JPH01126453U (ja) * 1988-02-22 1989-08-29
JPH08170650A (ja) * 1994-12-15 1996-07-02 Exedy Corp フレキシブルプレート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200292005A1 (en) * 2019-03-15 2020-09-17 Exedy Corporation Damper device
US11619281B2 (en) * 2019-03-15 2023-04-04 Exedy Corporation Damper device

Also Published As

Publication number Publication date
US20070099710A1 (en) 2007-05-03
KR20060039947A (ko) 2006-05-09
KR100854000B1 (ko) 2008-08-25
DE112004001721T5 (de) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4385045B2 (ja) ダンパー機構
US7467699B2 (en) Double mass flywheel
JP6965566B2 (ja) トルク変動吸収装置
JP2008039113A (ja) スプリングシート及びスプリング組立体
WO2005071282A1 (ja) フライホイール組立体
US7438166B2 (en) Flywheel assembly
WO2005071283A1 (ja) フライホイール組立体
WO2005028915A1 (ja) フレキシブルフライホイール
KR100560095B1 (ko) 플라이휠 조립체
JP2000213598A (ja) トルク伝達装置
JP4445249B2 (ja) フライホイール組立体
JP4402934B2 (ja) フレキシブルフライホイール
JP2022052126A (ja) ヒステリシストルク発生機構及び動力伝達装置
JP2000274487A (ja) ダンパー機構及びダンパーディスク組立体
JP2005163947A (ja) フライホイール組立体
JP3422599B2 (ja) ダンパーディスク組立体
JP2000274488A (ja) ダンパー機構
JP2005114158A (ja) 2マスフライホイール
JP2005114155A (ja) フライホイール組立体
JP2002310185A (ja) クラッチディスク組立体
JPH0989026A (ja) ダンパーディスク組立体
JP2000310282A (ja) ダンパーディスク組立体
JPH11173380A (ja) ダンパーディスク組立体
JP2005249004A (ja) 摩擦抵抗発生機構
JP2021092246A (ja) ダンパ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007099710

Country of ref document: US

Ref document number: 10571894

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067005295

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120040017211

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067005295

Country of ref document: KR

122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 112004001721

Country of ref document: DE

Date of ref document: 20061019

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001721

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10571894

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607