WO2005028647A1 - 核酸プローブ、核酸チップ、標的核酸検出方法、薬剤スクリーニング方法、標的核酸検出装置及び遺伝子診断方法 - Google Patents

核酸プローブ、核酸チップ、標的核酸検出方法、薬剤スクリーニング方法、標的核酸検出装置及び遺伝子診断方法 Download PDF

Info

Publication number
WO2005028647A1
WO2005028647A1 PCT/JP2004/013740 JP2004013740W WO2005028647A1 WO 2005028647 A1 WO2005028647 A1 WO 2005028647A1 JP 2004013740 W JP2004013740 W JP 2004013740W WO 2005028647 A1 WO2005028647 A1 WO 2005028647A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
target nucleic
probe
acid probe
hybridization
Prior art date
Application number
PCT/JP2004/013740
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Aoyama
Shinsuke Sando
Toshinori Sasaki
Atsushi Narita
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to EP04787923A priority Critical patent/EP1717313A4/en
Priority to JP2005514080A priority patent/JPWO2005028647A1/ja
Publication of WO2005028647A1 publication Critical patent/WO2005028647A1/ja
Priority to US11/384,858 priority patent/US20080124706A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]

Definitions

  • Nucleic acid probe, nucleic acid chip, target nucleic acid detection method, drug screening method, target nucleic acid detection device, and gene diagnosis method are provided.
  • the present invention relates to a nucleic acid probe capable of detecting a trace amount of a target nucleic acid having extremely high selectivity for a target nucleic acid with high sensitivity and accuracy by amplifying a signal generated by a nucleic acid probe force hybridized to the target nucleic acid.
  • the present invention relates to a nucleic acid chip having a nucleic acid probe immobilized thereon, and a target nucleic acid detection method, a drug screening method, a target nucleic acid detection device, and a gene diagnosis method using the nucleic acid probe.
  • the target nucleic acid probe and the DNA chip used in the genetic diagnosis it is difficult to analyze a minute amount of the target nucleic acid. Therefore, in order to perform the genetic diagnosis, the target nucleic acid is subjected to PCR. Must be amplified. However, when the PCR method is used to amplify a small amount of the target nucleic acid, skill is required. Conventionally, the amplification of the target nucleic acid is insufficient, and in many cases, the target nucleic acid cannot be detected. There was a problem. Technology that overcomes this problem and enables high-sensitivity and high-speed analysis of minute amounts of target nucleic acid Is essential for the development of the genetic diagnosis.
  • Such a technique capable of analyzing a trace amount of a target nucleic acid with high sensitivity and high speed is necessary not only for the above-mentioned genetic diagnosis but also for blood transfusion.
  • the ability to test whether blood is infected with viruses such as HIV, HBV, and HCV is necessary.
  • viruses such as HIV, HBV, and HCV.
  • an antibody against the virus is detected, and the antibody is not produced for one to two months after infection with the virus. The problem is that it is not possible to prevent the occurrence of a so-called window period.
  • a technique capable of analyzing a virus (target nucleic acid) with high sensitivity and high speed which is present in a very small amount, such as in the early stage of virus infection, is necessary to prevent the occurrence of the window period in the blood transfusion. It is very important for early detection and early treatment of all infectious diseases, mental illness, cancer, etc.
  • a nucleic acid probe capable of detecting a small amount of a target nucleic acid by amplifying a signal that is not the same by the PCR method has been disclosed (see Japanese Patent Application Laid-Open No. 2003-525631).
  • a sensor molecule that hybridizes with the target nucleic acid and a reporter molecule that can be enzymatically cleaved by the DNAzyme activity of the sensor molecule and generate a signal are used in combination.
  • the reporter molecule When the reporter molecule is continuously cleaved from the sensor molecule, the signal of the reporter molecule is amplified, and the presence of a trace amount of the target nucleic acid is detected by detecting the amplified signal. be able to.
  • the nucleic acid probe In the case of the nucleic acid probe, a false positive reaction occurs, in which the reporter molecule is cleaved by the sensor molecule before hybridization with the target nucleic acid.
  • the selectivity of the target nucleic acid is not sufficient if the sensor molecule is close to the base sequence of the target nucleic acid and the nucleic acid is erroneously recognized as the target nucleic acid and is hybridized. In other words, in this method, the operation is complicated, and there is a problem that the sensitivity and the accuracy are not sufficient, and there are erroneous detections and the reliability is low.
  • Non-Patent Document 1 Imaging of RNA in Bacteria with Self-Ligating Quenched
  • the present invention solves the problems in the past, and is present only in a very small amount, such as in the early stage of virus infection! /, To a technique capable of analyzing viruses (target nucleic acids) with high sensitivity and high speed, and to live cells. Technology that can quantitatively and rapidly diagnose the effects (gene expression and suppression), and technologies that enable amplification of signals that could not be achieved with the aforementioned nucleic acid probe ⁇ QUAL probe ''. The task is to achieve it.
  • the present invention amplifies a signal generated by the force of a nucleic acid probe hybridized to a target nucleic acid to detect and analyze a very small amount of a target nucleic acid having extremely high selectivity for the target nucleic acid with high sensitivity, high accuracy, high speed, and easily. It is possible to measure the presence or behavior of the target nucleic acid even if the target nucleic acid is very small and has a short life, etc., and it can be used for genetic diagnosis, presence of food poisoning bacteria, diagnosis of caries or periodontal disease, blood test, etc. It is an object of the present invention to provide a nucleic acid probe suitable for the above.
  • the present invention enables highly sensitive detection of a very small amount of a target nucleic acid by immobilizing the nucleic acid probe on a carrier, and enables genetic diagnosis, inspection for the presence of food poisoning bacteria, diagnosis of caries or periodontal disease, and blood test. It is an object of the present invention to provide a nucleic acid chip suitable for such as.
  • the present invention enables high-sensitivity, high-precision, high-speed detection or analysis of a minute amount of a target nucleic acid by using the nucleic acid probe, genetic diagnosis, inspection for the presence of food poisoning bacteria, and diagnosis of caries or periodontal disease.
  • nucleic acid and target nucleic acid suitable for blood test, etc. It is intended to provide an ejection device.
  • Another object of the present invention is to provide a drug screening method that can analyze the effect of administering a drug by using the nucleic acid probe and that can efficiently screen a desired drug.
  • Another object of the present invention is to provide a gene diagnosis method capable of diagnosing the presence of a gene associated with a specific disease with high efficiency and high accuracy by using the nucleic acid probe.
  • nucleic acid probe of the present invention examples include the following first to sixth nucleic acid probes.
  • the first nucleic acid probe is a nucleic acid probe for detecting a target nucleic acid, and the nucleic acid probe undergoes a structural change after being hybridized to the target nucleic acid, and the structurally changed nucleic acid probe is hybridized. It is designed to reduce the binding force of the dimension and to dissociate it from the target nucleic acid.
  • the first nucleic acid probe undergoes a structural change when hybridized to the target nucleic acid. Then, the nucleic acid is dissociated from the target nucleic acid to generate a signal such as luminescence.
  • the second nucleic acid probe is a nucleic acid probe for detecting a target nucleic acid, and is capable of forming an autologous nucleic acid enzyme with a complementary site having a sequence complementary to at least a part of the base sequence of the target nucleic acid. And a nucleic acid enzyme formation site.
  • the complementary site hybridizes with the target nucleic acid
  • the second nucleic acid probe undergoes a structural change, and the nucleic acid enzyme-forming site can form a self-nuclease.
  • the nucleic acid probe is cleaved by the self-nucleic acid enzyme and dissociated from the target nucleic acid to generate a signal such as luminescence.
  • the third nucleic acid probe is capable of hybridizing to a target nucleic acid, and has a structure variable portion whose structure can be changed when hybridized to the target nucleic acid. Characterized in that the target nucleic acid can be dissociated when its structure changes. When the third nucleic acid probe is hybridized to the target nucleic acid, the structure of the structure variable portion changes. Then, the nucleic acid probe is cleaved, etc. Dissociation from the target nucleic acid produces a signal such as luminescence.
  • the fourth nucleic acid probe is capable of hybridizing to the target nucleic acid, has a cleavage portion that is cleaved when hybridized to the target nucleic acid, and hybridizes to the target nucleic acid. It is characterized in that it is possible to form a cutting active region having a cutting activity for the cutting portion when being quenched.
  • the fourth nucleic acid probe is hybridized to the target nucleic acid, the cleavage active region is formed, and the cleavage portion is cleaved. Then, the nucleic acid probe is cleaved or the like and dissociated from the target nucleic acid, thereby generating a signal such as luminescence.
  • the fifth nucleic acid probe is capable of hybridizing to a target nucleic acid, and upon hybridization to the target nucleic acid, is cleaved to allow the target nucleic acid to be dissociated. It is characterized by having a cleavage part for generating two probe fragments and a signal generation part for generating a signal.
  • the signal generating portion does not generate a signal (e.g., light emission) before the hybridization to the target nucleic acid.
  • the signal (emission or the like) is generated as a result of the signal generation section force signal, and the presence of the target nucleic acid is detected by detecting the signal (emission or the like).
  • the fifth nucleic acid probe also generates a signal (e.g., luminescence) when the target nucleic acid is successively subjected to hybridization, and the signal is amplified in a short time (one target nucleic acid). Even if the amount of the target nucleic acid is very small, its presence can be detected with high sensitivity, high accuracy, and high speed, because a large number of signals (e.g., light emission) are generated.
  • a signal e.g., luminescence
  • the sixth nucleic acid probe is capable of hybridizing to a target nucleic acid, has a cleavage portion that is cleaved when the target nucleic acid is hybridized, and has a Until the hybridization, a part of the molecule is hybridized with each other to form a mouth structure.
  • a part of the sixth nucleic acid probe in the molecule forms a lock structure by hybridization with the target nucleic acid.
  • the sixth nucleic acid probe hybridizes to the target nucleic acid.
  • the dissociation the complementary bonds of the portions of the lock structure that are hybridized to each other are dissociated. Then, the cutting portion is easily cut, and the cutting portion is cut. As a result, a signal such as light emission is generated.
  • the first force sixth nucleic acid probe sequentially hybridizes to the target nucleic acid, and each time, the structure changes and is cleaved to generate a signal such as luminescence. Because the target nucleic acid is amplified in a short time (a single target nucleic acid generates a large number of signals), even if the amount of the target nucleic acid is extremely small, its presence can be detected with high sensitivity, high accuracy, and high speed.
  • the nucleic acid chip of the present invention is characterized in that the nucleic acid probe of the present invention is fixed on a carrier.
  • the nucleic acid probe immobilized on the nucleic acid chip does not generate the signal before it is hybridized to the target nucleic acid, but when the target nucleic acid is hybridized to the target nucleic acid, As a result of the generation of a signal (emission or the like) from the signal generation portion, for example, the presence or absence of the target nucleic acid is detected by detecting the presence or absence of the signal (emission or the like).
  • the nucleic acid chip of the present invention even if the amount of the target nucleic acid is extremely small, its presence is detected with high sensitivity, high accuracy and high speed.
  • the target nucleic acid detection method of the present invention includes the following first to third target nucleic acid detection methods.
  • the first method for detecting a target nucleic acid is a method for detecting a target nucleic acid using a nucleic acid probe, wherein the nucleic acid probe undergoes a structural change after hybridization to the target nucleic acid,
  • the altered nucleic acid probe is characterized in that it is designed to reduce the binding force of the hybridization and dissociate from the target nucleic acid.
  • the second method for detecting a target nucleic acid uses a nucleic acid probe having a complementary site having a sequence complementary to at least a part of the base sequence of the target nucleic acid, and a nucleic acid enzyme-forming site capable of forming a self-nuclease.
  • a method for detecting a target nucleic acid comprising: a hybridization step of complementarily binding the nucleic acid probe to a target nucleic acid; and after forming the hybridization, the self-nucleic acid enzyme is formed.
  • a detecting step of detecting In the method for detecting a target nucleic acid, the nucleic acid probe is complementarily bound to the target nucleic acid before the step of forming the target nucleic acid and the hybridization.
  • the dissociation step after the formation of the hybridization, the self-nucleic acid enzyme is formed, and the structure of the nucleic acid probe is changed. As a result, the binding force of the hybridization is reduced, and the nucleic acid probe is changed to the target nucleic acid. Dissociate.
  • the detection step at least a part of the nucleic acid probe dissociated in the dissociation step is detected. As a result, the presence or absence of the target nucleic acid is detected.
  • the third method for detecting a target nucleic acid includes a step of hybridizing the nucleic acid probe of the present invention to a target nucleic acid, an hybridization step, and a step of hybridizing the nucleic acid probe when the nucleic acid probe is hybridized to the target nucleic acid. Detecting the presence of the target nucleic acid by detecting the generated signal.
  • the target nucleic acid detection method in the hybridization step, the nucleic acid probe of the present invention is hybridized to a target nucleic acid.
  • the target nucleic acid detection step! The presence or absence of the target nucleic acid is detected by detecting the presence or absence of the signal generated by the nucleic acid probe force upon hybridization to the target nucleic acid.
  • the target nucleic acid detection step when the nucleic acid probe is cleaved when the target nucleic acid is hybridized, of the first probe fragment and the second probe fragment, In the case of the target nucleic acid detection step in which the presence or absence of the target nucleic acid is detected by detecting the presence or absence of light emission of the existing light emitting part, the target nucleic acid detection step is performed when hybridization is performed.
  • the cut portion of the nucleic acid probe is cut to be divided into the first probe fragment and the second probe fragment, and the first probe fragment and the second probe fragment are separated from the target nucleic acid.
  • the light emitting unit is separated from each other, is present in the first probe fragment, and detects the light emission generated by the light emitting unit that has not been affected by the quenching unit. The presence or absence of the nucleic acid is detected.
  • the drug screening method of the present invention includes a hybridization step of hybridizing the nucleic acid probe of the present invention to a target nucleic acid expressed by drug administration; A target nucleic acid detection step for detecting the presence or absence of the target nucleic acid by detecting the presence or absence of the signal generated by the nucleic acid probe force when hybridized to the target nucleic acid. It is characterized by screening for drugs based on the presence or absence of the drug.
  • the nucleic acid probe of the present invention in the hybridization step, when the target nucleic acid is expressed by the administration of the drug, the nucleic acid probe of the present invention is hybridized to the target nucleic acid. When the nucleic acid is not expressed, the nucleic acid probe of the present invention does not hybridize to the target nucleic acid.
  • the target nucleic acid detection step the presence of the target nucleic acid is detected by detecting a signal in which the nucleic acid probe force is also generated due to hybridization to the target nucleic acid. Is detected.
  • a desired drug is screened based on the presence or absence of the expression of the target nucleic acid.
  • the nucleic acid probe is cleaved after being hybridized to the target nucleic acid, and the luminescence of the luminescent substance present in the first probe fragment out of the first probe fragment and the second probe fragment is generated.
  • the target nucleic acid detection step of detecting the presence of the target nucleic acid by detecting the target nucleic acid in the target nucleic acid detection step, after the hybridization to the target nucleic acid, the cleavage portion of the nucleic acid probe Is cleaved to be divided into the first probe fragment and the second probe fragment, and at least one of the first probe fragment and the second probe fragment is separated from the target nucleic acid.
  • Examples of the target nucleic acid detection device of the present invention include the following first and second target nucleic acid detection devices.
  • the first target nucleic acid detection device includes a nucleic acid probe for detecting a target nucleic acid in a sample.
  • a nucleic acid analysis device having a probe immobilized on a carrier, wherein the nucleic acid probe undergoes a structural change after being hybridized to a target nucleic acid, and the nucleic acid probe having the changed structure is capable of binding the hybridization. It is designed to reduce the force and to dissociate the target nucleic acid.
  • the second target nucleic acid detection device includes a hybridization means for hybridizing the nucleic acid probe of the present invention to a target nucleic acid, an hybridization means, and the nucleic acid probe force when hybridized to the target nucleic acid.
  • a target nucleic acid detecting means for detecting the presence of the target nucleic acid by detecting the generated signal.
  • the second target nucleic acid detection device includes a database unit that stores a gene information database, a data analysis unit that compares and analyzes the detection result data of the target nucleic acid detection unit with the gene information data stored in the database unit.
  • a communication unit communicable with the Internet and capable of accessing the genetic information database on the Internet, detection result data of the target nucleic acid detecting means, A data analysis unit for comparing and analyzing the genetic information data of the genetic information database; and And more preferably the patient's genetic information.
  • the nucleic acid probe of the present invention is hybridized to the target nucleic acid by the hybridization means.
  • the target nucleic acid detection means detects a signal generated by the nucleic acid probe force upon hybridization to the target nucleic acid, and detects the presence of the target nucleic acid.
  • the target nucleic acid detection means hybridizes to the target nucleic acid
  • the nucleic acid probe is cleaved.
  • the first probe fragment and the second probe fragment are formed of the luminescent substance present in the first probe fragment.
  • the target nucleic acid detecting means detects the presence of the target nucleic acid by detecting luminescence
  • the target detecting means hybridizes to the target nucleic acid, and then detects the cleavage portion in the nucleic acid probe. Is cleaved to be divided into the first probe fragment and the second probe fragment, and the first probe fragment and the second probe fragment are separated from the target nucleic acid.
  • the light-emitting unit is separated from the light-emitting unit and detects light emitted from the light-emitting unit that is present in the first probe fragment and is no longer affected by the quenching unit. As a result, the presence of the target nucleic acid is detected.
  • the gene diagnosis method of the present invention includes a target nucleic acid expression level quantification step for quantifying the expression level of a target nucleic acid relating to a specific disease in a subject using the target gene detection apparatus of the present invention.
  • the expression level of the target nucleic acid relating to the specific disease is compared with the expression level of the target nucleic acid relating to the specific disease in a healthy subject and the expression level of a patient contained in the genetic information database by a data analysis unit. Diagnosing whether or not the patient is a patient with a specific disease.
  • the gene diagnosis method of the present invention includes a target nucleic acid expression level quantification step for quantifying the expression level of a target nucleic acid relating to a specific disease in a subject using the target gene detection apparatus of the present invention.
  • the expression level of the target nucleic acid relating to the specific disease is compared with the expression level of the target nucleic acid relating to the specific disease in a healthy subject and the expression level of a patient contained in the genetic information database by a data analysis unit. Diagnosing whether or not the patient is a patient with a specific disease.
  • the expression level of the target nucleic acid relating to a specific disease in the subject is quantified using the target gene detection device of the present invention.
  • the diagnosis step the expression level of the target nucleic acid relating to the specific disease in the subject and the expression level of the target nucleic acid relating to the specific disease in a healthy subject and the expression level of a patient included in the genetic information database are analyzed. A comparison is made by the section to determine whether the subject is a patient with the specific disease.
  • FIG. 1 is a conceptual diagram showing an example of a process of a target nucleic acid detection method of the present invention using a nucleic acid probe of the present invention.
  • FIG. 2 is a schematic explanatory view showing one example of a nucleic acid probe of the present invention (Example 1).
  • FIG. 3 is a schematic diagram showing a state in which a nucleic acid probe of the present invention (Example 1) has been hybridized to a target nucleic acid.
  • FIG. 4 is a graph showing the results in Example 1 in which the target nucleic acid method of the present invention using the nucleic acid probe of the present invention was performed.
  • FIG. 5A shows an example of the nucleic acid probe of the present invention having a stem-loop structure until it hybridizes to the target nucleic acid (right figure), and a state in which the nucleic acid probe has hybridized to the target nucleic acid ( (Left figure).
  • FIG. 5B is a schematic diagram showing a one-dimensional structure of the nucleic acid probe of FIG. 5A.
  • FIG. 6 is a conceptual diagram showing an example of a process (emission amplification) of a method for detecting a target nucleic acid of the present invention using a nucleic acid probe of the present invention having a stem-loop structure.
  • FIG. 7 is a conceptual diagram showing an example of the drug screening method of the present invention using the nucleic acid probe of the present invention.
  • FIG. 8 is a conceptual diagram showing another example of the drug screening method of the present invention using the nucleic acid probe of the present invention.
  • FIG. 9 is a block diagram showing an example of the target nucleic acid detection device of the present invention using the nucleic acid probe of the present invention.
  • FIG. 10 is photographic data showing the results (detection results of luminescence) of Example 3 in which the method for detecting a target nucleic acid of the present invention using the nucleic acid probe of the present invention was performed.
  • FIG. 11 is photographic data showing the results of Example 5 in which the method for detecting a target nucleic acid of the present invention using the nucleic acid probe of the present invention was performed.
  • FIG. 12 is a conceptual diagram showing a form of hybridization in Example 6 in which the method for detecting a target nucleic acid of the present invention using the nucleic acid probe of the present invention was performed.
  • FIG. 13 is photographic data showing the results of Example 6 in which the method for detecting a target nucleic acid of the present invention using the nucleic acid probe of the present invention was performed.
  • the nucleic acid probe of the present invention can be hybridized to a target nucleic acid, and as the nucleic acid probe, the first to sixth nucleic acid probes are preferably characterized by the first to sixth nucleic acid probes. Those having two are more preferable. Those having three are particularly preferable.
  • the nucleic acid probe of the present invention has the characteristics of the first to sixth nucleic acid probes. In addition to the above, there may be other parts or the like appropriately selected according to the purpose to which no particular restrictions apply.
  • FIG. 1 is a conceptual diagram illustrating an example of a reaction cycle in the nucleic acid detection method of the present invention
  • FIG. 2 is a schematic diagram illustrating an example of a nucleic acid probe of the present invention
  • FIG. 4 is a schematic diagram showing a state where a probe has hybridized to a target nucleic acid
  • FIG. 4 is a graph showing a result of a target nucleic acid detection reaction according to one embodiment of the present invention.
  • the first nucleic acid probe undergoes a structural change after being hybridized to the target nucleic acid, and the structurally changed nucleic acid probe has a reduced binding force of the hybridization, and Force Designed to dissociate.
  • a cycle including binding or dissociation of a nucleic acid probe is formed on the molecule of the target nucleic acid 1.
  • the nucleic acid probe 2 and the target nucleic acid 1 come into contact with each other, they hybridize with each other to form a complex (A).
  • the hybridized nucleic acid probe 2 forms a self-nuclease 7, and the self-nuclease 7 cleaves at a cleavage site 12 having a specific sequence (B).
  • the cleaved nucleic acid probe cannot maintain the binding state with the target nucleic acid 1 and dissociates spontaneously (C).
  • the fluorescent substance F loses its interaction with the quencher Q and emits fluorescence.
  • a new nucleic acid probe 2 hybridizes again to the free target nucleic acid 1, and the fluorescent signal is amplified by repeating the processes (A) to (C).
  • the detection signal is amplified on one molecule of the target nucleic acid, the target nucleic acid 1 can be detected with high sensitivity even when the target nucleic acid 1 has a very small amount or a short lifetime.
  • the nucleic acid probe of the present invention is directly introduced into living cells, and the processes (A) to (C) are allowed to proceed. Is also possible. Therefore, according to the present invention, “recognition”, “signal amplification”, and “diagnosis” of a target nucleic acid such as a gene can be performed in a cell, and for example, the relationship between the administered drug and the expression or suppression of the gene thereby can be determined. Screening for direct observation becomes possible. Furthermore, since there is no need for gene amplification or reaction temperature control by PCR or the like, special equipment and facilities such as laboratories and analytical instruments are not required, and they can be used outside homes, schools, workplaces, and other medical facilities. Can also perform genetic diagnosis.
  • the “target nucleic acid” as used in the present invention means a nucleic acid or gene for quantitative, qualitative detection, or simple detection, and can be in either purified or unpurified state. Including.
  • the target nucleic acid may be of any type, and examples include RNA, DNA, PNA, and artificially modified nucleic acids.
  • the base sequence of the target nucleic acid can be determined by, for example, the Max. Gilbert method, the dideoxy method and the like.
  • the structural change of the nucleic acid probe of the present invention preferably includes the formation of a self-nucleic acid enzyme.
  • the nucleic acid probe of the present invention preferably has a labeling substance. This makes it possible to more easily confirm the presence of the target nucleic acid. Further, it is more preferable that the strong labeling substance emits different signals before and after the nucleic acid probe dissociates from the target nucleic acid. Details regarding the labeling substance will be described later.
  • the second nucleic acid probe can form a self-nucleic acid enzyme with complementary sites 3a and 3b having a sequence complementary to at least a part of the base sequence of the target nucleic acid.
  • the third nucleic acid probe has a cleavage portion 12 as a structure variable portion whose structure can be changed when hybridized to the target nucleic acid,
  • the structure of the structure variable portion changes, that is, when the cleavage portion 12 is cut, the target nucleic acid can be dissociated.
  • the fourth nucleic acid probe has a cleavage portion 12 that is cleaved when hybridized to the target nucleic acid, and when the target nucleic acid is hybridized to the target nucleic acid. Can form a cleavage active region 7 having cleavage activity for the cleavage portion 12 It is.
  • a signal generating unit 8 for generating a signal.
  • FIG. 2 is a view showing a state where the target nucleic acid is extended to a main strand
  • FIG. 3 is a view showing a state where the target nucleic acid is hybridized.
  • the nucleic acid probe 2 is capable of hybridizing to the target nucleic acid, and has the nucleotide sequences 3a and 3b, the nucleic acid enzyme formation site 6, and the luminescence which is the signal generation portion 8.
  • the nucleotide sequences 3a and 3b are regions that can hybridize to the target nucleic acid 1, and are located at both ends of the nucleic acid probe 2.
  • the nucleic acid enzyme forming site 6 shown in FIG. 2 forms the cleavage active region 7 when the nucleic acid probe 2 is hybridized to the target nucleic acid 1 as shown in FIG. Expresses cleavage activity.
  • a part of the molecule is hybridized, specifically, a part of the nucleic acid probe 2 at the center (between) with the cut part 12 on both sides thereof is hybridized ( Y and Z in Fig. 3).
  • the cleavage part 12 is formed of ribonucleic acid (the sugar in the nucleotide is ribose), and can be cleaved by the ribozyme activity expressed by the cleavage active region 7.
  • the luminescent material F and the quenching material Q are located adjacent to each other with the cut portion 12 at the center (between), as shown in FIGS.
  • each of the second to fifth nucleic acid probes can function as a target nucleic acid, such as a self-cleaving gene diagnosis probe, for example, an arosteritus effector.
  • a target nucleic acid such as a self-cleaving gene diagnosis probe, for example, an arosteritus effector.
  • Each fragment of the self-cleaved nucleotide cannot maintain complementary binding (hybridization) to the target nucleic acid at isothermal temperature, and dissociates spontaneously.
  • the new nucleic acid probe hybridizes to the target nucleic acid, forms a self-nuclease, and dissociates.
  • a detection signal typified by a fluorescent signal or the like is amplified.
  • Each of the second to fifth nucleic acid probes can be introduced into living cells without the need to add a special enzyme or reagent to form a self-nucleic acid enzyme. Therefore, the use of each of the second to fifth nucleic acid probes makes it possible to observe the behavior of single-molecule-level nucleic acids and genes in cells.
  • the nucleic acid probe 2 when the target nucleic acid 1 is present, the nucleic acid probe 2 has complementary base sequences 3a and 3b capable of hybridizing to the target nucleic acid 1 at both ends. Therefore, when the nucleotide sequences 3a and 3b are hybridized to the nucleic acid sequence 1 (A in FIG. 1), the nucleic acid enzyme formation site 6 becomes a three-dimensional confirmation.
  • the cleavage active region 7 is formed by the cleavage, the cleavage activity (ribozyme activity) for the cleavage portion 12 is generated, the cleavage portion 12 (ribose portion) is cleaved (self-cleaved), and the first probe having the luminescent substance F
  • the fragment is divided into a fragment and a second probe fragment having a quencher Q (B in Fig. 1), and each fragment is dissociated from the target nucleic acid 1.
  • the quencher F and the quencher F that are located adjacent to each other are separated.
  • the substance Q comes to be separated from each other ( C in Figure 1).
  • the light-emitting substance F and quencher Q when having been positioned adjacent to each other, the light co 1] E non Honoré 3 ⁇ ⁇ (fluorescence resource energy transfer to definitive therebetween: a FREl movement, the light-emitting substance F Although the luminescence was in the quenching state 8 due to the action of the quenching substance Q, the fluorescence resonance energy transfer disappeared, the quenching action of the quenching substance Q stopped working, and the luminescent substance F began to emit light (FIG. 1). C) This luminescence is generated each time the nucleic acid probe hybridizes to the target nucleic acid 1, and this reaction is repeated (catalytic process, cycle A—C in FIG. 1) and amplified.
  • the nucleic acid probe 2 when the nucleic acid probe 2 is cleaved, the first probe fragment and the second probe fragment cannot maintain the hybridization, and when dissociated from the target nucleic acid 1, the target nucleic acid 1 becomes To be free
  • the new nucleic acid probe 2 hybridizes and repeats the cycle of A to C in Fig. 1.
  • the nucleic acid probe 2 can use the target nucleic acid 1 as an aosteric effector. Even if the nucleic acid 1 has a very small amount (10 ng Zwl) or a short life, the presence thereof can be easily detected visually or the like by amplifying the luminescence generated by the nucleic acid probe.
  • nucleic acid probe 2 can be directly introduced into living cells for hybridization, and can be hybridized to viruses. Therefore, according to the nucleic acid probe 2, a very small amount of the target nucleic acid existing in the cell can be detected.
  • FIG. 5A, FIG. 5B and FIG. 6 are schematic explanatory diagrams showing an example of the sixth nucleic acid probe.
  • the sixth nucleic acid probe can be hybridized to a target nucleic acid and is cleaved when hybridized to the target nucleic acid. It has a cleavage part (rA), and until it hybridizes to the target nucleic acid, a part of the molecule hybridizes with each other to form a lock structure (stem loop structure).
  • rA cleavage part
  • this nucleic acid probe is composed of two base sequences (5, 5 at the end, XGTAGGAGT3, and 3, 3 at the end, YGTGCCAGG5 ') capable of hybridizing with the target nucleic acid and a cleavage activity.
  • This nucleic acid probe forms the lock structure (stem-loop structure) before hybridizing to the target nucleic acid, as shown in FIGS. 5A, 5B, and 6.
  • the adenine (A) oligomer is present at the 5 ′ end of the nucleic acid probe at the extreme end, and the thymine (T) oligomer is present at the 3 ′ end but at the extreme end of the nucleic acid probe. Therefore, as shown in FIGS. 5A, 5B and 6, the lock structure has a stem-loop structure.
  • the nucleic acid probe having the stem-loop structure has a state in which the 3 ′ end side protrudes from the stem-loop structure.
  • the nucleic acid probe having the stem loop structure does not form the cleavage active region, and the cleavage portion (rA: base is adenine). Does not cause cleavage at the sugar (ribose) structure Yes. For this reason, the nucleic acid probe does not have a risk of erroneous detection or the like, which prevents a cleavage active region from being formed and cutting the cleavage portion before the nucleic acid is hybridized to the target nucleic acid.
  • the present invention has such a lock structure (stem-loop structure), and does not express the cleavage activity of the cleavage portion before hybridizing to the target nucleic acid.
  • the nucleic acid probe may be referred to as a “Locked TASC” probe.
  • the nucleic acid probe of the present invention having no stem-loop structure as described above is sometimes referred to as a “TASCJ probe”.
  • the nucleic acid probe ie, the “Locked TASC” probe
  • the locked structure a self-nucleic acid enzyme
  • the lock structure is not formed while the cleavage active region is formed.
  • the nucleic acid probe may undergo a large shape or structural change between the shape or structure that forms the cutting active region and the shape or structure that forms the cleavage active region. Required.
  • the affinity (binding power, hybridization power) of the two base sequences capable of hybridizing with the target nucleic acid to the target nucleic acid is better than that of the lock structure ( It is designed to have an affinity (binding strength, hybridization force) greater than that of the stem-loop structure). Therefore, the nucleic acid probe adopts the lock structure (stem-loop structure) before it is hybridized to the target nucleic acid.
  • the two base sequences capable of hybridization interact with their complementary sites in the target nucleic acid, and the affinity of the two base sequences for the target nucleic acid (binding power, hybridization power) Since the lock structure (stem-loop structure) is easily released due to large (strong), the nucleic acid probe is capable of being hybridized to the target nucleic acid with a large shape or structural change. Become.
  • nucleic acid probes capable of hybridizing with the target nucleic acid Affinity (binding power, hybridization power) of the base sequence for the target nucleic acid hereinafter referred to as “
  • A2 and the affinity (binding force, hybridization force) (hereinafter referred to as“ A1 ”) in the lock structure (stem-loop structure) are determined by hybridization with the target nucleic acid.
  • the number can be appropriately adjusted depending on the number of possible base sequences, the number of base sequences of complementary strands in the lock structure, the number of hydrogen bonds between bases (2 or 3) during hybridization, and the like.
  • the number of two base sequences capable of hybridizing with the target nucleic acid is complemented by the complementation in the lock structure. What is necessary is just to make it larger than the number of base sequences of a chain.
  • the number of A1 is "5"
  • the number of A2 is three times the number of A1. Strong, slightly less than 4 times.
  • the one-dimensional cleavage active region as shown in Fig. 5B is, as shown in Figs. 5A and 6, the cleavage activity when the nucleic acid probe is hybridized to the target nucleic acid. A region is formed, and a cleavage activity for the cleavage site (the site represented by rA in FIG. 5A and the site represented by Q in FIG. 6) is expressed.
  • a part of the molecule is hybridized, specifically, a part of the both sides of the nucleic acid probe with the cut portion at the center (between). (Both sides of rA in Fig. 5A, both sides of the site represented by Q in Fig. 6B and Fig. 6C).
  • the cleavage portion is formed of ribonucleic acid (the sugar in the nucleotide is ribose), and can be cleaved by the ribozyme activity expressed by the cleavage active region.
  • the luminescent material F and the quenching material Q are positioned adjacent to each other while the lock structure (stem-loop structure) is being taken. Is quenched by the action of the quenching substance Q.
  • the nucleic acid probe is a complementary nucleic acid that can hybridize to the target nucleic acid when the target nucleic acid is present. Since the two base sequences are present at both ends (see FIGS. 5A and 6B), when the two base sequences hybridize to the nucleic acid sequence (FIGS. 5A and 6B). ), The cleavage active region is formed, and a cleavage activity (ribozyme activity) for the cleavage portion is generated. (In C of FIG.
  • the cleavage activity is expressed or improved by the magnesium ion being located at the center of the cleavage active region), and the cleavage portion (ribose portion) is cleaved (self-cleaved). Then, it is divided into a first probe fragment having the luminescent substance F and a second probe fragment having the quencher Q (D in FIG. 6), and each is dissociated with the target nucleic acid.
  • the luminescent substance F and the quenching substance Q which were located adjacent to each other, would be located away from each other when the nucleic acid probe hybridized to the target nucleic acid (see FIG. 6).
  • the quenching action of the quenching substance Q stops working, and the luminescent substance F emits light.
  • the luminescence by the luminescent substance F occurs every time the nucleic acid probe contacts the target nucleic acid, and this reaction is repeated (AD cycle in FIG. 6) to be amplified.
  • the target nucleic acid has a very small amount ( ⁇ 10 ngZ / n) or a short life, the presence of the target nucleic acid can be easily detected visually or the like by amplifying the luminescence generated by the nucleic acid probe.
  • the nucleic acid probe of the present invention may be entirely formed of a nucleotide chain, or may be partially formed of a nucleotide chain.
  • the portion other than the above portion may be formed by, for example, an amino acid chain, a sugar chain, a synthetic polymer chain, or the like. Among these, from the viewpoint of production efficiency and the like, it is preferable that all of them are formed by nucleotide chains.
  • the method for producing the nucleotide chain in the nucleic acid probe is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a chemical synthesis method, a plasmid vector, and a microorganism using a phage vector. Method, a mechanical synthesis method using a nucleic acid synthesizer, and the like. Of these, the mechanical synthesis method is preferable because of its excellent mass productivity.
  • the nucleotide sequence number (full length) of the nucleotide chain in the nucleic acid probe The restriction can be appropriately selected depending on the purpose to be used. For example, 5 to 100 is preferable, and 10 to 70 is more preferable.
  • the number of nucleotide sequences (full length) of the nucleotide chain exceeds 100, non-specific hybridization may occur and detection accuracy may be reduced, and permeability to cell membranes may be reduced, thereby improving the efficiency of living cells. In some cases, it may not be possible to detect the target nucleic acid. If the value is less than 5, the binding force of the hybridization may be insufficient, and the detection accuracy of the target nucleic acid may decrease.
  • the nucleic acid probe of the present invention is capable of hybridizing to the target nucleic acid and has a region (site) capable of forming a complementary strand with the target nucleic acid. This allows the nucleic acid probe to capture the target nucleic acid to be detected in the sample.
  • the number of regions (sites) that can form a complementary strand with the target nucleic acid is at least one, and may be two or more, but is preferably two.
  • the capturing property of the target nucleic acid is excellent, the detection sensitivity can be improved, and the binding force with the target nucleic acid can be improved.
  • the position of the region (site) capable of forming a complementary strand with the target nucleic acid is not particularly limited and can be appropriately selected depending on the intended purpose, and may be present in any part of the nucleic acid probe.
