JP2005249004A - 摩擦抵抗発生機構 - Google Patents

摩擦抵抗発生機構 Download PDF

Info

Publication number
JP2005249004A
JP2005249004A JP2004057620A JP2004057620A JP2005249004A JP 2005249004 A JP2005249004 A JP 2005249004A JP 2004057620 A JP2004057620 A JP 2004057620A JP 2004057620 A JP2004057620 A JP 2004057620A JP 2005249004 A JP2005249004 A JP 2005249004A
Authority
JP
Japan
Prior art keywords
frictional resistance
generating mechanism
plate
friction
resistance generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004057620A
Other languages
English (en)
Inventor
Kazuhiro Yamashita
一洋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exedy Corp
Original Assignee
Exedy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exedy Corp filed Critical Exedy Corp
Priority to JP2004057620A priority Critical patent/JP2005249004A/ja
Publication of JP2005249004A publication Critical patent/JP2005249004A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)

Abstract

【課題】 微少捩り振動を吸収するために微少回転方向隙間を設けた摩擦抵抗発生機構において、たたき音の発生を抑えることにある。
【解決手段】 第2摩擦抵抗発生機構6は、摩擦抵抗を発生させて捩り振動を減衰するためのものであって、フレキシブルプレート11と、出力側円板状プレート32と、板ばね57と、フリクション係合部材60とを備えている。板ばね57は、プレート11によって支持され、円周方向に一定の長さを有する。フリクション係合部材60は、プレート32と一体に回転し、プレート11とプレート32が相対回転すると、板ばね57に対して円周方向に当接しさらに板ばね57を変形させながら板ばね57と摺動する。
【選択図】 図3