  • the number of regions (sites) capable of forming a complementary strand with the target nucleic acid is two, both ends of the nucleic acid probe may be used as shown in FIG.
  • the complementary portion 3a and the complementary portion 3b) in FIG. 5A and FIG. 5B one end and the center of the nucleic acid probe may be used. Among them, in the latter case (as shown in FIGS.
  • the nucleic acid probe undergoes a large shape or structural change before and after hybridization to the target nucleic acid.
  • a cleavage active region described later can be formed, and a cleavage activity for a cleavage portion described later can be expressed, so that there is no problem such as erroneous detection in which erroneous cutting is not performed. Is advantageous.
  • the length of the complementary strand (region capable of hybridizing to the target nucleic acid),
  • the number of one base sequence in the complementary strand can be appropriately selected depending on the particular purpose, and the number of bases is preferably 11 to 13 because the selectivity to the target nucleic acid is high. Preferred 6-9 is particularly preferred.
  • the binding force to the target nucleic acid is substantially proportional to the number of base sequences in the complementary strand.
  • the binding force of the nucleic acid probe 2 to the target nucleic acid 1 is It is the sum of the binding forces between 3a and the complementary site 3b.
  • the binding force of each nucleic acid probe fragment is determined by binding complementarily to the target nucleic acid to form a partial complement site 3a or a complementary site 3b). There will only be a single bond. That is, the cleavage reduces the binding force to the target nucleic acid 1 by almost half.
  • a reaction cycle including a process of hybridization to the target nucleic acid 1 and a process of dissociation can be established.
  • the V and the complementary nucleic acid can be maintained at around the temperature in the living body (around 37 ° C.) and the target nucleic acid alone.
  • it can be easily and spontaneously dissociated, and can be easily introduced directly into a living body or cell to establish a reaction cycle between a nucleic acid probe and a target nucleic acid. If it is 2-10, or even 6-9, the effect is more remarkable, and it is more preferable.
  • the number of base sequences in each complementary strand may be the same or different.
  • the nucleic acid probe of the present invention preferably has, for example, a cleavage active region (nucleic acid enzyme formation site) 6 capable of forming a site having a cleavage activity of the self-nuclease or the like at the cleavage portion.
  • a cleavage active region nucleic acid enzyme formation site 6 capable of forming a site having a cleavage activity of the self-nuclease or the like at the cleavage portion.
  • the nucleic acid probe 2 hybridizes to the target nucleic acid 1 and then undergoes a structural change such as formation of a self-nucleic acid enzyme, and then becomes dissociable from the target nucleic acid.
  • the cleavage active region can be formed upon hybridization to the target nucleic acid.
  • the cleavage active region can be appropriately selected depending on the particular purpose, and is preferably one that expresses cleavage activity under certain conditions.
  • the cleavage activity (enzyme activity), such as DNAzyme activity, RN A chain or DNA chain capable of expressing A-zyme activity, ribozyme activity, and the like.
  • the cleavage active region includes a region that, when the nucleic acid probe binds to the target nucleic acid, changes conformation so as to form a cavity for capturing a metal ion for expressing an enzyme activity.
  • the cleavage active region has a cleavage activity such as an enzymatic activity such as specific cleavage of nucleotides in the nucleic acid probe molecule. Since the nucleic acid probe does not require a restriction enzyme or the like, the target nucleic acid in the cell can be detected by utilizing a specific enzyme reaction only by introducing the nucleic acid probe into the cell.
  • an enzyme that recognizes the specific sequence site to be cleaved must be selected and used.
  • the nucleic acid probe of the present invention has a specific sequence that is recognized or cleaved by the self nucleic acid enzyme together with the nucleic acid enzyme forming site in the same molecule, it can be freely designed so as to have desired characteristics for the expression of the enzyme activity. Yes, there is no such restriction as when a restriction enzyme is used.
  • the cleavage site 12 is preferably located at a position where the cleavage activity is most efficiently exhibited when the self-nuclease 7 is formed after hybridization of the nucleic acid probe.
  • the nucleic acid enzyme forming site 6 is preferably in a region between one complementary site 3a and another complementary site 3b.
  • the nucleic acid probe is securely fixed to the target nucleic acid, and the self-nuclease 7 is more stabilized. It becomes easier to design to reduce the binding force between the probe and the target nucleic acid.
  • the self-nucleic acid enzyme formed from the nucleic acid enzyme-forming site may have any of a cleavage activity, a binding activity and any other activity, but preferably has a cleavage activity.
  • the nucleic acid probe is hybridized to the target nucleic acid and then cleaved between two complementary sites by the action of a self-nuclease, each complementary site The fragment that has maintained the binding state with the target nucleic acid by the total binding force of the target nucleic acids, but after cleavage, each fragment that has become short cannot maintain its hybridization with the target nucleic acid and dissociates with the target nucleic acid.
  • the free target nucleic acid binds to a new nucleic acid probe, and can repeat a reaction cycle in which formation, cleavage, dissociation, and new hybridization of a self-nucleic acid enzyme are sequentially repeated. Therefore, when a nucleic acid probe designed such that a released fragment emits a signal is used, the signal is amplified on one molecule of the target nucleic acid, and thus the detection sensitivity can be improved.
  • Examples of the self-nuclease formed from the nucleic acid enzyme formation site 6 include a DNA enzyme and an RNA enzyme. Any of these nucleic acid enzymes may be a hammerhead type, a hairpin type, an HDV type, or the like. Any other type may be included.
  • the nucleic acid probe has a region capable of hybridizing in the molecule when hybridized to the target nucleic acid.
  • the target nucleic acid is subjected to hybridization, it becomes easy for the nucleic acid probe to take a three-dimensional confirmation that forms the cleavage active region, and the three-dimensional confirmation.
  • the number of regions that can be hybridized to or hybridized to the target nucleic acid in the molecule is not particularly limited, and may be appropriately selected depending on the purpose.
  • the force is preferably 2 or more.
  • the number of the regions is two or more, it is advantageous in that the formation of the cleavage active region is easy.
  • the position of the region that can be hybridized to the target nucleic acid when hybridized to the target nucleic acid is not particularly limited, and is appropriately selected depending on the purpose.
  • this position which is preferably located adjacent to each other with the cut portion described later as the center (between), and the center (between) these positions and the cut portion described later.
  • the position on the opposite side may be used.
  • the cutting active region and the cutting portion can be opposed to each other so that the cutting active region can cut the cutting portion.
  • the number of base sequences in a region that can be hybridized or hybridized in the molecule when hybridized to the target nucleic acid is not particularly limited and is appropriately determined according to the purpose. You can choose.
  • the number of base sequences of at least one of Y and Z is less than 2, it may be difficult to form or maintain the structure of the cleavage active region.
  • the total number of base sequences of Y and Z is not particularly limited, and force 2-12, which can be appropriately selected depending on the purpose, is preferable.
  • the nucleic acid probe may not sufficiently contribute to stabilization of the cleavage active region and improvement of the cleavage efficiency, and if it exceeds 12, the nucleic acid probe and the target nucleic acid may be hybridized.
  • the nucleic acid Before the hybridization, the nucleic acid has a structure capable of forming the cleavage active region. In this case, when the nucleic acid is hybridized with the target nucleic acid, the free nucleic acid probe can be used.
  • the above-mentioned cleavage active region is easily formed, and the nucleic acid probes may cross each other, and may cause hybridization, thereby lowering detection accuracy and sensitivity. Sometimes.
  • a loop is usually formed on the nucleic acid probe on the side opposite to the cut portion.
  • the number of base sequences in the loop portion is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the reaction rate of the nucleic acid probe usually depends on the loop portion, Is short, and it is preferable because it is more stable! /.
  • the nucleic acid probe is divided into the first probe fragment and the second probe fragment.
  • the size of the first probe fragment and the size of the second probe fragment are not particularly limited and may be appropriately selected depending on the intended purpose, and may be approximately the same size or different from each other. It is preferable that these have a size that facilitates dissociation of the target nucleic acid.
  • a signal e.g., light emission
  • cleavage of the cleavage portion by the cleavage active region can be generated in a short time, which is advantageous in that high-speed detection can be performed.
  • the cleavage active region When the cleavage active region has DNA zym activity, RNA zym activity, ribozyme activity or the like with respect to the cleavage portion, the cleavage active region usually has an active center site, When the metal ion is present at the active center site, the DNA zym activity, the RNA zym activity, the ribozyme activity, and the like can occur.
  • the metal ion is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a magnesium ion and a cobalt ion. Of these, a magnesium ion is preferable.
  • the metal ion In order to cause the metal ion to be present at the active center site, for example, a method in which the nucleic acid probe is present in a solution containing the metal ion may be used.
  • the concentration of the metal ion in the solution can be appropriately selected depending on the purpose without particular limitation. For example, 10 to 50 mM is preferable.
  • the method for designing the cleavage active region can be appropriately selected depending on the purpose without particular limitation.
  • the cleavage active region is formed by a nucleic acid chain such as DNA
  • the method described above is used.
  • the SELEX method is preferably used.
  • a plurality of nucleic acids are allowed to act on a target (here, the cleavage portion), a nucleic acid having a strong binding force is selectively separated from the plurality of nucleic acids, amplified, and further subjected to a plurality of nucleic acids.
  • a nucleic acid sequence having high affinity for the target (the cleavage portion) is selected.
  • the cleavage portion is formed when the nucleic acid probe hybridizes to the target nucleic acid.
  • the shape, structure, size, material, etc. of the unwrapping can be appropriately selected according to the purpose, as long as it can be specifically cleaved (can be cut by the cleavage active region).
  • the cleavage portion can be appropriately selected according to the type of the cleavage active region.
  • the cleavage active region has the DNA zym activity
  • the cleavage activity is preferably DNA.
  • the region has the RNAzyme activity, it is preferably RNA.
  • the region has RNA cleavage activity, it is preferably ribose.
  • the cleavage portion is cleaved by the cleavage active region, but the cleavage active region is designed to be formed when the nucleic acid probe is hybridized to the target nucleic acid. Is advantageous only in that it is cleaved only when the nucleic acid probe has hybridized to the target nucleic acid, thereby preventing erroneous detection of the target nucleic acid.
  • nucleic acid probe of the present invention hybridizes to the target nucleic acid, it is preferable that a part of the molecule hybridizes with each other in the molecule to form a lock structure.
  • the cleavage active region is not formed while the nucleic acid probe has the lock structure, that is, until the nucleic acid probe contacts the target nucleic acid.
  • the cleavage active region is formed only when the nucleic acid probe no longer has the intramolecular hybridization structure, that is, when the nucleic acid probe hybridizes to the target nucleic acid. Therefore, the hybridization of the nucleic acid probe to the target nucleic acid and the structural change typified by cleavage of the cleavage portion can be completely linked, and erroneous detection and the like can be effectively performed. This is advantageous in that it can be prevented.
  • the lock structure can be appropriately selected depending on the purpose, and examples thereof include a stem loop structure and a hairpin structure. These may be formed alone in the nucleic acid probe, or may be formed in the nucleic acid probe in combination of two or more. Among these, the stem-loop structure is preferred. Generally means a three-dimensional hairpin structure formed by a nucleic acid, and usually has a stem portion having a stem-like shape by complementary bonding and a loop portion having a loop-like shape.
  • the number of base sequences in one of the complementary strands (parts that are hybridized to each other, for example, the stem part) forming the hybridization is as follows. , 4 to 8 nt is preferred.
  • the binding strength of the complementary strand in the hybridization region may be weak and insufficient, which may cause erroneous detection and the like.
  • the length exceeds 8 nt, the binding strength of the complementary strand in the hybridization region (for example, the stem) becomes too strong, and the nucleic acid probe can hybridize to the target nucleic acid. Or it may be difficult to hybridize.
  • the signal generating portion in the nucleic acid probe of the present invention is not particularly limited as long as it can generate a signal when the nucleic acid probe is hybridized to the target nucleic acid, and is appropriately selected according to the purpose.
  • a light-emitting portion capable of emitting light when the nucleic acid probe is subjected to hybridization with the target nucleic acid a light-emitting portion that emits light, and a light-emitting portion positioned adjacent to the light-emitting portion.
  • a combination with a quenching unit for quenching the light emission of the light emitting unit is preferably exemplified.
  • the signal generator can be used not only to detect the presence or absence of signal generation but also as a dynamic parameter for tracking the behavior of the target nucleic acid in cells.
  • nucleic acid probe may be provided alone in the nucleic acid probe, or may be provided in combination of two or more. Among them, a combination of the light emitting section and the quenching section is preferable. .
  • the signal is not particularly limited and can be appropriately selected depending on the intended purpose.
  • Examples of the signal include light emission, quenching, protein expression, radiation emission, temperature change (heat generation, etc.), magnetic force change (magnetic generation, etc.), Cutting fragment generation, substance production, substance consumption, deformation, viscosity change, color change, UV absorption, pH change, optical rotation, isomerization, etc. These may be used alone or Or two or more of them may be used in combination.
  • the method or means for detecting the signal can be appropriately selected according to the purpose of the present invention without particular limitation.
  • a light receiving device a camera, or the like is used.
  • a photosensitive film or the like can be mentioned; in the case of temperature change, a thermocouple or a temperature sensor can be mentioned; in the case of a magnetic force change, a magnetic sensor or the like can be mentioned.
  • a viscosity sensor may be mentioned, in the case of substance production, antibodies, HPLC, affinity chromatography, etc., and in the case of substance consumption, IR Spectrum, MS spectrum, etc., in the case of deformation, an electron microscope, and in the case of viscosity change, a viscosity sensor.
  • the alignment of the light emitting section and the quenching section can be appropriately selected depending on the purpose without particular limitation.
  • fluorescence resonance energy (FRET) and the like can be selected. What is known as the technique can be suitably adopted.
  • the light-emitting portion can be appropriately selected depending on the purpose of being not particularly limited as long as it can emit light, and includes, for example, a fluorescent material, a chemiluminescent material, an electrochemical luminescent material, and the like. Or those formed of these.
  • the quenching portion when the quenching portion is present adjacent to the light emitting portion, the quenching portion is preferably quenched by the action of the quenching portion, which is excellent in visibility and easy to detect. Fluorescent substances are more preferable.
  • the fluorescent substance can be appropriately selected depending on the purpose without particular limitation.
  • rhodamines such as anthracene, fluorescein, fluorescein isothiocyanate (FITC), tetramethylrhodamine and sulforhodamine , Dansilk Ride, Texas Red, AL350, Indian Carbocyanine (CY), and the like.
  • the nucleic acid probe has the light-emitting portion in that the detection can be performed visually or the like.
  • the extinction unit is appropriately selected according to the type of the light-emitting unit, which is not particularly limited as long as light emission of the light-emitting unit can be extinguished when positioned adjacent to the light-emitting unit. Examples thereof include those containing a quenching substance, those formed with the quenching substance, and the like.
  • the quenching substance is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the energy emitted by the fluorescent substance when emitting light is emitted.
  • a substance capable of absorbing light and a substance capable of optical resonance transfer (fluorescence resource energy transfer: FRET) between the light-emitting substance and the like.
  • FRET fluorescent resource energy transfer
  • TRITC Tetramethylrhodamine isothiocyanate
  • DBSYL dimethylaminobenzenesulfur
  • gold nanoparticles black hole quencher, and the like.
  • the nucleic acid probe has the quenching part
  • the nucleic acid probe before the nucleic acid probe hybridizes to the target nucleic acid, that is, when the quenching part is present adjacent to the light emitting part, The luminescence of the light-emitting portion can be quenched, while after the nucleic acid probe has been subjected to the hybridization with the target nucleic acid, the cleavage portion is cleaved, and the first probe fragment and the first probe fragment are cleaved.
  • the quenching part is located away from the light emitting part
  • the function of the quenching part is lost and the light emission is prevented. Since light emission can be generated in the light-emitting portion, the presence of the target nucleic acid is advantageous in that the light-emitting portion can easily detect the presence of the target nucleic acid visually or the like.
  • the position of the quenching portion in the nucleic acid probe may be appropriately selected depending on the intended purpose, but may be selected before the nucleic acid probe hybridizes to the target nucleic acid. Is located adjacent to the light-emitting portion, and when the nucleic acid probe has been subjected to hybridization with the target nucleic acid, that is, the cleavage portion is cut and the nucleic acid probe is replaced with the first probe. After being divided into the fragment and the second probe fragment, it is preferable that the fragment is located apart from the light emitting unit. Specifically, when the light emitting unit is present in the first probe fragment, Is more preferably present in the second probe fragment. Conversely, the light emission is present in the second probe fragment.
  • the quenching portion and the light emitting portion are located with the cutting portion therebetween. In this case, when the cutting portion is cut, the quenching portion is advantageously present in another probe fragment different from the light emitting portion.
  • the distance between the light-extinguishing section and the light-emitting section until the cutting section is cut is not particularly limited as long as the light-extinguishing action of the light-extinguishing section works.
  • the number of bases present between the terminal base on the light emitting portion side in the quenching portion and the terminal base on the light emitting portion side in the light emitting portion is preferably 5 to 30 nt.
  • the quenching effect of the quenching portion is sufficient. May not be minutes.
  • the specific combination of the luminescent substance and the erasing substance is not particularly limited, and can be appropriately selected depending on the purpose.
  • fluorescein isothiocyanate Suitable examples include a combination of (FITC) with tetramethylrhodamine isothiocyanate (TRITC), a combination of dimethylaminobenzenesulfol (DABSYL) and fluorescein, and the like.
  • the light-emitting portion is designed to emit light when the nucleic acid probe hybridizes to the target nucleic acid.
  • the present invention is not limited to these cases, and the light emitting portion emits light before the nucleic acid probe hybridizes to the target nucleic acid, and the nucleic acid probe hybridizes to the target nucleic acid.
  • it may be designed so that the light emission of the light emitting unit is extinguished.
  • the nucleic acid probe of the present invention may be designed so as not to have the labeling substance (such as the light emitting part and the quenching part), and the nucleic acid probe may be hybridized to the target nucleic acid.
  • the detection can be performed by, for example, electrophoresis of a probe fragment generated by the cleavage by the hybridization or the hybridization.
  • the fluorescent substance F and the quencher Q are located at the cleavage site 12 by the self-nuclease. It is preferable that they are provided at interposed positions.
  • the principle is fluorescence resonance energy transfer (FRET).
  • FRET fluorescence resonance energy transfer
  • the distance between the fluorescent substance (F) and the quenching substance (Q) is particularly important, but in a state where the nucleic acid probe 2 of the present invention has hybridized to the target nucleic acid 1, The distance between F and Q is designed such that FRET is established and quenched.
  • each fragment cannot dissociate with the target nucleic acid and is dissociated.
  • the fluorescent substance released from FRET emits fluorescent light. In this way, the target nucleic acid can be detected or quantified from the fluorescence intensity enhancement tl.
  • the target nucleic acid can be detected without separating the hybridized nucleic acid probe from the non-hybridized nucleic acid probe, and the procedure is simplified, which is preferable.
  • the fluorescent substance and the quencher are preferably separated from each other by a distance of about 5 to 30 base sequences across the cleavage site in a state of being hybridized to the target nucleic acid, but are not necessarily limited to this case.
  • FITCZTRITC energy donating substance and an energy accepting substance
  • the nucleic acid probe of the present invention can be used as a form immobilized on the surface of a carrier such as a glass substrate, so-called “DNA chip”, and is more likely to be used as a Lab-on-Chip.
  • the other parts can be appropriately selected as long as the effects of the present invention are not particularly limited, and examples thereof include various markers, a water-soluble linker, and the like.
  • the various markers can be appropriately selected depending on the particular purpose, and examples thereof include a radiation label, a quantum dot label, and a protein label.
  • the nucleic acid probe When the nucleic acid probe is used by being fixed to a carrier, it is preferable to introduce the water-soluble linker between the nucleic acid probe and the carrier.
  • the carrier is not particularly limited and can be appropriately selected depending on the purpose. , Resin particles and plates, bottom and side surfaces of containers, and the like.
  • the water-soluble linker is not particularly limited and may be appropriately selected depending on the purpose.
  • an ethylene glycol linker can be used.
  • the length of the water-soluble linker may be determined appropriately according to the structure and type of the carrier.
  • nucleic acid probe When the nucleic acid probe is introduced into cells and used, a part or all of the nucleic acid in the nucleic acid probe is subjected to 2′-OMe treatment (the hydroxyl group at the 2′-position of the sugar is converted to methoxy). (Substitution with a group). Thus, non-specific cleavage of the nucleic acid probe by an endogenous cell enzyme can be suppressed, and the detection accuracy of the target nucleic acid can be improved.
  • 2′-OMe treatment the hydroxyl group at the 2′-position of the sugar is converted to methoxy.
  • the nucleic acid probe of the present invention can be detected even when the target nucleic acid such as a virus, a bacterium, an animal cell, or a plant cell is contained in an extremely small amount, and is used for gene therapy, testing for the presence of food poisoning bacteria, diagnosis of caries or periodontal disease, It can be suitably applied to blood tests and the like, and is suitable for the nucleic acid chip, target nucleic acid detection method, drug screening method, gene detection device, and gene diagnosis method of the present invention described below.
  • the nucleic acid probe of the present invention can be used for, for example, blood tests (prevention of viral infection during blood transfusion), sanitary control of blood products such as whole blood, albumin products, blood coagulation products, virus tests at the time of fertilization of the population, sexually transmitted diseases,
  • the present invention can be suitably applied or applied to the analysis of pathological conditions of neurological diseases, and the like.
  • the nucleic acid probe of the present invention is added to the collected saliva, for example, as an HIV infection test or a diagnosis of caries or periodontal disease.
  • the positive and negative tests can be performed simply and easily by visual inspection or the like.
  • nucleic acid probe of the present invention can be suitably applied to fields such as criminal search, forensic medicine, and archeology.
  • the nucleic acid probe When the target nucleic acid is detected using the nucleic acid probe of the present invention, the nucleic acid probe may be used alone or in the presence of a helper oligonucleotide (helper oligonucleotide). May be used with oligonucleotides).
  • helper oligonucleotide helper oligonucleotide
  • the helper oligonucleotide is not particularly limited as long as it has a function of assisting the nucleic acid probe to hybridize to the target nucleic acid. A known neutral force depending on the purpose. Those having a function of assisting in changing the loop structure into a linear structure are preferred.
  • the helper oligonucleotide can be used particularly preferably in combination with the nucleic acid probe when the nucleic acid probe has the lock structure.
  • the length of the helper oligonucleotide that is, the number of base sequences, is not particularly limited.
  • the target nucleic acid to be detected by the nucleic acid probe of the present invention is not particularly limited, and can be appropriately selected depending on the purpose, and may be purified or unpurified RNA, DNA, Any of PNA and artificially decorated nucleic acid may be used.
  • the method for determining the base sequence of the target nucleic acid is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include the Maxam-Gilbert method and the dideoxy method.
  • the sample in which the target nucleic acid is present is not particularly limited and can be appropriately selected depending on the purpose.
  • examples include blood, serum, plasma, feces, urine, sputum, bone marrow fluid, sweat, tears, saliva, semen, It may be collected or prepared from water such as tap water, pre-treated water, or cells (including living cells) or viruses.
  • the cell is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include animal cells, plant cells, fungi, and yeast.
  • the animal cells are not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include embryonic stem cells such as fertilized eggs, ES cells, EG cells, and EC cells, embryonic cancer cells, and hematopoietic stem cells. And cancer cells which have become cancerous and have become immortalized, cell lines of various organs, erythrocytes, lymphocytes, leukocytes and the like.
  • the animal cells include cells of a transgenic animal transformed from the time of development.
  • the living body from which the animal cells are derived for example, mammals, reptiles, birds, Any of live fish, fish, insects, etc. may be used.
  • Examples of the mammal include carnivores, primates, herbivores, rodents, and the like. Specific examples include mice, rats, genotypes, musters, pests, pomas, pigs, and the like. Goats, wild boars, elephants, kirins, pandas, dogs, cats, bears, egrets, whales, irca, monkeys, humans and the like.
  • the reptiles include, for example, turtles, snakes, cynopodes, reptiles, squamata, etc.Specifically, tortoises, turtles, green turtles, turtles, lizards, iguanas, Chameleon, gecko, -Shiki snake, Nami snake, Cobra.
  • the birds include, for example, ducks, geese, albatross, -birds, ibises, power gulls, locusts, shore ostriches, sparrows, crows, pheasants, crocodile, mynah, yambarutaina, stork, cranes, photoglyphs, woodpeckers, owls, owls Gancho, Mizuzura, Ommu etc. are mentioned.
  • amphibians examples include potatoes, newts, salamanders, salamanders and the like.
  • Examples of the fish include freshwater fish and saltwater fish, and specific examples of the freshwater fish include arowana, guppy, catfish, tanago, koi, medaka, tamame, char, piranha, nodigiyo, cichlid, catfish and the like.
  • Specific examples of the saltwater fish include rays, sharks, clownfish, kisses, goby, tuna, flounder, sunfish, manta rays, clownfish, angelfish, and discus.
  • insects examples include power beetles, stag beetles, dragonflies, bees, crickets, squashes, power beetles, ari, cockroaches, power creatures, cicada, tagame, flies, notta, fireflies, and butterflies.
  • the plant cells are not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include cells derived from parts such as flowers, stems, roots, and leaves, and even those protoplasts. Good.
  • the type of the plant is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include cells derived from seed plants, ferns, bryophytes, algae, and the like. Also included are transgenic plants into which the polynucleotide has been introduced.
  • Examples of the seed plants include gymnosperms, angiosperms, and the like. Specific examples include rice, wheat, barley, cherry, dandelion, pine, tulip, sunflower, cedar, beech, and eggplant. Lotus, oilseed rape, nadesico, faba bean, camellia, seri, corn, green onion, cromo, taro, twigweed, Ichiyou, cycad, cypress, cypress, larch, Ibuki, chrysanthemum, perilla, gentian, saccharo, orchid, lily, iris, etc. No.
  • Examples of the fern plant include radish, peravi, horsetail, spring, hego, oak, lycopodium, horsetail, and the like.
  • bryophytes examples include Sugigoke, Sphagnum, Kurogoke, Hikarigoke, Chochinoke, Tachigoke, Zenigoke, Jagoke, Perokogoke, Notakegoke, Kochigoke, Pakigoke and the like.
  • Examples of the algae include Chlamydomonas, Aonori, Chlorella, Amidro, Mill, Aosa, and Marimo.
  • the fungi are not particularly limited and can be appropriately selected depending on the purpose.
  • mushrooms examples include shiitake, matsutake, agaritasake, eryngii, maitake, yamabushitake, bunashimeji, tamogitake, nameko, oyster mushroom, shrimp mushroom, enoki mushroom and the like.
  • the fungi can be broadly classified into yeast and filamentous fungi.
  • yeast examples include Candida albicans. C. glabrada. C. tropicalis, parapsilosis. C. stellatoidea. Crvptococcus neoformans. Saccha romvces cerevisiae, and the filamentous fungi include, for example, Trichophvtin ruprum. , Microsporum canis, Alternaria alternata, Alternaria pana x, Bipolaris brizae.
  • bacteria examples include gram-positive bacteria and gram-negative bacteria, and may be any of anaerobic bacteria, facultative anaerobic bacteria, microaerobic bacteria, and aerobic bacteria.
  • Specific species of the bacterium include, for example, Staphylococcus aureus.Streptococcus ⁇ vogenes.Rnterococcus faecalis.Bucillus anthracis. tuberculosis, Corvnebacterium glutamicum ⁇ StreDtomyces antibioticus. Salmonella typhi, Edwardsiella tarda, Citrobacter freun dii, Vibrio parahaemolvticus. Morganella morganii.
  • bacteria for example, periodontal disease-causing bacteria, cariogenic bacteria, food poisoning bacteria, and the like are also preferably mentioned.
  • microorganisms include protists, plankton, and the like.
  • protozoa examples include dysentery amoeba, large intestine amoeba, Trichomonas vaginalis, Torino V soma, malaria, Pneumocystis cari, Cryptomonas, Euglena, filamentous worm, whipworm and the like.
  • the plankton includes, for example, daphnia, daphnia and pest.
  • the virus is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a retrovirus, an adenovirus, a herpes virus, a Sendai virus, and a Bataterio phage.
  • retrovirus examples include mouse leukemia virus, human immunodeficiency virus, human T lymphocyte tropic virus, and the like.
  • adenovirus examples include canine adenovirus type 1, canine adenovirus type 2, human adenovirus type 1, human adenovirus type 2, and the like.
  • Sendai virus examples include, for example, those mainly derived from mice, and it is known that humans are not infected.
  • Examples of the Batatelio phage include T4 phage, T5 phage, T7 phage, ⁇ phage, M13 and the like.
  • plasmids and cosmids in Escherichia coli are also included.
  • examples of such plasmids include pBR322, pBR325, pAT153, pUC8, pUC18, pUC19, and pSP-RLUC. I can get lost.
  • the nucleic acid chip of the present invention is not particularly limited except that the nucleic acid probe of the present invention is immobilized on a carrier.
  • a known configuration can be appropriately adopted according to the purpose. Among them, a configuration in which the nucleic acid probe is fixed to the carrier via the water-soluble linker is preferable.
  • a known carrier and the like are preferably exemplified.
  • the nucleic acid chip having the nucleic acid probe immobilized on the carrier can be suitably used as a DNA chip.
  • the carrier is not particularly limited and can be appropriately selected depending on the purpose.
  • It may be formed of an inorganic material or an organic material.
  • Examples of the inorganic material include inorganic polymers, metals, ceramics, semiconductors, magnets, paramagnets, and apatite.
  • Preferred examples of the inorganic polymer include carbon, amorphous carbon obtained by carbonizing a thermosetting resin, and graphite.
  • Preferred examples of the metal include gold, platinum, silver, copper, iron, and aluminum.
  • Preferred examples of the ceramic include alumina, silica, silicon nitride, silicon carbide, glass, quartz, silica gel, and the like.
  • Silicon is preferably used as the semiconductor.
  • One of these inorganic materials may be used alone, or two or more thereof may be used in combination.
  • organic material examples include plastics and natural polymers.
  • plastic examples include polyethylene, polystyrene, polycarbonate, polypropylene, polyamide, phenol resin, epoxy resin, polycarboimide resin, polyvinyl chloride, polyvinylidene fluoride, polyethylene fluoride, polyimide, and acrylic resin. Fats and ceramics.
  • the shape of the carrier is usually the same as the shape of the nucleic acid chip, and thus can be selected from the viewpoint of how to design the nucleic acid chip.
  • the various molded products include, for example, strips, wells or strips of multi-well plates, tubes, meshes, continuous foams, membranes, paper, needles, fibers, plates, hollow fibers, slides, cell containers, etc. Is mentioned.
  • the size of the nucleic acid chip is not particularly limited, and can be appropriately selected depending on the purpose.
  • the arrangement of the nucleic acid probes on the nucleic acid chip can be appropriately selected depending on the intended purpose without limitation. For example, it may be the entire surface or a partial surface of the carrier. Alternatively, they may be arranged in an array on the surface of the carrier.
  • the type of the nucleic acid probe to be arranged on the nucleic acid chip is not particularly limited and can be appropriately selected depending on the purpose.
  • One type may be used alone, or two or more types may be used. .
  • by arranging each nucleic acid probe in an array it is possible to simultaneously qualitatively and quantify a large number of genes and a large number of genes, which is suitable for gene diagnosis and the like.
  • the color of the emitted light is designed to be different for each type of the nucleic acid probe (designed as a multi-color probe)
  • the target nucleic acid can be determined simply by visually observing the emitted color. This is advantageous in that the presence or absence of a can be determined instantaneously.
  • the nucleic acid chip of the present invention can be suitably used for the detection or analysis of the target nucleic acid, and is suitably used for the target nucleic acid detection method, drug screening method, gene diagnosis method and the like of the present invention described below. be able to.
  • the nucleic acid chip of the present invention can be detected even if the target nucleic acid such as a virus, a bacterium, an animal cell, or a plant cell is extremely small, and can be suitably applied to gene therapy or the like. It is suitable for a nucleic acid detection method, a drug screening method, a gene detection device, and a gene diagnosis method. [0095] Further, the nucleic acid chip of the present invention can be used, for example, for blood tests (prevention of viral infection during blood transfusion), sanitary control of blood products such as whole blood, MAP, FFP, albumin products and blood coagulation products, at the time of population fertilization, etc.
  • blood tests prevention of viral infection during blood transfusion
  • sanitary control of blood products such as whole blood, MAP, FFP, albumin products and blood coagulation products
  • nucleic acid chip of the present invention can be used in the collected saliva to perform a positive or negative test.
  • the nucleic acid chip of the present invention can be easily and easily visually inspected, and can be suitably applied to fields such as criminal search, forensic medicine, and archeology.
  • the target detection method of the present invention includes the following first to third target detection methods.
  • the first method for detecting a target nucleic acid is a method for detecting a target nucleic acid using a nucleic acid probe, wherein the nucleic acid probe undergoes a structural change after hybridization to the target nucleic acid,
  • the altered nucleic acid probe is designed to reduce the binding force of the hybridization and dissociate the target nucleic acid.
  • the second method for detecting a target nucleic acid uses a nucleic acid probe having a complementary site having a sequence complementary to at least a part of the base sequence of the target nucleic acid, and a nucleic acid enzyme-forming site capable of forming a self-nuclease.
  • a method for detecting a target nucleic acid comprising: a hybridization step of complementarily binding the nucleic acid probe to a target nucleic acid; and after forming the hybridization, the self-nucleic acid enzyme is formed.
  • the structure of the probe is changed, and as a result, the binding force of the hybridization is reduced, and the nucleic acid probe is dissociated from the target nucleic acid, and at least a part of the nucleic acid probe dissociated in the dissociation step. And a detecting step of detecting.
  • the third method for detecting a target nucleic acid includes a step of hybridizing the nucleic acid probe of the present invention to a target nucleic acid, an hybridization step, and a step of hybridizing the nucleic acid probe with the target nucleic acid when the nucleic acid probe is hybridized to the target nucleic acid.
  • the target detection method of the present invention basically, only an operation of causing the nucleic acid probe to hybridize to the target nucleic acid present in the sample, and thereafter, spontaneously changes in the structure of the nucleic acid probe and hybridization. A decrease in the binding force, dissociation of the nucleic acid probe, accumulation of the signal, and the like occur, and the measurement of the target nucleic acid becomes possible. Since the operation is very simple in this way, complicated or special devices or special reagents are not required, and a genetic diagnosis can be performed quickly when necessary, for example, in a clinic, home, school, workplace, or the like. be able to.
  • the method for introducing the nucleic acid probe into the cell can be appropriately selected depending on the type of the cell to which the nucleic acid probe is not particularly limited. For example, known methods such as a calcium phosphate method, a liposome method, an electoral poration method, and a sonoporation method can be used. A gene transfer method can be used.
  • nucleic acid detection method of the present invention it is preferable to use a nucleic acid probe having a labeling substance that emits a different signal before and after the nucleic acid probe dissociates with the target nucleic acid.
  • a phenomenon such as hybridization or dissociation between the nucleic acid probe and the target nucleic acid can be easily recognized as a signal change, and the target nucleic acid can be more easily detected.
  • the nucleic acid detection method of the present invention provides a nucleic acid having a complementary site having a sequence complementary to at least a part of the base sequence of a target nucleic acid, and a nucleic acid enzyme-forming site capable of forming a self-nuclease.
  • a method for detecting a target nucleic acid using a probe comprising: a hybridization forming step of complementarily binding the nucleic acid probe to the target nucleic acid; and after the hybridization, the self-nucleic acid enzyme is used.
  • the structure of the nucleic acid probe thus formed changes, and as a result, the binding force of the hybridization decreases, and the nucleic acid probe dissociates from the target nucleic acid; and the nucleic acid dissociated in the dissociation step. And a detecting step of detecting at least a part of the probe.
  • the labeling substance on the nucleic acid probe that has been hybridized once with the target nucleic acid can be positively detected. Can be used to detect the target nucleic acid.
  • the hybridization with the target nucleic acid is performed only at the complementary site of the nucleic acid probe, the time required for completing the hybridization can be shortened, and the test can be performed quickly. be able to.
  • the restriction enzyme used in the conventional method does not need to amplify the sample DNA (RNA) by PCR or the like.
  • the reaction proceeds at a constant temperature without the need for a restriction enzyme site in the nucleic acid probe and without the need for additional chemical substances. Can be used.
  • the step of hybridization is a step of hybridizing the nucleic acid probe of the present invention to the above-mentioned target nucleic acid.
  • the conditions for the above-mentioned and the hybridization can be appropriately selected according to the purpose to which there is no particular limitation.V, so-called ⁇ stringent '' hybridization is performed under the conditions.
  • Preferable pH is 7.0-8.5, and temperature is preferably 30 ° C--60 ° C. 0.01-1. In a solution with sodium ion salt concentration less than 1M It is preferable to do it.
  • helper oligonucleotide may be used in combination.
  • the helper oligonucleotide is not particularly limited as long as it has a function of assisting the nucleic acid probe to hybridize to the target nucleic acid.
  • a known neutral force can be appropriately selected depending on the purpose. Force A thing having a function of assisting in changing the lock structure (stem-loop structure) to a linear structure is preferable.
  • the helper oligonucleotide can be used particularly preferably in combination with the nucleic acid probe when the nucleic acid probe has the lock structure.
  • the target nucleic acid detection step comprises detecting the signal generated when the nucleic acid probe of the present invention hybridizes to the target nucleic acid, thereby detecting the target nucleic acid. This is the step of detecting.
  • the signal is as described above, for example, emission, quenching, radiation emission, temperature change (heat generation, etc.), magnetic force change (magnetism generation, etc.), cut piece generation, substance production, substance consumption, deformation, viscosity change , And the like. These may be used alone or in combination of two or more.
  • the method or means for detecting the signal can be appropriately selected depending on the purpose, without particular limitation.
  • a light-receiving device a camera, or the like can be used.
  • a photosensitive film can be used.
  • a thermocouple or temperature sensor can be used.
  • a magnetic sensor can be used.
  • electrophoresis SDS-PAGE, and ester blotting.
  • substance production include antibodies, HPLC, and affinity chromatography, and examples of substance consumption include IR spectra.
  • an electron microscope is used, and in the case of a change in viscosity, a viscosity sensor is used.
  • the target In the nucleic acid detection step, the presence of the target nucleic acid is detected by detecting the luminescence.
  • a method for detecting the light emission of the light emitting unit can be appropriately selected depending on the purpose without particular limitation.
  • the light emitting unit is formed of the light emitting substance, Is a fluorescent substance, the luminescence (fluorescence) thereof can be easily detected visually or by a fluorescence microscope, and when the luminescent substance is formed of the chemiluminescent substance, a photosensitive film or the like can be used.
  • digital analysis can be performed by using a CCD camera. In this case, digital processing can be performed. This is advantageous in that it is easy and qualitative and quantitative determination of the target nucleic acid can be performed with high accuracy.
  • the target nucleic acid detection method of the present invention can detect even a very small amount of the target nucleic acid, such as a virus, a bacterium, an animal cell, or a plant cell, and can detect gene therapy, the presence of food poisoning bacteria, caries or teeth. It can be suitably applied to diagnosis of periodontal disease, blood test and the like.
  • the method for detecting a target nucleic acid of the present invention can be used, for example, for blood tests (prevention of viral infection during blood transfusion), whole blood, MAP, FFP, albumin preparations, blood coagulation preparations, etc.
  • the present invention can be suitably applied or applied to a virus test, a sexually transmitted disease test, a pathological analysis of neurological diseases, and the like. Further, the target nucleic acid detection method of the present invention can be suitably applied to fields such as criminal search, forensic medicine, and archeology.
  • target nucleic acid 1 and nucleic acid probe 2 of the present invention are hybridized (A in FIG. 1).
  • the reaction conditions can be appropriately set and can be carried out by a known method.
  • the reaction is carried out under V, so-called "stringent" hybridization conditions.
  • it is carried out using a solution having a magnesium ion salt concentration of about 0.01 to 0.1 M at ⁇ 7.0 to 8.5 and a temperature of 30 to 60 ° C.
  • the target nucleic acid is usually denatured into a single strand in advance by high-temperature treatment or the like.
  • the hybridized nucleic acid probe forms an autologous nucleic acid enzyme 7 under certain conditions (A in FIG. 1). Recognition of a specific sequence and expression of enzyme activity occur in the nucleic acid probe 1 by the self-nucleic acid enzyme 7.
  • the self-nucleic acid enzyme 7 has a cleavage activity, a nucleotide is cleaved at a cleavage site 12 having a specific sequence (B in FIG. 1).
  • the nucleic acid probe 2 thus cleaved cannot maintain the binding state with the target nucleic acid 1 and is dissociated (C in FIG. 1).
  • the fluorescent substance F on the nucleic acid probe fragment is not affected by the quencher Q and emits a fluorescent signal. This signal is detected or analyzed in the next detection step.
  • the nucleic acid probe 2 when the target nucleic acid 1 is present, the nucleic acid probe 2 is capable of hybridizing to the target nucleic acid 1. Since the base sequences 3a and 3b are present at both ends (see FIGS. 2 and 3), when the base sequences 3a and 3b hybridize to the nucleic acid sequence 1 (A in FIG. 1), the nucleic acid enzyme The cleavage active region 7 is formed by the three-dimensional confirmation of the element formation site 6, and the cleavage activity (ribozyme activity) for the cleavage portion 12 is generated, and the cleavage portion 12 (ribose portion) is cleaved (self).
  • the first probe fragment having the luminescent substance F and the quencher Q (B in FIG. 1), and each is dissociated from the target nucleic acid 1.
  • the luminescent substance F and the quencher Q which were located adjacent to each other, are located apart from each other. (C in Fig. 1).
  • the emission of the luminescent substance F causes the emission of the quenching substance Q to occur due to the transfer of fluorescence resonance energy (FRET) between the two.
  • FRET fluorescence resonance energy
  • the quenching state 8 causes the fluorescence resonance energy transfer to cease, the quenching action of the quenching substance Q to stop working, and the luminescent substance F to emit light (C in FIG. 1).
  • This luminescence is generated each time the nucleic acid probe hybridizes to the target nucleic acid 1, and this reaction is repeated (catalytic process, cycle A to C in FIG. 1) and amplified. That is, when the nucleic acid probe 2 is cleaved, the first probe fragment and the second probe fragment cannot maintain the hybridization, and when dissociated from the target nucleic acid 1, Since 1 is in a free state, a new nucleic acid probe 2 hybridizes, and the cycle of AC in FIG. 1 is repeated.
  • the nucleic acid probe 2 can use the target nucleic acid 1 as an arosteric effector. For this reason, even when the target nucleic acid 1 has an extremely small amount ( ⁇ 1 or short life), the luminescence generated by the nucleic acid probe can be increased.
  • the target nucleic acid detection step light emission by the luminescent substance F is detected.
  • This detection can be performed by appropriately selecting according to the properties of the nucleic acid probe and the labeling substance. For example, when the nucleic acid probe is labeled with a fluorescent substance, it is performed using a fluorescence microscope or the like. If labeled with a radioisotope, it can be performed by autoradiography.If labeled with a chemiluminescent substance, analysis using a photosensitive film or digital analysis using a CCD camera can be performed. Analysis can be performed, and as a result, qualitative and quantitative analysis of the target nucleic acid can be performed.
  • the target nucleic acid can be detected by, for example, confirming the cleaved nucleic acid probe fragment by gel electrophoresis or the like.
  • the nucleic acid probe is preferably cleaved in the nucleic acid enzyme reaction step.
  • the activity of the self-nucleic acid enzyme is not particularly limited, but the nucleic acid probe is preferably cleaved by the expression of the cleaving activity.
  • Each fragment resulting from the cleavage of the nucleic acid probe cannot maintain its hybridization with the target nucleic acid, dissociates with the target nucleic acid, and then a new nucleic acid probe binds to the target nucleic acid. As a result, a reaction cycle enabling such signal amplification can be easily formed.
  • the nucleic acid probe is preferably fixed to a carrier.
  • a device for nucleic acid analysis such as a DNA chip and a DNA microarray can be configured, and a large amount of gene data can be obtained with high sensitivity.
  • the device for nucleic acid analysis using the nucleic acid probe of the present invention for example, at every lapse of time after the administration of the drug, the mRNA of the cell or organ was also extracted, and the nucleic acid probe of the present invention was immobilized.
  • An increase in mRNA level means that genetic information from DNA molecules is actively transcribed, which corresponds to an increase in gene function.
  • information on the gene pathway can be obtained.
  • nucleic acid detection device in which two or more nucleic acid probes of the present invention having different base sequences are immobilized on the same carrier, multiple types of target nucleic acids can be detected or measured at once.
  • the nucleic acid probe has two base sequences complementary to each other at both ends thereof, which are capable of ribonucleation and elimination (see FIGS. 5A and 5A).
  • the cleavage active region is formed, and the cleavage activity (ribozyme activity) for the cleavage site is formed.
  • the magnesium ion is located at the center of the cleavage active region, and the cleavage activity is further improved.
  • the cleavage portion (ribose portion) is cleaved (self-cleaved) and divided into a first probe fragment having the luminescent substance F and a second probe fragment having the quenching substance Q (D in FIG. 6). Each is dissociated from the target nucleic acid. Note that the luminescent substance F and the quenching substance Q, which were located adjacent to each other, would be located away from each other when the nucleic acid probe hybridized to the target nucleic acid (see FIG. 6).
  • the quenching effect of the quenching substance Q is lost, and the luminescent substance F emits light.
  • the luminescence of the luminescent substance F and the cleavage of the cleavage portion by the hybridization of the nucleic acid probe to the target nucleic acid are performed substantially simultaneously.
  • the luminescence by the luminescent substance F occurs each time the nucleic acid probe hybridizes to the target nucleic acid, and this reaction is repeated (AD cycle in FIG. 6) and amplified.
  • the nucleic acid probe can use the target nucleic acid as an aosteric effector. Therefore, even if the target nucleic acid has a very small amount (100 ng Z1) or a short lifetime, its presence can be easily detected visually or the like by amplifying the luminescence generated by the nucleic acid probe. .
  • luminescence by the luminescent substance F is detected. This detection may be performed visually or using a fluorescence microscope, a CCD camera, or the like.
  • the target nucleic acid detection method of the present invention is suitable for high-sensitivity, high-accuracy, and high-speed detection of trace amounts of various target nucleic acids, and can be suitably applied to the drug screening method of the present invention described later. is there.
  • the drug screening method of the present invention includes a hybridization step and a target nucleic acid detection step, and further includes other steps appropriately selected as necessary.
  • the above-mentioned hybridization step is a step of hybridizing the nucleic acid probe of the present invention to the target nucleic acid which has been expressed or not expressed by the administration of a drug in the same manner as described above. [0114] Target nucleic acid detection step
  • the target nucleic acid detection step is a step of detecting the target nucleic acid by detecting the signal generated when the nucleic acid probe of the present invention hybridizes to the target nucleic acid.
  • the target nucleic acid detection step is the same as the target nucleic acid detection step in the target nucleic acid detection method.
  • a drug is screened based on the presence or absence of the target nucleic acid detected in the target nucleic acid detection step. That is, by detecting the amplified luminescence and observing the change in the expression level of the gene after drug administration, this screening can be performed in living cells such as cells, tissues and organs. The action or side effect of the drug can be screened efficiently.
  • mRNA expressed by the drug is isolated, cDNA is prepared by reverse transcription reaction, amplified by PCR, and the amplified cDNA is labeled and labeled.
  • the drug screening method of the present invention can introduce the nucleic acid probe directly into living cells, so that it can be performed quickly and easily. Screening can be performed.
  • the drug screening method of the present invention uses living cells to fix cells and to detect mRNAs and the like that could not be detected due to the inability to perform biological activities. It is advantageous in that it can detect or analyze the behavior and can detect or analyze a small amount of mRNA, etc., and also can screen for a desired inhibitor as shown in FIG.
  • new effects and side effects of existing drugs can be known by detecting trace genes (presence or absence of target nucleic acid), and can also be used for doping tests for athletes and drug detection tests for drug addicts, etc. Can be applied.
  • the drug to be screened by the drug screening method of the present invention can be appropriately selected depending on the particular purpose, and may be, for example, a drug acting on a peripheral nerve, a drug acting on a central nervous system, a hormonal drug, an otacoid, or a circulatory organ.
  • a drug acting on a peripheral nerve a drug acting on a central nervous system
  • a hormonal drug an otacoid
  • a circulatory organ Systemic, respiratory, digestive, genitourinary, skin, vitamins, chemotherapeutics, disinfectants, preservatives, biologicals, herbal medicines, etc. , Existing or new drugs Yes.
  • peripheral nerve agent examples include local anesthetics, muscle relaxants, agents acting on the autonomic nervous system, and the like.
  • Examples of the local anesthetic include cocaine, tropacocaine, proforce in, lidocaine, bupino force in, mepino force in, tetracaine, jib force in and the like.
  • muscle relaxant examples include d-bobclare, gallamine, panclopam, veclopam, decamethonium, suxametonium, dantrolin and the like.
  • autonomic nervous agent examples include epinephrine, norepinephrine, isoproterenol, dominine, fenrefreline, methoxamine, clonidine, metalaminol, naphazoline, dobutamine, methoxyphenamine, orciprenaline, terbutaline, chlorprenaline.
  • Examples of the central nervous system acting agent include nitrous oxide, cyclopropane, ethylene, ether, chloroform, halothane, methoxyflurene, enflurane, isoflurane, sevoflurane, tiopental, thiamylal, hexovalpital, pentoval Pital, Propside, ketamine, phenobarbital, bromperyl urea, bromethyl acetyl urea, chloral hydrate, daltesimide, methaqualone, nitrazepam, flurazepam, estazolam, triazolam, etylparafinol, etchlorbinol, ethinol alcohol , Methyl alcohol, disulfiram, phytoin, mefatein, esotoin, phenovalpital, nettalbital, primidone, carbamazepine, zo-samide, trimetad
  • the hormonal agent is not particularly limited as long as it has or inhibits hormonal action, for example, growth hormone, thyroid stimulating hormone, adrenocortical stimulating hormone, follicle stimulating hormone, luteinizing hormone, lactating hormone, Oxytocin, vasobretsin, thyroid hormone, liothyronine sodium, levothyroxine sodium, methylthioperasinole, propylthioperacil, thiamazonole, canolecitone, parathyroid honolemon, insulin, glucagon, carptamide, chlorpropamide, acetohexamide , Tolazamide, Hetahexamide, 1-Butyl-3-Trowrea, Tolptamide, Daribendalamide, Darimiji , Gribazole, fenformin, pformin, metformin, epalrestat, voglibose, acarnose, troglitazone, cortisone, hydrocortisone, des
  • Examples of the eotacoid include histamine, diphenhydramine, diphen-rubiraline, clemastine, pyrilamine, promethazine, chlorpheniramine, chlorcyclidine, sip mouth heprazin, mequitazine, terfenadine, cimetidine, ranitidine, famotidine, diphenidine.
  • Examples of the above-mentioned circulatory system drugs include digitalis, zelkova squirrel, strophane fungus, force and know, digitoxin, digoxin, methyl digoxin, G-strophanthinin, lanatoside C, porossilaridi, vavine, and j8 receptor.
  • Examples of the above-mentioned respiratory agents include, for example, carbon dioxide, dimorpholamine, dimephrine, doxapram, saponins, non-saponin glycosides, potassium iodide, bromhexine, methyllucistin, ethyl cysteine, a Cetylcysteine, carbocysteine, ambrokinol, xanthine derivatives, sodium cromoglycate, ketotifen, tralast, azelastine, oxatomide, ozadarel, suplatast tosilate, terfenadine, astemizole, serratrodast, pranlukast hydrate, etc. No.
  • conjugator-based agents examples include sodium bicarbonate, magnesium oxide, natural aluminum silicate, dried hydroxylated aluminum gel, parasympathetic blocker, pirenzepine, thixidum, cimetidine, famotidine.
  • Phenolphthalein picosulfate, magnesium sulfate, magnesium oxide, sodium sulfate, glycerin, bisacodyl, albumin tannate, precipitated calcium carbonate, medicated charcoal, ahen alkaloid, berberine, lactamine, metoclopramide, domperidone, cisapride, trimebutine And so on.
  • Examples of the urinary reproductive system acting drug include D-mantol, concentrated glycerin, salted ammonium salt, ammonium nitrate, calcium chloride, mercury diuretic, acetazolamide, Dichlonolephenamide, Tricronolemethiazide, Hydrochloride thiazide, Benzinolehydrochlorothiazide, Penflutide, Methiclothiazide, Metrazone, Chlortharidone, Furosemide, Ethacrynic acid, Pyreta-d, Bumemethamide, Azosemide, Mefurcid, Spitonorataton , Triamethylene, potassium canrenoate, hexamine, mandelic acid, nitrofurantoin, ergotoxin, enoregotamine, enolegometri, methinoleenolegomethrin, oxitocin, dinoprost, dinoprostone, gemeprost, spartin
  • Examples of the skin and mucous membrane active agents include power brush, cantharis, capsicum, tannic acid, gallic acid, zinc oxide, lead monoxide, lead tetroxide, zinc sulfate, lead acetate, aluminum sulfate, and sulfuric acid.
  • vitamin preparation examples include vitamin A and vitamin.
  • chemotherapeutic agent examples include penicillins, cefms, oxacephems, monopactams, carpanems, 13-lactamase inhibitors, fosfomycins, aminoglycosides, chloramphenicol, tetracyclines, macrolides Lincomycin, rifamycin, antimycobatate limb, polyene macrolide, antibiotics such as synthetic antibacterials, sulfa drugs, quinolone drugs, pitarabin, idoxperidine, acyclovir, ganciclovir, zidovosine, didanodine, interferon, amantadine, Emetine, pyrimethamine, cloquinine, primaquine, quinacrine, metro-dazole, pentamidine isethionate, santonin, kainic acid, piperazine salt, pyrantel pamoate, praziquantel, camara, antimony tartrate Thorium
  • Examples of the biological agent include diphtheria, tetanus mixed vaccine, oral live polio vaccine, dried attenuated rubella vaccine, dried attenuated measles vaccine, influenza HA vaccine, Japanese encephalitis vaccine, dried BCG vaccine, smallpox vaccine, Cholera vaccine, Weil's disease fall sickness mixed vaccine, tetanus toxoid, diphtheria toxoid, gas gangrene antitoxin, diphtheria antitoxin, snake antitoxin, tetanus antitoxin, purified tuberculin, BCG and the like.
  • herbal medicine examples include, for example, Annaka-san, Choto-san, Oren-gedokuto, Keishi-bukuryogan, Shogaku-hu Hot water, Yokukansan, Hachimi Jiohgan, Kakoch and the like.
  • Preferred examples of the target nucleic acid detection device of the present invention include the following first and second target nucleic acid detection devices.
  • the first target nucleic acid detection device is a nucleic acid analysis device in which a nucleic acid probe for detecting a target nucleic acid in a sample is immobilized on a carrier, and the nucleic acid probe hybridizes to a target nucleic acid.
  • the nucleic acid probe which undergoes a structural change after the shrinking, is designed so that the binding force of the hybridization decreases and the target nucleic acid force dissociates.
  • the second target nucleic acid detection device includes a hybridization means for hybridizing the nucleic acid probe of the present invention to a target nucleic acid, an hybridization means, and the nucleic acid probe force when hybridized to the target nucleic acid.
  • Target nucleic acid detection means for detecting the presence of the target nucleic acid by detecting the generated signal.
  • the hybridization means is not particularly limited as long as the nucleic acid probe of the present invention can be hybridized to the target nucleic acid, and can be appropriately selected according to the purpose.
  • the above-mentioned nucleic acid chip is preferably used.
  • the target nucleic acid detection means is means for detecting the target nucleic acid by detecting the signal generated when the nucleic acid probe of the present invention hybridizes to the target nucleic acid, and includes, for example, the signal described above.
  • a light emitting device for example, a light receiving device, a camera, etc.
  • a photosensitive film can be mentioned.
  • a magnetic sensor can be used, in the case of a cut piece, electrophoresis, SDS-PAGE, Western blotting, and the like can be used.
  • an antibody, an HPLC, and an antibody can be used.
  • the signal is generated when the nucleic acid probe hybridizes to the target nucleic acid.
  • the target detection means includes: Fluorescent microscopes, photosensitive films, CCD cameras and the like are preferred.
  • the target nucleic acid detecting means can determine not only the presence of the target nucleic acid but also the amount thereof.
  • Examples of the other means include, for example, a database section for storing a gene information database, and a data analysis for comparing and analyzing the detection result data of the target nucleic acid detection means with the gene information data stored in the database section.
  • a communication unit capable of communicating with the Internet and accessing the genetic information database on the Internet, and comparing the detection result data of the target nucleic acid detecting means with the gene information data of the genetic information database on the Internet.
  • a data analysis unit to be analyzed is preferably used.
  • the gene information database can be appropriately selected depending on the purpose of the restriction, but is preferably a database containing healthy person genetic information and patient genetic information relating to a specific disease.
  • the target detection of the present invention including the nucleic acid chip of the present invention as the hybridization means and the fluorescence microscope as the target detecting means is preferred.
  • the device further includes a CPU 31, an input device 32, a memory 33, a communication device 34, a database device 36, and a main bus 37 for connecting these devices in a bidirectional communication manner.
  • the CPU 31 controls the entire target nucleic acid detection device, operates based on programs and various data stored in the memory 33, and realizes various functions.
  • the various functions include a remote diagnosis function for diagnosing data received from another target nucleic acid detection device, a collation process for unifying different signals in order to control the exchange of information with other providers and other servers.
  • Function a database processing function for providing various information on the target nucleic acid, and the like. Examples of the various data include data of various lists created for genetic diagnosis.
  • the input device 32 is a device for the administrator of the provider to input information such as genetic diagnosis conditions.
  • the memory 33 has a function of storing a program to be accessed by the CPU 31, the gene information database, information received by the target nucleic acid detection device, information read from the storage device 35, the database device 36, and the like as necessary. It has.
  • the communication device 34 is a device that controls communication with the outside via the Internet, the communication line 15, and the like.
  • the communication device 34 may include, for example, a modem as a conversion device, or may include a terminal adapter (TA) and a digital service unit (DSU) interposed for connection to an ISDN line.
  • TA terminal adapter
  • DSU digital service unit
  • the storage device 35 has a function of storing and storing various programs and various data.
  • the storage device 35 includes a ROM 38 as storage means, a recorder 39 for reading a storage medium stored in the ROM 38, and the like.
  • Examples of the storage device 35 include, in addition to an electronic memory circuit (electronic storage medium) such as a ROM, a magnetic storage device using a magnetic storage medium such as a floppy disk as the storage medium, and an optical storage medium such as a CD-ROM.
  • An optical storage device used as a storage medium is exemplified.
  • the storage medium may be a medium fixedly provided in the storage device 35 or a medium provided detachably.
  • the programs, data, and the like stored in the storage device 35 may be received from a storage device outside the target nucleic acid detection device via communication means.
  • the database device 36 stores therein a past data list of the target nucleic acid and the like.
  • the gene diagnosis method of the present invention includes a target nucleic acid expression level quantification step and a diagnosis step using the target gene detection device of the present invention, and further includes other steps appropriately selected as necessary.
  • the target nucleic acid expression level quantifying step is a step of quantifying the expression level of the target nucleic acid relating to the specific disease in the subject.
  • This step can be suitably performed by the above-described target nucleic acid detection method of the present invention using the target nucleic acid detection device of the present invention.
  • the nucleic acid probe of the present invention it can be performed by preparing a calibration curve representing the relationship between the expression level of the target nucleic acid and the luminescence level in advance, and quantifying using the calibration curve.
  • the expression level of the target nucleic acid relating to the specific disease in the subject and the expression level of the target nucleic acid relating to the specific disease in a healthy subject and the expression level of a patient included in the genetic information database are determined. This is a step of diagnosing whether or not the subject is a patient with the specific disease by making a comparison using a data analysis unit.
  • the diagnosis step can be suitably performed by the database unit, the data analysis unit, the communication unit, the data analysis unit, and the like in the target detection device of the present invention.
  • a program of the gene diagnosis method is stored in the storage device 35 described above, and the S value and the M value in (Xi-SZ MS) described later, in which the past detection data power is averaged, are stored in the database device 36.
  • the disease gene (Xi described above) of the subject is quantified by the target nucleic acid detector, the CPU calculates the (Xi-SZM-S), and the health condition of the subject is stored. Is diagnosed by the CPU.
  • the gene diagnosis method of the present invention is advantageous in that diagnosis can be performed even in a remote place or the like.
  • the expression level of a target gene relating to a specific disease in a patient is M
  • the expression level in a healthy subject is S
  • the expression level in a subject is Xi
  • the subject may be diagnosed as a patient with the specific disease.
  • Such calculations can be performed instantaneously by the CPU or the like in the target nucleic acid detection device, and in this case, high-speed computer diagnosis can be performed.
  • (Xi-SZM-S) When the value of (Xi-SZM-S) is 0.1 or less, it generally means that there is no disease factor, that the prognosis is good, and the like.
  • the expression of the target nucleic acid (disease gene) When the expression of the target nucleic acid (disease gene) is approaching a specific disease state, and exceeds 0.9, the expression level of the target nucleic acid (disease gene) is 90% for patients and factors having the disease gene. Means close to a healthy person with
  • the other steps can be appropriately selected depending on the particular purpose, and include, for example, a selection step of force-selecting some candidates for a disease gene.
  • the disease or disease that can be diagnosed by the genetic diagnosis method of the present invention is particularly Restrictions can be appropriately selected depending on the purpose to be used, for example, cancer, alcaptonuria, systemic lupus erythematosus, dermatomyositis, rheumatoid arthritis, scleroderma, psychosis, bronchial asthma, atopic dermatitis, Hay fever, lupus nephritis, Creutzfeldt-Jakob disease, Alzheimer's disease, Parkinson's disease, Marfan syndrome, Williams syndrome, aplastic anemia, erythrocytosis, Fanco syndrome, hemophilia A, hemophilia B, Hon Willebrand's disease, platelet asthenia, idiopathic thrombocytopenic purpura, Tadaak-Higashi syndrome, Pemphigus vulgaris, Frehry's syndrome, Fragile X syndrome, Edward syndrome, Miller-Degger syndrome, Pradavilli'
  • the genetic diagnosis method of the present invention can perform not only these diagnoses, but also the prognosis estimation and the risk estimation for diseases, and the target nucleic acid can be used to evaluate the adaptability of the living body to the administered drug. Analysis can also be performed based on the expression level of (gene). [0142] Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
  • nucleic acid probe of the present invention As a nucleic acid probe of the present invention, a known ribozyme (8-17 DNAzyme) having base sequences 3a and 3b at both ends, which are regions capable of hybridization to the target nucleic acid, is used. Was used.
  • the nucleotide sequence had the nucleotide sequence shown in Sequence 1 below, and the rA as the cleavage site was located at the 15th position from the 5'-terminal side.
  • the cleavage active region having the activity of cleaving rA as the cleavage portion includes T located at the 32nd position by counting the 5 'end side force, and 46 from the 5' end side.
  • Thymine (dT) that is, dimethylaminobenzenesulfur (DABSYL) -dT (manufactured by Glen Research) was used, and the nucleic acid probe of Example 1 was prepared as described above.
  • the first A from the 5 'end to the 10th C from the 5' end was designated as 3b, and the first C from the 3 'end to the 10th C from the 3' end was designated as 3a.
  • FIG. 2 is a diagram schematically illustrating the one-dimensional structure of the nucleic acid probe of Example 1, in which the base sequence 3a side is the 3 ′ terminal side, and the base sequence 3b side is the 5 ′ terminal side (see above (( The left and right sides of the arrangement 1) are reversed).
  • the cleavage part is cleaved and the nucleic acid probe of Example 1 is combined with the first probe fragment.
  • the light emitting part is present on the first probe fragment
  • the quenching part is present on the second probe fragment. Will be.
  • FIG. 3 is a diagram schematically illustrating a three-dimensional structure when the nucleic acid probe of Example 1 is applied to the target nucleic acid.
  • FIG. 3 when hybridization to the target nucleic acid has two regions that can be hybridized within the molecule and that are located adjacent to each other with the cut portion as the center (between), When the one closer to the base sequence 3a and 3b side is Y and the other is Z, it is the base sequence power of the Y, the base sequence power of the Z, and the sum of the Y and Z.
  • the number of base sequences was 8.
  • the nucleic acid probe of Example 1 designed as described above is solid-phase synthesized by solid-phase synthesis using a DNA synthesizer, deprotected, and the nucleic acid probe having a target chain length is obtained by gel electrophoresis. Only was separated and purified.
  • A-TOM-CE Phosphoramidites
  • the luminescent substance F and the quenching substance Q were protected, and the DNA synthesizer (manufactured by Glen Research) was used.
  • the nucleic acid probe of the present invention into which the above-mentioned labeling substance was introduced at a concentration of L mol was synthesized by the solid-phase method using the above method.
  • the product was transferred to a tube, to which 1.5 ml of methylamine (an equal mixture of a 40% aqueous solution of methylamine and a 33% methioamine in ethanol) was added, and the mixture was heated at 35 ° C for 6 hours. After incubation, the nucleic acid probe was removed from the solid phase, and the protecting group of the labeling substance was removed.
  • methylamine an equal mixture of a 40% aqueous solution of methylamine and a 33% methioamine in ethanol
  • nucleic acid probe After equilibrating a NAP-25 column (manufactured by Pharmacia) with 15 ml of water, 2 ml of the nucleic acid probe solution was added to the NAP-25 column. After the nucleic acid probe solution was completely permeated into the column, 0.5 ml of distilled water was added thereto, and so-called gel filtration was performed to remove impurities. Further, the desalted nucleic acid probe was eluted using 3 ml of distilled water.
  • the gel-filtered nucleic acid probe was lyophilized and purified by 20% polyacrylamide gel electrophoresis containing 7M urea. After the electrophoresis, the band of the nucleic acid probe was confirmed by UV irradiation, and the fraction of the band was cut out. The fraction was placed in a centrifuge tube, the gel was crushed using a glass rod, 10 ml of water was added, and the mixture was shaken at 37 ° C for 6 hours. After dialysis, a freeze-drying treatment was performed to obtain a solid. The solid was dissolved in 0.4 ml of distilled water and stored frozen at 20 ° C.
  • a 22 nt oligonucleotide having a base sequence shown in the following sequence 2 was prepared.
  • the precipitate from which the ethanol was completely removed by the vacuum drying was dissolved in formaldehyde 51 and subjected to electrophoresis using a 20% polyacrylamide gel containing 7 M urea.
  • the nucleic acid probe fragment shorter in length than the nucleic acid probe was observed.
  • the nucleic acid probe hybridized with the target nucleic acid, and the cleavage active region caused self-cleavage of the cleavage portion.
  • the target nucleic acid lOpmol and the nucleic acid probe lOOpmol were combined with 50 mM Tris-25 mM Incubation was carried out at 37 ° C. for 6 hours in an aqueous solution of magnesium chloride (pH 7.2) at 100 ° C. (magnesium ion concentration was 25 mM).
  • the reaction solution was irradiated with excitation light having a wavelength of 495 nm, and the change in the fluorescence spectrum at a measured fluorescence wavelength of 520 nm was measured using a fluorescence meter (RF-5300PC, manufactured by Shimadzu Corporation). From the increase in the intensity of the fluorescence, it was confirmed that the nucleic acid probe hybridized with the target nucleic acid and the cleavage active region caused self-cleavage of the cleavage portion.
  • Fig. 4 shows a graph obtained by determining the amount of cleavage of the nucleic acid probe.
  • the solid line indicates the amount of cleavage of the nucleic acid probe determined from the intensity of the light emission
  • the dotted line indicates the theoretical value when a conventional nucleic acid probe that cannot amplify the light emission is used.
  • nucleic acid probe of the present invention a nucleic acid probe having a base sequence of the following sequences 3 to 5 was selected. Specifically, X-side sequences (5'-terminal force GTAGGAGT) and 3, 3'-terminal sequences following the 3'-terminal side of the X sequence located at the terminal side, which are regions capable of hybridization to the target nucleic acid, A single-stranded DNA random sequence pool was prepared having at both ends a 5 sequence of the Y sequence located at the terminal side and a Y sequence (3 ′ terminal side GTG CCAGG) following the terminal side.
  • the DNA random sequence pool contains a large number of base sequences having different lengths and sequence types between the X-side sequence (base sequence number: 8) and the Y-side sequence (base sequence number: 8). It is.
  • the DNA random sequence pool was prepared from the Y sequence located at the 3 ′ end and the cytosine (C) located at the 5 end of the Y sequence among the Y sequences.
  • the base sequence is extended one base at a time to synthesize a random sequence following the Y-side sequence, and the 5 'end of the random sequence is linked to the 3' end of the X sequence and the 5 'end of the X sequence.
  • the guanine (G) on the 3 'side in the above was bound to synthesize. Note that this random distribution
  • the row contains one rA (base is adenine and sugar is ribose) as the cleavage site.
  • the selected base sequence had the base sequence shown in the following sequences 3-5!
  • rA as the cleavage site was located at the 14th position, including the force on the 5 'end.
  • the cleavage active region having the activity of cleaving rA as the cleavage portion includes T located at the 29th position by counting the force at the 5 'end, and T from the 5' end. It was between A and 43rd.
  • rA as the cleavage site was located at the twentieth position, counting the force on the 5 'end.
  • the cleavage active region having the activity of cleaving rA as the cleavage portion includes T at the 35th position by counting the force at the 5 'end, and T from the 5' end. It was between the 49th A.
  • sequence 4 as the 28th base (T (dT)) from the 5 'end, a quenching substance (Q) as the quenching part: thymine (dT) to which dimethylaminobenzenesulfol (DABSYL) is bound, That is, using dimethylaminobenzenesulfur (DABSYL) -dT (manufactured by Glen Research), 5, a fluorescent substance (F) as the fluorescent part: fluorescein was bound to the end, That is, fluorescein (manufactured by Glen Research) was bound, and the nucleic acid probe of sequence 4 in Example 2 was prepared as described above.
  • Q quenching substance
  • DT thymine
  • DBSYL dimethylaminobenzenesulfol
  • F fluorescent substance
  • rA as the cleavage site was located at the 18th position, counting the force on the 5 'end. Further, the cleavage active region having the activity of cleaving rA as the cleavage portion (indicating ribozyme activity) includes T located at the 33rd position by counting the 5 ′ terminal side force, and T from the 5 ′ terminal side.
  • a quenching substance (Q) as the quenching part: thymine (dT) to which dimethylaminobenzenesulfol (DABSYL) is bound That is, using dimethylaminobenzenesulfur (DABSYL) -dT (manufactured by Glen Research),
  • a fluorescent substance (F) as the fluorescent part: fluorescein was bound to the end, That is, fluorescein (manufactured by Glen Research) was bound, and the nucleic acid probe of sequence 5 in Example 2 was prepared.
  • FIG. 5B is a diagram schematically illustrating the one-dimensional structure of the nucleic acid probe of Example 2.
  • the X sequence at the 5 ′ end is 2 bases CC from the 5 ′ end, and the Y sequence at the 3 ′ end is 3 ′ end.
  • the base (T) located at the * mark is thymine (T (dT)) to which quenching substance Q, dimethylaminobenzenesulfol (DABSYL) is bound, that is, dimethyl Phosphoric acid to which fluorescein, which is a luminescent substance F, is bound as a base located at the 5'-terminal (most terminal) using aminobenzenesulfur (DABSYL) -dT (manufactured by Glen Research).
  • the group used was fluorescein phosphoramidite (Glen Reserch).
  • the number of base sequences in the region hybridizing with the target nucleic acid was 10 at the 3 ′ end and 10 at the 5 ′ end.
  • the X sequence at the 5 'end is 8 bases of AAAAAGCC from the 5' end, and the Y sequence at the 3 'end is 3 bases.
  • the X sequence at the 5 'end is 6 bases of AAAAAG from the 5' end, and the Y sequence at the end is 0.
  • Roamidite manufactured by Glen Research was bound to the nucleic acid probe of SEQ ID NO: 5, and in one of the nucleic acid probes, the number of nucleotide sequences in the region hybridizing with the target nucleic acid was as follows: The 5 'end was 8, and the 3' end was 8.
  • the nucleic acid probe of sequence 3 may be referred to as a ⁇ TASC1 probe ''
  • the nucleic acid probe of sequence 4 may be referred to as a ⁇ Locked TASC2 probe ''
  • the nucleic acid probe of sequence 5 may be referred to as a ⁇ Locked TASC3 probe ''. is there.
  • each of the nucleic acid probes of Sequences 3 to 5, as shown in FIG. 5A when hybridized to the target nucleic acid, a region capable of hybridization and hybridization is formed in the molecule.
  • the two are located adjacent to each other with the cut portion (rA) at the center (between), the one closer to the X array and the Y array is Y, and the other is Z, Had a base sequence number of 3, and had a base sequence number of Z of 3, and a total base sequence number of Y and Z of 6.
  • the cleavage active region (having ribozyme activity) is formed on the side opposite to the cleavage portion (rA).
  • the cleavage active region had a 3 bp complementary strand site.
  • Each of the nucleic acid probes of the above-mentioned sequences 3-5 contains, before hybridization with the above-mentioned target nucleic acid, the above-mentioned X sequence located at the 5 'end (the 5' most end) and the 3 ' Since it is located at the terminal side and shifted to the 5 ′ end side instead of the most terminal side and has generated a hybrid between the complementary sequence to the X sequence and the force molecule, as shown in the right of FIG. It had a stem loop structure. This stem-loop structure was released when the nucleic acid probe hybridized to the target nucleic acid.
  • the nucleic acid probe of Example 2 is the Locked TASC probe, and before hybridization to the target nucleic acid, maintains the stem-loop structure and does not form the cleavage active region, and The cleavage active region was formed only after the stem-loop structure was released upon hybridization.
  • the nucleic acid probe designed as described above is solid-phase synthesized by a solid-phase synthesis method using a DNA synthesizer, deprotected, and only the nucleic acid probe having a target chain length is determined by gel electrophoresis. Separation and purification were performed as follows.