Description

本発明は、摩擦抵抗発生機構、特に、回転機構の相対回転可能な2つの部材の間に配置され、捩り振動によって2つの部材が相対回転すると摩擦抵抗を発生して捩り振動を減衰するための機構に関する。
車輌に用いられるクラッチディスク組立体は、フライホイールに連結・切断されるクラッチ機能と、フライホイールからの捩じり振動を吸収・減衰するためのダンパー機能とを有している。一般に車両の振動には、アイドル時異音(ガラ音)、走行時異音(加速・減速ラトル,こもり音)及びティップイン・ティップアウト(低周波振動)がある。これらの異音や振動を取り除くことがクラッチディスク組立体のダンパーとしての機能である。
アイドル時異音とは、信号待ち等でシフトをニュートラルに入れ、クラッチペダルを放したときにトランスミッションから発生する「ガラガラ」と聞こえる音である。この異音が生じる原因は、エンジンアイドリング回転付近ではエンジントルクが低く、エンジン爆発時のトルク変動が大きいことにある。このときにトランスミッションのインプットギアとカウンターギアとが歯打ち現象を起こしている。
ティップイン・ティップアウト(低周波振動)とは、アクセルペダルを急に踏んだり放したりしたときに生じる車体の前後の大きな振れである。駆動伝達系の剛性が低いと、タイヤに伝達されたトルクが逆にタイヤ側から駆動伝達系に伝わり、その揺り返しとしてタイヤに過大トルクが発生し、その結果車体を過渡的に前後に大きく振らす前後振動となる。このとき、ダンパー機構での捩り角度は大きくなる。また、極低回転領域において共振が発生したときにも、ダンパー機構の捩り角度が大きくなる。
アイドリング時異音に対しては、クラッチディスク組立体の捩じり特性においてゼロトルク付近が問題となり、そこでの捩じり剛性は低い方が良い。一方、ティップイン・ティップアウトの前後振動に対しては、クラッチディスク組立体の捩じり特性をできるだけソリッドにすることが必要である。
以上の問題を解決するために、2種類のばね部材を用いることにより2段特性を実現したクラッチディスク組立体が提供されている。そこでは、捩じり特性における1段目(低捩じり角度領域)における捩じり剛性及びヒステリシストルクを低く抑えているために、アイドリング時の異音防止効果がある。また、捩じり特性における2段目(高捩じり角度領域)では捩じり剛性及びヒステリシストルクを高く設定しているため、ティップイン・ティップアウトの前後振動を十分に減衰できる。
さらに、捩じり特性2段目においてたとえばエンジンの燃焼変動に起因する微小捩じり振動が入力されたときに、2段目の大摩擦機構を作動させないことで、通常走行時の微小捩じり振動を効果的に吸収するダンパー機構も知られている。
上記ダンパー機構における摩擦抵抗発生機構は、高剛性のばね部材と回転方向に並列に作用するように全体が配置され、摩擦抵抗発生部と、それに対して回転方向に直列に作用するように配置された回転方向係合部とを有している。回転方向係合部は、2つの部材間の微少回転方向隙間を有している。したがって、エンジンの燃焼変動に起因する微小捩じり振動が入力されたときには、回転方向係合部での衝突がなく、さらに摩擦抵抗発生部は作動しない。
一方、捩り角度の大きな捩り振動に対しては、摩擦抵抗発生部が作動する。そして、捩り角度の両端で、微少回転方向隙間分だけ摩擦抵抗発生部が作動しない。つまり、捩り角度の大きな捩り振動が入力されると、捩り角度の両端では、摩擦抵抗発生部が作動しない領域から摩擦抵抗発生部が作動する大摩擦抵抗の領域へと突然移行する。つまり大摩擦抵抗が垂直に立ち上がり、このことは回転方向隙間を構成する部材同士の衝突の際の衝撃が大きいことを意味する。その結果、いわゆるたたき音が発生する。
本発明の課題は、微少捩り振動を吸収するために微少回転方向隙間を設けた摩擦抵抗発生機構において、たたき音の発生を抑えることにある。
請求項1に記載の摩擦抵抗発生機構は、摩擦抵抗を発生させて捩り振動を減衰するためのものであって、第1回転部材と、第2回転部材と、弾性部材と、当接部材とを備えている。第2回転部材は第1回転部材に対して相対回転可能に配置されている。弾性部材は、第1回転部材によって支持され、円周方向に一定の長さを有する。当接部材は、第2回転部材と一体に回転し、第1回転部材と第2回転部材が相対回転すると、弾性部材に対して円周方向に当接しさらに弾性部材を変形させながら弾性部材と摺動する。
この摩擦抵抗発生機構では、第1回転部材が第2回転部材に相対回転して捩り角度が大きくなっていくと、弾性部材の変形量が徐々に大きくなっていく。そのため、当接部材と弾性部材との摺動部分での摩擦が大きくなっていく。以上に述べたように、この摩擦抵抗発生機構では、大きな摩擦抵抗が発生するまでに摩擦抵抗が徐々に大きくなっていくため、大摩擦抵抗発生開始時の高ヒステリシストルクの壁が存在しない。つまり、摩擦抵抗発生機構において高ヒステリシストルク発生時のツメのたたき音が減少する。
請求項2に記載の摩擦抵抗発生機構では、請求項1において、第1回転部材と第2回転部材が相対回転していない状態では、当接部材と弾性部材との回転方向間には所定の隙間が確保されている。
この摩擦抵抗発生機構では、第1回転部材が第2回転部材に相対回転すると、最初に、第1回転部材と弾性部材の間の回転方向隙間が小さくなっていく。このときに当接部材と弾性部材による摩擦抵抗は発生しない。次に、当接部材が弾性部材に当接して、その両部材が互いに摺動する。捩り角度が大きくなるにつれて弾性部材の変形量が多くなっていくため、摩擦抵抗が大きくなっていく。
請求項3に記載の摩擦抵抗発生機構では、請求項1又は2において、第1回転部材は、半径方向内側を向く周面を有している。弾性部材は、周面に近接又は当接する両端部と、両端部間において周面から半径方向に離れる中間部とからなる弾性変形摺動部を有する。当接部材は中間部に対して回転方向から当接可能である。
この摩擦抵抗発生機構では、当接部材は、弾性部材の中間部に当接して弾性部材を変形させる。
請求項4に記載の摩擦抵抗発生機構では、請求項3において、当接部及び弾性変形摺動部は円周方向に複数配置されている。
この摩擦抵抗発生機構では、複数箇所で摩擦が発生するため、全体の摩擦が大きくなる。
請求項5に記載の摩擦抵抗発生機構では、請求項4において、弾性部材は第1回転部材に対して回転方向に移動不能に支持されている。
請求項6に記載の摩擦抵抗発生機構では、請求項1〜5のいずれかにおいて、弾性部材は環状の部材である。
この摩擦抵抗発生機構では、弾性部材が一つの部材であるため、部品点数が少なくなる。
請求項7に記載の摩擦抵抗発生機構では、請求項1〜6のいずれかにおいて、弾性部材は、両主面が半径方向を向く板状部材であり、回転方向に細長く延びている。
本発明に係る摩擦抵抗発生機構では、大きな摩擦抵抗が発生するまでに摩擦抵抗が徐々に大きくなっていく。そのため、大摩擦抵抗発生開始時の高ヒステリシストルクの壁が存在しせず、摩擦抵抗発生機構において高ヒステリシストルク発生時のツメのたたき音が減少する。
(1)構成
1)全体構造
図1に示す本発明の一実施形態としての2マスフライホイール1は、エンジン側のクランクシャフト91からのトルクをクラッチ(クラッチディスク組立体93及びクラッチカバー組立体94)を介してトランスミッション側の入力シャフト92にトルクを伝達するための装置である。2マスフライホイール1は、捩り振動を吸収・減衰するためのダンパー機能を有している。2マスフライホイール1は、主に第1フライホイール2と、第2フライホイール3と、両フライホイール2,3の間のダンパー機構4と、第1摩擦発生機構5と、第2摩擦発生機構6とから構成されている。
なお、図1のO−Oが2マスフライホイール1及びクラッチの回転軸線であり、図1の左側にはエンジン(図示せず)が配置されており、右側にはトランスミッション(図示せず)が配置されている。以後、図1において左側を軸方向エンジン側といい、右側を軸方向トランスミッション側という。また、図3において矢印R1の向きが駆動側(回転方向正側)であり、矢印R2の向きが反駆動側(回転方向負側)である。
2)第1フライホイール
第1フライホイール2は、クランクシャフト91の先端に固定されている。第1フライホイール2は、クランクシャフト91側に大きな慣性モーメントを確保するための部材である。第1フライホイール2は、主に、フレキシブルプレート11と、イナーシャ部材13とから構成されている。
フレキシブルプレート11は、クランクシャフト91からイナーシャ部材13に対してトルクを伝達すると共に、クランクシャフト91からの曲げ振動を吸収するための部材である。したがって、フレキシブルプレート11は、回転方向には剛性が高いが軸方向及び曲げ方向には剛性が低くなっている。具体的には、フレキシブルプレート11の軸方向の剛性は、3000kg/mm以下であり、600kg/mm〜2200kg/mmの範囲にあることが好ましい。フレキシブルプレート11は、中心孔が形成された円板状の部材であり、例えば板金製である。フレキシブルプレート11は内周端が複数のボルト22によってクランクシャフト91の先端に固定されている。フレキシブルプレート11には、ボルト22に対応する位置にボルト貫通孔が形成されている。ボルト22はクランクシャフト91に対して軸方向トランスミッション側から取り付けられている。
イナーシャ部材13は、厚肉ブロック状の部材であり、フレキシブルプレート11の外周端の軸方向トランスミッション側に固定されている。フレキシブルプレート11の最外周部は、円周方向に並んだ複数のリベット15によってイナーシャ部材13に固定されている。イナーシャ部材13の外周面にはエンジン始動用リングギア14が固定されている。なお、第1フライホイール2は一体の部材から構成されていても良い。
3)第2フライホイール
第2フライホイール3は、環状かつ円板状の部材であり、第1フライホイール2の軸方向トランスミッション側に配置されている。第2フライホイール3には、軸方向トランスミッション側にクラッチ摩擦面3aが形成されている。クラッチ摩擦面3aは、環状かつ平坦な面であり、後述するクラッチディスク組立体93が連結される部分である。第2フライホイール3は、さらに、内周縁において軸方向エンジン側に延びる内周筒状部3bを有している。また、第2フライホイール3の内周部には、ボルト22が貫通するための貫通孔3dが円周方向に並んで形成されている。
4)ダンパー機構
ダンパー機構4について説明する。ダンパー機構4は、クランクシャフト91と第2フライホイール3とを回転方向に弾性的に連結するための機構である。このように第2フライホイール3はダンパー機構4によってクランクシャフト91に連結されることで、ダンパー機構4と共にフライホイール組立体(フライホイールダンパー)を構成している。ダンパー機構4は、複数のコイルスプリング34,35,36と、一対の出力側円板状プレート32,33と、入力側円板状プレート20とから構成されている。なお、コイルスプリング34,35,36は摩擦発生機構5,6に対して回転方向に並列に作用するように機能的に配置されている。
一対の出力側円板状プレート32,33は、軸方向エンジン側の第1プレート32と、軸方向トランスミッション側の第2プレート33とから構成されている。両プレート32,33は、円板状部材であり、軸方向に所定の間隔を空けて配置されている。各プレート32,33のそれぞれには、円周方向に並んだ複数の窓部46,47が形成されている。窓部46,47は、後述するコイルスプリング34,35を軸方向及び回転方向にそれぞれ支持するための構造であり、コイルスプリング34,35を軸方向に保持しかつその円周方向両端に当接する切り起こし部を有している。窓部46,47は、それぞれ2個ずつ、円周方向に交互に並んで配置されている(同一半径方向位置に配置されている)。さらに、各プレート32,33には、円周方向に並んだ複数の第3窓部48がそれぞれ形成されている。第3窓部48は、半径方向対向する2カ所に形成され、具体的には第1窓部46の外周側に形成されており、後述する第3コイルスプリング36を軸方向及び回転方向にそれぞれ支持するための構造である。
第1プレート32と第2プレート33は、内周部同士は軸方向に一定の間隔を維持しているが、外周部同士は互いに近接してリベット41,42によって堅く固定されている。第1リベット41は、円周方向に並んで配置されている。第2リベット42は、第1プレート32と第2プレート33において形成された切り起こし当接部43,44同士を固定している。切り起こし当接部43,44は、円周方向の2カ所において半径方向に対向して形成され、具体的には第2窓部47の半径方向外側に配置されている。図2に示すように、切り起こし当接部43,44の軸方向位置は入力側円板状プレート20と同一である。
第2プレート33は、図2に示すように、外周部が複数のリベット49によって、第2フライホイール3の外周部に固定されている。