  • the synthesized product was transferred to a tube, and an equivalent amount of a methylamine solution (40% aqueous solution of methylamine (75590, manufactured by Huriki Co.) and a 33% methylamine'ethanol solution (75580, manufactured by Huriki Co., Ltd.) were Add 1.5 ml of the mixture and incubate at 35 ° C for 6 hours. The impurities were removed.
  • a methylamine solution 40% aqueous solution of methylamine (75590, manufactured by Huriki Co.
  • a 33% methylamine'ethanol solution 75580, manufactured by Huriki Co., Ltd.
  • the tube After cooling the tube on ice, the tube was carefully opened, the supernatant was collected and lyophilized. After the freeze-drying, 1 ml of a 1 M tetrabutylammonium-tetrahydrofuran (THF) solution was added to the tube, and the tube was shaken at 50 ° C for 10 minutes, cooled to 35 ° C, and then cooled again. After shaking for a time, the protecting group attached to the nucleic acid probe was removed.
  • THF tetrabutylammonium-tetrahydrofuran
  • the nucleic acid probe was purified by 8% polyacrylamide gel electrophoresis containing 7 M urea. After the electrophoresis, the band of the nucleic acid probe was confirmed by UV irradiation, and this fraction was cut out. The fraction was placed in a centrifuge tube, the gel was crushed using a glass rod, 10 ml of water was added, and the mixture was shaken at 37 ° C for 6 hours. After dialysis, a freeze-drying treatment was performed to obtain a solid. The solid was dissolved in 0.4 ml of distilled water and stored frozen at -20 ° C.
  • oligonucleotide shown in the following sequence 6 and a 22 nt oligonucleotide shown in the following sequence 7 were prepared. These oligonucleotides are the RNA sequence of the 16S ribosomal RNA 326-347 region of Escherichia coli K12-MG1655, respectively, and the DNA sequence obtained by replacing it with DNA.
  • a 500 pmol aqueous solution of the target nucleic acid or an aqueous solution (two types) without addition, the nucleic acid probe aqueous solution of sequence 3 and the nucleic acid probe aqueous solution of sequence 4 were combined in the following combinations by ⁇ mol each. And then added to 100 mM 25 mM magnesium chloride 50 mM Tris-HC1 buffer solution (pH 7.2) and incubated for 3 hours (magnesium ion concentration is 25 mM). The reaction solution was analyzed by acrylamide electrophoresis, and the cut band was measured using a densitograph (manufactured by ATTO).
  • Said sequence 4 of the nucleic acid probe In the reaction solution only was added an aqueous solution of (Locked TASC2 probe 5 'sequence of the ends 3' is GAA AAA 5 '), said Kobs- is, 1. 0 X 10- 5 min- 1 or less, and the nucleic acid probe of the sequence 4, in case of adding a target nucleic acid of the sequence 6, Kobs + is 4. a 4 X 10- 3 min- 1. Parameters as an alosteric effector: Kobs + ZKobs—was over 440. When the reaction time was set to 24 hours, self-cleavage in the reaction solution to which only the nucleic acid probe of Sequence 4 was added was 3% or less. From the results, it can be seen that the presence of the stem-loop structure improves the false positive reaction in which the cleavage active region causes the cleavage of the cleavage part before hybridization to the target nucleic acid. I found out.
  • Example 2 the nucleic acid probe of Sequence 4 (Locked TASC2 probe), the nucleic acid probe of Sequence 5 (Locked TASC3 probe), and the nucleic acid probe of Sequence 3 and the target nucleic acid of Sequence 6 were not used.
  • the nucleic acid sequence of the following sequence 8 (differing by 2 bases from the complementary strand to the nucleic acid probe of the sequence 5) and the target nucleic acid of the following sequence 9 (differing by 1 base in the complementary strand to the nucleic acid probe of the sequence 5) Except that was used in the same manner as in Example 2.
  • the target nucleic acid of Sequence 8 has two nucleotide sequences different from the complementary strand portion of the nucleic acid probe, and the target nucleic acid of Sequence 9 has one nucleotide sequence different from the complementary strand portion of the nucleic acid probe. Is different.
  • nucleic acid probe (Locked TASC3 probe) solution of the array 5 was added in the sequence 6, in Kobs (full) 1S 4. 3 X 10- 3 min- 1
  • a nucleic acid probe (Locked TASC3 probe) solution of the array 5 the reaction solution and the target nucleic acid has been added in the sequence 8
  • Kobs (l-mis + ) is, 1 X 10- 5 min- 1 below
  • Kobs (2-mis + ) is, 1. 0 X 10- 5 or less Met.
  • Parameter as a steric effector Kobs (full) / Kobs "(11-mis +) was over 440.
  • Example 3 the nucleic acid probe of Sequence 5 (Locked TASC3 probe) solution was used, and the nucleic acid probe of Sequence 4 (Locked TASC2 probe) was not used. 25 mM magnesium chloride 50 mM Tris-HCL buffer solution (pH 7.2) 100 1 Instead of using, in the same manner as in Example 2 except that an equal amount of 900 mM NaC 150 mM Tris-HCL buffer solution (pH 7.2) 1001 was used, the nucleic acid probe (Locked TASC3 probe) solution of sequence 5 and The reaction with the target nucleic acid solution of Sequence 6 was performed, and the reaction solution was spotted on a fluorescein 96-well microplate (manufactured by Corning Incorporated) and observed with a fluorescent imager (Balsadok 3000 fluorescein imager, bio-Radonna earth). The results are shown in FIG.
  • E. coli is cultured until the OD value of the bacterial suspension reaches 0.5, and 167 ⁇ l of the bacterial suspension is cultured.
  • Probe (Locked TASC3 probe) Tris-HC1 buffer (50 mM, pH 7.2, 0.1% SDS) (25 mM MgCl or 0.9 M NaCl, containing the 10 M helper oligonucleotide or nothing above) (Including ⁇ ).
  • This mixed solution (three kinds: a mixed solution in which the above 25 mM MgCl is present and the helper oligonucleotide aqueous solution is not added), and a mixed solution in which the above 0.9 M NaCl is present and the above helper oligonucleotide aqueous solution is added
  • the mixture obtained by adding the above-mentioned aqueous solution of the helper oligonucleotide to the presence of 25 mM MgCl) was incubated at 37 ° C. 31. The mixture was centrifuged several times, and observed using a fluorescence microscope (manufactured by KS Olympus).
  • nucleotide sequences of the helper oligonucleotides are shown in the following sequences 10 and 11.
  • FIG. 11a (left photograph) is an image of the mixed solution in which the helper oligonucleotide aqueous solution was not added and the MgCl aqueous solution was added, and no light emission was observed.
  • FIG. 11 b (center photograph) is an image of a mixture obtained by adding the helper oligonucleotide aqueous solution and the NaCl aqueous solution, and only weak fluorescence was observed.
  • FIG. 11a left photograph
  • FIG. 11 b (center photograph) is an image of a mixture obtained by adding the helper oligonucleotide aqueous solution and the NaCl aqueous solution, and only weak fluorescence was observed.
  • 11c (right photograph) is an image of a mixed solution obtained by adding the above-mentioned aqueous solution of the helper oligonucleotide and the above-mentioned aqueous solution of MgCl, and strong light emission was confirmed.
  • the nucleic acid probe can be introduced into bacterial cells, and the luminescence is amplified by adding the helper oligonucleotide and the MgCl (the presence of magnesium ions). confirmed.
  • Example 6 In Example 2, a nucleic acid probe of Example 6 was synthesized in the same manner as in Example 2, except that a nucleic acid probe having a base sequence of the following sequences 12 to 15 was designed.
  • the nucleic acid probes of Sequences 12 to 15 are nucleic acid probes serving as models of the nucleic acid probes of Sequences 4 and 5 (having a stem-loop structure).
  • Example 2 the temperature conditions were changed by replacing the nucleic acid probe with the sequence 3-5 with the nucleic acid probe with the sequence 12-15 and replacing the target nucleic acid with the sequence 6-7 with the target nucleic acid with the sequence 16-17. Then, the absorbance of the reaction solution at 260 nm was measured in the same manner as in Example 2, except that the reaction solution was composed of the following combination of the nucleic acid probe and the target nucleic acid.
  • FIG. 13 shows the relationship between the absorbance and the temperature.
  • the nucleic acid probe of Sequence 12 has a complete stem-loop structure before hybridization to the target nucleic acid (FIG. 12A), and has a line 1 curve shown in FIG. The central Tm value was 43 ° C. From this result, it was found that the stem-loop structure in the nucleic acid probe of Sequence 4 and the nucleic acid probe of Sequence 5 was temperature-resistant, and the nucleic acid probe of Sequence 13 and the target nucleic acid of Sequence 16 were compared. No., the result of hybridization is shown by line 2 in FIG. 13, and the result of hybridization of the nucleic acid probe of sequence 13 and the target nucleic acid of sequence 17 is shown by line 3. (This is the form of FIG. 12B). The center Tm value in the curve of the line 2 was 62 ° C, and the center Tm value in the curve of the line 3 was 53 ° C.
  • the results obtained by subjecting the nucleic acid probes of Sequences 14 and 15 and the target nucleic acid of Sequence 16 to hybridization are shown by a line 4 in FIG. 13, and the nucleic acid probes of Sequences 14 and 15 and the nucleic acid probe of Sequence 17 are shown.
  • the result of the hybridization with the target nucleic acid is shown by the line 5 in FIG. 13 (in the form of FIG. 12C).
  • the center Tm value in the curve of the line 4 was 50 ° C
  • the center Tm value in the curve of the line 5 was 43 ° C.
  • the nucleic acid probe of Example 7 was synthesized in the same manner as in Example 2 except that the base sequence of the following sequence 18 was designed.
  • rA as the cleavage site was located at the twentieth position, counting the force on the 5 'end.
  • a quenching substance (Q) as the quenching part thymine to which dimethylaminobenzenesulfol (DABSYL) is bound as the 28th base (T (dT)) from the 5 ′ end in sequence 18 (DT), that is, dimethylaminobenzenesulfur (DABSYL) -dT (manufactured by Glen Research), and a fluorescent substance (F): fluorescein as the fluorescent part is bonded to the 5 ′ end. That is, fluorescein (manufactured by Glen Research) was bound thereto, whereby the nucleic acid probe having the sequence 18 in Example 7 was prepared.
  • Q quenching substance as the quenching part: thymine to which dimethylaminobenzenesulfol (DABSYL) is bound as the 28th base (T (dT)) from the 5 ′
  • Hela cells (uterine cancer cells) were cultured in Dulbecco's medium for 1 day, and it was confirmed under a microscope that they proliferated! /. After confirming that the concentration was 1 ⁇ 10 5 cells / ml, 100 ⁇ l was dispensed into a 96-well plate. After washing with 100 microliters of PBS buffer, the nucleic acid probe of Example 7 targeting the cfos gene (1 microliter) was added together with lipofectin (manufactured by Invitrogen), and the cells were cultured at 37 ° C for 1 hour. . Fluorescent light was detected using a fluorescent microscope (KS-Olinos, FV500).
  • Hela cells (uterine cancer cells) were cultured in Dulbecco's medium for 1 day, respectively, and proliferation was confirmed under a microscope. After confirming that the concentration was 1 ⁇ 10 5 cells / ml, the mixture was dispensed into a 96-well plate with 100 liters per mouth. The culture solution was supplemented with growth factor EGF and a tyrosine kinase inhibitor, and cultured at 37 ° C for 6 hours. After washing with 100 microliters of PBS buffer, the nucleic acid probe of Example 8 (1 microliter) targeting the EGFR signal marker cfos gene was added together with lipofectin (manufactured by Invitrogen), and the mixture was added at 37 ° C. Culture for hours.
  • the fluorescence spectrum was confirmed using a fluorescence microscope (KS Olympus, FV500). As a control, luminescence was detected from the cells not supplemented with the tyrosine kinase inhibitor, but significant fluorescence amplification was observed from the cells added with the tyrosine kinase inhibitor.
  • nucleic acid probe of the present invention provides useful information for screening pharmaceuticals.
  • Example 2 the nucleic acid probe of Sequence 5 (Locked TASC3 probe) was used.
  • the reaction was performed in the same manner as in Example 2 except that the final concentration was performed in an aqueous solution of MgCl of ImM, aqueous solution of 5 mM MgCl, aqueous solution of 10 mM MgCl, aqueous solution of 15 mM MgCl, aqueous solution of 20 mM MgCl, and aqueous solution of 30 mM MgCl
  • the nucleic acid probe of sequence 5 is reacted with the target nucleic acid of sequence 6, and the reaction solution is spotted on a fluorescein 96-well microplate (manufactured by Corning Incorporated) and observed with Parsadoc 3000 Fluoroscein 'Imager (manufactured by Bio-Radonnay Earth). did.
  • the preferred concentration of MgCl to be added was 20 mM to 30 mM.
  • the force of a nucleic acid probe hybridized to a target nucleic acid enhances the luminescence that is generated, thereby enabling high-sensitivity, high-accuracy, high-speed detection of a very small amount of a target nucleic acid with extremely high selectivity for a target nucleic acid.
  • a nucleic acid probe suitable for a genetic diagnosis, a test for the presence of food poisoning bacteria, a diagnosis of caries and periodontal disease, a blood test, and the like.
  • the nucleic acid probe of the present invention is particularly suitable for the detection of minute amounts of target nucleic acids (genes) such as viruses, bacteria, animal cells, and plant cells. It is particularly suitable for the analysis of the disease state of humans, and can improve the life span and quality of life of human beings.
  • the nucleic acid probe does not require enzymes or reagents, does not require heating or the like, and can function even at a living body temperature, and can detect a target nucleic acid without breaking cells that do not need to amplify the signal to give cell death. Is advantageous.
  • nucleic acid chip suitable for periodontal disease diagnosis, blood test, and the like can be provided. Since the nucleic acid chip uses the nucleic acid probe of the present invention, the effect of the nucleic acid probe can be exhibited as it is.
  • a target nucleic acid detection method and a target nucleic acid detection device capable of high-sensitivity, high-accuracy, high-speed detection or analysis of a minute amount of a target nucleic acid by using the nucleic acid probe.
  • the target nucleic acid detection method and target nucleic acid detection device of the present invention can reduce the time and effort of hospital visits, and can be used for patients in remote areas and patients in rural areas and countries where hospital visits are long. Quality of life can be improved. Since the target nucleic acid detection method and the target nucleic acid detection device use the nucleic acid probe of the present invention, the effects of the nucleic acid probe can be exhibited as they are.
  • the present invention it is possible to provide a drug screening method capable of analyzing the administration effect of a drug and efficiently screening a desired drug by using the nucleic acid probe.
  • the drug screening method of the present invention is a revolutionary technology that can revolutionize the pharmaceutical industry that clarifies side effects and mechanism of action from powerful genetic information that has not been obtained so far, and realizes tailor-made medicine. is there. Since the drug screening method uses the nucleic acid probe of the present invention, the effect of the nucleic acid probe can be exhibited as it is.
  • the present invention it is possible to provide a gene diagnosis method capable of diagnosing with high efficiency and high accuracy whether or not a patient has a specific disease by using the nucleic acid probe.
  • the genetic diagnosis method of the present invention can improve the QOL of patients in remote areas, and patients in rural areas and countries where the distance to the hospital is long, by saving labor for going to the hospital. Since the gene diagnosis method uses the nucleic acid probe of the present invention, the effect of the nucleic acid probe can be exhibited as it is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明の核酸プローブは、微量な標的核酸を高感度、高精度かつ高速に検出するための核酸プローブであって、前記標的核酸にハイブリダイゼーションした後に構造変化を生じ、構造変化した前記核酸プローブはハイブリダイズの結合力が減少し、前記標的核酸から解離するように設計されている。また、標的核酸にハイブリダイゼーション可能であり、該標的核酸にハイブリダイゼーションした際に、切断されて、少なくともいずれか一方が前記標的核酸から解離可能な第一プローブ断片及び第二プローブ断片を生成する切断部と、シグナルを発生させるシグナル発生部と、を有してなる。また、該標的核酸にハイブリダイゼーションしたときに切断される切断部を有し、標的核酸にハイブリダイゼーションするまでは、分子内で一部が互いにハイブリダイゼーションしてロック構造を形成している。

Description

明 細 書
核酸プローブ、核酸チップ、標的核酸検出方法、薬剤スクリーニング方法 、標的核酸検出装置及び遺伝子診断方法
技術分野
[0001] 本発明は、標的核酸にハイブリダィズした核酸プローブ力 生ずるシグナルを増幅 させることにより、標的核酸に対する選択性が極めて高ぐ微量な標的核酸を高感度 でかつ正確に検出可能な核酸プローブ、該核酸プローブを固定した核酸チップ、並 びに、該核酸プローブを用いた、標的核酸検出方法、薬剤スクリーニング方法、標的 核酸検出装置及び遺伝子診断方法に関する。
背景技術
[0002] 近年、遺伝子情報に関する技術が盛んに開発され、特に医療分野では、疾患関連 遺伝子を解析することにより、疾患の分子レベルでの治療が可能となってきている。 また、遺伝子診断により患者個人ごとに対応したテーラーメード医療も可能となってき ており、例えば製薬分野においては、遺伝子情報に基づいて抗体やホルモンなどの タンパク質を特定し、薬剤として利用している。更に、農業や食品関連分野などにお いても多くの遺伝子情報を利用した製品が創り出されている。また、核酸プローブ、 D NAチップなどを用いて得た患者の遺伝子情報を、コンピューターを用いてデータべ ースと比較乃至対比して診断を行う遺伝子診断の発想が生まれてきて!、る。この遺 伝子診断をベースにして、病気の予後判定、先天的因子による疾病の危険度の判 定、テーラーメード医薬の投与など、従来では想定し得な力つた事業が行われようと している。