入力側円板状プレート20は、出力側円板状プレート32,33の間に配置された円板状の部材である。入力側円板状プレート20には、第1窓部46に対応した第1窓孔38と、第2窓部47に対応した第2窓孔39が形成されている。入力側円板状プレート20は、中心孔と、その回りに形成された複数のボルト貫通孔20bが形成されている。また、外周縁の各窓孔38,39の円周方向間にあたる位置には、半径方向外側に突出する突起20cが形成されている。突起20cは、出力側円板状プレート32,33の切り起こし当接部43,44と第3コイルスプリング36から回転方向に離れて配置されており、かつ、回転方向に接近するといずれにも当接可能となっている。言い換えると、突起20cと切り起こし当接部43,44はダンパー機構4全体のストッパー機構71を構成している。また、突起20c同士の回転方向の空間は第3コイルスプリング36を収納するための第3窓孔40として機能している。
以上に述べたように、入力側円板状プレート20の突起20cは、円周方向に隙間をあけて配置された複数のパーティションであり、各パーティション同士の円周方向隙間には、第3コイルスプリング36と、切り起こし当接部43,44とが別々に配置されている。言い換えると、突起20cは、第3コイルスプリング36に対して回転方向に当接する機能と、円板状プレート32,33の切り起こし当接部43,44に当接する機能とを有している。
入力側円板状プレート20は、フレキシブルプレート11,補強部材18,及び支持部材19と共に、ボルト22によってクランクシャフト91に固定されている。フレキシブルプレート11の内周部は、クランクシャフト91の先端面91aの軸方向トランスミッション側面に当接している。補強部材18は、円板状の部材であり、フレキシブルプレート11の内周部の軸方向トランスミッション側面に当接している。
支持部材19は、筒状部19aと、その外周面から半径方向に延びる円板状部19bとから構成されている。円板状部19bは、補強部材18の軸方向トランスミッション側面に当接している。円板状部19bには、ボルト22が貫通する孔が形成されており、円板状部19bは固定部として機能している。円板状部19bは環状の平坦形状であり、筒状部19aの軸方向トランスミッション側部は、円板状部19bの内周縁から軸方向に延びている。筒状部19aの内周面は、クランクシャフト91の先端中心に形成された円柱突起91bの外周面に当接して芯出しされている。フレキシブルプレート11の内周面及び補強部材18の内周面は、筒状部19aの軸方向エンジン側の外周面に当接して芯出しされている。入力側円板状プレート20の内周面は、筒状部19aの軸方向トランスミッション側根元の外周面に当接して芯出しされている。筒状部19aの内周面には軸受23が装着され、軸受23はトランスミッションの入力シャフト92の先端を回転自在に支持している。また、各部材11,18,19,20はネジ21によって互いに堅く固定されている。
第2フライホイール3の筒状部3bの内周面は、ブッシュ30を介して、支持部材19の筒状部19aの外周面に支持されている。このようにして、第2フライホイール3は支持部材19によって第1フライホイール2及びクランクシャフト91に対して芯出しされている。ブッシュ30は、筒状のラジアル軸受部30aと、入力側円板状プレート20の内周部と第2フライホイール3の筒状部3b先端との間に配置されたスラスト軸受部30bを有している。このように、第2フライホイール3からのスラスト荷重は、スラスト軸受部30bを介して、軸方向に並んで配置された各部材11,18,19,20によって受けられるようになっている。
第1コイルスプリング34は、第1窓孔38及び第1窓部46内に配置されている。第1コイルスプリング34の回転方向両端は、第1窓孔38及び第1窓部46の回転方向端に当接又は近接している。
第2コイルスプリング35は、第2窓孔39及び第2窓部47内に配置されている。第2コイルスプリング35は、大小のばねが組み合わせられた親子ばねであり、第1コイルスプリング34より剛性が高い。第2コイルスプリング35の回転方向両端は、第2窓部47の回転方向両端に近接又は当接しているが、第2窓孔39の回転方向両端から所定角度(この実施形態では4°)離れている。
第3コイルスプリング36は、第3窓孔40及び第3窓部48内に配置されている。第3コイルスプリング36は、第1コイルスプリング34及び第2コイルスプリング35より小型ではあるが外周に配置されているため、剛性は高くなっている。なお、第3コイルスプリング36の剛性は第1及び第2コイルスプリング34,35の剛性の2倍以上であることが好ましい。第3コイルスプリング36は、第2フライホイール3とクランクシャフト91との間で第1及び第2コイルスプリング34,35と並列に作用するように機能的に配置され、第1及び第2コイルスプリング34,35の圧縮角度最大領域においてのみ圧縮される。
5)摩擦発生機構
5−1)第1摩擦発生機構5
第1摩擦発生機構5は、ダンパー機構4の入力側円板状プレート20と出力側円板状プレート32,33との回転方向間でコイルスプリング34,35,36と並列に機能する機構であり、クランクシャフト91と第2フライホイール3が相対回転すると所定の摩擦抵抗(ヒステリシストルク)を発生する。第1摩擦発生機構5は、ダンパー機構4の作動角範囲全体で一定の摩擦を発生するための装置であり、比較的小さな摩擦を発生するようになっている。
5−2)第2摩擦発生機構6
第2摩擦発生機構6は、ダンパー機構4の入力側円板状プレート20と出力側円板状プレート32,33との回転方向間でコイルスプリング34,35,36と並列に機能する機構であり、クランクシャフト91と第2フライホイール3が相対回転すると所定の摩擦抵抗(ヒステリシストルク)を発生する。第2摩擦発生機構6は、ダンパー機構4の作動角範囲全体で一定の摩擦を発生するための装置であり、比較的大きな摩擦を発生するようになっている。この実施形態では、第2摩擦発生機構6が発生するヒステリシストルクは、第1摩擦発生機構5が発生するヒステリシストルクの5〜10倍となっている。
第2摩擦発生機構6は、フレキシブルプレート11の外周部である環状部11aと、第2円板状プレート12の対向部分12aとの軸方向間の環状空間56に形成された複数の部材によって構成されている。フレキシブルプレート11は第2摩擦発生機構6を保持する機能も有しているため、部品点数が少なくなり、構造が簡単になる。なお、空間56は、半径方向内側には開いているが、半径方向外側がプレート11,12の一部からなる周面56aによって閉じられている。周面56aは、半径方向内側を向いた円周面である。
第2摩擦発生機構6は、図3に示すように、板ばね57と、フリクション係合部材60とから構成されている。板ばね57とフリクション係合部材60は、空間56内において円周方向に交互に配置されている。
板ばね57は、主面が半径方向を向く板状部材であり、円周方向に一定の長さを有している。板ばね57は例えば鋼等の金属製である。特に、板ばね57は細長く形成されている(つまり円周方向長さが軸方向幅の2倍以上ある)。板ばね57の軸方向幅は、図5に示すように、フレキシブルプレート11の環状部11aと、第2円板状プレート12の対向部分12aの間の軸方向距離とほぼ等しく、軸方向両端面が各部材にそれぞれ当接又は近接している。板ばね57の回転方向両端は、ピン58によって、空間56の周面56a付近においてピン58によって支持されている。ピン58は、軸方向各端がフレキシブルプレート11と第2円板状プレート12に固定されている。板ばね57の回転方向両端部57aは、ピン58の外周側を通り、さらにピン58の回転方向外側を覆うように曲げられている。この状態で、板ばね57は、ピン58を介して、プレート11及び12と一体回転するようになっている。板ばね57は、概ね直線状またはわずかに回転方向中間部57bが半径方向内側に凸になるように配置されており、いずれにせよ中間部57bの半径方向位置は両端部57aの半径方向位置より半径方向内側である。各板ばね57の両端部57a同士の間(近接するピン58同士の間)に対応する位置には、それぞれ、フリクション係合部材60が配置されている。
フリクション係合部材60は、図6に示すように、ブロック形状の樹脂製部材である。フリクション係合部材60は、軸方向両端面60a,60bと、回転方向両端面60cとを有している。フリクション係合部材60の外周面60gは弧状に延びている。外周面60gは、空間56内の半径方向中間付近に配置され、半径方向位置が板ばね57の中間部57bの半径方向位置より半径方向外側にある。ただし、外周面60gの半径方向位置は、板ばね57の両端部57aの半径方向位置より半径方向外側にある。以上より、フリクション係合部材60は回転方向に移動すると板ばね57の両端部57aに当接しないが、中間部57bには当接するようになっている。外周面60gと回転方向両端面60cの境界は角部60qとなっている。角部60qは面取りされて滑らかになっている。角部60qと板ばね57の回転方向中間部57bとの間には、所定角度の回転方向隙間65が確保されており、両角度の合計がフリクション係合部材60が板ばね57に対して回転方向に当接しないで移動可能な所定角度の大きさとなる。なお、この角度はエンジンの燃焼変動に起因する微少捩り振動により生じるダンパー作動角に等しい又はわずかに越える範囲にあることが好ましい。なお、この実施形態では、フリクション係合部材60は、図6に示す中立状態において、板ばね57同士の間の隙間の回転方向中心に配置されている。したがって、フリクション係合部材60の回転方向各側の隙間の大きさは同じである。
フリクション係合部材60は、第1プレート32に対して、一体回転するように係合している。具体的には、第1プレート32の外周縁には軸方向エンジン側に延びる環状壁32aが形成されており、環状壁32aには各フリクション係合部材60に対応して半径方向内側に凹んだ凹部61が形成されている。さらに、凹部61の回転方向中心には半径方向に貫通する第1スリット61aが形成されており、回転方向両側には半径方向に貫通する第2スリット61bが形成されている。フリクション係合部材60は、第1スリット61a内に半径方向外側から内側に向かって延びさらに回転方向両側に延び環状壁32aの内周面に当接する第1脚部60eと、各第2スリット61b内に半径方向外側から内側に向かって延びさらに回転方向外側に延びて環状壁32aの内周面に当接する一対の第2脚部60fを有している。これにより、フリクション係合部材60が環状壁32aから半径方向外方に移動することがない。さらに、フリクション係合部材60は、半径方向内側に延び環状壁32aの凹部61に対して回転方向に係合する凸部60dを有している。これにより、フリクション係合部材60は、第1プレート32の凸部として一体回転する。
以上に述べたように、第2摩擦発生機構6は、入力側の部材であるフレキシブルプレート11及び第2円板状プレート12に対して回転方向に移動不能に係合する板ばね57と、板ばね57に対して回転方向隙間65を介して摺動可能に配置されているフリクション係合部材60とから構成されている。
6)クラッチディスク組立体
クラッチのクラッチディスク組立体93は、第2フライホイール3のクラッチ摩擦面3aに近接して配置される摩擦フェーシング93aと、トランスミッション入力シャフト92にスプライン係合するハブ93bとを有している。
7)クラッチカバー組立体
クラッチカバー組立体94は、クラッチカバー96と、ダイヤフラムスプリング97と、プレッシャープレート98とを有している。クラッチカバー96は、第2フライホイール3に固定された円板状かつ環状部材である。プレッシャープレート98は、摩擦フェーシング93aに近接する押圧面を有する環状の部材であり、クラッチカバー96と一体回転するようになっている。ダイヤフラムスプリング97は、クラッチカバー96に支持された状態でプレッシャープレート98を第2フライホイール側に弾性的に付勢するための部材である。図示しないレリーズ装置がダイヤフラムスプリング97の内周端を軸方向エンジン側に押すと、ダイヤフラムスプリング97はプレッシャープレート98への付勢を解除する。
(2)動作
1)トルク伝達
この2マスフライホイール1では、エンジンのクランクシャフト91からのトルクは、第2フライホイール3に対してダンパー機構4を介して伝達される。ダンパー機構4では、トルクは、入力側円板状プレート20、コイルスプリング34〜36、出力側円板状プレート32,33の順番で伝達される。さらに、トルクは、2マスフライホイール1から、クラッチ連結状態でクラッチディスク組立体93に伝達され、最後に入力シャフト92に出力される。
2)捩り振動の吸収・減衰