[0003] 前記遺伝子診断にお!、て用いる前記核酸プローブや前記 DNAチップでは、微量 な標的核酸を分析するのは困難であるため、前記遺伝子診断を行うには、前記標的 核酸を PCR法によって増幅しなければならない。ところが、微量な前記標的核酸の 増幅に前記 PCR法を用いる場合には熟練を要するため、従来は、該標的核酸の増 幅が不十分で、該標的核酸を検出できないケースが多く発生してしまうという問題が あった。この問題を克服し、微量な標的核酸を高感度でかつ高速に分析可能な技術 の開発が、前記遺伝子診断の発展に必須である。このような、微量な標的核酸を高 感度でかつ高速に分析可能な技術は、前記遺伝子診断のみならず輸血についても 必要となる。輸血を行う際には、血液が HIV、 HBV、 HCVなどのウィルスに感染して いないかどうかの検査が必要である力 従来より採用されている、抗体ビーズ法、ゥェ スタンプロット法などの免疫学的検査の場合、前記ウィルスに対する抗体を検出する ことになり、該抗体は前記ウィルスに感染後 1一 2ヶ月間は生成されないため、ウィル ス感染の初期においては前記免疫学的検査が擬陰性になる、いわゆるウィンドウピリ ォドの発生を防ぐことができないという問題がある。このため、ウィルス感染の初期な ど、微量にしか存在しな 、ウィルス (標的核酸)を高感度でかつ高速に分析可能な技 術は、前記輸血における前記ウィンドウピリオドの発生を防ぐために必要であり、更に 、あらゆる感染症、精神病、癌等の早期発見、早期治療に役立ち極めて重要である
[0004] このような状況において、前記 PCR法によることなぐシグナルを増幅させることによ り、微量な標的核酸を検出可能な核酸プローブが開示されている(特表 2003— 525 631参照)。この核酸プローブの場合、標的核酸とハイブリダィゼーシヨンするセンサ 一分子と、該センサー分子が有する DNAザィム活性により、酵素反応的に切断され 、標識がシグナルを発生可能なリポーター分子とを併用し、前記リポーター分子が前 記センサー分子より連続的に切断されることにより、前記レポーター分子のシグナル が増幅され、増幅された該シグナルを検出することにより、微量な前記標的核酸の存 在を検出することができる。しかし、該核酸プローブの場合、前記標的核酸とハイプリ ダイゼーシヨンする前に前記リポーター分子が、前記センサー分子により切断されて しまうという、擬陽性反応が生じてしまう。また、前記センサー分子が、標的核酸の塩 基配列に近 、核酸を標的核酸であると誤認してハイブリダィゼーシヨンしてしま 、、標 的核酸の選択性が十分でないという問題がある。即ち、この方法の場合、操作が煩 雑な上に、感度及び精度が十分ではなぐ誤検出等があり、信頼性が低いという問題 がある。
[0005] 一方、前記テーラーメード医薬の実現等のためには、投与した薬剤が生細胞に及 ぼす影響 (遺伝子の発現及び抑制)を定量的かつ高速に診断可能な技術の開発が 必須であるが、本発明者らは、標的核酸に対する選択性が非常に高ぐ酵素や試薬 などを必要とせず、生細胞への導入が可能であり、細胞内の铸型となる DNA又は R NA上で化学反応を起こし、反応の進行に付随してシグナルを発することができ、細 胞内で発現される DNAや RNAの細胞内での検出乃至配列解析を可能とした核酸 プローブ「QUALプローブ」を開発した (非特許文献 1参照)。しかし、この「QUALプ ローブ」を用 ヽる場合、前記 RNA又は DNA 1分子カゝら前記シグナルを 1つしカゝ発生 させることができないため、細胞中に多数存在する rRNA等の検出は容易である力 極微量しか存在しない mRNAなどは検出が非常に困難であるという問題がある。
[0006] 非特許文献 1 : Imaging of RNA in Bacteria with Self- Ligating Quenched
Probes sando S et al. J. AM. CHEM Soc. 2002,124,9686
発明の開示
[0007] 本発明は、従来における問題を解決し、ウィルス感染の初期など、微量にしか存在 しな!/、ウィルス (標的核酸)を高感度でかつ高速に分析可能な技術、生細胞に及ぼ す影響 (遺伝子の発現及び抑制)を定量的かつ高速に診断可能な技術、前記核酸 プローブ「QUALプローブ」では達成できなかったシグナルの増幅を可能にする技 術などを開発し、以下の目的を達成することを課題とする。
即ち、本発明は、標的核酸にハイブリダィズした核酸プローブ力 生ずるシグナル を増幅させることにより、標的核酸に対する選択性が極めて高ぐ微量な標的核酸を 高感度、高精度かつ高速にしかも簡便に検出乃至分析可能であり、該標的核酸が 極微量で短寿命等であったとしてもその存在乃至挙動を測定可能であり、遺伝子診 断、食中毒菌の存在検査、虫歯乃至歯周病の診断、血液検査等に好適な核酸プロ ーブを提供することを目的とする。
また、本発明は、該核酸プローブを担体に固定することにより、微量な標的核酸を 高感度、が可能であり、遺伝子診断、食中毒菌の存在検査、虫歯乃至歯周病の診 断、血液検査等に好適な核酸チップを提供することを目的とする。
また、本発明は、前記核酸プローブを用いることにより、微量な標的核酸を高感度、 高精度かつ高速検出乃至分析が可能であり、遺伝子診断、食中毒菌の存在検査、 虫歯乃至歯周病の診断、血液検査等に好適な標的核酸検出方法及び標的核酸検 出装置を提供することを目的とする。
また、本発明は、前記核酸プローブを用いることにより、薬剤の投与効果を分析可 能であり、所望の薬剤を効率良くスクリーニング可能な薬剤スクリーニング方法を提 供することを目的とする。
また、本発明は、前記核酸プローブを用いることにより、特定疾患に関連する遺伝 子の存在を高効率かつ高精度で診断可能な遺伝子診断方法を提供することを目的 とする。
核酸プローブ
本発明の核酸プローブとしては、以下の第一一第六までの核酸プローブが挙げら れる。
前記第一の核酸プローブは、標的核酸を検出するための核酸プローブであって、 該核酸プローブは前記標的核酸にハイブリダィゼーシヨンした後構造変化を生じ、構 造変化した前記核酸プローブはハイブリダィゼーシヨンの結合力が減少し、前記標 的核酸から解離するよう設計されて!、ることを特徴とする。該第一の核酸プローブは 、前記標的核酸にハイブリダィゼーシヨンした際には、構造変化を生ずる。すると、前 記標的核酸から解離して、発光等のシグナルが生ずる。
前記第二の核酸プローブは、標的核酸を検出するための核酸プローブであって、 前記標的核酸の少なくとも一部の塩基配列と相補的な配列を有する相補部位と、自 己核酸酵素を形成可能な核酸酵素形成部位と、を有することを特徴とする。該第二 の核酸プローブは、前記相補部位が前記標的核酸にハイブリダィゼーシヨンすると、 構造変化を起こし、前記核酸酵素形成部位が自己核酸酵素を形成可能である。する と、該核酸プローブは前記自己核酸酵素により切断等され、前記標的核酸から解離 して、例えば、発光等のシグナルが生ずる。
前記第三の核酸プローブは、標的核酸にハイブリダィゼーシヨン可能であり、前記 標的核酸にハイブリダィゼーシヨンした際に構造が変化可能な構造可変部を有して なり、該構造可変部の構造が変化したときに該標的核酸力 解離可能であることを特 徴とする。該第三の核酸プローブは、前記標的核酸にハイブリダィゼーシヨンした際 には、構造可変部の構造が変化する。すると、該核酸プローブが切断等されて、前 記標的核酸から解離して、例えば、発光等のシグナルが生ずる。
前記第四の核酸プローブは、標的核酸にハイブリダィゼーシヨン可能であり、該標 的核酸にハイブリダィゼーシヨンしたときに切断される切断部を有してなり、標的核酸 にハイブリダィゼーシヨンした際に前記切断部に対する切断活性を有する切断活性 領域を形成可能であることを特徴とする。該第四の核酸プローブは、前記標的核酸 にハイブリダィゼーシヨンした際には、前記切断活性領域が形成され、前記切断部が 切断される。すると、該核酸プローブが切断等されて、前記標的核酸から解離して、 例えば、発光等のシグナルが生ずる。
前記第五の核酸プローブは、標的核酸にハイブリダィゼーシヨン可能であり、該標 的核酸にハイブリダィゼーシヨンした際に、切断されて前記標的核酸力 解離可能な 第一プローブ断片及び第二プローブ断片を生成する切断部と、シグナルを発生させ るシグナル発生部と、を有してなることを特徴とする。該第五の核酸プローブは、標的 核酸にハイブリダィゼーシヨンする前にお 、ては、前記シグナル発生部力 シグナル (発光等)が発生せず、前記標的核酸にノ、イブリダィゼーシヨンした際には、前記シグ ナル発生部力 シグナル (発光等)が発生する結果、該シグナル (発光等)を検出す ることにより、前記標的核酸の存在が検出される。なお、前記第五の核酸プローブも 、次々に標的核酸にノ、イブリダィゼーシヨンしては、前記シグナル (発光等)を生じ、 該シグナルが短時間で増幅されるため(一つの標的核酸力 多数のシグナル (発光 等)が生ずるため)、前記標的核酸の量が極微量であったとしてもその存在が高感度 、高精度かつ高速で検出される。
前記第六の核酸プローブは、標的核酸にハイブリダィゼーシヨン可能であり、該標 的核酸にハイブリダィゼーシヨンしたときに切断される切断部を有し、標的核酸にノ、ィ ブリダィゼーシヨンするまでは、分子内で一部が互いにハイブリダィゼーシヨンして口 ック構造を形成していることを特徴とする。該第六の核酸プローブは、前記標的核酸 にハイブリダィゼーシヨンする前においては、分子内で一部が互いにノ、イブリダィゼ ーシヨンしてロック構造を形成して 、るが、前記標的核酸にハイブリダィゼーシヨンし た際には、前記ロック構造における、互いにハイブリダィゼーシヨンしている部分の相 補的結合が解離する。すると、前記切断部が切断され易くなり、該切断部が切断され て、発光等のシグナルが生ずる。
前記第一力 第六の核酸プローブは、前記標的核酸に次々にハイブリダィゼーシ ヨンしては、その度に構造が変化し、切断等されて発光等のシグナルを生じ、該シグ ナルが短時間で増幅されるため(一つの標的核酸力 多数のシグナルが生ずるため )、前記標的核酸の量が極微量であったとしてもその存在が高感度、高精度かつ高 速で検出される。
[0009] 核酸チップ
本発明の核酸チップは、本発明の前記核酸プローブを担体に固定してなることを 特徴とする。該核酸チップに固定された前記核酸プローブは、前記標的核酸にハイ ブリダィゼーシヨンする前においては、前記シグナルが生じないが、前記標的核酸に ノ、イブリダィゼーシヨンした際には、前記シグナル発生部からシグナル (発光等)が生 ずる結果、例えば、該シグナル (発光等)の有無を検出することにより、前記標的核酸 の存在の有無が検出される。本発明の核酸チップにおいては、前記標的核酸の量 が極微量であったとしてもその存在が高感度、高精度かつ高速で検出される。
[0010] 標的核酸検出方法
本発明の標的核酸検出方法としては、以下の第一一第三までの標的核酸検出方 法が挙げられる。
前記第一の標的核酸検出方法は、核酸プローブを用いて標的核酸を検出する核 酸検出方法であって、前記核酸プローブは前記標的核酸にハイブリダィゼーシヨンし た後構造変化を生じ、構造変化した前記核酸プローブはハイブリダィゼーシヨンの結 合力が減少し前記標的核酸から解離するよう設計されていることを特徴とする。 前記第二の標的核酸検出方法は、標的核酸の少なくとも一部の塩基配列と相補的 な配列を有する相補部位と、自己核酸酵素を形成可能な核酸酵素形成部位と、を有 する核酸プローブを用いる標的核酸の検出方法であって、標的核酸に前記核酸プロ ーブを相補的に結合させるハイブリダィゼーシヨン工程と、ハイブリダィゼーシヨン形 成の後、前記自己核酸酵素が形成され前記核酸プローブの構造が変化し、その結 果ハイブリダィゼーシヨンの結合力が減少して該核酸プローブが前記標的核酸から 解離する解離工程と、前記解離工程で解離した前記核酸プローブの少なくとも一部 を検出する検出工程と、を有することを特徴とする。該標的核酸検出方法では、前記 ノ、イブリダィゼーシヨン形成工程にぉ 、て、前記標的核酸に前記核酸プローブが相 補的に結合させられる。前記解離工程において、ハイブリダィゼーシヨン形成後、前 記自己核酸酵素が形成され、該核酸プローブの構造が変化し、その結果ハイブリダ ィゼーシヨンの結合力が減少し、該核酸プローブが前記標的核酸力 解離する。前 記検出工程において、前記解離工程で解離した前記核酸プローブの少なくとも一部 が検出される。その結果、前記標的核酸の存在の有無が検出される。
前記第三の標的核酸検出方法は、本発明の前記核酸プローブを標的核酸にハイ ブリダィゼーシヨンさせるノ、イブリダィゼーシヨン工程と、該標的核酸にハイブリダィゼ ーシヨンした際に前記核酸プローブ力 発生したシグナルを検出することにより該標 的核酸の存在を検出する標的核酸検出工程と、を含むことを特徴とする。該標的核 酸検出方法では、前記ハイブリダィゼーシヨン工程において、標的核酸に本発明の 前記核酸プローブがハイブリダィゼーシヨンする。前記標的核酸検出工程にお!ヽて、 前記標的核酸にハイブリダィゼーシヨンした際に前記核酸プローブ力 発生したシグ ナルの有無を検出することにより該標的核酸の存在の有無が検出される。
なお、該標的核酸検出工程が、前記標的核酸にハイブリダィゼーシヨンした際に前 記核酸プローブが切断されて生じた、第一プローブ断片及び第二プローブ断片の内 、該第一プローブ断片に存在する発光部の発光の有無を検出することにより前記標 的核酸の存在の有無を検出する標的核酸検出工程である場合には、該標的核酸検 出工程において、ハイブリダィゼーシヨンした際に前記核酸プローブにおける前記切 断部が切断されて、前記第一プローブ断片及び前記第二プローブ断片に分割され、 該第一プローブ断片及び第二プローブ断片が前記標的核酸から離れる結果、前記 消光部と前記発光部とが互いに離れ、前記第一プローブ断片に存在し、前記消光 部の作用を受けなくなった前記発光部が生ずる発光を検出することにより、前記標的 核酸の存在の有無が検出される。
薬剤スクリーニング方法
本発明の薬剤スクリーニング方法は、本発明の前記核酸プローブを、薬剤投与によ り発現した標的核酸にハイブリダィゼーシヨンさせるハイブリダィゼーシヨン工程と、該 標的核酸にハイブリダィゼーシヨンした際に前記核酸プローブ力 発生したシグナル の有無を検出することにより該標的核酸の存在の有無を検出する標的核酸検出ェ 程と、を含み、前記標的核酸の存在の有無により薬剤をスクリーニングすることを特徴 とする。
前記薬剤スクリーニング方法では、前記ハイブリダィゼーシヨン工程において、薬剤 投与により標的核酸が発現した場合には該標的核酸に本発明の前記核酸プローブ 力 Sハイブリダィゼーシヨンするが、薬剤投与により標的核酸が発現しな力 た場合に は該標的核酸に本発明の前記核酸プローブはハイブリダィゼーシヨンしな 、。前記 標的核酸が発現した場合には、前記標的核酸検出工程において、前記標的核酸に ハイブリダィゼーシヨンしたことに起因して前記核酸プローブ力も発生したシグナルを 検出することにより該標的核酸の存在が検出される。この標的核酸の発現の有無に 基づき所望の薬剤がスクリーニングされる。
なお、前記標的核酸検出工程が、該標的核酸にハイブリダィズした後に前記核酸 プローブが切断されて生じた、第一プローブ断片及び第二プローブ断片の内、該第 一プローブ断片に存在する発光物質の発光を検出することにより前記標的核酸の存 在を検出する標的核酸検出工程である場合には、該標的核酸検出工程において、 前記標的核酸にハイブリダィゼーシヨンした後、前記核酸プローブにおける前記切断 部が切断されて、前記第一プローブ断片及び前記第二プローブ断片に分割され、該 第一プローブ断片及び第二プローブ断片の少なくともいずれかが前記標的核酸から 離れる結果、前記消光部と前記発光部とが互いに離れ、前記第一プローブ断片に 存在し、前記消光部の作用を受けなくなった前記発光部が生ずる発光を検出するこ とにより、前記標的核酸の存在が検出される。その結果、前記薬剤投与による前記標 的核酸の発現の有無が検出され、この標的核酸の発現の有無に基づき所望の薬剤 がスクリーニングされる。
標的核酸検出装置
本発明の標的核酸検出装置としては、以下の第一一第二までの標的核酸検出装 置が挙げられる。
前記第一の標的核酸検出装置は、試料中の標的核酸を検出するための核酸プロ ーブが担体に固定された核酸分析用デバイスであって、前記核酸プローブは標的核 酸にハイブリダィゼーシヨンした後構造変化を生じ、構造変化した前記核酸プローブ はハイブリダィゼーシヨンの結合力が減少し前記標的核酸力 解離するよう設計され ていることを特徴とする。
前記第二の標的核酸検出装置は、本発明の前記核酸プローブを標的核酸にハイ ブリダィゼーシヨンさせるノ、イブリダィゼーシヨン手段と、該標的核酸にハイブリダィゼ ーシヨンした際に前記核酸プローブ力 発生したシグナルを検出することにより該標 的核酸の存在を検出する標的核酸検出手段と、を含むことを特徴とする。なお、該第 二の標的核酸検出装置は、遺伝子情報データベースを格納するデータベース部と、 標的核酸検出手段の検出結果データと、前記データベース部に格納された遺伝子 情報データとを比較し分析するデータ分析部と、を有する第一の形態、及び、インタ 一ネットに通信可能であり、該インターネット上の遺伝子情報データベースにアクセス 可能な通信部と、標的核酸検出手段の検出結果データと、前記インターネット上の 遺伝子情報データベースの遺伝子情報データとを比較し分析するデータ分析部と、 を有する第二の形態の 、ずれかであるのが好ましぐ前記遺伝子情報データベース 力 特定の疾患に関する、健常人の遺伝子情報と患者の遺伝子情報とを含むのがよ り好ましい。
前記標的核酸検出装置では、前記ハイブリダィゼーシヨン手段により、標的核酸に 本発明の前記核酸プローブを前記標的核酸にハイブリダィゼーシヨンさせる。前記標 的核酸検出手段により、前記標的核酸にハイブリダィゼーシヨンした際に前記核酸プ ローブ力 発生したシグナルが検出され、該標的核酸の存在が検出される。
なお、前記標的核酸検出手段が、該標的核酸にハイブリダィズした際に前記核酸 プローブが切断されて生じた、第一プローブ断片及び第二プローブ断片の内、該第 一プローブ断片に存在する発光物質の発光を検出することにより前記標的核酸の存 在を検出する標的核酸検出手段である場合には、該標的検出手段が、前記標的核 酸にハイブリダィゼーシヨンした後に前記核酸プローブにおける前記切断部が切断さ れて、前記第一プローブ断片及び前記第二プローブ断片に分割され、該第一プロ ーブ断片及び第二プローブ断片が前記標的核酸から離れる結果、前記消光部と前 記発光部とが互いに離れ、前記第一プローブ断片に存在し、前記消光部の作用を 受けなくなった前記発光部が生ずる発光を検出する。その結果、前記標的核酸の存 在が検出される。
[0013] 遺伝子診断方法
本発明の遺伝子診断方法は、本発明の前記標的遺伝子検出装置を用い、被検者 における、特定疾患に関する標的核酸の発現量を定量する標的核酸発現量定量ス テツプと、該被検者における前記特定疾患に関する標的核酸の発現量と、遺伝子情 報データベースに含まれる、該特定疾患に関する標的核酸の健常人の発現量及び 患者の発現量とをデータ分析部により比較し、該被検者が前記特定疾患の患者であ るか否かを診断する診断ステップと、を含むことを特徴とする。
本発明の遺伝子診断方法は、本発明の前記標的遺伝子検出装置を用い、被検者 における、特定疾患に関する標的核酸の発現量を定量する標的核酸発現量定量ス テツプと、該被検者における前記特定疾患に関する標的核酸の発現量と、遺伝子情 報データベースに含まれる、該特定疾患に関する標的核酸の健常人の発現量及び 患者の発現量とをデータ分析部により比較し、該被検者が前記特定疾患の患者であ るか否かを診断する診断ステップと、を含むことを特徴とする。
前記遺伝子診断方法では、前記標的核酸発現量定量ステップにおいて、本発明 の前記標的遺伝子検出装置を用いて、被検者における、特定疾患に関する標的核 酸の発現量が定量される。前記診断ステップにおいて、前記被検者における前記特 定疾患に関する標的核酸の発現量と、遺伝子情報データベースに含まれる、該特定 疾患に関する標的核酸の健常人の発現量及び患者の発現量とがデータ分析部によ り比較され、該被検者が前記特定疾患の患者であるか否かが診断される。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の核酸プローブを用いた本発明の標的核酸検出方法のプロセ スの一例を示す概念図である。
[図 2]図 2は、本発明の核酸プローブ (実施例 1)の一例を示す概略説明図である。
[図 3]図 3は、本発明の核酸プローブ(実施例 1)が標的核酸にノ、イブリダィゼーシヨン した状態を示す模式図である。 [図 4]図 4は、本発明の核酸プローブを用いた本発明の標的核酸方法を実施した実 施例 1における結果を示すグラフである。
[図 5A]図 5Aは、標的核酸にハイブリダィゼーシヨンするまではステムループ構造をと る本発明の核酸プローブの一例 (右図)と、該核酸プローブが標的核酸にハイブリダ ィゼーシヨンした状態 (左図)とを示す概念図である。
[図 5B]図 5Bは、図 5Aの核酸プローブの一次元構造を示す模式図である。
[図 6]図 6は、ステムループ構造をとる本発明の核酸プローブを用いた本発明の標的 核酸検出方法のプロセス (発光増幅)の一例を示す概念図である。
[図 7]図 7は、本発明の核酸プローブを用いた本発明の薬剤スクリーニング方法の一 例を示す概念図である。
[図 8]図 8は、本発明の核酸プローブを用いた本発明の薬剤スクリーニング方法の他 の例を示す概念図である。
[図 9]図 9は、本発明の核酸プローブを用いた本発明の標的核酸検出装置の一例を 示すのブロック図である。
[図 10]図 10は、本発明の核酸プローブを用いた本発明の標的核酸検出方法を実施 した実施例 3の結果 (発光の検出結果)を表す写真データである。
[図 11]図 11は、本発明の核酸プローブを用いた本発明の標的核酸検出方法を実施 した実施例 5の結果を示す写真データである。
[図 12]図 12は、本発明の核酸プローブを用いた本発明の標的核酸検出方法を実施 した実施例 6におけるハイブリダィゼーシヨンの形態を示す概念図である。
[図 13]図 13は、本発明の核酸プローブを用いた本発明の標的核酸検出方法を実施 した実施例 6の結果を示す写真データである。
発明を実施するための最良の形態
(核酸プローブ)
本発明の核酸プローブは、標的核酸にハイブリダィゼーシヨン可能であり、該核酸 プローブとしては、上記第一一第六の核酸プローブが好ましぐ該第一一第六の核 酸プローブの特徴を 2つ有するものがより好ましぐ 3つ有するものが特に好ましい。 なお、本発明の核酸プローブは、該第一一第六の核酸プローブの特徴を有すること 以外には、特に制限はなぐ 目的に応じて適宜選択したその他の部などを有してい てもよい。
[0016] 以下、本発明の核酸プローブについて図面を参照しながら説明する。図 1は、本発 明の核酸検出方法における反応サイクルの一例を示す概念図であり、図 2は、本発 明の核酸プローブの一例を示す模式図であり、図 3は、本発明の核酸プローブが標 的核酸にハイブリダィゼーシヨンした状態を示す模式図であり、図 4は、本発明の一 実施例による標的核酸の検出反応の結果を示すグラフである。
[0017] 前記第一の核酸プローブは、前記標的核酸にハイブリダィゼーシヨンした後構造変 化を生じ、構造変化した前記核酸プローブはハイブリダィゼーシヨンの結合力が減少 し、前記標的核酸力 解離するよう設計されている。
このような構成とすることにより、標的核酸の存在を示すシグナルが増幅され検出感 度が向上する。
例えば、図 1に示すように、標的核酸 1の分子上で、核酸プローブの結合乃至解離 を含むサイクルが形成される。図 1において、核酸プローブ 2と標的核酸 1とが接触す ると、相互にハイブリダィズし複合体を形成する (A)。ノ、イブリダィゼーシヨンした核酸 プローブ 2は自己核酸酵素 7を形成し、 自己核酸酵素 7は、特定配列を有する切断 部位 12で切断する (B)。切断された核酸プローブは、標的核酸 1との結合状態を維 持できず自発的に解離する (C)。このとき蛍光物質 Fは、消光物質 Qとの相互作用を 喪失し蛍光を発する。フリーになった標的核酸 1には、再び新たな核酸プローブ 2が ハイブリダィゼーシヨンし、プロセス (A)— (C)を繰返すことにより蛍光シグナルが増 幅される。このように、 1分子の標的核酸上で、検出シグナルの増幅が行われるため 、標的核酸 1が、極微量あるいは短寿命の場合であっても高感度で検出することがで きる。
[0018] また、この反応サイクルにおいて、制限酵素やィ匕学物質等を使用しないため、本発 明の核酸プローブを直接生きた細胞に導入し、プロセス (A)— (C)を進行させること も可能である。したがって、本発明によれば、細胞内で遺伝子等の標的核酸の「認識 」、「シグナル増幅」、「診断」ができ、例えば投与された薬剤とそれによる遺伝子の発 現乃至抑制との関係を直接的に観察するスクリーニングが可能となる。 更に、 PCR等による遺伝子増幅や反応温度の制御等の必要がないため、実験室 や分析機器等の特殊な機器や設備が不要となり、家庭内や学校、職場等、医療乃 至研究施設外においても遺伝子診断を行なうことができる。
[0019] ここで、本発明でいう「標的核酸」とは、定量的、定性的検出、又は単なる検出を目 的とする核酸又は遺伝子を意味し、精製、未精製のいずれの状態のものをも含む。 また標的核酸は、その種類はいかなるものでもよぐ RNA、 DNA、 PNA及び人工的 に修飾された核酸等を挙げることができる。標的核酸の塩基配列は、例えば、マキサ ム.ギルバート法、ジデォキシ法等により決定することができる。 本発明の核酸プローブの構造変化は、自己核酸酵素の形成を含むことが好ましい
。これにより、標的核酸 1分子上で、核酸プローブの結合乃至解離からなるサイクル を容易に形成することができ、標的核酸の検出感度が向上する。また、核酸プローブ を切断等するために制限酵素等を使用しないため、本発明の核酸プローブを細胞内 に導入するだけで特異的酵素反応を利用して、細胞内の標的核酸を容易に検出す ることがでさる。
また、本発明の核酸プローブは標識物質を有するものであることが好ましい。これに よって、標的核酸の存在をより容易に確認することができる。更に、力かる標識物質 は、前記核酸プローブが前記標的核酸から解離する前後で異なるシグナルを発する ものであることがより好ましい。標識物質に関する詳細は後述する。
[0020] 前記第二の核酸プローブは、図 2及び図 3に示すように、標的核酸の少なくとも一 部の塩基配列と相補的な配列を有する相補部位 3a、 3bと、自己核酸酵素を形成可 能な核酸酵素形成部位 6と、を備えている。
[0021] 前記第三の核酸プローブは、図 2及び図 3に示すように、前記標的核酸にハイプリ ダイゼーシヨンした際に構造が変化可能な構造可変部としての切断部 12を有してな り、該構造可変部の構造が変化したときに、即ち切断部 12が切断されたときに、該標 的核酸力 解離可能である。
[0022] 前記第四の核酸プローブは、図 2及び図 3に示すように、該標的核酸にハイブリダ ィゼーシヨンしたときに切断される切断部 12を有してなり、標的核酸にノ、イブリダィゼ た際に切断部 12に対する切断活性を有する切断活性領域 7を形成可能 である。
[0023] 前記第五の核酸プローブは、図 2及び図 3に示すように、該標的核酸にハイブリダ ィゼーシヨンした際に、切断されて前記標的核酸力 解離可能な第一プローブ断片 及び第二プローブ断片を生成する切断部 12と、シグナルを発生させるシグナル発生 部 8と、を有してなる。
[0024] なお、図 2がー本鎖に伸ばした状態の図である、図 3が標的核酸にノ、イブリダィゼ ーシヨンした状態の図である。図 2及び図 3に示すように、核酸プローブ 2は、標的核 酸にハイブリダィゼーシヨン可能であり、塩基配列 3a及び 3bと、核酸酵素形成部位 6 と、シグナル発生部 8である前記発光部としての発光物質 Fと、切断部 12と、前記シ グナル発生部である前記消光部としての消光物質 Qとを有してなる。
塩基配列 3a及び 3bは、標的核酸 1に対してハイブリダィゼーシヨン可能な領域であ り、核酸プローブ 2の両端に位置している。
[0025] 図 2に示す核酸酵素形成部位 6は、図 3に示すように、標的核酸 1に核酸プローブ 2 力 Sハイブリダィゼーシヨンした際に切断活性領域 7を形成し、切断部 12に対する切断 活性を発現する。なお、このとき、核酸プローブ 2内では、分子内で一部が、具体的 には切断部 12を中心(間)にしてその両側の一部が、それぞれハイブリダィゼーショ ンしている(図 3中の Y及び Z)。
切断部 12は、リボ核酸 (ヌクレオチドにおける糖がリボース)で形成されており、切断 活性領域 7が発現するリボザィム活性により切断可能である。
発光物質 Fと消光物質 Qとは、図 2及び図 3に示すように、切断部 12を中心(間)に して互 、に隣接して位置して 、る。
[0026] これにより、前記第二一第五の各核酸プローブは、標的核酸をァロステリツタエフェ クタ一とする、例えば自己切断型遺伝子診断プローブとして機能することができる。 自己切断したヌクレオチドの各断片は、等温下ではそれぞれ標的核酸との相補的結 合 (ハイブリダィズ)を維持することができず自発的に解離する。その後、新たな核酸 プローブが標的核酸にハイブリダィズし、自己核酸酵素を形成した後解離する。こう して図 1に示すような触媒サイクルが順次繰り返されることにより、蛍光シグナル等に 代表される検出シグナルが増幅されるため、 PCR等の核酸増幅等を行うことなぐ従 来の核酸測定法では非常に困難であった微量の核酸や遺伝子等も容易に検出可 能となった。また、前記第二一第五の各核酸プローブは、自己核酸酵素を形成する ため特別の酵素や試薬の添加を必要とせず、生きた細胞への導入を可能にするもの である。したがって、前記第二一第五の各核酸プローブを用いれば、細胞内におけ る 1分子レベルの核酸や遺伝子の挙動をも観察することができる。
換言すれば、核酸プローブ 2は、図 1に示すように、標的核酸 1が存在すると、標的 核酸 1に対してハイブリダィゼーシヨン可能である相補的な塩基配列 3a及び 3bをそ の両端に有しているため(図 2及び図 3参照)、塩基配列 3a及び 3bが核酸配列 1にハ イブリダィゼーシヨンすると(図 1中の A)、核酸酵素形成部位 6が三次元のコンファー メーシヨンをとることにより切断活性領域 7が形成されて、切断部 12に対する切断活 性 (リボザィム活性)が生じ、切断部 12 (リボース部分)が切断(自己切断)され、発光 物質 Fを有する第一プローブ断片と、消光物質 Qを有する第二プローブ断片とに分 割され (図 1中の B)、それぞれが標的核酸 1から解離される結果、互いに隣接して位 置していた発光物質 Fと消光物質 Qとが互いに離れて位置するようになる(図 1中の C )。発光物質 Fと消光物質 Qとは、互いに隣接して位置していたときには、両者の間に おける 光共1] ェ不ノレ3 Γ ~~ (fluorescence resource energy transfer: FREl 移動により、発光物質 Fの発光が消光物質 Qの作用により消光状態 8にあったのが、 該蛍光共鳴エネルギー移動がなくなり、消光物質 Qの消光作用が働かなくなり、発光 物質 Fが発光を生ずるようになる(図 1中の C)。この発光は、前記核酸プローブが標 的核酸 1にハイブリダィゼーシヨンする度に生じ、この反応が繰り返されて (catalytic process,図 1中の A— Cのサイクル)、増幅される。即ち、核酸プローブ 2が切断さ れると、前記第一プローブ断片及び前記第二プローブ断片は、ハイブリダィゼーショ ンを維持することができず、標的核酸 1から解離すると、標的核酸 1はフリーの状態と なるため、新たな核酸プローブ 2がハイブリダィゼーシヨンし、図 1中の A— Cのサイク ルが繰り返される。核酸プローブ 2は、標的核酸 1をァロステリックエフェクターとする ことができる。このため、標的核酸 1が極微量(く lOngZ w l)あるいは短寿命であつ ても、前記核酸プローブによって生ずる発光を増幅させることにより、目視等にて容 易にその存在を検出することができる。 [0028] この場合、従来のような PCR法などを用いて核酸増幅を行う必要がなぐ従来では 測定不可能であった極微量な標的核酸を高感度、高精度かつ高速で検出すること ができる。また、制限酵素や化学物質などを使用しないため、核酸プローブ 2を直接 、生細胞に導入しノヽイブリダィゼーシヨンさせることができ、ウィルスに対してハイブリ ダイゼーシヨンさせることができる。したがって、核酸プローブ 2によれば、細胞内に存 在する極微量の標的核酸を検出することができる。
[0029] 図 5A及び図 5B並びに図 6は、前記第六の核酸プローブの一例を示す概略説明 図である。前記第六の核酸プローブは、図 5A及び図 5B並びに図 6に示すように、標 的核酸にハイブリダィゼーシヨン可能であり、該標的核酸にハイブリダィゼーシヨンし たときに切断される切断部 (rA)を有し、前記標的核酸にハイブリダィゼーシヨンする までは、分子内で一部が互いにハイブリダィゼーシヨンしてロック構造 (ステムループ 構造)を形成している。
[0030] この核酸プローブは、より詳しくは、前記標的核酸とハイブリダィゼーシヨン可能な 2 つの塩基配列(5,末端の 5, XGTAGGAGT3,及び 3,末端の 3, YGTGCCAGG5 ' )と、切断活性領域と、前記シグナル発生部である前記発光部としての発光物質 Fと 、切断部 (rA)と、前記シグナル発生部である前記消光部としての消光物質 Qと、ァ デニン (A)オリゴマー及びチミン (T)オリゴマーが互いにハイブリダィゼーシヨンして なるロック構造 (ステムループ構造)と、を有してなる。
[0031] この核酸プローブは、図 5A及び図 5B並びに図 6に示すように、前記標的核酸にハ イブリダィゼーシヨンする前までは、前記ロック構造 (ステムループ構造)を形成して!/ヽ る。なお、前記アデニン (A)オリゴマーは、前記核酸プローブの 5'末端側の最末端 に存在し、前記チミン (T)オリゴマーは、前記核酸プローブの 3'末端側ではあるが最 末端には存在していないため、図 5A及び図 5B並びに図 6に示すように、前記ロック 構造はステムループ構造をとる。そして、前記ステムループ構造を有している間の前 記核酸プローブは、前記 3'末端側が該ステムループ構造カゝら突出した状態となって いる。そして、このステムループ構造を有している間(前記標的核酸にハイブリダィゼ ーシヨンするまでの間)の該核酸プローブは、前記切断活性領域を形成しておらず、 前記切断部 (rA:塩基がアデニンで、糖がリボースの構造)における切断は起こらな い。このため、該核酸プローブは、前記標的核酸にノ、イブリダィゼーシヨンする前に、 切断活性領域が形成されて前記切断部を切断してしまうことがなぐ誤検出等のおそ れがない。
[0032] 本発明にお 、ては、このようなロック構造 (ステムループ構造)を有し、前記標的核 酸にハイブリダィゼーシヨンする前に前記切断部の切断活性を発現しない本発明の 核酸プローブのことを、「Locked TASC」プローブと称することがある。一方、上述 したような、前記ステムループ構造を有していない本発明の核酸プローブのことを、「 TASCJプローブと称することがある。
[0033] なお、この核酸プローブ、即ち前記「Locked TASC」プローブの場合には、図 5B 及び図 6に示すように、前記ロック構造 (ステムループ構造)をとるとき、自己核酸酵素 を形成し得ないので前記切断活性領域を形成することはなぐ逆に、前記切断活性 領域を形成している間は、前記ロック構造 (ステムループ構造)をとることはない。前 記ロック構造 (ステムループ構造)をとつて!/ヽる形状乃至構造と、前記切断活性領域 を形成する形状乃至構造との間では、前記核酸プローブが大きな形状乃至構造変 化を起こすことが必要となる。前記「Locked TASC」プローブの場合、この形状乃 至構造変化は、該核酸プローブの前記標的核酸へのハイブリダィゼーシヨンにより、 容易に起こる。つまり、前記第六の核酸プローブにおいては、前記標的核酸とハイブ リダィゼーシヨン可能な 2つの塩基配列の該標的核酸に対する親和性 (結合力、ハイ ブリダィゼーシヨン力)の方が、前記ロック構造 (ステムループ構造)における親和性( 結合力、ハイブリダィゼーシヨン力)よりも大き 強く)なるように設計されている。この ため、該核酸プローブは、前記標的核酸にノ、イブリダィゼーシヨンする前には、前記 ロック構造 (ステムループ構造)をとつているが、前記標的核酸が存在すると、前記標 的核酸とハイブリダィゼーシヨン可能な 2つの塩基配列が前記標的核酸におけるその 相補部位に相互作用し、このとき、該 2つの塩基配列の前記標的核酸に対する親和 性 (結合力、ハイブリダィゼーシヨン力)が大きい(強い)ため、前記ロック構造 (ステム ループ構造)は容易に解かれ、その結果、該核酸プローブは、大きな形状乃至構造 変化を伴って前記標的核酸にノ、イブリダィゼーシヨン可能となる。
[0034] 前記核酸プローブにおける、前記標的核酸とハイブリダィゼーシヨン可能な 2つの 塩基配列の該標的核酸に対する親和性 (結合力、ハイブリダィゼーシヨン力)(以下「
A2」と称する)や、前記ロック構造 (ステムループ構造)における親和性 (結合力、ハイ ブリダィゼーシヨン力)(以下「A1」と称する)は、前記標的核酸とハイブリダィゼーショ ン可能な塩基配列数又は前記ロック構造における相補鎖の塩基配列数、ハイブリダ ィゼーシヨン時における各塩基間の水素結合数(2又は 3)、などにより適宜調整する ことができる。
[0035] 前記 A1と前記 A2との関係力 A2>A1、となるようにするには、例えば、前記標的 核酸とハイブリダィゼーシヨン可能な 2つの塩基配列の数を、前記ロック構造における 相補鎖の塩基配列数よりも多くする等すればよい。図 5Aに示す例では、前記 A2の 数が「9塩基 X 2箇所 = 18」であるのに対し、前記 A1の数は「5」であり、前記 A2の数 が前記 A1の数の 3倍強、 4倍弱となっている。
[0036] そして、前記核酸プローブにおいて、図 5Bに示すような一次元の切断活性領域は 、図 5A及び図 6に示すように、前記標的核酸に前記核酸プローブがハイブリダィゼ ーシヨンした際に前記切断活性領域を形成し、前記切断部(図 5Aでは rA、図 6では Qで表された部位)に対する切断活性を発現する。なお、このとき、前記核酸プロ一 ブ内では、分子内で一部が、具体的には前記切断部を中心(間)にしてその両側の 一部が、それぞれハイブリダィゼーシヨンしている(図 5A中の rAの両側、図 6の B及 び図 6の C中の Qで表された部位の両側)。
[0037] 前記切断部は、リボ核酸 (ヌクレオチドにおける糖がリボース)で形成されており、前 記切断活性領域が発現するリボザィム活性により切断可能である。
前記発光物質 Fと前記消光物質 Qとは、図 6の Aに示すように、前記ロック構造 (ス テムループ構造)をとっている間は互いに隣接して位置しており、この間は前記発光 物質 Fの発光は前記消光物質 Qの作用により消光されている。
[0038] 前記核酸プローブは、図 5A左図及び図 6の Bに示すように、前記標的核酸 (targe t)が存在すると、該標的核酸に対してハイブリダィゼーシヨン可能である相補的な 2 つの塩基配列をその両端側に有しているため(図 5A及び図 6の B参照)、該 2つの塩 基配列が前記核酸配列にハイブリダィゼーシヨンすると(図 5A及び図 6の B)、前記 切断活性領域が形成されて、前記切断部に対する切断活性 (リボザィム活性)が生じ (図 6の Cでは、マグネシウムイオンが該切断活性領域の中心に位置することにより切 断活性が発現乃至向上された状態となる)、該切断部 (リボース部分)が切断(自己切 断)され、前記発光物質 Fを有する第一プローブ断片と、消光物質 Qを有する第二プ ローブ断片とに分割され (図 6の D)、それぞれが前記標的核酸力 解離される。なお 、互いに隣接して位置していた発光物質 F及び消光物質 Qは、該核酸プローブが前 記標的核酸にハイブリダィゼーシヨンした際に、互いに離れて位置するようになるた め(図 6中の B)、このときには、前記消光物質 Qの消光作用が働かなくなり、前記発 光物質 Fが発光を生ずるようになる。前記発光物質 Fによる発光は、前記核酸プロ一 ブが前記標的核酸にノ、イブリダィゼーシヨンする度に生じ、この反応が繰り返されて ( 図 6中の A— Dのサイクル)、増幅される。即ち、前記核酸プローブが切断されると、 前記第一プローブ断片及び前記第二プローブ断片は、ノ、イブリダィゼーシヨンを維 持することができず、前記標的核酸から解離すると、該標的核酸はフリーの状態とな るため、新たな核酸プローブがハイブリダィゼーシヨンし、図 6中の A— Dのサイクル が繰り返される。前記核酸プローブは、前記標的核酸をァロステリックエフェクターと することができる。このため、前記標的核酸が極微量(< 10ngZ /n)あるいは短寿命 であっても、前記核酸プローブによって生ずる発光を増幅させることにより、 目視等に て容易にその存在を検出することができる。