2マスフライホイール1にエンジンからの燃焼変動が入力されると、ダンパー機構4において、入力側円板状プレート20と出力側円板状プレート32,33とが相対回転し、それらの間でコイルスプリング34〜36が並列に圧縮される。さらに、第1摩擦発生機構5及び第2摩擦発生機構6が所定のヒステリシストルクを発生する。以上の作用により捩じり振動が吸収・減衰される。
捩り角度の小さな領域(角度ゼロ付近)では、第1コイルスプリング34のみが圧縮されて比較的低剛性の特性が得られる。捩り角度が大きくなると、第1コイルスプリング34と第2コイルスプリング35が並列に圧縮され、比較的高剛性の特性が得られる。捩り角度がさらに大きくなると、第1コイルスプリング34と第2コイルスプリング35と第3コイルスプリング36が並列に圧縮され、捩り特性の両端に最も高い剛性の特性が得られる。第1摩擦発生機構5は、捩り角度の全ての領域において作動している。なお、第2摩擦発生機構6は、捩り角度の両端において捩り動作の向きが変わってから所定角度までは作動していない。
次に、第2摩擦発生機構6の動作を説明する。中立状態から、フリクション係合部材60が板ばね57に対して回転方向R1側に捩れていく動作を説明する。
捩り角度が大きくなると、やがて、図7に示すように、フリクション係合部材60の回転方向R1側の角部60qが回転方向R1側の板ばね57の回転方向中間部57bに当接する。
さらに捩り角度が大きくなると、図8に示すように、フリクション係合部材60は回転方向R1側の板ばね57を弾性変形しながら回転方向に移動していく。このとき、フリクション係合部材60と板ばね57との間に摩擦抵抗が発生し、その摩擦抵抗は板ばね57の弾性変形量が大きくなるにつれて大きくなっていく。板ばね57は、最初は回転方向R1側の角部60qに摺動しているが、やがて外周面60gに摺動するようになる。なお、摩擦抵抗は作動角に比例していても良いし、比例していなくても良い。
やがて捩り角度が所定の大きさになると、板ばね57の変形量が変化せず、第2摩擦発生機構6で発生する摩擦抵抗がほぼ一定になる。
以上をまとめると、板ばね57がフリクション係合部材60と摺動するときには、摩擦抵抗が捩り角度に大きくなっていく領域が、最も大きな摩擦抵抗の領域の開始前に発生する。
2−1)微少捩り振動
次に、エンジンの燃焼変動に起因する微小捩り振動が2マスフライホイール1に入力されたときのダンパー機構4の動作を説明する。
微少捩り振動が入力されると、第2摩擦発生機構6において、フリクション係合部材60は板ばね57に対して当接しない。この結果、微小捩じり振動に対しては高ヒステリシストルクが発生しない。つまり、所定の捩り角度範囲では、通常のヒステリシストルクよりはるかに小さなヒステリシストルクしか得られない。このように、捩じり特性において第2摩擦発生機構6を所定角度範囲内では作動させない微少回転方向隙間を設けたため、通常走行時の振動・騒音レベルを大幅に低くすることができる。
2−2)大捩り振動入力時の動作
大捩り振動が入力された場合の第2摩擦発生機構6の動作を説明する。第2摩擦発生機構6では、フリクション係合部材60が板ばね57に対して回転方向に摺動を続け摩擦抵抗を発生する。その結果、一定の大きさの摩擦抵抗が捩り特性の全体にわたって得られる。そのため、低回転時の共振等を速やかに減衰できる。
さらに、大きな摩擦抵抗が発生する初期の段階には、徐々に大きくなる摩擦抵抗の領域が設けられているため、大摩擦抵抗発生開始時の高ヒステリシストルクの壁が存在しない。そのため、微少捩り振動を吸収するために微少回転方向隙間を設けた摩擦発生機構において、高ヒステリシストルク発生時のツメのたたき音が減少する。
(3)他の実施形態
以上、本発明に係る摩擦抵抗発生機構の一実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。
本発明に係る摩擦抵抗発生機構は、2マスフライホイールのダンパー機構に限定されない。本発明に係る摩擦抵抗発生機構は、クラッチディスク組立体のダンパー機構やトルクコンバータのロックアップダンパーにも適用できる。
板ばねの形状は前記実施形態に限定されない。板ばね形状を変更することで、摩擦抵抗の大きさや発生のタイミングや変化の仕方を変更することができる。
前記実施形態では、係合部分の回転方向隙間の大きさの種類を1種類としていたが、2種類又はそれ以上にしても良い。さらに、フリクション係合部材は回転方向両側の板ばねに対して同一の大きさの回転方向隙間を確保していたが、それらを異ならせることもできる。さらに、フリクション係合部材はいずれか一方の板ばねのみに対して回転方向隙間を確保していても良い。
前記実施形態では、板ばねは鋼製であるが弾性樹脂や多孔性で弾性の大きい材料から構成されていても良い。また、板ばねは、板状のみならず他の形状であっても良い。
板ばね又はフリクション係合部材の摺動部分には、摩擦係数の高い部材を貼ったり、摩擦係数の高い材料で被覆したりできる。
さらに、板ばねは円周方向に一体に形成された環状または筒状の部材であっても良い。図9において、板ばね57’は、外周側に凸になる外側部分57Aと内周側に凸になる内側部分57Bとを円周方向に交互に有している。外側部分57Aは空間56の周面56aに当接している。内側部分57Bが、前記実施形態の各弾性部材と同様に、フリクション係合部材60に対して回転方向に隙間をあけて配置され、回転方向に当接可能である。すなわち、内側部分57Bが、円周方向に複数配置された弾性変形摺動部として機能している。この実施形態では、板ばね57’は単一の部材からなるため、全体の部品点数が少なくなり、また構成も簡単になる。
本発明の第1実施形態としての2マスフライホイールの縦断面概略図。 本発明の第1実施形態としての2マスフライホイールの縦断面概略図。 2マスフライホイールの平面図。 第2摩擦発生機構を説明するための図面であり、図1の部分拡大図。 第2摩擦発生機構を説明するための図面であり、図2の部分拡大図。 第2摩擦発生機構の動作を説明するための平面模式図。 第2摩擦発生機構の動作を説明するための平面模式図。 第2摩擦発生機構の動作を説明するための平面模式図。 第2実施形態としての2マスフライホイールの平面図。
符号の説明
1 2マスフライホイール
2 第1フライホイール
3 第2フライホイール
4 ダンパー機構
6 第2摩擦抵抗発生機構(摩擦抵抗発生機構)
57 板ばね(弾性部材)
60 フリクション係合部材(当接部材)