[0039] 本発明の核酸プローブは、その全部がヌクレオチド鎖で形成されていてもよいし、 その一部がヌクレオチド鎖で形成されていてもよぐ後者の場合には、前記ヌクレオチ ドで形成された部分以外の部分は、例えば、アミノ酸鎖、糖鎖、合成ポリマー鎖など で形成されていてもよい。これらの中でも、製造効率等の点で、その全部がヌクレオ チド鎖で形成されて 、るのが好ま U、。
なお、前記核酸プローブにおける前記ヌクレオチド鎖の製造方法としては、特に制 限はなく、 目的に応じて適宜選択することができ、例えば、化学合成法、プラスミドべ クタ一、ファージベクターなどを使用する微生物法、核酸合成機を使用する機械的合 成法、などが挙げられ、この中でも、量産性に優れる点で、機械的合成法が好ましい
[0040] 前記核酸プローブにおける前記ヌクレオチド鎖の塩基配列数 (全長)としては、特に 制限はなぐ目的に応じて適宜選択することができ、例えば、 5— 100が好ましぐ 10 一 70がより好ましい。
前記ヌクレオチド鎖の塩基配列数 (全長)が、 100を超えると、非特異的ハイブリダ ィズが起こって検出精度が低下するおそれがあり、また、細胞膜に対する透過性が 低下し、効率よく生細胞内で前記標的核酸を検出することができないことがあり、 5未 満であると、ハイブリダィゼーシヨンの結合力が不十分になり、前記標的核酸の検出 精度が低下することがある。
[0041] 本発明の核酸プローブは、前記標的核酸にハイブリダィゼーシヨン可能であり、該 標的核酸と相補鎖を形成可能な領域 (部位)を有している。これにより、該核酸プロ一 ブは、サンプル中の検出すべき前記標的核酸を捕捉することができる。
前記標的核酸と相補鎖を形成可能な領域 (部位)の数としては、少なくとも 1つ必要 であり、 2以上であってもよいが、 2つであるのが好ましい。該相補鎖を形成可能な領 域 (部位)の数が、複数である場合には、前記標的核酸の捕捉性に優れ、検出感度 を向上させることができ、また、前記標的核酸との結合力を容易に制御することがで き、更に、前記核酸プローブが前記標的核酸にノ、イブリダィゼーシヨンした際に、該 核酸プローブが後述の切断活性領域を安定にかつ効率良く形成し易い等の点で有 利である。
[0042] 前記標的核酸と相補鎖を形成可能な領域 (部位)の位置としては、特に制限はなく 、目的に応じて適宜選択することができ、前記核酸プローブのどの部分に存在しても よいが、例えば、該標的核酸と相補鎖を形成可能な領域 (部位)の数が 2つである場 合、図 3に示すように、前記核酸プローブの両末端であってもよいし(図 3中の相補部 3a及び相補部 3b)、図 5A及び図 5Bに示すように、前記核酸プローブの一端と中央 部とであってもよい。これらの中でも、後者の場合(図 5A及び図 5Bに示すような場合 )には、前記核酸プローブが、前記標的核酸にハイブリダィゼーシヨンする前後で大 きな形状乃至構造変化を生ずるので、該ハイブリダィゼーシヨンしたことにより、後述 の切断活性領域を形成することができ、後述の切断部に対する切断活性を発現させ ることができるため、誤切断がなぐ誤検出等の問題がない点で有利である。
[0043] 前記相補鎖 (前記標的核酸にハイブリダィゼーシヨン可能な領域)の長さ、即ち該 相補鎖における一方の塩基配列数としては、特に制限はなぐ目的に応じて適宜選 択することができ、 1一 13が好ましぐ前記標的核酸に対する選択性が高い点で、 2 一 10がより好ましぐ 6— 9が特に好ましい。なお、前記標的核酸への結合力は、該 相補鎖における塩基配列数に概ね比例し、例えば、図 1中の Aの例では、核酸プロ ーブ 2の標的核酸 1に対する結合力は、相補部位 3aと相補部位 3bとの結合力の和と なる。核酸プローブ 1に切断等が生じた場合(図 1中の B)、各核酸プローブ断片にお ける結合力は、前記標的核酸に相補結合して 、る部分湘補部位 3a又は相補部位 3 b)単独の結合力しかないことになる。即ち、切断によって標的核酸 1への結合力は略 半分に減少することになる。この結合力の減少を利用することにより、標的核酸 1への ハイブリダィゼーシヨンと解離のプロセスを含む反応サイクルを確立させることができ る。
前記塩基配列数が、 1一 13である場合には、生物体内温度付近 (37°C付近)にお V、て、各相補部位単独では標的核酸とのノ、イブリダィゼーシヨンを維持できな 、もの とし、より容易に自発的に解離させることができ、直接生体内や細胞内に導入して核 酸プローブと標的核酸との反応サイクルを成立させることが容易に可能となる点で有 利であり、 2— 10、更には 6— 9である場合には、その効果が顕著である点でより好ま しい。なお、各相補鎖における塩基配列数は、互いに同数であってもよいし、異なつ ていてもよい。
[0044] —切断活性領域—
本発明の核酸プローブは、例えば、前記切断部に対する自己核酸酵素等の切断 活性を有する部位を形成可能な切断活性領域 (核酸酵素形成部位など) 6を有する のが好ましい。これにより、核酸プローブ 2は、標的核酸 1にハイブリダィゼーシヨンし た後、自己核酸酵素の形成等を形成する構造変化を生じ、その後、前記標的核酸か ら解離可能となる。前記切断活性領域は、前記標的核酸にハイブリダィゼーシヨンし た際に形成可能であるのが好ま 、。
[0045] 前記切断活性領域としては、特に制限はなぐ目的に応じて適宜選択することがで き、一定条件下で切断活性を発現するものなどが好適に挙げられ、例えば、特定の 形状乃至構造をとつたときに、切断活性 (酵素活性)、例えば DNAザィム活性、 RN Aザィム活性、リボザィム活性等を発現可能な DNA鎖又は RNA鎖、などが挙げられ る。
切断活性領域 (核酸酵素形成部位)は、前記核酸プローブが前記標的核酸に結合 したとき、酵素活性を発現するための金属イオンを捕捉する空洞を形成するようコン ホメーシヨン変化し得る領域を含む。前記切断活性領域は、前記核酸プローブ分子 内で、例えばヌクレオチドの特異的切断等の酵素活性等の切断活性を有する。該核 酸プローブは、制限酵素等を必要としないため、該核酸プローブを細胞内に導入す るだけで特異的酵素反応を利用して、細胞内の標的核酸を検出することができる。ま た、通常、特異的切断をさせたい場合、切断しょうとする特定配列部位を認識する酵 素を選択して使用しなければならないが、任意の配列で核酸を切断しょうとすると、あ らゆる場合において特定配列部位を認識し切断する制限酵素が存在するとは限らな い。しかし、本発明の核酸プローブは、同一分子内に核酸酵素形成部位とともに自 己核酸酵素により認識乃至切断等される特定配列を有するため、酵素活性の発現 について所望の特性を備えるよう設計が自由であり、制限酵素を用いる場合のような 上記制限がない。
[0046] なお、切断部位 12は、核酸プローブがハイブリダィゼーシヨンした後自己核酸酵素 7が形成されたとき、切断活性が最も効率よく発揮される位置に配置されることが好ま しい。
核酸酵素形成部位 6は、例えば、相補部位が 2以上ある場合には、一の相補部位 3 aと他の相補部位 3bとの間の領域にあることが好ましい。このような構成にすることに より、核酸プローブが標的核酸に確実に固定され、自己核酸酵素 7はより安定化する そして、自己核酸酵素の作用の結果、ヌクレオチドが切断等されたとき、核酸プロ ーブと標的核酸との結合力を減少させるよう設計することがより容易になる。
[0047] 本発明では、核酸酵素形成部位から形成される自己核酸酵素は、切断活性、結合 活性、その他いずれの活性を有するものであってもよいが、切断活性を有するものが 好ましい。例えば、前記核酸プローブが前記標的核酸にハイブリダィゼーシヨンした 後、自己核酸酵素の作用により 2つの相補部位の間で切断された場合、各相補部位 の結合力の総和力でもって標的核酸と結合状態を維持していたものが、切断後、短 くなつた各断片は標的核酸とのハイブリダィズを維持できず標的核酸力 解離する。 フリーとなった標的核酸は新たな核酸プローブと結合し、自己核酸酵素の形成、切 断、解離、新たなハイブリダィズ形成を順次繰り返す反応サイクルを繰り返すことがで きる。したがって、遊離した切断片がシグナルを発するように設計された核酸プロ一 ブを使用した場合、 1分子の標的核酸上でシグナルが増幅されるため、検出感度の 向上を図ることができる。
核酸酵素形成部位 6から形成される自己核酸酵素としては、 DNA酵素、 RNA酵 素等が挙げられるがそのいずれであってもよぐこれらの核酸酵素は、ハンマーヘッド 型、ヘアピン型、 HDV型及びその他のいずれのタイプを含むものでもよい。
[0048] 前記切断活性領域を形成するには、前記核酸プローブが、前記標的核酸にハイブ リダィゼーシヨンした際に分子内でハイブリダィゼーシヨン可能な領域を有しているの が好ましい。この場合、前記標的核酸にノ、イブリダィゼーシヨンした際に前記核酸プ ローブが前記切断活性領域を形成する三次元コンファーメーシヨンをとることが容易 となり、また、該三次元コンファーメーシヨンの安定性に優れ、形成される前記切断活 性領域の切断活性等に優れる等の点で有利である。
[0049] 前記核酸プローブにおいて、前記標的核酸にハイブリダィゼーシヨンした際に分子 内でノ、イブリダィゼーシヨン可能な領域の数としては、特に制限はなぐ 目的に応じて 適宜選択することができる力 例えば、 2以上であるのが好ましい。該領域の数が 2以 上であると、前記切断活性領域の形成が容易である等の点で有利である。
[0050] 前記核酸プローブにおいて、前記標的核酸にハイブリダィゼーシヨンした際に分子 内でノ、イブリダィゼーシヨン可能な領域の位置としては、特に制限はなぐ 目的に応 じて適宜選択することができる力 例えば、後述する切断部を中心(間)にして互いに 隣接した位置であるのが好ましぐこの位置に加えて、これらの位置の中心(間)であ つて後述する切断部と対向する側 (後述する切断活性領域内乃至付近)の位置など もよい。前記位置が、前記切断部を中心(間)にして互いに隣接した位置である場合 には、前記切断活性領域と切断部とを該切断活性領域が前記切断部を切断可能に 対向させることができる点で有利であり、また更に、これらの位置の中心(間)であって 後述する切断部と対向する側 (後述する切断活性領域内乃至付近)の位置にも存在 する場合には、前記切断活性領域に複雑な三次元コンファーメーシヨンを付与可能 であり、その切断活性を増強可能である等の点で有利である。
[0051] 前記核酸プローブにおいて、前記標的核酸にハイブリダィゼーシヨンした際に分子 内でノ、イブリダィゼーシヨン可能な領域の塩基配列数としては、特に制限はなぐ 目 的に応じて適宜選択することができる。
[0052] 前記 Y及び Zの少なくともいずれかの塩基配列数が、 2未満であると、前記切断活 性領域の形成乃至構造維持が困難になることがある。
また、前記 Yと前記 Zとの合計の塩基配列数としては、特に制限はなぐ 目的に応じ て適宜選択することができる力 2— 12が好ましい。
前記合計の塩基配列数が、 2未満であると、前記切断活性領域の安定化及び切断 効率の向上に十分寄与しないことがあり、 12を超えると、前記核酸プローブが前記標 的核酸とハイブリダィゼーシヨンする前においても前記切断活性領域を形成可能な 構造を有して 、る場合にぉ 、ては、前記標的核酸とハイブリダィゼーシヨンして 、な V、フリーの前記核酸プローブが、前記核酸配列とハイブリダィゼーシヨンする前に前 記切断活性領域を形成し易くなり、前記核酸プローブどうしが互いにクロスノ、イブリダ ィゼーシヨンを生じてしまうことがあり、検出精度、感度等が低下してしまうことがある。 なお、前記 Zの部分の塩基配列としては、その一部に 1個乃至数個の互いにハイブ リダィゼーシヨンしな 、塩基 (互いにノ、イブリダィゼーシヨンしな 、塩基)が存在して ヽ てもよ ヽ (その一部に欠失、置換等が存在して!/、てもよ!/、)。
[0053] また、前記 Zの部分の塩基配列により、通常、前記核酸プローブにおいては前記切 断部とは反対側にループ (ループ部)が形成される。
前記ループ部の塩基配列数としては、特に制限はなぐ 目的に応じて適宜選択す ることができるが、前記核酸プローブの反応速度は、通常、該ループ部に依存してい るため、該ループ部が短!、ほど安定であるので好まし!/、。
前記ループ部の塩基配列数力 2未満であると、エントロピー的に不利となり、後述 するステムループ構造部分が不安定となり、前記切断活性領域の形成効率が低下し てしまうことがある。 [0054] なお、前記切断活性領域により前記切断部が切断されると、前記核酸プローブは、 前記第一プローブ断片と、前記第二プローブ断片とに分割される。
前記第一プローブ断片及び前記第二プローブ断片の大きさとしては、特に制限は なぐ 目的に応じて適宜選択することができ、互いに同程度の大きさであってもよいし 、互いに異なる大きさであってもよぐこれらが前記標的核酸力 解離し易い大きさで あるのが好ましい。この場合、前記切断活性領域による前記切断部の切断により生 ずるシグナル (発光等)を短時間で発生させることができ、高速検出が可能となる点で 有利である。
[0055] 前記切断活性領域が前記切断部に対して DNAザィム活性、 RNAザィム活性、リ ボザィム活性等を有する場合には、該切断活性領域は、通常、活性中心サイトを有 しており、該活性中心サイトに前記金属イオンが存在すると、前記 DNAザィム活性、 RNAザィム活性、リボザィム活性等を生じ得る。
前記金属イオンとしては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、マグネシウムイオン、コバルトイオン、などが挙げられるが、これらの中でも、 マグネシウムイオンが好適に挙げられる。
なお、前記活性中心サイトに前記金属イオンが存在するようにするには、例えば、 前記核酸プローブを前記金属イオンが含まれる溶液中に存在させる方法などが挙げ られる。この場合、前記金属イオンの前記溶液中の濃度としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、 10— 50mMが好ましい。
[0056] 前記切断活性領域の設計方法としては、特に制限はなぐ 目的に応じて適宜選択 することできるが、例えば、前記切断活性領域が DNA等の核酸鎖により形成する場 合には、上述した SELEX法などが好適に挙げられる。
前記 SELEX法においては、複数の核酸を、標的(ここでは前記切断部)に作用さ せ、該複数の核酸の中から結合力の強い核酸を選択分離し、これを増幅し、更に複 数の核酸と共に前記標的 (前記切断部)に作用させることを繰り返すことにより、前記 標的 (前記切断部)に対する親和性の高!、核酸配列が選抜される。
[0057] —切断部—
前記切断部は、前記核酸プローブが前記標的核酸にハイブリダィゼーシヨンした際 に特異的に切断可能 (前記切断活性領域により切断可能)であればよぐその形状、 構造、大きさ、材質等については特に制限はなぐ 目的に応じて適宜選択することが できる。
前記切断部は、前記切断活性領域の種類に応じて適宜選択することができ、例え ば、前記切断活性領域が前記 DNAザィム活性を有する場合には、 DNAであるのが 好ましぐ前記切断活性領域が前記 RNAザィム活性を有する場合には、 RNAであ るのが好ましぐ前記切断活性領域が RNA切断活性を有する場合には、リボースで あるのが好ましい。
なお、前記切断部は、前記切断活性領域により切断されるが、前記切断活性領域 力 前記核酸プローブが前記標的核酸にハイブリダィゼーシヨンした際に形成される ように設計されて 、る場合には、前記核酸プローブが前記標的核酸にハイブリダィゼ ーシヨンしたときだけ切断されるため、該標的核酸の誤検出等を防ぐことができる点で 有利である。
ロック構造
本発明の核酸プローブは、前記標的核酸にハイブリダィゼーシヨンするまでは、分 子内で一部が互いにハイブリダィゼーシヨンしてロック構造を形成しているのが好まし い。
この場合、前記核酸プローブが前記ロック構造を有している間、即ち、該核酸プロ ーブが前記標的核酸にノ、イブリダィゼーシヨンするまでの間は、前記切断活性領域 を形成せず、前記核酸プローブが前記分子内ハイブリダィゼーシヨン構造を有さなく なるとき、即ち、該核酸プローブが前記標的核酸にハイブリダィゼーシヨンした際に初 めて、前記切断活性領域を形成するため、前記標的核酸への該核酸プローブのハ イブリダィゼーシヨンと、前記切断部の切断等に代表される構造変化と、を完全にリン クさせることができ、誤検出等を効果的に防ぐことができる点で有利である。
前記ロック構造としては、 目的に応じて適宜選択することができ、例えば、ステムル ープ構造、ヘアピン構造、などが挙げられる。これらは、 1種単独で前記核酸プロ一 ブ内に形成されて ヽてもよ ヽし、 2以上組み合わされて前記核酸プローブ内に形成さ れていてもよい。これらの中でも、ステムループ構造が好ましぐ該ステムループ構造 は、一般に核酸が形成する三次元のヘアピン構造のことを意味し、通常、相補的結 合により茎のような形状を有するステム部と、ループのような形状を有するループ部と を有する。
[0059] 前記ロック構造における、前記ハイブリダィゼーシヨンを形成して 、る相補鎖 (互 ヽ にハイブリダィゼーシヨンした部分、例えば前記ステム部)の内、一方における塩基配 列数としては、 4一 8ntが好ましい。
前記塩基配列数が、 4nt未満であると、該ハイブリダィゼーシヨン領域 (例えば前記 ステム部)における相補鎖の結合力が弱く十分でないことがあり、誤検出等の原因と なるおそれがあり、一方、 8ntを超えると、前記ハイブリダィゼーシヨン領域 (例えば前 記ステム部)における相補鎖の結合力が強すぎてしまい、前記核酸プローブが前記 標的核酸にハイブリダィゼーシヨンすることができなくなる、あるいはハイブリダィゼー シヨンし難くなるおそれがある。
[0060] シグナル発生部
本発明の核酸プローブにおける前記シグナル発生部としては、該核酸プローブが 前記標的核酸にハイブリダィゼーシヨンした際に、シグナルを発生すさせることができ れば特に制限はなぐ 目的に応じて適宜選択することができ、例えば、前記核酸プロ ーブが前記標的核酸にノ、イブリダィゼーシヨンすること等により発光可能な発光部や 、発光を生ずる発光部と、該発光部に隣接して位置しているときは該発光部の発光 を消光させる消光部との組合せ、などが好適に挙げられる。なお、前記シグナル発生 部は、シグナルの発生の有無の検出のみならず、細胞内での前記標的核酸の挙動 を追跡する動的パラメータとしても使用することができる。
これらは、前記核酸プローブ内に、 1種単独で設けられていてもよいし、 2以上組合 せて設けられていてもよい。これらの中でも、前記発光部と前記消光部との組合せ、 などが好適に挙げられる。。
前記シグナルとしては、特に制限はなぐ 目的に応じて適宜選択することができ、例 えば、発光、消光、タンパク発現、放射線の放射、温度変化 (発熱等)、磁力変化 (磁 気発生等)、切断片発生、物質生産、物質消費、変形、粘度変化、色変化、 UV吸収 、 pH変化、旋光、異性化、などが挙げられる。これらは、 1種単独で使用してもよいし 、 2種以上を併用してもよい。
[0061] なお、前記シグナルの検出方法乃至手段としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、前記シグナルが、発光、消光等の場合には受光 装置、カメラ等などが挙げられ、放射線の放射の場合には感光フィルムなどが挙げら れ、温度変化の場合には熱電対、温度センサーなどが挙げられ、磁力変化の場合に は磁力センサーなどが挙げられ、切断片発生の場合には電気泳動、 SDS— PAGE、 ウェスタン .ブロッテイングなどが挙げられ、物質生産の場合には抗体、 HPLC、ァフ ィ-ティークロマトグラフィーなどが挙げられ、物質消費の場合には IRスペクトル、 MS スペクトルなどが挙げられ、変形の場合には電子顕微鏡などが挙げられ、粘度変化 の場合には粘度センサーなどが挙げられる。
[0062] なお、前記発光部と前記消光部との糸且合せとしては、特に制限はなぐ目的に応じ て適宜選択することができ、例えば、蛍光共鳴エネルギー(fluorescence resourc e energy transfer:FRET)等の技術として知られているものなどが好適に採用す ることがでさる。
[0063] 前記発光部としては、発光を生ずることができれば特に制限はなぐ目的に応じて 適宜選択することができるが、例えば、蛍光物質、化学発光物質、電気化学発光物 質、などを含むもの、あるいはこれらで形成されているもの、などが挙げられる。
これらは、 1種単独で使用してもよいし、 2種以上を併用してもよい。これらの中でも 前記消光部が該発光部に隣接して存在する場合に該消光部の作用により、その発 光が消光されるものが好ましぐ視認性に優れ、検出が容易な点で、前記蛍光物質 力 り好ましい。
前記蛍光物質としては、特に制限はなぐ目的応じて適宜選択することができ、例 えば、アントラセン、フルォロセイン、フルォロセインイソチオシァネート(FITC)、テト ラメチルローダミン、スルホローダミン等のローダミン類、ダンシルク口ライド、テキサス レッド、 AL350、インドカルボシァニン(CY)、などが挙げられる。
前記核酸プローブが前記発光部を有していると、検出を目視等で行うことが可能に なる点で有利である。 [0064] 前記消光部としては、前記発光部に隣接して位置している場合に該発光部の発光 を消光させることができれば特に制限はなぐ前記発光部の種類等に応じて適宜選 択することができ、例えば、消光物質を含むもの、あるいは該消光物質で形成されて いるもの、などが挙げられる。
前記消光物質としては、特に制限はなぐ 目的応じて適宜選択することができ、例 えば、前記発光部が前記蛍光物質で形成されている場合には、該蛍光物質が発光 する際に放出するエネルギーを吸収可能な物質、などが挙げられ、前記発光物質と の間で 光共鳴ェ不ル ~~ (fluorescence resource energy transfer: FRET )移動が可能な物質、など好適に挙げられ、具体的には、テトラメチルローダミンイソ チオシァネート (TRITC)、ジメチルァミノベンゼンスルフォ-ル(DABSYL)、金ナノ パーティクル、ブラックホールクェンチヤ一、などが挙げられる。
[0065] 前記核酸プローブが前記消光部を有すると、前記核酸プローブが前記標的核酸に ハイブリダィゼーシヨンする前においては、即ち、該消光部が前記発光部に隣接して 存在する場合には、該発光部の発光を消光することができ、一方、前記核酸プロ一 ブが前記標的核酸にノ、イブリダィゼーシヨンした後においては、前記切断部が切断 され、前記第一プローブ断片と前記第二プローブ断片とに分割され、これらが前記標 的核酸から解離する結果、即ち、前記消光部が前記発光部から離れて存在するよう になるため、前記消光部の作用がなくなり、前記発光部に発光を生じさせることがで きるので、前記標的核酸の存在を該発光部の発光により、 目視等で容易に検出する ことができる点で有利である。
[0066] 前記消光部の前記核酸プローブにおける存在位置としては、特に制限はなぐ 目 的に応じて適宜選択することができるが、前記核酸プローブが前記標的核酸にハイ ブリダィゼーシヨンする前においては、前記発光部と隣接して位置し、前記核酸プロ ーブが前記標的核酸にノ、イブリダィゼーシヨンした際には、即ち前記切断部が切断 されて前記核酸プローブが前記第一プローブ断片と前記第二プローブ断片とに分 割された後においては、前記発光部と離れて位置するのが好ましぐ具体的には、前 記第一プローブ断片に前記発光部が存在する場合には前記第二プローブ断片に存 在しているのがより好ましぐまた、これとは逆に、前記第二プローブ断片に前記発光 部が存在する場合には前記第一プローブ断片に存在しているの力 換言すれば、前 記切断部を間にして前記消光部と前記発光部とが位置しているのがより好ましい。こ の場合、前記切断部が切断された際に、前記消光部を前記発光部とは異なる別のプ ローブ断片に存在させることができる点で有利である。
前記切断部が切断されるまでの間における、前記消光部の前記発光部からの距離 としては、該消光部の消光作用が働く範囲内であればよぐ 目的に応じて適宜選択 することができるが、例えば、前記消光部における前記発光部側の末端塩基と、前記 発光部における前記消光部側の末端塩基との間に存在する塩基数で、 5— 30ntが 好ましい。
前記塩基数が、 5未満であると、前記消光部と前記発光部との距離が近すぎ、分子 設計、合成等が容易でないことがあり、 30を超えると、前記消光部の消光作用が十 分でないことがある。
[0067] なお、前記発光物質と前記消去物質との具体的な糸且合せとしては、特に制限はな く、 目的に応じて適宜選択することができる力 例えば、フルォロセインイソチォシァ ネート(FITC)とテトラメチルローダミンイソチオシァネート(TRITC)との組合せ、ジメ チルァミノベンゼンスルフォ-ル(DABSYL)とフルォロセインとの組合せ、などが好 適に挙げられる。
[0068] 以上は、前記核酸プローブが前記標的核酸にハイブリダィゼーシヨンした際に、前 記発光部の発光が生ずるように設計した場合にっ 、て主に説明したが、本発明にお いては、これらの場合に限られず、前記核酸プローブが前記標的核酸にハイブリダィ ゼーシヨンする前に、前記発光部の発光が生じており、前記核酸プローブが前記標 的核酸にハイブリダィゼーシヨンした際に、前記発光部の発光が消光するように設計 してもよい。なお、本発明の核酸プローブとしては、前記標識物質 (前記発光部及び 前記消光部など)を有しない形態に設計してもよぐ該核酸プローブが前記標的核酸 にハイブリダィゼーシヨンしたことの検出は、例えば、該ノ、イブリダィゼーシヨンにより 切断されて生じたプローブ断片を、例えば、電気泳動等することなどにより検出する ことができる。
[0069] 図 3の例では、蛍光物質 Fと消光物質 Qとは、自己核酸酵素による切断部位 12を 介した位置にそれぞれ設けられていることが好ましい。その原理は、蛍光共鳴エネル キ ~~移動 (fluorescence resource energy transfer: FRET)【こ つく。 FRET 成 す るためには、特に蛍光物質 (F)と消光物質 (Q)との物質間の距離が重要となるが、 本発明の核酸プローブ 2が標的核酸 1にハイブリダィズして 、る状態では、 Fと Qとの 物質間距離は FRETが成立していて消光するような距離に設計されている。その後、 自己核酸酵素が作用し、オリゴヌクレオチドが所定の切断部位で切断されると、各切 断片は標的核酸との結合を維持できず解離する。その結果、 FRETから解放された 蛍光物質は蛍光発光する。このように蛍光強度の増力 tlから標的核酸を検出乃至定 量することができる。
また、このような FRET法によれば、ハイブリダィズした核酸プローブと、ハイブリダィ ズしない核酸プローブとを分離することなく目的の標的核酸の検出が可能となり、手 順が簡略化され好ましい。
前記蛍光物質と前記消光物質とは、標的核酸にハイブリダィズした状態で切断部 位を挟んで、約 5— 30塩基配列の距離で隔てられていることが好ましいが、必ずしも この場合に限られるものではな 、。
[0070] なお、核酸プローブに導入する標識物質としては、エネルギー供与物質とエネルギ 一受容物質 (FITCZTRITC)力もなる組合せを採用することもできる。
本発明の核酸プローブは、ガラス製基板等の担体表面に固定された形態、いわゆ る「DNAチップ」として使用することが可能であり、 Lab-on-Chipとして使用すること ちでさる。
[0071] その他の部
前記その他の部としては、特に制限はなぐ本発明の効果を害しない限り、適宜選 択することができ、例えば、各種マーカー、水溶性リンカ一、などが挙げられる。
前記各種マーカーとしては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、放射線ラベル、量子ドットラベル、タンパク質ラベル、などが挙げられる。
[0072] 前記核酸プローブを担体に固定して使用する場合には、前記核酸プローブと前記 担体との間に前記水溶性リンカ一を導入することが好ましい。
前記担体としては、特に制限はなぐ目的に応じて適宜選択することができ、例えば 、榭脂粒子やプレート、容器の底面や側面、などが挙げられる。前記核酸プローブを 検出キット等に予め固定しておくことによって、手軽に前記標的核酸の検出作業が行 える。
前記水溶性リンカ一としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、エチレングリコールリンカ一などが使用できる。水溶性リンカ一の長さは、 担体の構造や種類などに応じて、適当な長さを決めればよい。
[0073] 前記核酸プローブを細胞内に導入して使用する場合には、前記核酸プローブ中の 核酸の一部又は全部について、 2'— OMe化処理 (糖の 2'位のヒドロキシル基をメト キシ基に置換する処理)を行うことが好ましい。これによつて、細胞内在性酵素による 前記核酸プローブの非特異的切断を抑制することができ、前記標的核酸の検出精 度を向上させることができる。
[0074] 用途及び有用性
本発明の核酸プローブは、ウィルス、細菌、動物細胞、植物細胞などの前記標的 核酸が極微量であっても検出可能であり、遺伝子治療、食中毒菌の存在検査、虫歯 乃至歯周病の診断、血液検査等に好適に応用可能であり、後述する本発明の核酸 チップ、標的核酸検出方法、薬剤スクリーニング方法、遺伝子検出装置、及び遺伝 子診断方法に好適である。
また、本発明の核酸プローブは、例えば、血液検査 (輸血時のウィルス感染予防)、 全血、アルブミン製剤、血液凝固製剤などの血液製剤の衛生管理、人口受精時など のウィルス検査、性病検査、神経疾患の病態分析、などに好適に適用乃至応用可能 である。より詳しくは、唾液中には微量のウィルスや細菌などが含まれているので、例 えば、 HIV感染検査、虫歯乃至歯周病の診断などとして、採取した唾液中に本発明 の核酸プローブを添加するだけで、陽性、陰性の検査を簡便にかつ容易に目視等 にて行うことができる。
また、本発明の核酸プローブは、犯罪搜查、法医学、考古学などの領域においても 好適に応用可能である。
[0075] なお、本発明の核酸プローブを用いて前記標的核酸を検出する場合、該核酸プロ ーブは、単独で使用してもよいし、ヘルパーオリゴヌクレオチドの存在下で(ヘルパー オリゴヌクレオチドと共に)使用してもょ 、。
前記ヘルパーオリゴヌクレオチドは、前記核酸プローブが前記標的核酸にハイプリ ダイゼーシヨンするのを補助する機能を有するものであれば特に制限はなぐ 目的に 応じて公知のものの中力 適宜選択することができる力 前記ステムループ構造を直 鎖構造に変化させるのを補助する機能を有するものなどが好まし 、。該ヘルパーオリ ゴヌクレオチドは、前記核酸プローブが前記ロック構造を有する場合に特に好適に該 核酸プローブと併用することができる。
前記ヘルパーオリゴヌクレオチドの長さ、即ち塩基配列数としては、特に制限はなく
、 目的に応じて適宜選択することができ、例えば、 15— 20が好ましい。
[0076] 標的核酸
ここで、本発明の核酸プローブによる検出対象である前記標的核酸としては、特に 制限はなぐ 目的に応じて適宜選択することができ、精製、未精製のいずれであって もよぐ RNA、 DNA、 PNA、人工的に装飾された核酸などのいずれであってもよい。 なお、前記標的核酸の塩基配列の決定法としては、特に制限はなぐ 目的に応じて 適宜選択することができ、例えば、マキサム'ギルバート法、ジデォキシ法などが挙げ られる。
前記標的核酸が存在する試料としては、特に制限はなぐ 目的に応じて適宜選択 することができ、例えば、血液、血清、血漿、糞便、尿、喀痰、骨髄液、汗、涙、唾液、 精液、水道水等の水、これらを前処理したもの、などの採取乃至調製したものであつ てもよ 、し、細胞(生細胞を含む)やウィルスなどであってもよ 、。
[0077] 前記細胞としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば 、動物細胞、植物細胞、菌類、酵母などが好適に挙げられる。
[0078] 前記動物細胞としては、特に制限はなぐ 目的応じて適宜選択することができ、例 えば、受精卵、 ES細胞、 EG細胞、 EC細胞などの胚性幹細胞、胚性癌細胞、造血 幹細胞、癌化し、不死化した癌細胞株、各臓器の細胞株、赤血球、リンパ球、白血球 などが挙げられる。なお、前記動物細胞には、発生時から形質転換されたトランスジ エニック動物の細胞も含まれる。
なお、前記動物細胞が由来する生体としては、例えば、哺乳類、爬虫類、鳥類、両 生類、魚類、昆虫類、などのいずれでもよい。
[0079] 前記哺乳類としては、例えば、肉食獣、霊長類、草食獣、げつし目、などが挙げられ 、具体的には、マウス、ラット、ノ、ムスター、ゥシ、ゥマ、ブタ、ャギ、イノシシ、ゾゥ、キリ ン、パンダ、ィヌ、ネコ、クマ、ゥサギ、クジラ、ィルカ、サル、ヒトなどが挙げられる。 前記爬虫類としては、例えば、カメ目、へビ目、ヮ二目、ムカシトカゲ目、有鱗目、な どが挙げられ、具体的には、リクガメ、ゥミガメ、ミドリガメ、ゼ-ガメ、トカゲ、イグアナ、 カメレオン、ャモリ、 -シキへビ、ナミへビ、コブラなどが挙げられる。
前記鳥類としては、例えば、ァヒル、ガチョウ、ァホウドリ、 -ヮトリ、トキ、力モメ、ダチ ヨウ、シギダチョウ、スズメ、カラス、キジ、カヮセミ、九官鳥、ヤンバルタイナ、コウノトリ 、ツル、ホトトギス、キツッキ、フクロウ、ホウカンチョウ、ミフゥズラ、ォゥムなどが挙げら れる。
前記両生類としては、例えば、力エル、ィモリ、サンショウゥォ、サラマンダーなどが 挙げられる。
前記魚類としては、淡水魚、海水魚などが挙げられ、前記淡水魚としては、具体的 には、ァロワナ、グッピー、ナマズ、タナゴ、コィ、メダカ、ャマメ、イワナ、ピラニア、ノヽ ィギヨ、シクリツド、ナマズなどが挙げられ、前記海水魚としては、具体的には、エイ、 サメ、クマノミ、キス、ハゼ、マグロ、ヒラメ、マンボウ、マンタ、クマノミ、エンゼルフイツシ ュ、デイスカスなどが挙げられる。
前記昆虫類としては、例えば、力ブトムシ、クヮガタ、トンボ、ハチ、コゥロギ、スズム シ、力ミキリムシ、ァリ、ゴキブリ、力マキリ、セミ、タガメ、ハエ、 ノ ッタ、ホタル、チョウな どが挙げられる。
[0080] 前記植物細胞としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、花、茎、根、葉などの部分由来の細胞が挙げられ、それらのプロトプラストで あってもよい。前記植物の種類としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、種子植物、シダ類、蘚苔類、藻類などの由来の細胞が挙げら れ、発生の時点で該ポリヌクレオチドを導入されたトランスジエニック植物も含まれる。
[0081] 前記種子植物としては、例えば、裸子植物、被子植物などが挙げられ、具体的には 、イネ、小麦、大麦、サクラ、タンポポ、マツ、チューリップ、ヒマヮリ、スギ、ブナ、ナス、 ハス、アブラナ、ナデシコ、ソラマメ、ツバキ、セリ、トウモロコシ、ネギ、クロモ、サトイモ 、ツユクサ、イチヨウ、ソテツ、ヒノキ、カャ、カラマツ、イブキ、キク、シソ、リンドウ、サク ラソゥ、ラン、ユリ、アヤメなどが挙げられる。
前記シダ植物としては、例えば、ィヌワラビ、ヮラビ、スギナ、ゼンマイ、へゴ、ミズ二 ラ、ヒカゲノカズラ、トクサなどが挙げられる。
前記蘚苔類としては、例えば、スギゴケ、ミズゴケ、クロゴケ、ヒカリゴケ、チョウチンゴ ケ、タチゴケ、ゼニゴケ、ジャゴケ、ゥロコゴケ、ノヽタケゴケ、コマチゴケ、ゥキゴケなど が挙げられる。
前記藻類としては、例えば、クラミドモナス、ァォノリ、クロレラ、ァォミドロ、ミル、ァォ サ、マリモなどが挙げられる。
[0082] 前記菌類としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば
、きのこ類、真菌類、細菌などが挙げられる。
[0083] 前記きのこ類としては、例えば、シィタケ、マツタケ、ァガリタスダケ、エリンギ、マイタ ケ、ャマブシタケ、ブナシメジ、タモギタケ、ナメコ、ヒラタケ、ホシシメジ、エノキダケな どが挙げられる。
前記真菌類としては、大きく酵母と糸状菌に分類することができる。
[0084] 前記酵母としては、例えば、 Candida albicans. C. glabrada. C. tropicalis 、 parapsilosis. C. stellatoidea. Crvptococcus neoformans. Saccha romvces cerevisiaeなどが举げられ、前記糸状菌としては、例えば、 Trichophvti n ruprum, Microsporum canis, Alternaria alternata, Alternaria pana x、 Bipolaris brizae.などが挙げられる
[0085] 前記細菌としては、例えば、グラム陽性菌、グラム陰性菌などが挙げられ、また、嫌 気性菌、通性嫌気性菌、微好気性菌、好気性菌などのいずれであってもよい。該細 菌の具体的な種としては、例えば、 Staphylococcus aureus. Streptococcus β vogenes. Rnterococcus faecalis. Bucillus anthracis. Batcillus sub tills、 Clostridium tetania Listeria monocytogene s、 Pseudomonas aeruginosa ゝ Eschericnia coli、 Heamophiiis influenzae. Neisseria gonorrhoeae. My cobacterium tuberculosis、 Corvnebacterium glutamicum^ StreDtomyces antibioticus. Salmonella typhi、 Edwardsiella tarda、 Citrobacter freun dii、 Vibrio parahaemolvticus. Morganella morganii. Seratia marcescens ゝ Klebsiella pneumoniae. Shigella dvsenteriae. Yersinia 。estis、 Trepon ema pallidum、 Leptospira interroganse. Campylobactor jejuni. Lactoba cillus latis、 Actinobacillus actinomvcetemcomitance. Purphyromonas g ingivalis. Prevotella intermedia. Bacteroides forsvthus、 Treponema de nticolaなどが举げられ、更にクラミジァ科、リケッチア科、マイコプラズマ科などのも のも挙げられる。
なお、前記細菌としては、例えば、歯周病原因細菌、う蝕性細菌、食中毒原因菌、 なども好適に挙げられる。
[0086] また、その他の微生物類として、原生生物、プランクトンなどが挙げられる。
前記原生動物としては、例えば、赤痢アメーバ、大腸アメーバ、膣トリコモナス、トリ ノ Vソーマ、マラリア、ニューモシスチスカリ-、クリプトモナス、ミドリムシ、糸状虫、鞭 虫などが挙げられる。
前記プランクトンとしては、例えば、ミジンコ、ケンミジンコ、ヮムシなどが挙げられる。
[0087] 前記ウィルスとしては、特に制限はなぐ 目的に応じて適宜選択することができ、例 えば、レトロウイルス、アデノウイルス、ヘルぺスウィルス、センダイウィルス、バタテリ オファージなどが挙げられる。
前記レトロウイルスとしては、例えば、マウス白血病ウィルス、ヒト免疫不全ウィルス、 ヒト Tリンパ球向性ウィルスなどが挙げられる。
前記アデノウイルスとしては、例えば、ィヌアデノウイルス 1型、ィヌアデノウイルス 2 型、ヒトアデノウイルス 1型、ヒトアデノウイルス 2型などが挙げられる。
前記センダイウィルスとしては、例えば、主にマウス由来のものが挙げられ、ヒトには 感染しな 、ことが知られて 、る。