Claims (7)

  1. 摩擦抵抗を発生させて捩り振動を減衰するための摩擦抵抗発生機構であって、
    第1回転部材と、
    前記第1回転部材に相対回転可能に配置された第2回転部材と、
    前記第1回転部材によって支持され、円周方向に一定の長さを有する弾性部材と、
    前記第2回転部材と一体に回転し、前記第1回転部材と前記第2回転部材が相対回転すると、前記弾性部材に対して円周方向に当接しさらに前記弾性部材を変形させながら前記弾性部材と摺動可能な当接部材と、
    を備えた摩擦抵抗発生機構。
  2. 前記第1回転部材と前記第2回転部材が相対回転していない状態では、前記当接部材と前記弾性部材との回転方向間には所定の隙間が確保されている、請求項1に記載の摩擦抵抗発生機構。
  3. 前記第1回転部材は、半径方向内側を向く周面を有しており、
    前記弾性部材は、前記周面に近接又は当接する両端部と、前記両端部間において前記周面から半径方向に離れる中間部とからなる弾性変形摺動部を有し、
    前記当接部材は前記中間部に対して回転方向から当接可能である、請求項1又は2に記載の摩擦抵抗発生機構。
  4. 前記当接部及び前記弾性変形摺動部は円周方向に複数配置されている、請求項3に記載の摩擦抵抗発生機構。
  5. 前記弾性部材は前記第1回転部材に対して回転方向に移動不能に支持されている、請求項4に記載の摩擦抵抗発生機構。
  6. 前記弾性部材は環状の部材である、請求項1〜5のいずれかに記載の摩擦抵抗発生機構。
  7. 前記弾性部材は、両主面が半径方向を向く板状部材であり、回転方向に細長く延びている、請求項1〜6のいずれかに記載の摩擦抵抗発生機構。
JP2004057620A 2004-03-02 2004-03-02 摩擦抵抗発生機構 Pending JP2005249004A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057620A JP2005249004A (ja) 2004-03-02 2004-03-02 摩擦抵抗発生機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057620A JP2005249004A (ja) 2004-03-02 2004-03-02 摩擦抵抗発生機構

Publications (1)

Publication Number Publication Date
JP2005249004A true JP2005249004A (ja) 2005-09-15

Family

ID=35029677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057620A Pending JP2005249004A (ja) 2004-03-02 2004-03-02 摩擦抵抗発生機構

Country Status (1)

Country Link
JP (1) JP2005249004A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335069A (zh) * 2013-07-04 2013-10-02 齐中才 筛摆差速减速器
CN104455146A (zh) * 2014-10-28 2015-03-25 上海卫星工程研究所 卫星飞轮用微振动隔振与吸振联合减振装置
CN105308355A (zh) * 2013-02-26 2016-02-03 株式会社艾科赛迪 动态阻尼器装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308355A (zh) * 2013-02-26 2016-02-03 株式会社艾科赛迪 动态阻尼器装置
CN105308355B (zh) * 2013-02-26 2017-08-25 株式会社艾科赛迪 动态阻尼器装置
US10047844B2 (en) 2013-02-26 2018-08-14 Exedy Corporation Dynamic damper device
CN103335069A (zh) * 2013-07-04 2013-10-02 齐中才 筛摆差速减速器
CN103335069B (zh) * 2013-07-04 2015-12-02 齐中才 筛摆差速减速器
CN104455146A (zh) * 2014-10-28 2015-03-25 上海卫星工程研究所 卫星飞轮用微振动隔振与吸振联合减振装置

Similar Documents

Publication Publication Date Title
JP5533883B2 (ja) トルク変動吸収装置
JP4298992B2 (ja) ダンパーディスク組立体
US7467699B2 (en) Double mass flywheel
US6659876B2 (en) Damper mechanism
JP4110020B2 (ja) ダンパー機構及びダンパーディスク組立体
JP2008039113A (ja) スプリングシート及びスプリング組立体
JP4045281B2 (ja) ダンパーディスク組立体及びフライホイール組立体
JP3708324B2 (ja) ダンパー機構
US6872142B2 (en) Damper mechanism
US20060254875A1 (en) Flywheel assembly
JP2005207551A5 (ja)
JP2005207551A (ja) 摩擦抵抗発生機構
JP2005249004A (ja) 摩擦抵抗発生機構
JP4395492B2 (ja) ダンパー機構
KR100855653B1 (ko) 플라이휠 조립체
US20040206201A1 (en) Flywheel assembly
JP2005207552A (ja) フライホイール組立体
JP4141242B2 (ja) ダンパーディスク組立体
US20070099710A1 (en) Flexible flywheel
JP3675644B2 (ja) ダンパー機構
JP4445249B2 (ja) フライホイール組立体
JP3831562B2 (ja) ダンパー機構及びダンパーディスク組立体
JP4045165B2 (ja) 摩擦抵抗発生機構
JP3675645B2 (ja) ダンパー機構
JP4045166B2 (ja) 摩擦抵抗発生機構