前記バタテリオファージとしては、例えば、 T4ファージ、 T5ファージ、 T7ファージ、 λファージ、 M13などが挙げられる。
また、大腸菌内のプラスミド、コスミドなども挙げられ、該プラスミドとしては、例えば、 pBR322、 pBR325、 pAT153、 pUC8、 pUC18、 pUC19、 pSP— RLUCなど力挙 げられる。
[0088] (核酸チップ)
本発明の核酸チップは、本発明の前記核酸プローブを担体に固定してなること以 外には特に制限はなぐ 目的に応じて適宜公知の構成を採用することができる。中で も、前記水溶性リンカ一を介して前記核酸プローブを前記担体に固定する構成が好 ましい。
前記核酸プローブを固定する対象としては、公知の担体などが好適に挙げられる。 該核酸プローブを前記担体に固定してなる前記核酸チップは、 DNAチップとして好 適に使用することができる。
[0089] 前記担体としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば
、無機材料で形成されていてもよいし、有機材料で形成されていてもよい。
[0090] 前記無機材料としては、例えば、無機高分子、金属、セラミック、半導体、磁石、パ ラマグネット、アパタイトなどが挙げられる。
前記無機高分子としては、例えば、カーボン、熱硬化性榭脂を炭化焼成して得られ たアモルファスカーボン、グラフアイト、などが好適に挙げられる。
前記金属としては、例えば、金、白金、銀、銅、鉄、アルミニウム、などが好適に挙げ られる。
前記セラミックとしては、例えば、アルミナ、シリカ、窒化ケィ素、炭化ケィ素、ガラス 、水晶、シリカゲル、などが好適に挙げられる。
前記半導体としては、シリコン、などが好適に挙げられる。
これらの無機材料は、 1種単独で用いてもよいし、 2種以上併用してもよい。
[0091] 前記有機材料としては、例えば、プラスチック、天然高分子、などが挙げられる。
前記プラスチックとしては、ポリエチレン、ポリスチレン、ポリカーボネイト、ポリプロピ レン、ポリアミド、フエノール榭脂、エポキシ榭脂、ポリカルポジイミド榭脂、ポリ塩化ビ -ル、ポリフッ化ビ-リデン、ポリフッ化工チレン、ポリイミド、アクリル榭脂、セラミックな どが挙げられる。
前記天然高分子としては、例えば、ポリアミノ酸、セルロース、キチン、キトサン、ァ ルギン酸、これらの誘導体、などが挙げられる。 [0092] 前記担体の形状は、通常、前記核酸チップの形状にそのままなることから、該核酸 チップをどのように設計するかという観点から選択することができ、特に制限はなぐ 例えば、フィルム状、板状、粒子状 (ビーズなど)、各種成形品などが好適に挙げられ る。前記形状が粒子状である場合には、例えば、流動的なビーズ表面に固定された DNAマイクロビーズアレイなどとして設計することができる。なお、前記各種成型品と しては、例えば、ストリップ、マルチウエルプレートのゥエル又はストリップ、チューブ、メ ッシュ、連続発泡フォーム、膜、紙、針、ファイバー、プレート、中空糸、スライド、細胞 容器などが挙げられる。
前記核酸チップの大きさとしては、特に制限はなぐ 目的に応じて適宜選択すること ができる。
[0093] 前記核酸チップ上における前記核酸プローブの配置としては、特に制限はなぐ 目 的に応じて適宜選択することができ、例えば、前記担体の全表面又は一部の表面で あってもょ 、し、前記担体表面にアレイ状に配置させてもょ 、。
また、前記核酸チップ上に配置する前記核酸プローブの種類としては、特に制限 はなぐ 目的に応じて適宜選択することができ、 1種単独であってもよいし、 2種以上 であってもよい。後者の場合には、各核酸プローブをアレイ状に配置させておくことに より、同時に多種、多量の遺伝子を定性、定量等することができ、遺伝子診断等に好 適に応用可能である。このとき、前記核酸プローブの種類毎に、生ずる発光の色を異 なるように設計しておくと (マルチカラープローブとして設計しておくと)、発光色を目 視等するだけで、どの標的核酸の存在の有無を瞬時に判断することができる点で有 利である。
[0094] 本発明の核酸チップは、前記標的核酸の検出乃至分析に好適に使用することがで き、後述す本発明の標的核酸検出方法、薬剤スクリーニング方法、遺伝子診断方法 などに好適に使用することができる。
本発明の核酸チップは、ウィルス、細菌、動物細胞、植物細胞などの前記標的核酸 が極微量であっても検出可能であり、遺伝子治療等に好適に応用可能であり、後述 する本発明の標的核酸検出方法、薬剤スクリーニング方法、遺伝子検出装置、及び 遺伝子診断方法に好適である。 [0095] また、本発明の核酸チップは、例えば、血液検査(輸血時のウィルス感染予防)、全 血、 MAP、 FFP、アルブミン製剤、血液凝固製剤などの血液製剤の衛生管理、人口 受精時などのウィルス検査、性病検査、神経疾患の病態分析、などに好適に適用乃 至応用可能である。より詳しくは、唾液中には微量のウィルスや細菌などが含まれて いるので、例えば、 HIV感染検査などとして、採取した唾液中に本発明の核酸チップ を用いただけで、陽性、陰性の検査を簡便にかつ容易に目視等にて行うことができる また、本発明の核酸チップは、犯罪搜查、法医学、考古学などの領域においても好 適に応用可能である。
[0096] (標的核酸検出方法)
本発明の標的検出方法としては、以下の第一一第三の標的検出方法が挙げられ る。
前記第一の標的核酸検出方法は、核酸プローブを用いて標的核酸を検出する核 酸検出方法であって、前記核酸プローブは前記標的核酸にハイブリダィゼーシヨンし た後構造変化を生じ、構造変化した前記核酸プローブはハイブリダィゼーシヨンの結 合力が減少し前記標的核酸力 解離するよう設計されている。
前記第二の標的核酸検出方法は、標的核酸の少なくとも一部の塩基配列と相補的 な配列を有する相補部位と、自己核酸酵素を形成可能な核酸酵素形成部位と、を有 する核酸プローブを用いる標的核酸の検出方法であって、標的核酸に前記核酸プロ ーブを相補的に結合させるハイブリダィゼーシヨン工程と、ハイブリダィゼーシヨン形 成の後、前記自己核酸酵素が形成され前記核酸プローブの構造が変化し、その結 果ハイブリダィゼーシヨンの結合力が減少して該核酸プローブが前記標的核酸から 解離する解離工程と、前記解離工程で解離した前記核酸プローブの少なくとも一部 を検出する検出工程と、を含む。
前記第三の標的核酸検出方法は、本発明の前記核酸プローブを標的核酸にハイ ブリダィゼーシヨンさせるノ、イブリダィゼーシヨン工程と、該標的核酸にハイブリダィゼ ーシヨンした際に前記核酸プローブ力 発生したシグナルを検出することにより該標 的核酸の存在を検出する標的核酸検出工程とを含み、更に必要に応じて適宜選択 したその他の工程を含む。
[0097] 本発明の標的検出方法においては、基本的には核酸プローブを試料中に存在す る標的核酸にノ、イブリダィズさせる操作のみであり、この後、自発的に核酸プローブ の構造変化、ハイブリダィズ結合力の減少、核酸プローブの解離、シグナルの蓄積、 が起こって標的核酸の測定が可能となる。このように操作が非常に簡単なため、複雑 乃至特殊な装置や特別の試薬等が不要であり、必要時に必要なところ、例えば診療 所、家庭、学校、職場等において速かに遺伝子診断を行うことができる。
標的核酸の検出を細胞内で行う場合には、前記核酸プローブを細胞内に導入する ことが必要である。前記核酸プローブの細胞内への導入方法としては、特に制限は なぐ細胞の種類等により適宜選択することができ、例えば、リン酸カルシウム法、リポ ソーム法、エレクト口ポレーシヨン法、ソノポレーシヨン法、などの既知の遺伝子導入方 法が挙げられる。
本発明の核酸検出方法は、核酸プローブが前記標的核酸力 解離する前後にお V、て、異なるシグナルを発する標識物質を有する核酸プローブを用いることが好まし い。
このように構成することにより、核酸プローブと標的核酸とのハイブリダィゼーシヨン 乃至解離などの現象が、シグナルの変化として視認容易となり、標的核酸の検出が より容易になる。
[0098] また、本発明の核酸検出方法は、標的核酸の少なくとも一部の塩基配列と相補的 な配列を有する相補部位と、自己核酸酵素を形成可能な核酸酵素形成部位と、を有 する核酸プローブを用いる標的核酸の検出方法であって、標的核酸に前記核酸プロ ーブを相補的に結合させるハイブリダィゼーシヨン形成工程と、ハイブリダィゼーショ ン形成の後、前記自己核酸酵素が形成され前記核酸プローブの構造が変化し、そ の結果ノ、イブリダィゼーシヨンの結合力が減少して該核酸プローブが前記標的核酸 から解離する解離工程と、前記解離工程で解離した前記核酸プローブの少なくとも 一部を検出する検出工程と、を有することを特徴とする。
このような方法によれば、標的核酸と一度ハイブリダィゼーシヨンした核酸プローブ 上にある標識物質をポジティブに検出できるため、操作性に優れ、容易かつ高精度 で標的核酸の検出を行うことができる。
[0099] 更に、核酸プローブの相補部位でのみ標的核酸とハイブリダィゼーシヨンさせるた め、ハイブリダィゼーシヨンを完了するのに要する時間を短縮することができ、検査の 迅速ィ匕を図ることができる。
本発明の標的核酸検出方法によれば、核酸プローブ自身が標的核酸の認識、シ グナルの増幅の両者を行うため、 PCR等によってサンプル DNA(RNA)を増幅する 必要がなぐ従来のように制限酵素等を必要せず、核酸プローブ内に制限酵素部位 を設ける必要がなぐ更に化学物質等の添加を必要とせず、一定温度下で反応が進 行するため、細胞内における標的核酸の検出方法としても使用することができる。
[0100] ーノヽイブリダィゼーシヨン工程
前記ノ、イブリダィゼーシヨン工程は、本発明の前記核酸プローブを上述した標的核 酸にハイブリダィゼーシヨンさせる工程である。
前記ノ、イブリダィゼーシヨンの条件等としては、特に制限はなぐ 目的に応じて適宜 選択することができ、 V、わゆる「ストリンジェント」なハイブリダィゼーシヨン条件下で行 われることが好ましぐ pHとしては、 7. 0-8. 5力 子ましく、温度としては 30°C— 60 °Cが好ましぐ 0. 01-0. 1M未満のナトリウムイオン塩濃度の溶液中で行うのが好ま しい。
なお、前記ハイブリダィゼーシヨン工程においては、上述したヘルパーオリゴヌタレ ォチドを併用してもよい。
[0101] 前記ヘルパーオリゴヌクレオチドは、前記核酸プローブが前記標的核酸にハイプリ ダイゼーシヨンするのを補助する機能を有するものであれば特に制限はなぐ 目的に 応じて公知のものの中力も適宜選択することができる力 前記ロック構造 (ステムルー プ構造)を直鎖構造に変化させるのを補助する機能を有するものなどが好ま 、。該 ヘルパーオリゴヌクレオチドは、前記核酸プローブが前記ロック構造を有する場合に 特に好適に該核酸プローブと併用することができる。
[0102] 標的核酸検出工程
前記標的核酸検出工程は、本発明の前記核酸プローブが前記標的核酸にハイブ リダィゼーシヨンした際に生じた前記シグナルを検出することにより前記標的核酸を 検出する工程である。
前記シグナルとしては、上述した通りであり、例えば、発光、消光、放射線の放射、 温度変化 (発熱等)、磁力変化 (磁気発生等)、切断片発生、物質生産、物質消費、 変形、粘度変化、などが挙げられる。これらは、 1種単独で使用してもよいし、 2種以 上を併用してもよい。
[0103] 前記シグナルの検出方法乃至手段としては、特に制限はなぐ目的に応じて適宜 選択することができ、例えば、前記シグナルが、発光、消光等の場合には受光装置、 カメラ等などが挙げられ、放射線の放射の場合には感光フィルムなどが挙げられ、温 度変化の場合には熱電対、温度センサーなどが挙げられ、磁力変化の場合には磁 力センサーなどが挙げられ、切断片発生の場合には電気泳動、 SDS— PAGE、ゥェ スタン .ブロッテイングなどが挙げられ、物質生産の場合には抗体、 HPLC、了フィニ ティークロマトグラフィーなどが挙げられ、物質消費の場合には IRスペクトル、 MSス ベクトルなどが挙げられ、変形の場合には電子顕微鏡などが挙げられ、粘度変化の 場合には粘度センサーなどが挙げられる。
[0104] 前記シグナルが、前記核酸プローブが切断されて生じた、第一プローブ断片及び 第二プローブ断片の内、該第一プローブ断片に存在する前記発光部の発光である 場合には、該標的核酸検出工程においては、前記発光を検出することにより前記標 的核酸の存在が検出される。なお、このとき、前記発光部の発光を検出する方法とし ては、特に制限はなぐ目的に応じて適宜選択することができ、前記発光部が前記発 光物質で形成されており、該発光物質が蛍光物質である場合には、その発光 (蛍光) を目視等乃至蛍光顕微鏡で容易に検出することができ、前記発光物質が前記化学 発光物質で形成されて 、る場合には、感光フィルム等を用いて容易に検出すること ができ、また、本発明においては、 CCDカメラを用いて検出してもよぐこの場合はデ ジタル解析をすることがができ、データの処理乃至力卩ェが容易であり、前記標的核酸 の定性、定量を高精度に行うことができる点で有利である。
[0105] 本発明の標的核酸検出方法は、ウィルス、細菌、動物細胞、植物細胞などの前記 標的核酸が極微量であっても検出可能であり、遺伝子治療、食中毒菌の存在検査、 虫歯乃至歯周病の診断、血液検査等に好適に応用可能である。 また、本発明の標的核酸検出方法は、例えば、血液検査 (輸血時のウィルス感染 予防)、全血、 MAP, FFP、アルブミン製剤、血液凝固製剤などの血液製剤の衛生 管理、人口受精時などのウィルス検査、性病検査、神経疾患の病態分析、などに好 適に適用乃至応用可能である。また、本発明の標的核酸検出方法は、犯罪搜查、法 医学、考古学などの領域においても好適に応用可能である。
[0106] ここで、本発明の標的核酸検出方法の一例について図面を参照しながら説明する まず、標的核酸 1と本発明の核酸プローブ 2とをノヽイブリダィズさせる(図 1中の A)。 ハイブリダィズ形成工程において、反応条件は適宜設定可能であり、公知の方法に よって行うことができ、 V、わゆる「ストリンジェント」なハイブリダィゼーシヨン条件下で行 われる。例えば、 ρΗ7. 0—8. 5、温度 30— 60°Cの約 0. 01—0. 1M未満のマグネ シゥムイオン塩濃度の溶液を用いて行われる。なお、標的核酸は、通常、高温処理 等によって予め一本鎖に変性されて 、ることが好ま 、。
次に、ハイブリダィゼーシヨンした核酸プローブは一定条件の下、自己核酸酵素 7 を形成する(図 1中の A)。この自己核酸酵素 7よって特定配列の認識と酵素活性の 発現が核酸プローブ 1内で起こる。 自己核酸酵素 7が切断活性を有する場合、特定 配列を有する切断部位 12でヌクレオチドが切断される(図 1中の B)。このように切断 された核酸プローブ 2は、標的核酸 1との結合状態を維持することができず解離する( 図 1中の C)。これにより、核酸プローブ断片上の蛍光物質 Fは消光物質 Qの影響を 受けることがなくなって蛍光シグナルを発する。このシグナルを次の検出工程におい て検出乃至解析する。
[0107] 即ち、前記ハイブリダィゼーシヨン工程において、図 1に示すように、核酸プローブ 2 は、標的核酸 1が存在すると、標的核酸 1に対してハイブリダィゼーシヨン可能である 相補的な塩基配列 3a及び 3bをその両端に有しているため(図 2及び図 3参照)、塩 基配列 3a及び 3bが核酸配列 1にハイブリダィゼーシヨンすると(図 1中の A)、核酸酵 素形成部位 6が三次元のコンファーメーシヨンをとることにより切断活性領域 7が形成 されて、切断部 12に対する切断活性 (リボザィム活性)が生じ、切断部 12 (リボース部 分)が切断(自己切断)され、発光物質 Fを有する第一プローブ断片と、消光物質 Qを 有する第二プローブ断片とに分割され (図 1中の B)、それぞれが標的核酸 1から解離 される結果、互いに隣接して位置していた発光物質 Fと消光物質 Qとが互いに離れ て位置するようになる(図 1中の C)。発光物質 Fと消光物質 Qとは、互いに隣接して位 置していたときには、両者の間における蛍光共鳴エネルギー(fluorescence resou rce energy transfer : FRET)移動により、発光物質 Fの発光が消光物質 Qの作 用により消光状態 8にあったのが、該蛍光共鳴エネルギー移動がなくなり、消光物質 Qの消光作用が働力なくなり、発光物質 Fが発光を生ずるようになる(図 1中の C)。こ の発光は、前記核酸プローブが標的核酸 1にハイブリダィゼーシヨンする度に生じ、 この反応が繰り返されて(catalytic process,図 1中の A— Cのサイクル)、増幅され る。即ち、核酸プローブ 2が切断されると、前記第一プローブ断片及び前記第二プロ ーブ断片は、ハイブリダィゼーシヨンを維持することができず、標的核酸 1から解離す ると、標的核酸 1はフリーの状態となるため、新たな核酸プローブ 2がハイブリダィゼ ーシヨンし、図 1中の A— Cのサイクルが繰り返される。核酸プローブ 2は、標的核酸 1 をァロステリックエフェクターとすることができる。このため、標的核酸 1が極微量(< 1 あるいは短寿命であっても、前記核酸プローブによって生ずる発光を増 幅させることができる。
[0108] 前記標的核酸検出工程において、発光物質 Fによる発光を検出する。この検出は 、前記核酸プローブの性状や標識物質に応じて適宜選択することにより行うことがで き、例えば、核酸プローブが蛍光物質で標識されている場合は、蛍光顕微鏡等を用 V、て行うことができ、放射性同位元素で標識されて!ヽる場合はオートラジオグラフィー により行うことができ、化学発光物質で標識されている場合には、感光フィルムを用い た解析や CCDカメラを用いたデジタル解析により行うことができ、その結果、前記標 的核酸の定性、定量分析を行うことが可能である。
なお、標識物質を有しない核酸プローブを用いた場合には、例えば切断された核 酸プローブ断片をゲル電気泳動などで確認することにより標的核酸の検出を行うこと ができる。
[0109] 本発明の核酸検出方法において、核酸酵素反応工程では前記核酸プローブが切 断されることが好ましい。 上述のとおり、自己核酸酵素の活性は特に限定されないが、切断活性の発現によ り核酸プローブが切断されることが好ましい。核酸プローブが切断されることによりで きた各断片は、標的核酸とのハイブリダィズを維持できず標的核酸力 解離し、その 後、新たな核酸プローブが標的核酸に結合する。その結果、このようなシグナルの増 幅を可能にする反応サイクルを容易に形成することができる。
また、本発明の核酸検出方法において、核酸プローブは担体に固定されていること が好ましい。このよう〖こすること〖こよって、 DNAチップ、 DNAマイクロアレイ等の核酸 分析用デバイスを構成することができ、高感度で多量の遺伝子データを得ることが可 能となる。
[0110] 更に、本発明の核酸プローブを使用した核酸分析用デバイスによれば、例えば、薬 剤投与後の経過時間ごとに細胞あるいは臓器力も mRNAを取り出し、本発明の核酸 プローブを固定ィ匕した DNAチップ等で測定することで、遺伝子ごとの mRNA量の経 時変化を見ることができる。 mRNA量が増加することは、 DNA分子からの遺伝情報 が活発に転写されることを意味し、遺伝子の働きが増加することに対応する。この遺 伝子の働きの時間変化をコンピュータ解析することで、遺伝子パスウェイの情報等が 得られる。
また、塩基配列の異なる 2以上の本発明の核酸プローブを同一担体に固定させた 核酸検出用デバイスを構成することにより、一度に多種類の標的核酸を検出乃至測 定することができる。
[0111] また、本発明の標的核酸検出方法の他の例について図面を参照しながら説明する 前記ハイブリダィゼーシヨン工程においては、図 5A左図及び図 6の Bに示すように 、前記標的核酸 (target)が存在すると、前記核酸プローブが、該標的核酸に対して ノ、イブリダィゼーシヨン可能である相補的な 2つの塩基配列をその両端側に有してい るため(図 5A及び図 6の B参照)、該 2つの塩基配列が前記核酸配列にハイブリダィ ゼーシヨンすると(図 5A及び図 6の B)、前記切断活性領域が形成されて、前記切断 部に対する切断活性 (リボザィム活性)が生じ(図 6の Cでは、マグネシウムイオンが該 切断活性領域の中心に位置することにより更に切断活性が向上された状態となつて いる)、該切断部 (リボース部分)が切断(自己切断)され、前記発光物質 Fを有する第 一プローブ断片と、消光物質 Qを有する第二プローブ断片とに分割され (図 6の D)、 それぞれが前記標的核酸力 解離される。なお、互いに隣接して位置していた発光 物質 F及び消光物質 Qは、該核酸プローブが前記標的核酸にハイブリダィゼーショ ンした際に、互いに離れて位置するようになるため(図 6中の B)、このときには、前記 消光物質 Qの消光作用が働力なくなり、前記発光物質 Fが発光を生ずるようになる。 ただし、該発光物質 Fが発光を生ずるのと、前記核酸プローブが前記標的核酸にハ イブリダィゼーシヨンして前記切断部が切断されるのとは、略同時に行われる。前記 発光物質 Fによる発光は、前記核酸プローブが前記標的核酸にハイブリダィゼーショ ンする度に生じ、この反応が繰り返されて(図 6中の A— Dのサイクル)、増幅される。 即ち、前記核酸プローブが切断されると、前記第一プローブ断片及び前記第二プロ ーブ断片は、ハイブリダィゼーシヨンを維持することができず、前記標的核酸から解 離すると、該標的核酸はフリーの状態となるため、新たな核酸プローブがハイブリダィ ゼーシヨンし、図 6中の A— Dのサイクルが繰り返される。前記核酸プローブは、前記 標的核酸をァロステリックエフェクターとすることができる。このため、前記標的核酸が 極微量(く lOngZ 1)あるいは短寿命であっても、前記核酸プローブによって生ず る発光を増幅させることにより、 目視等にて容易にその存在を検出することができる。 前記標的核酸検出工程において、発光物質 Fによる発光を検出する。この検出は 、 目視で行ってもよいし、蛍光顕微鏡、 CCDカメラ等を使用してもよい。
[0112] 本発明の標的核酸検出方法は、微量な各種標的核酸の高感度、高精度かつ高速 での検出に好適であり、後述する本発明の薬剤スクリ一ユング方法にも好適に応用 可能である。
[0113] (薬剤スクリーニング方法)
本発明の薬剤スクリーニング方法は、ハイブリダィゼーシヨン工程と、標的核酸検出 工程とを含み、更に必要に応じて適宜選択したその他の工程とを含む。
前記ノ、イブリダィゼーシヨン工程は、本発明の前記核酸プローブを、薬剤投与によ り発現した又は発現しな力つた前記標的核酸に上述したのと同様にハイブリダィゼー シヨンさせる工程である。 [0114] 標的核酸検出工程
前記標的核酸検出工程は、本発明の前記核酸プローブが前記標的核酸にハイブ リダィゼーシヨンした際に生じた前記シグナルを検出することにより前記標的核酸を 検出する工程である。なお、該標的核酸検出工程は、前記標的核酸検出方法にお ける前記標的核酸検出工程と同様である。
[0115] 本発明の薬剤スクリーニング方法においては、前記標的核酸検出工程において検 出した前記標的核酸の存在の有無により薬剤をスクリーニングする。即ち、増幅され た前記発光を検出し、薬剤投与後の遺伝子の発現量の変化を観ることにより、しカゝも このスクリーニングを細胞、組織、臓器などの生細胞内で行うこともできるため、該薬 剤の作用乃至副作用を効率良くスクリーニングすることができる。従来のスクリーニン グ法では、図 7に示すように、前記薬剤によって発現した mRNAを単離し、逆転写反 応により cDNAを調製し、 PCRで増幅させ、増幅された cDNAにラベリングをし、ラベ ルの発光を検出するという非常に煩雑かつ熟練した技能が必要であつたが、本発明 における薬剤スクリーニング方法では、生細胞に直接、前記核酸プローブを導入す ることもできるので、迅速かつ簡易にスクリーニングを行うことができる。
また、本発明の薬剤スクリーニング方法は、図 7に示すように、生細胞を用いること により、今まで細胞を固定し、生物的な活動をさせていな力つたことで発見できなかつ た mRNAなどの挙動を検出乃至分析することができ、更に微量な mRNAなどを検 出乃至分析等することができる点で有利であり、また、図 8で示すように、所望の阻害 剤をスクリーニングすることもでき、既存薬の新たな作用、副作用を微量な遺伝子 (標 的核酸の発現の有無)を検出することにより知ることができ、また、スポーツ選手など に対するドーピング検査、麻薬常習犯に対する麻薬検出検査などにも応用すること ができる。
[0116] 本発明の薬剤スクリーニング方法によりスクリーニングする薬剤としては、特に制限 はなぐ目的に応じて適宜選択することができ、例えば、末梢神経作用薬、中枢神経 作用薬、ホルモン剤、ォータコイド、循環器系作用薬、呼吸器系作用薬、消化器系 作用薬、泌尿生殖器系作用薬、皮膚作用薬、ビタミン剤、化学療法剤、消毒薬、防 腐剤、生物学的製剤、漢方薬などが挙げられ、既存薬、新薬のいずれであってもよ い。
[0117] 前記末梢神経作用薬としては、例えば、局所麻酔薬、筋弛緩薬、自律神経系作用 薬などが挙げられる。
前記局所麻酔薬としては、例えば、コカイン、トロパコカイン、プロ力イン、リドカイン、 ブピノ力イン、メピノ力イン、テトラカイン、ジブ力インなどが挙げられる。
前記筋弛緩薬としては、例えば、 d-ッボクラ—レ、ガラミン、パンクロ-ゥム、ベクロ- ゥム、デカメトニゥム、スクサメトニゥム、ダントロリンなどが挙げられる。
前記自律神経作用薬としては、例えば、ェピネフイリン、ノルェピネフイリン、イソプロ テレノール、ドノ ミン、フエ二レフリン、メトキサミン、クロ二ジン、メタラミノール、ナファ ゾリン、ドブタミン、メトキシフエナミン、オルシプレナリン、テルブタリン、クロルプレナリ ン、トリメトキノ一ノレ、サノレブタモーノレ、ッロブテノーノレ、プロ力テロ一ノレ、ピノレブテロ一 ノレ、フエノテローノレ、ホノレモテノーノレ、クレンブテローノレ、マブテロ一ノレ、チラミン、エフ エドリン、メチルエフェドリン、アンフェタミン、エルゴタミン、ェルゴトキシン、エルゴメト リン、ジヒドロエノレゴトキシン、ジヒドロエノレゴトキシン、フエノキシベンザミン、トラゾリン 、フェントラミン、プラゾシン、テラゾシン、ドキサゾシン、ブナゾシン、ゥラピジル、ョヒン ビン、プロプラノロ一ノレ、ブプラノロ一ノレ、ブフヱトローノレ、ブクモローノレ、ナドローノレ、 チモローノレ、チリソローノレ、プラクトローノレ、メトプロローノレ、ァテノロ一ノレ、ビソプロ口 ール、ベタキソロール、ピンドロール、オクスプレノール、アルプレノロール、力ノレテオ ローノレ、インデノローノレ、ペンブトローノレ、ブニトロ一ノレ、ボピンドローノレァセブトロー ル、セリプロロール、ラベタノール、グァネチジン、メチルドーノ 、クロ-ジン、グアンフ ァシン、グアナべンズ、アセチルコリン、べナテコール、メタコリン、ムスカリン、ピロカル ピン、フィゾスチグミン、ネオスチグミン、エドロホ-ゥム、アンべノ-ゥム、ジスチグミン 、パラチオン、アト口ピン、スコポラミン、ロートエキス、ホマトロピン、シクロペントレート 、ニコチン、 DMPP、 TMA、 DFP、 TEPP、テトラエチルアンモ-ゥム、へキサメトニ ゥム、メカミラミン、トリメタファンなどが挙げられる。
[0118] 前記中枢神経作用薬としては、例えば、亜酸化窒素、シクロプロパン、エチレン、ェ 一テル、クロロフオルム、ハロセン、メトキシフルレン、ェンフルラン、イソフルラン、セボ フルラン、チォペンタール、チアミラール、へキソバルピタール、ペントバルピタール、 プロパ-シド、ケタミン、フエノバルビタール、ブロムヮレリル尿素、ブロムジェチルァセ チル尿素、抱水クロラール、ダルテシミド、メタクワロン、ニトラゼパム、フルラゼパム、 エスタゾラム、トリァゾラム、ェチルパラフィノール、エトクロルビノール、ェチノレアルコ ール、メチルアルコール、ジスルフィラム、フエ-トイン、メフエ-トイン、ェソトイン、フエ ノバルピタール、ネタルビタール、プリミドン、カルバマゼピン、ゾ-サミド、トリメタジォ ン、パラメタジオン、バルプロ酸ナトリウム、フェンスクシミド、メトスクシミド、エトスクミシ ド、ジァゼパム、クロナゼパム、モルヒネ、コディン、デバイン、パパべリン、ノス力ピン 、ァヘンチンキ、リン酸コディン、ヘロイン、ペチジン、フェンタニル、メサドン、レボル ファノール、デキストロメトルファン、ペンタゾシン、フエナゾシン、ブプレノルファン、ブ トルファノール、ナロルフイン、レバロルフアン、ナロキソン、エンドルフィン、メフエネシ ン、ェポリゾン、ノ クロフェン、チザ-ジン、レボドパ、カルビドノく、ベンゼラシド、トリへ キシフエ二ジル、ビペリデン、ベンズトロピン、ァマンタジン、ブロモクリプチン、ぺルゴ リド、ドロキシドパ、ストリキニーネ、ピクロトキシン、ペンテトラゾール、 -ケタミド、ジモ ルホラミン、カフェイン、テオフィリン、テオブロミン、アミノフィリン、クロルブロマジン、 チオリダジン、フェルフエナジン、レセルピン、レシナミン、デセルビジン、ハロペリドー ル、クロルプロチキセン、チォチキセン、ィプロ-アジド、ナイァラミド、イソカルボキサ ジド、サフラジン、トラ-ルシプロミン、パージリン、イミプラミン、デシプラミン、アミトリプ チリン、クロミプラミン、ミアンセリン、リチウム、ジァゼパム、ォキサゼパム、ニトラゼパム
、ェチゾラム、ロラゼパム、ヒドロキシジン、 LSD— 25、メスカリン、大麻、ジメチルトリプ タミン、ジェチルトリプタミン、プシロシン、プシロシビン、ブホテニン、ハーミンなどが 挙げられる。
前記ホルモン剤としては、ホルモン作用を有するもの又は阻害するものであれば特 に制限はなぐ例えば、成長ホルモン、甲状腺刺激ホルモン、副腎皮質刺激ホルモ ン、卵胞刺激ホルモン、黄体形成ホルモン、乳汁分泌ホルモン、ォキシトシン、バソブ レツシン、甲状腺ホルモン、リオチロニンナトリウム、レボチロキシンナトリウム、メチル チォゥラシノレ、プロピルチオゥラシル、チアマゾーノレ、カノレシト-ン、上皮小体ホノレモ ン、インスリン、グルカゴン、カルプタミド、クロルプロパミド、ァセトへキサミド、トラザミド 、へタへキサミド、 1ーブチルー 3—-トロウレア、トルプタミド、ダリベンダラミド、ダリミジ ン、グリブゾール、フェンフオルミン、プフォルミン、メトフオルミン、ェパルレスタツト、ボ グリボーズ、ァカルノーズ、トログリタゾン、コルチゾン、ヒドロコルチゾン、デスォキシコ ルトン、プレドニゾロン、ェチルプレドニゾロン、パラメタゾン、デキサメタゾン、ベタメタ ゾン、アルドステロン、エストラジオール、エストロン、ェチュルエストラジオール、スチ ノレベン、プロゲストロン、クロノレマジノン、ノノレエチステロン、テストステロン、アンドロス テロン、ェチォコラノロン、ェピアンドロステロン、メチルテストステロン、テストステロン 水性懸濁注射剤、テスットステロンエステル注射剤、ォキシメトロン、メテノロン、混合 ホルモン剤などが挙げられる。
[0120] 前記ォータコイドとしては、例えば、ヒスタミン、ジフェンヒドラミン、ジフエ-ルビラリン 、クレマスチン、ピリラミン、プロメタジン、クロルフエ二ラミン、クロルサイキリジン、シプ 口ヘプラジン、メキタジン、テルフエナジン、シメチジン、ラニチジン、ファモチジン、ジ フェンヒドラミン、ジメンヒドリナート、サイタリジン、メタリジン、プロメタジン、チェチノレぺ ラジン、セロトニン、メチセルギド、プロへプタジン、レニン、アンギオテンシン、カプト プリノレ、プロスタグランジン E2、プロスタグランジン F2 a、プロスタグランジン A2、トロ ンボキサン A2、ロイトコリエン、ブラジキュン、血漿カリクレイン、腺性カリクレイン、サリ チル酸ナトリウム、アスピリン、サリチル酸アミド、インドメタシン、メッフヱナム酸、フル フエナム酸、ジクロフエナック、ベンジダミン、ェピリゾール、チアラミド、フエナセチン、 ァセトァミノフェン、アンチピリン、ァミノピリン、スルピリン、コルヒチン、プロベネシフド 、ァロプリノール、フエ二ルブタゾン、ォキシフェンブタゾン、スルフィンブタゾン、デキ サメタゾン、ベタメタゾン、金チオリンゴ酸ナトリウム、オーラノフィン、ぺ-シラミン、ァ ザチォプリン、ブシラミン、サラゾスルフアビリジン、ァクタリットなどが挙げられる。
[0121] 前記循環器系作用薬としては、例えば、ジキタリス、ケジキタリス、スト口ファンッス、 力やノウ、ジギトキシン、ジゴキシン、メチルジゴキシン、 G—スト口ファンチン、ラナトシド C、ポロスシラリジ、ゥァバイン、 j8受容体作用薬、アムリノン、ピモベンダン、ベスナリ ノン、キ-ジン、プロ力インアミド、ジソビラミド、メキシレチン、アプリジン、プロパフエノ ン、フレカイ-ド、ピルジカイ-ド、アドレナリン作動性 j8遮断薬、アミオダロン、ベラパ ミル、ヒドララジン、ジァゾキシド、プラゾシン、レセルピン、グァネチジン、中枢作用薬 、サイァザイド系利尿薬、カプトプリル、ェナラプリル、ァラセプリル、デラプリル、シラ ザプリル、リシノプリル、べナゼプリル、イミダプリル、デモ力プリル、キナプリル、トラン ドラプリル、亜硝酸ァミル、ニトログリセリン、一硝酸イソソルビド、二硝酸イソソルビド、 四硝酸ペンタエリスリトール、モロシドミン、ニコランジル、ジピリダモール、ジセラプ、 プレニルァミン、クロモナール、トリメタジジン、ォキシフエドナリン、エタフエノン二フエ ジピン、二カノレジピン、ニソノレジピン、ニトレンジピン、ベニジピン、マニジピン、バノレニ ジピン、エフォ-ジピン、アムロジピン、フエロジピン、ジノレチアゼム、ベラパミノレ、イノ シトールへキサニコチレート、シクランデレート、シンナリジン、インクスプリン、アルプ ロスタジル、メクロフエノキサート、ビンポセチン、 -セノレゴリン、イブシラスト、フノレナリ ジン、ィフェンプロジノレ、ペントキシフィリン、インデべノン、インデロキサジン、ビフェラ ミン、プロペントフィリン、ニコチン酸、コレスチラミン、プロブコール、プラバスタチン、 シンパスタチン、へパリン、ジカマロ一ノレ、トルメキサン、ヮーフアイリン、ゥロキナーゼ 、ストレプトキナーゼ、糸且織プラスミノーゲンァクチベータ、チクロビジン、シロスタゾー ル、ィコサンペント酸ェチル、ベラプロスト、トロンビン、トラネキサム酸、カルバゾクロム
、硫酸鉄、フマール酸第一鉄、クェン酸第一鉄ナトリウム、含糖酸化鉄、エリスロポェ チン、ェポェチンアルファ、ェポェチンベータ、フィルグラスチム、レノグラスチム、ナ ルトグラスチム、ミリモスチム、クェン酸シルデナフィルなどが挙げられる。
[0122] 前記呼吸器系作用薬としては、例えば、二酸化炭素、ジモルホラミン、ジメフリン、ド キサプラム、サポニン類、非サポニン性配糖体、ヨウ化カリウム、ブロムへキシン、メチ ルシスティン、ェチルシスティン、ァセチルシスティン、カルボシスティン、アンブロキ ノール、キサンチン誘導体、クロモグリク酸ナトリウム、ケトチフェン、トラ-ラスト、ァゼ ラスチン、ォキサトミド、ォザダレル、トシル酸スプラタスト、テルフヱナジン、ァステミゾ ール、セラトロダスト、プランルカスト水和物などが挙げられる。
[0123] 前記消ィ匕器系作用薬としては、例えば、炭酸水素ナトリウム、酸化マグネシウム、天 然ケィ酸アルミニウム、乾燥水酸ィ匕アルミニウムゲル、副交感神経遮断薬、ピレンゼ ピン、チキジゥム、シメチジン、ファモチジン、ラニチジン、オメブラゾーノレ、ランソプラ ゾール、メチルメチォニンスルホ -ゥムクロリド、ァズレンスルフォン酸、スクラルファー ト、アルジォキサ、ゲファルナート、テプレノン、トロキシピド、ィルソグラジン、スルピル ド、ソファルコン、プラウノトール、レバミピド、ベネキサートベータデタス、オルノプロス チル、ミソプロストール、ェンプロスチル、クラリスロマイシン、ァモキシシリン、メトロ二 ダゾール、次硝酸ビスマス、ひまし油、アントラキノン誘導体。フエノールフタレイン、ピ コスルフアート、硫酸マグネシウム、酸化マグネシウム、硫酸ナトリウム、グリセリン、ビ サコジル、タンニン酸アルブミン、沈降炭酸カルシウム、薬用炭、ァヘンアルカロイド、 ベルべリン、ラクトミン、メトクロプラミド、ドンペリドン、シサプリド、トリメブチンなどが挙 げられる。
[0124] 前記被尿生殖器系作用薬としては、例えば、 D-マン-トール、濃グリセリン、塩ィ匕 アンモ-ゥム、硝酸アンモ-ゥム、塩化カルシウム、水銀利尿薬、ァセタゾールアミド、 ジクロノレフエナミド、トリクロノレメチアジド、ヒドロクロ口チアジド、ベンジノレヒドロクロロチ アジド、ペンフルチジド、メチクロチアジド、メトラゾン、クロールタリドン、フロセミド、ェ タクリン酸、ピレタ -ド、ブメタミド、ァゾセミド、メフルシド、スピトノラタトン、トリアムテレ ン、カンレノ酸カリウム、へキサミン、マンデル酸、ニトロフラントイン、ェルゴトキシン、 エノレゴタミン、エノレゴメトリ、メチノレエノレゴメトリン、ォキシトシン、ジノプロスト、ジノプロ ストン、ゲメプロスト、スパルティン、酢酸フエ-ル水銀、硫酸ォキシヒノリン、経口避妊 薬などが挙げられる。
[0125] 前記皮膚、粘膜作用薬としては、例えば、力ラシ、カンタリス、トウガラシ、タンニン酸 、没食子酸、酸化亜鉛、一酸化鉛、四三酸化鉛、硫酸亜鉛、酢酸鉛、硫酸アルミニゥ ム、硫酸アルミ-ゥムカリウム、水酸化ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、炭 酸カリウム、氷酢酸、トリクロル酢酸、塩酸、乳酸、硝酸銀、塩化第二鉄、塩化亜鉛、 硫酸銅、クェン酸銅、サリチル酸、ィォゥ、アラビアゴム、トラ力ガントゴム、でんぷん、 ァガー、メチルセルロース、グリセリン、プロピレングリコール、ォリーブ油、ツバキ油、 ゴマ油、ナタネ油、ダイズ油、ラッカセィ油、トウモロコシ油、ヤシ油、カカオ S旨、ステア リン酸、牛脂、豚脂、ラノリン、ノ ラフィン、ペトロラタム、蜜ろう、タルク、カオリン、石松 子、薬用炭、フイブリノ一ゲン、トロンボプラスチン、吸収性ゼラチンスポンジ、酸ィ匕セ ルロース、メトキサレン、モノべンゾンなどが挙げられる。
[0126] 前記ビタミン剤としては、ビタミン A、ビタミン。,ビタミン E,ビタミン F、ビタミン 、ュ ビキノン、チアミン、リボフラビン、ピリドキシン、ノ ントテン酸、 α—リポ酸、ビチオン、葉 酸、メゾイノチトール、 Ρ-アミノ酸安息香酸、シァノコバラミン、プロスルチアミン、フル スルチアミン、ォクトチアミン、ビスベンチアミン、ベンフォチアミン、シコチアミン、ジセ チアミン、ァスコルビン酸、ビタミン Pなどが挙げられる。
[0127] 前記化学療法剤としては、ペニシリン系、セフエム系、ォキサセフエム系、モノパクタ ム系、カルパぺネム系、 13ラクタマーゼ阻害剤、ホスホマイシン、アミノ配糖体系、クロ ラムフエ-コール、テトラサイクリン系、マクロライド系、リンコマイシン系、リファマイシン 、抗ミコバタテリゥム系、ポリエンマクロライド系、合成抗菌薬などの抗生物質、サルフ ァ剤、キノロン剤、ピタラビン、イドクスゥリジン、ァシクロビル、ガンシクロビル、ジドブ シン、ジダノジン、インターフェロン、ァマンタジン、ェメチン、ピリメタミン、クロ口キン、 プリマキン、キナクリン、メトロ-ダゾール、イセチオン酸ペンタミジン、サントニン、カイ ニン酸、ピぺラジン塩、パモ酸ピランテル、プラジカンテル、カマラ、酒石酸アンチモ ンナトリウム、ジェチルカルバマジン、へキシルレゾルシン、アンチモン化合物、二クロ サミド、ビォチノール、ベフエ-ゥムヒドロキシナフトエート、ピルビ-ゥムパモエート、ィ ソチアニド、ストレプトマイシン、リファンピシン、エタンプトール、パラアミノサリチル酸 、塩酸メクロルエタミン、シクロフォスフアミド、メルファラン、チォテパ、ブスルファン、二 ムスチン、メトトレキサート、 6—メルカォゥトプリン、 5—フルォロウラシル、シタラビン、ジ ェチノレスチノレべストローノレ、ェチ-ノレエストラジオ一ノレ、テストステロンプロピオネート 、フルォキシメステロン、クラウステロン、ハイド口コルチゾン、プレド-ゾロン、プレドニ ゾン、デキサメタゾン、タエン酸タモキシフェン、タエン酸トレミフェン、ァクチノマイシン D、アントラサイクリン、ドキソルビシン、ダウノビシン、アクラルビシン、ェピルビシン、 ピラノレビシン、ブレオマイシン、ぺプロマイシン、マイトマイシン C、ビンブラスチン、ビ ンデシン、エトポシド、イリノテカン、 Lーァスパラキナーゼ、ペントスタチン、シスプラチ ン、トレチノイン、ビシバニール、クレスチン、リン酸ォセルタミビルなどが挙げられる。
[0128] 前記生物学的製剤としては、例えば、ジフテリア、破傷風混合ワクチン、経口生ポリ ォワクチン、乾燥弱毒風疹ワクチン、乾燥弱毒麻疹ワクチン、インフルエンザ HAワク チン、日本脳炎ワクチン、乾燥 BCGワクチン、痘瘡ワクチン、コレラワクチン、ワイル病 秋疫混合ワクチン、破傷風トキソイド、ジフテリアトキソイド、ガス壊疽抗毒素、ジフテリ ァ抗毒素、蛇抗毒素、破傷風抗毒素、精製ッベルクリン、 BCGなどが挙げられる。 前記漢方薬しては、例えば、安中散、釣藤散、黄連解毒湯、桂枝茯苓丸、小紫胡 湯、抑肝散、八味地黄丸、葛根湯などが挙げられる。
[0129] (標的核酸検出装置)
本発明の標的核酸検出装置としては、以下の第一から第二の標的核酸検出装置 が好適に挙げられる。
前記第一の標的核酸検出装置は、試料中の標的核酸を検出するための核酸プロ ーブが担体に固定された核酸分析用デバイスであって、前記核酸プローブは標的核 酸にハイブリダィゼーシヨンした後構造変化を生じ、構造変化した前記核酸プローブ はハイブリダィゼーシヨンの結合力が減少し前記標的核酸力 解離するよう設計され ている。
前記第二の標的核酸検出装置は、本発明の前記核酸プローブを標的核酸にハイ ブリダィゼーシヨンさせるノ、イブリダィゼーシヨン手段と、該標的核酸にハイブリダィゼ ーシヨンした際に前記核酸プローブ力 発生したシグナルを検出することにより該標 的核酸の存在を検出する標的核酸検出手段と、を含む。
前記ハイブリダィゼーシヨン手段としては、本発明の前記核酸プローブを前記標的 核酸にハイブリダィゼーシヨンさせることができれば特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、本発明の前記核酸チップなどが好適に挙げられる。
[0130] 前記標的核酸検出手段は、本発明の前記核酸プローブが前記標的核酸にハイブ リダィゼーシヨンした際に生じた前記シグナルを検出することにより前記標的核酸を 検出する手段であり、例えば、上述したシグナルが、発光、消光等の場合には受光 装置、カメラ等などが挙げられ、放射線の放射の場合には感光フィルムなどが挙げら れ、温度変化の場合には熱電対、温度センサーなどが挙げられ、磁力変化の場合に は磁力センサーなどが挙げられ、切断片発生の場合には電気泳動、 SDS— PAGE、 ウェスタン .ブロッテイングなどが挙げられ、物質生産の場合には抗体、 HPLC、ァフ ィ-ティークロマトグラフィーなどが挙げられ、物質消費の場合には IRスペクトル、 MS スペクトルなどが挙げられ、変形の場合には電子顕微鏡などが挙げられ、粘度変化 の場合には粘度センサーなどが挙げられる。これらは、 1種単独で使用してもよいし、 2以上を併用してもよい。
前記シグナルが、前記核酸プローブが前記標的核酸にハイブリダィズした際に該 核酸プローブが切断されて生じた、前記第一プローブ断片及び前記第二プローブ断 片の内、該第一プローブ断片に存在する前記発光部の発光である場合には、前記 標的検出手段としては、蛍光顕微鏡、感光フィルム、 CCDカメラなどが好適に挙げら れる。
本発明においては、前記標的核酸検出手段が、前記標的核酸の存在のみならず その量までも定量することができるのが好ましい。
[0131] 前記その他の手段としては、例えば、遺伝子情報データベースを格納するデータ ベース部、標的核酸検出手段の検出結果データと、前記データベース部に格納され た遺伝子情報データとを比較し分析するデータ分析部、インターネットに通信可能で あり、該インターネット上の遺伝子情報データベースにアクセス可能な通信部、前記 標的核酸検出手段の検出結果データと、前記インターネット上の遺伝子情報データ ベースの遺伝子情報データとを比較し分析するデータ分析部、などが好適に挙げら れる。
前記遺伝子情報データベースとしては、特に制限はなぐ目的に応じて適宜選択 することができるが、特定の疾患に関する、健常人の遺伝子情報と患者の遺伝子情 報とを含むものが好ましい。
[0132] 本発明の前記標的核酸検出装置の好ましい具体例としては、前記ハイブリダィゼ ーシヨン手段としての本発明の前記核酸チップと、前記標的検出手段としての前記 蛍光顕微鏡とを含む本発明の前記標的検出装置が、図 9に示すように、更に、 CPU 31、入力装置 32、メモリ 33、通信装置 34、データベース装置 36、及びこれらを双方 向通信可能に接続するメインバス 37を備えているものが挙げられる。
[0133] CPU31は、前記標的核酸検出装置の全体を制御し、メモリ 33に格納されたプログ ラム、各種データ等に基づいて動作し、各種機能を実現する。ここで該各種機能とは 、他の標的核酸検出装置力 受け取ったデータを診断する遠隔診断機能、他のプロ ノイダ及びその他サーバーとの情報の受け渡しを制御するため、異なる信号を統一 化する照合処理機能、前記標的核酸に関する各種情報を提供するデータベース処 理機能などが挙げられる。前記各種データとしては、遺伝子診断のために作られる 各種リストのデータなどが挙げられる。 [0134] 入力装置 32は、プロバイダの管理者が、遺伝子診断の条件などの入力を行うため の装置である。メモリ 33は、 CPU31によってアクセスされるためのプログラムや前記 遺伝子情報データベース、前記標的核酸検出装置が受信した情報、必要に応じて 記憶装置 35、データベース装置 36等から読み出した情報、などを格納する機能を 有する。
通信装置 34は、インターネット、通信回線 15等を介した外部との通信を制御する装 置である。通信装置 34は、例えば、モデムを変換装置として備えていてもよいし、 IS DN回線との接続に介在するターミナルアダプタ (TA)及びデジタルサービスユニット (DSU)を備えていてもよい。
[0135] 記憶装置 35は、各種プログラムや各種データを格納し、記憶する機能を有し、例え ば、記憶手段としての ROM38、 ROM38に記憶された記憶媒体を読み込むレコー ダー 39などを有している。記憶装置 35としては、 ROM等の電子メモリ回路 (電子記 憶媒体)のほかに、フロッピーディスク等の磁気記憶媒体を前記記憶媒体とする磁気 記憶装置、 CD - ROM等の光学的記録媒体を前記記憶媒体とする光学記憶装置な どが挙げられる。前記記憶媒体としては、記憶装置 35に固定的に設けたものであつ てもよいし、着脱自在に設けたものであってもよい。記憶装置 35に記憶されるプログ ラム、データ等は、前記標的核酸検出装置外にある記憶装置から通信手段を介して 受信するようにしてもよ ヽ。
データベース装置 36は、過去の前記標的核酸のデータリストなどを内部に格納し ている。
[0136] (遺伝子診断方法)
本発明の遺伝子診断方法は、本発明の前記標的遺伝子検出装置を用い、標的核 酸発現量定量ステップと、診断ステップとを含み、更に必要に応じて適宜選択したそ の他のステップを含む。
[0137] 前記標的核酸発現量定量ステップは、被検者における、特定疾患に関する標的核 酸の発現量を定量するステップである。
該ステップは、上述した本発明の標的核酸検出装置を用いた本発明の標的核酸 検出方法により好適に行うことができ、例えば、本発明の前記核酸プローブを用い、 前記標的核酸の発現量と発光量との関係を表す検量線を予め作成しておき、該検 量線を用いて定量することにより、行うことができる。
[0138] 前記診断ステップは、該被検者における前記特定疾患に関する標的核酸の発現 量と、遺伝子情報データベースに含まれる、該特定疾患に関する標的核酸の健常人 の発現量及び患者の発現量とをデータ分析部により比較し、該被検者が前記特定 疾患の患者である力否かを診断するステップである。
該診断ステップは、本発明の前記標的検出装置における、前記データベース部、 前記データ分析部、前記通信部、前記データ分析部などにより好適に行うことができ る。例えば、上述した記憶装置 35に、該遺伝子診断方法のプログラムを記憶させて おき、データベース装置 36に過去の検出データ力も平均化された後述の (Xi— SZ M-S)における S値と M値とを記憶させておき、前記被検者の前記疾患遺伝子 (前 記 Xi)を前記標的核酸検出装置で定量し、前記 CPUが前記 (Xi - SZM - S)を計算 し、前記被検者の健康状態を CPUが診断する。本発明の遺伝子診断方法によると、 僻地等であっても診断が可能となる点で有利である。
[0139] 前記診断ステップにお!/、ては、例えば、特定疾患に関する標的遺伝子の、患者の 発現量を Mとし、健常人の発現量を Sとし、被検者の発現量を Xiとしたとき、 (Xi-S/ M-S)≥0. 9、を満たすとき、該被検者を前記特定疾患の患者であると診断するよう にしてもよい。このような計算は、前記標的核酸検出装置における前記 CPU等により 瞬時に行うことができ、この場合、高速なコンピューター診断が可能となる。
なお、前記 (Xi— SZM— S)の値が、 0. 1以下であると、一般に、疾病の因子がない 、予後がよいことなどを意味し、 0. 9近づくにつれて、ある被検者の標的核酸 (疾患 遺伝子)の発現が特定の疾患の状態に近づいていることを意味し、 0. 9を超えると、 前記標的核酸 (疾患遺伝子)の発現量が 90%疾患遺伝子をもつ患者及び因子を持 つ健常人に近いこととを意味する。
[0140] 前記その他のステップとしては、特に制限はなぐ目的に応じて適宜選択することが でき、例えば、疾患遺伝子をいくつかの候補を力 選択する選択ステップ、などが挙 げられる。
[0141] 本発明の遺伝子診断方法により診断することができる病気乃至疾患としては、特に 制限はなぐ目的に応じて適宜選択することができ、例えば、癌、アルカプトン尿症、 全身性エリトマト一デス、皮膚筋炎、慢性関節リュウマチ、強皮症、精神病、気管支喘 息、アトピー性皮膚炎、花粉症、ループス腎炎、クロイトフェルツヤコブ病、ァルツハイ マー病、パーキンソン病、マルファン症候群、ウイリアムス症候群、再生不良性貧血、 赤血球増多症、ファンコ-症候群、血友病 A、血友病 B、ホン'ウィルブランド病、血 小板無力症、突発性血小板減少性紫斑病、チ アダック ·東症候群、尋常性天疱瘡 、フレリー症候群、脆弱 X症候群、エドワード症候群、ミラー ·デッガー症候群、プラダ ーヴイリ一症候群、クブロッホ'サルツバーガー症候群、ローン症候群、クラインフェル ター症候群、アンジェルマン症候群、網膜色素変性症、爪膝蓋骨症候群、ベーチェ ット病、マジャトジヨセフ病、ゾリンガー ·エリソン症候群、猫鳴き症候群、ターナー症候 群、ストレンジプール病、メルゲルソン'ローゼンタール症候群、アルドステロン症、橋 本病、クレチン病、クッシング症候群、 ADH分泌異常症候群、末端肥大症、鎌形赤 血球症、潰瘍性大腸炎、クローン病、家族性大腸性ポリポーシス、ダウン症、糖尿病 、メープルシロップ尿症、筋萎縮性側索硬化症、筋ジストロフィー、痛風、多発性筋炎 、シヱグレン症候群、混合性結合織病、ピルェ.ロビン症候群、プルーマー 'ビンソン 症候群、ランセィ 'ハント症候群、顔面半側萎縮症、外胚葉性異型性症、骨形成不全 症、オスラー病、ライター症候群、サルコイドーシス,若年性関節リュウマチ、ギルバ ート症候群、ローター症候群、へモクトマト一シス、フエ-ルケトン尿症、グリシン尿症 、チロシノーシス、シスチン尿症、ホモシスチン尿症、ホルナー症候群、プラダーゥイリ 症候群、ゴージヱ病、ヒスチジン血症、ウィルソン病、骨軟化症、嚢胞性繊維症、ポル フィリン代謝異常、ピリルビン代謝異常、 ADA欠損症、自己免疫性溶血性貧血、サラ セミア、ヘモグロビン C症、ピルビン酸キナーゼ欠損症、 G6PD欠損症、遺伝性球状 赤血球症、家族性周期性四肢麻痺、重症筋無力症、ギランバレー症候群、多発性 硬化症、副甲状腺機能低下症、副甲状腺機能亢進症、クローゾン病、インスリノーマ 、バセドウ病、高脂血症、舞踏病、高血圧、緑内障、白内障などが挙げられる。本発 明の遺伝子診断方法は、これらの診断のみならず、これらの予後の推定、疾病にか 力るリスク推定などを行うこともでき、また、投与する薬剤に対する生体の適応性など を標的核酸 (遺伝子)の発現量により分析等することもできる。 [0142] 以下、本発明の実施例を説明するが、本発明はこれらの実施例に何ら限定されるも のではない。
(実施例 1)
-核酸プローブの設計 - 本発明の核酸プローブとして、前記標的核酸にハイブリダィゼーシヨン可能な領域 となる塩基配列 3a及び 3bを両末端に有し、公知のリボザィム(8— 17DNAzyme)を 一部に有してなる塩基配列を用いた。該塩基配列は、下記配列 1に示す塩基配列を 有しており、前記切断部としての rAは、 5'末端側カゝら数えて 15番目に位置していた 。また、前記切断部としての rAを切断する活性を有する前記切断活性領域 (リボザィ ム活性を示す)は、 5'末端側力も数えて 32番目に位置する Tと、 5'末端側から数え て 46番目に位置する Aとの間に存在していた。この選抜した塩基配列における、 5, 末端側から 14番目の塩基 (T(dT) )として、前記発光部としての蛍光物質 (F):フル ォロセインが結合したチミン (dT)、即ちフルォロセイン dT ( (ダレンリサーチ(Glen Reserch)社製)を用い、 5'末端側から 18番目の塩基 (T)として、前記消光部として の消光物質(Q):ジメチルァミノベンゼンスルフォ-ル(DABSYL)が結合したチミン (dT)、即ちジメチルァミノベンゼンスルフォ-ル(DABSYL)— dT (グレンリサーチ(G len Reserch)社製)を用いた。以上により、実施例 1の核酸プローブを作製した。ま た、 5'末端から 1番目の Aから 5'末端から 10番目の Cまでを 3bとし、 3'末端から 1番 目の Cから 3'末端から 10番目の Cまでを 3aとした。
[0143] (配列 1)
GACGAAGTTCTAGTTGGTC-3 '
[0144] 図 2は、実施例 1の核酸プローブの一次元構造を模式ィ匕した図であり、塩基配列 3a 側が 3'末端側であり、塩基配列 3b側が 5'末端側である(上記 (配列 1)と左右が逆に なっている)。図 2に示すように、前記切断部としての rAは、前記発光部及び前記消 光部の間に存在するため、該切断部が切断されて、実施例 1の核酸プローブが第一 プローブ断片と、第二プローブ断片とに分割されると、前記発光部は前記第一プロ ーブ断片上に存在することになり、前記消光部は前記第二プローブ断片上に存在す ることになる。
図 3は、実施例 1の核酸プローブが標的核酸にノ、イブリダィゼーシヨンした際の三 次元構造を模式ィ匕した図である。図 3に示すように、前記標的核酸にハイブリダィゼ ーシヨンした際に分子内でハイブリダィゼーシヨン可能な領域が前記切断部を中心( 間)にして互いに隣接して位置する 2つである場合、その内の塩基配列 3a及び 3b側 に近い方を Yとし、他方を Zとしたとき、前記 Yの塩基配列数力 であり、前記 Zの塩基 配列数力 であり、前記 Y及び Zの合計の塩基配列数が 8であった。
[0145] 核酸プローブの合成
以上のように設計した実施例 1の核酸プローブを、 DNA合成機を使用した固相合 成法により、固相合成し、脱保護を行い、ゲル電気泳動法により目的鎖長の前記核 酸プローブのみを分離精製した。
まず、 A— TOM— CE (Phosphoramidites) (グレンリサーチ(Glen Reserch)社 製)を保護基として用い、発光物質 F及び消光物質 Qを保護し、前記 DNA合成機( ダレンリサーチ(Glen Reserch)社製)を用いた固相法により、: L molの濃度の前 記標識物質を導入した本発明における核酸プローブを合成した。
[0146] 合成後、生成物をチューブに移し、ここにメチルァミン (40%メチルァミン水溶液と、 33%メチオアミン'エタノール溶液の等量混合液)を 1. 5ml添カロし、 35°Cで 6時間の インキュベートをし、前記核酸プローブを、前記固相から取り出し、前記標識物質の 保護基を除去した。
[0147] 次に、前記チューブを氷上で冷やした後、前記チューブを注意深く開け、滅菌状態 下で上清を回収し、凍結乾燥した。該凍結乾燥後、 1Mのテトラプチルアンモニゥム のテトラヒドロフラン (THF)溶液 lmlを、前記チューブに添加し、 50°Cで、 10分間の 浸盪をし、前記核酸プローブについた前記保護基と、前記標識物質の部位にある基 とを除去し、 35°Cに冷却した後、再び 6時間の浸盪をした。
次に、 1Mのトリス緩衝液 (pH7. 4) lmlをチューブに添カ卩した後、よく浸盪し、遠心 濃縮法により、前記 THFを除去した。更に、 1Mのトリス緩衝液 (pH7. 4) lmlを、前 記チューブに添カ卩し、前記チューブ内の核酸プローブ溶液の全量を 2mlとした。
[0148] 核酸プローブの精製 NAP— 25カラム(フアルマシア社製)を、水 15mlで平衡化した後、前記核酸プロ一 ブ溶液 2mlを前記 NAP— 25カラムにカ卩えた。前記核酸プローブ溶液を完全に前記 カラムに浸透させた後、蒸留水 0. 5mlをカ卩え、いわゆるゲルろ過を行い、不純物を 除去した。更に蒸留水 3mlを用いて、脱塩した前記核酸プローブを溶出した。
前記ゲルろ過した核酸プローブを凍結乾燥した後、 7Mの尿素を含有した 20%ポリ アクリルアミドゲル電気泳動により精製した。前記電気泳動後、 UV照射することによ り、核酸プローブのバンドを確認し、前記バンドの分画を切り出した。前記分画を遠 心管に入れ、ガラス棒を用いてゲルを粉砕し、水を 10ml加え、 37°Cで 6時間の浸盪 をした。透析後、凍結乾燥処理を行い固化物を得た。該固化物を蒸留水 0. 4mlに 溶解した後、 20°Cに冷凍保存した。
[0149] —ハイブリダィゼーシヨン及び切断活性反応—
前記標的核酸として、下記配列 2に示す塩基配列を有する 22ntのオリゴヌクレオチ ドを用意した。
[0150] (配列 2)
5 ' -GACCAACTAGAAGATGAGAAGT-3 '
[0151] 前記標的核酸 500pmolと、前記核酸プローブ lOOpmolとを、 50mMトリスー 25m M塩化マグネシウム水溶液 (pH7. 2) 100 1中、37でで1. 5時間、インキュベート をした。更にエタノール 800 1を加え、 4°Cで 12, OOOgの遠心分離を行い、エタノー ル沈殿を行った。上清を除き、残存している前記エタノールを真空乾燥により完全に 除去した。
[0152] 標的核酸の検出
前記真空乾燥により、前記エタノールが完全に除去された沈殿物を、ホルムアルデ ヒド 5 1で溶解し、 7Mの尿素を含有した 20%ポリアクリルアミドゲルによる電気泳動 を行った。 UVランプを照射し、バンドの存在を確認したところ、前記核酸プローブより も長さが短い前記核酸プローブ断片が観られた。この結果、前記核酸プローブは、 前記標的核酸とハイブリダィゼーシヨンし、前記切断活性領域による前記切断部の自 己切断が生じたことが確認された。
[0153] 前記標的核酸 lOpmolと、前記核酸プローブ lOOpmolとを、 50mMトリスー 25mM 塩化マグネシウム水溶液 (pH7. 2) 100 1中で、 37°Cで、 6時間のインキュベートを した(マグネシウムイオンの濃度は 25mMであった)。この反応溶液に波長 495nmの 励起光を照射し、測定蛍光波長 520nmの蛍光スペクトル変化を蛍光測定機(島津 製作所製、 RF - 5300PC)を用いて測定した。前記蛍光の強度の増加から、前記核 酸プローブが前記標的核酸とハイブリダィゼーシヨンし、前記切断活性領域による前 記切断部の自己切断が生じたことが確認された。
[0154] 前記発光の強度変化力 前記核酸プローブの切断量を割り出したグラフを図 4に 示した。図 4中、実線は、前記発光の強度から割り出した前記核酸プローブの切断量 を示し、点線は、発光の増幅ができない従来の核酸プローブを用いた場合の理論値 を示す。
この結果から、従来の核酸プローブでは、 1当量の前記標的核酸に対して、 1当量 のプローブしか反応しないが、本発明の核酸プローブでは、時間と共に切断量が増 加し、 1当量の前記標的核酸に対し、 1当量以上の反応を示し、発光が増幅されるこ とが半 ljつた。
[0155] (実施例 2)
-核酸プローブの設計 - 本発明の核酸プローブとして、下記配列 3— 5の塩基配列を有する核酸プローブを 選抜した。具体的には、前記標的核酸にハイブリダィゼーシヨン可能な領域となる、 5 ,末端側に位置する X配列の 3'末端側に続く X側配列(5'末端側力 GTAGGAGT )及び 3,末端側に位置する Y配列の 5,末端側に続く Y側配列(3 '末端側カゝら GTG CCAGG)を両末端に有する一本鎖の DN Aランダム配列プールを作製した。該 DN Aランダム配列プールには、前記 X側配列 (塩基配列数: 8)及び前記 Y側配列 (塩基 配列数: 8)の間のランダム配列の長さや配列種が異なる多数の塩基配列が含まれて いる。該 DNAランダム配列プールは、 DNA合成装置を用いて、 3'末端側に位置す る前記 Y配列及び Y側配列の内、該 Y側配列の 5,末端側に位置するシトシン (C)か ら一塩基づつ伸長させて、前記 Y側配列に続くランダム配列を合成し、該ランダム配 列の 5'末端に、前記 X配列の 3'末端と前記 X側配列の 5'末端とが結合した配列に おける 3'側のグァニン (G)を結合させることにより、合成した。なお、このランダム配 列中には、前記切断部としての rA (塩基がアデニンで、糖がリボース)が 1つ含まれて いる。
次に、前記 DNAランダム配列プールに含まれる多数の塩基配列の中力 前記切 断部の切断活性の高いものを選抜した。この選抜した塩基配列は、下記配列 3— 5 に示す塩基配列を有して!/、た。
配列 3では、前記切断部としての rAは、 5'末端側力も数えて 14番目に位置してい た。また、前記切断部としての rAを切断する活性を有する前記切断活性領域 (リボザ ィム活性を示す)は、 5'末端側力も数えて 29番目に位置する Tと、 5'末端側から数 えて 43番目に位置する Aとの間に存在していた。配列 3における、 5'末端側から 22 番目の塩基 (T(dT) )として、前記消光部としての消光物質 (Q):ジメチルァミノベン ゼンスルフォ-ル(DABSYL)が結合したチミン(dT)、即ちジメチルァミノベンゼンス ルフォ-ル(DABSYL)— dT (グレンリサーチ(Glen Reserch)社製)を用い、 5,末 端に、前記発光部としての蛍光物質 (F):フルォロセインを結合させた、即ちフルォロ セイン((ダレンリサーチ (Glen Reserch)社製)を結合させた。以上により、実施例 2 における配列 3の核酸プローブを作製した。
配列 4では、前記切断部としての rAは、 5'末端側力も数えて 20番目に位置してい た。また、前記切断部としての rAを切断する活性を有する前記切断活性領域 (リボザ ィム活性を示す)は、 5'末端側力も数えて 35番目に位置する Tと、 5'末端側から数 えて 49番目に位置する Aとの間に存在していた。配列 4における、 5'末端側から 28 番目の塩基 (T(dT) )として、前記消光部としての消光物質 (Q):ジメチルァミノベン ゼンスルフォ-ル(DABSYL)が結合したチミン(dT)、即ちジメチルァミノベンゼンス ルフォ-ル(DABSYL)— dT (グレンリサーチ(Glen Reserch)社製)を用い、 5,末 端に、前記蛍光部としての蛍光物質 (F):フルォロセインを結合させた、即ちフルォロ セイン((ダレンリサーチ (Glen Reserch)社製)を結合させた。以上により、実施例 2 における配列 4の核酸プローブを作製した。
配列 5では、前記切断部としての rAは、 5'末端側力も数えて 18番目に位置してい た。また、前記切断部としての rAを切断する活性を有する前記切断活性領域 (リボザ ィム活性を示す)は、 5'末端側力も数えて 33番目に位置する Tと、 5'末端側から数 えて 47番目に位置する Aとの間に存在していた。配列 5における、 5'末端側から 26 番目の塩基 (T(dT) )として、前記消光部としての消光物質 (Q):ジメチルァミノベン ゼンスルフォ-ル(DABSYL)が結合したチミン(dT)、即ちジメチルァミノベンゼンス ルフォ-ル(DABSYL)— dT (グレンリサーチ(Glen Reserch)社製)を用い、 5,末 端に、前記蛍光部としての蛍光物質 (F):フルォロセインを結合させた、即ちフルォロ セイン((ダレンリサーチ (Glen Reserch)社製)を結合させた。以上により、実施例 2 における配列 5の核酸プローブを作製した。
[0157] (配列 3)
5'
GAAGCGGACCGTGTC-3 '
(配列 4)
5'
CCGGACGAAGCGGACCGTGTC-3 '
(配列 5)
5'
GGACGAAGCGGACCGTG-3 '
[0158] 図 5Bは、実施例 2の核酸プローブの一次元構造を模式ィ匕した図である。
前記配列 3の核酸プローブは、図 5Aに示すように、 5'末端側の前記 X配列が 5 '末 端側から CCの 2塩基であり、 3'末端側の前記 Y配列が 3'末端側カゝら CTの 2塩基で あり、 *印に位置する塩基 (T)として、消光物質 Qであるジメチルァミノベンゼンスル フォ-ル (DABSYL)が結合したチミン (T (dT) )、即ちジメチルァミノベンゼンスルフ ォ-ル(DABSYL)—dT (グレンリサーチ(Glen Reserch)社製)を用い、 5'末端( 最末端)に位置する塩基として、発光物質 Fであるフルォレセインが結合したリン酸基 、即ちフルォレセインホスホロアミダイト(ダレンリサーチ(Glen Reserch)社製)を用 いた。前記配列 3の核酸プローブにおいては、前記標的核酸とハイブリダィゼーショ ンする領域の塩基配列数は、 3'末端側が 10であり、 5'末端側が 10であった。
[0159] 前記配列 4の核酸プローブは、図 5Aに示すように、 5'末端側の前記 X配列が 5'末 端側から AAAAAGCCの 8塩基であり、 3 '末端側の前記 Y配列が 3 '末端側から CT の 2塩基であり、 *印に位置する塩基 (T)として、消光物質 Qであるジメチルァミノべ ンゼンスルフォ-ル(DABSYL)が結合したチミン(T (dT) )、即ちジメチルァミノベン ゼンスルフォ-ル(DABSYL) -dT (グレンリサーチ(Glen Reserch)社製)を用い、 5^末端 (最末端)に、発光物質 Fであるフルォレセインが結合したリン酸基、即ちフル ォレセインホスホロアミダイト((ダレンリサーチ(Glen Reserch)社製)を結合させた 。前記配列 3の核酸プローブにおいては、前記標的核酸とハイブリダィゼーシヨンす る領域の塩基配列数は、 3'末端側が 10であり、 5'末端側が 10であった。
[0160] 前記配列 5の核酸プローブは、図 5Aに示すように、 5'末端側の前記 X配列が 5'末 端側から AAAAAGの 6塩基であり、 3,末端側の前記 Y配列が 0塩基であり、 *印に 位置する塩基 (T)として、消光物質 Qであるジメチルァミノベンゼンスルフォ-ル(DA BSYL)が結合したチミン (T (dT) )、即ちジメチルァミノベンゼンスルフォ-ル(DAB SYL)— dT (ダレンリサーチ (Glen Reserch)社製)を用い、 5'末端 (最末端)に、発 光物質 Fであるフルォレセインが結合したリン酸基、即ちフルォレセインホスホロアミ ダイト((ダレンリサーチ(Glen Reserch)社製)を結合させた。前記配列 5の核酸プ ローブにお 1、ては、前記標的核酸とハイブリダィゼーシヨンする領域の塩基配列数は 、 5'末端側が 8であり、 3'末端側が 8であった。
なお、実施例 2における、前記配列 3の核酸プローブを「TASC1プローブ」、前記 配列 4の核酸プローブを「Locked TASC2プローブ」、前記配列 5の核酸プローブ を「Locked TASC3プローブ」と、それぞれ称することがある。
[0161] 前記配列 3— 5の各核酸プローブにおいては、図 5Aに示すように、前記標的核酸 にハイブリダィゼーシヨンした際に分子内でノ、イブリダィゼーシヨン可能な領域が前 記切断部 (rA)を中心(間)にして互いに隣接して位置する 2つである場合、その内の 前記 X配列及び前記 Y配列に近い方を Yとし、他方を Zとしたとき、前記 Yの塩基配 列数が 3であり、前記 Zの塩基配列数が 3であり、前記 Y及び Zの合計の塩基配列数 が 6であった。また、前記配列 3— 5の各核酸プローブは、前記標的核酸にノ、イブリダ ィゼーシヨンした際には、前記切断部 (rA)と対向する側に前記切断活性領域 (リボ ザィム活性を示す)が形成されており、該切断活性領域には 3塩基対の相補鎖部位 が存在していた。 [0162] なお、前記配列 3— 5の各核酸プローブは、前記標的核酸にハイブリダィゼーショ ンする前においては、 5'末端(5'最末端)に位置する前記 X配列と、 3'末端側であ つて最末端ではなく 5'末端側にずれた箇所に位置し、該 X配列に対する相補配列と 力 分子内ハイブリダィゼーシヨンを生じているため、図 5A右に示すような、ステムル ープ構造を有していた。このステムループ構造は、該核酸プローブが前記標的核酸 にハイブリダィゼーシヨンした際に解かれた。実施例 2の核酸プローブは、前記 Lock ed TASCプローブであり、標的核酸にハイブリダィゼーシヨンする前においては、 前記ステムループ構造を維持し、前記切断活性領域を形成せず、前記標的核酸に ハイブリダィゼーシヨンした際に前記ステムループ構造が解かれて初めて前記切断 活性領域が形成された。
[0163] 核酸プローブの合成
以上のように設計した前記核酸プローブを、 DNA合成機を使用した固相合成法に より、固相合成し、脱保護を行い、ゲル電気泳動法により目的鎖長の前記核酸プロ ーブのみを以下のように分離精製した。
まず、ホスホロアミダイト(Phosphoramidites) (グレンリサーチ (Glen Reserch) 社製)の Bz- dAと、 Bu- dGと、 Ac- dCと、 fluoresceinと、 Ac- A- Tomと、ダブシル— dTとを用い、 DNAZRNA合成機(ABI 392、パーキン エルマ一社製)を用いて 前記核酸プローブをそれぞれ合成した。
[0164] 前記合成後、合成物をチューブに移し、メチルァミン溶液 (40%メチルアミン水溶 液(フル力社製 75590)と、 33%メチルアミン'エタノール溶液(フル力社製 75580 )との等量混合液を 1. 5ml添カ卩し、 35°Cで 6時間のインキュベートをし、前記核酸プ
Figure imgf000068_0001
、た不純物を除去した。
前記チューブを氷上で冷やした後、前記チューブを注意深く開け、上清を回収し、 凍結乾燥した。該凍結乾燥後、 1Mのテトラプチルアンモ -ゥム 'テトラヒドロフラン (T HF)溶液 lmlを、前記チューブに添加し、 50°Cで 10分間の浸盪をし、 35°Cに冷却 後、再び 6時間浸盪し、前記核酸プローブについた前記保護基を除去した。
[0165] 核酸プローブの精製
NAP— 25カラム(フアルマシア社製)を蒸留水 15mlで平衡ィ匕した後、前記核酸プ ローブ溶液 2mlを前記 NAP— 25カラムに加えた。前記核酸プローブ溶液を完全に 前記 NAP— 25カラムに浸透させた後、蒸留水 0. 5mlをカ卩え、いわゆるゲルろ過を行 い、不純物を除去した。更に蒸留水 3mlを用いて、脱塩した前記核酸プローブを溶 出し 7こ。
[0166] 前記ゲルろ過した核酸プローブを凍結乾燥した後、 7Mの尿素を含有した 8%ポリ アクリルアミドゲル電気泳動により精製した。前記電気泳動後、 UV照射することによ り、前記核酸プローブのバンドを確認し、この分画を切り出した。該分画を遠心管に 入れ、ガラス棒を用いてゲルを粉砕し、水を 10mlカ卩え、 37°Cで 6時間の浸盪をした。 透析後、凍結乾燥処理を行い固化物を得た。該固化物を蒸留水 0. 4mlに溶解した 後、 -20°Cで冷凍保存した。
[0167] —ハイブリダィゼーシヨン及び切断活性反応—
前記標的核酸として、下記配列 6に示す 22ntのオリゴヌクレオチドと、下記配列 7に 示す 22ntのオリゴヌクレオチドとを用意した。これらのオリゴヌクレオチドは、それぞれ 大腸菌 K12— MG1655の 16Sリボソーム RNA326— 347領域の RNA配列と、それ を DNAに置き換えた DNA配列である。
[0168] (配列 6)
5, -GACACGGTCCAGACTCCTACGG-3 '
(配列 7)
5,— GACACGGUCCAGACUCCUACGG - 3 '
[0169] 前記標的核酸 500pmol水溶液、又は添加しな ヽ水溶液(2種)と、前記配列 3の核 酸プローブ水溶液と、前記配列 4の核酸プローブ水溶液との 2種を、それぞれ ΙΟΟρ molずつ下記組合せで混合し、 25mM塩化マグネシウム 50mMトリスー HC1緩衝溶 液 (pH7. 2) 100 1中に添カロし、 3時間インキュベートした(マグネシウムイオン濃度 は 25mMである)。この反応液をアクリルアミド電気泳動にて解析し、切断されている バンドをデンシトグラフ (ATTO社製)を用いて測定した。
[0170] 前記配列 3の核酸プローブ (TASC1プローブ)の水溶液のみが添加された反応液 では、 Kobs—は、 1. 9 X 10— 3min— 1であった。また、前記配列 3の核酸プローブと、前 記配列 6の標的核酸とを添カ卩した場合では、 Kobs+は、 5. 3 X 10— 3min_1であった。 ァロステリックエフェクターとしてのパラメータ: Kobs+/Kobs—は、 3であり、前記切断 活性領域による前記切断部の自己切断が、前記標的核酸のみでも生じてしまうこと が判った。
前記配列 4の核酸プローブ(Locked TASC2プローブ: 5 '末端の配列が 3 ' GAA AAA5'である)の水溶液のみ添加された反応液では、前記 Kobs—は、 1. 0 X 10— 5 min— 1以下であり、前記配列 4の核酸プローブと、前記配列 6の標的核酸とを添加し た場合では、 Kobs+は、 4. 4 X 10— 3min— 1であった。ァロステリックエフェクターとして のパラメータ: Kobs+ZKobs—は 440以上であった。また、反応時間を 24時間とした 場合、前記配列 4の核酸プローブのみ添加された反応液における自己切断は 3%以 下であった。この結果から、前記ステムループ構造を有すると、前記標的核酸にハイ ブリダィゼーシヨンする前にお 1ヽては、前記切断活性領域による前記切断部の切断 が生じてしまう擬陽性反応が改善されることが判った。
[0171] (実施例 3)
実施例 2にお 、て、前記配列 3の核酸プローブ及び前記配列 6の標的核酸を用い ず、前記配列 4の核酸プローブ (Locked TASC2プローブ)、前記配列 5の核酸プ ローブ (Locked TASC3プローブ)、下記配列 8の核酸配列(前記配列 5の核酸プ ローブとの相補鎖にぉ 、て 2塩基相違)及び下記配列 9の標的核酸 (前記配列 5の核 酸プローブとの相補鎖において 1塩基相違)を用いた以外は、実施例 2と同様にして
、前記標的核酸を検出した。
[0172] (配列 8)
5, -GACACTGTCCAGACACCTACGG-3 '
[0173] (配列 9)
5, -GACACTGTCCAGACTCCTACGG-3 '
[0174] 前記配列 8の標的核酸は、前記核酸プローブの相補鎖部分と 2つ塩基配列が異な つており、前記配列 9の標的核酸は、前記核酸プローブの相補鎖部分と 1つ塩基配 列が異なっている。
[0175] 前記配列 4の核酸プローブ(Locked TASC2プローブ)の溶液と、前記配列 6の 標的核酸溶液とが添加された反応液では、 Kobs (full+)力 4. 4 X 10— 3min— 1であ り、前記配列 4の核酸プローブ (Locked TASC2プローブ)の溶液と、前記配列 8の 標的核酸溶液とが添加された反応液では、 Kobs (l-mis+) 1S 4. O X 10一3 min一1で あり、前記配列 4の核酸プローブ (Locked TASC2プローブ)の溶液と、前記配列 9 の標的核酸を添カ卩した反応液では、 Kobs(2— mis+)が、 1. 0 X 10— 5未満であった。
[0176] 前記配列 5の核酸プローブ (Locked TASC3プローブ)溶液と、前記配列 6の標 的核酸溶液とが添加された反応液では、 Kobs (full) 1S 4. 3 X 10— 3min— 1であり、 前記配列 5の核酸プローブ(Locked TASC3プローブ)溶液と、前記配列 8の標的 核酸とが添加された反応液では、 Kobs (l-mis+)が、 1 X 10— 5min— 1以下であり、前 記配列 5の核酸プローブ(Locked TASC3プローブ)溶液と、前記配列 9の標的核 酸とが添加された反応液では、 Kobs (2-mis + )が、 1. 0 X 10— 5以下であった。ァロ ステリックエフェクターとしてのパラメータ: Kobs (full) /Kobs" ( 1一 mis+)は 440以 上であった。
以上の結果から、前記配列 5の核酸プローブ (Locked TASC3プローブ)は、前 記標的核酸が 1塩基でも異なれば反応せず、前記標的核酸に対する選択性が極め て高ぐ該標的核酸とハイブリダィゼーシヨンする領域の塩基配列数としては、 8 + 8 ( 2ケ所) = 16 (合計)が特に好ま 、ことが判った。
[0177] (実施例 4)
実施例 3において、前記配列 5の核酸プローブ (Locked TASC3プローブ)溶液 を用い、前記配列 4の核酸プローブ(Locked TASC2プローブ)を用いず、 25mM 塩化マグネシウム 50mMトリスー HCL緩衝溶液(pH7. 2) 100 1の代わりに、 900m Mの NaC150mMトリスー HCL緩衝溶液(pH7. 2) 100 1を等量用いた以外は、実 施例 2と同様にして、前記配列 5の核酸プローブ(Locked TASC3プローブ)溶液と 、前記配列 6の標的核酸溶液とを反応させ、反応液をフルォロセイン 96ゥエルミクロ プレート(コ一-ング社製)にスポットし、蛍光イメージヤー(バルサドク 3000 フルォ ロセイン イメージヤー、バイオラドネ土製)で、観察した。結果を図 10に示した。
この結果から、前記核酸プローブは、マグネシウムイオンが存在する場合には、前 記切断活性領域の切断活性が生じたが(図 10のレーン 1参照)、ナトリウムイオンが 存在する場合には、前記切断活性領域の切断活性が生じない(図 10のレーン 2参照 )ことが判った。
[0178] (実施例 5)
E. coliを、菌懸濁液の OD の値が 0. 5になるまで培養し、 167 μ 1の前記菌懸濁
600
液を 4000rpm、 10分間で遠心分離した後、上清を除去し、沈殿した菌体を 4%のパ ラホルムアルデヒドで 1時間固定し、 PBSで洗浄し、 1 μ Μの前記配列 5の核酸プロ ーブ(Locked TASC3プローブ)のトリス— HC1緩衝液(50mM、 pH7. 2、 0. 1%S DS) (25mM MgCl又は 0. 9Mの NaCl、前記 10 Mのヘルパーオリゴヌクレオチ ド又は何も含有しな ヽを含む)を調整した。この混合液(3種:前記 25mMの MgClが 存在し、前記ヘルパーオリゴヌクレオチド水溶液力 添加されない混合液、前記 0. 9 Mの NaClが存在し、前記ヘルパーオリゴヌクレオチド水溶液とを添カ卩した混合液、 前記 25mMの MgClが存在し、前記ヘルパーオリゴヌクレオチド水溶液とを添カ卩した 混合液)を、 37°Cでインキュベートした。 3 1の前記混合液を数回遠心し、蛍光顕微 鏡 (KSォリンパス社製)を用いて観察した。
前記ヘルパーオリゴヌクレオチドの塩基配列を下記配列 10及び 11に示す。
[0179] (配列 10)
3, -GTCGGTGTGACCTTGACTCT-5 '
[0180] (配列 11)
3, -CCCTCCGTCGTCACCCCTTA-5 '
[0181] この結果を図 11に示した。図 11の a (左写真)は、前記ヘルパーオリゴヌクレオチド 水溶液が添加されず、前記 MgCl水溶液を添加した混合液の画像であり、全く発光 が観られな力つた。図 11の b (中央写真)は、前記ヘルパーオリゴヌクレオチド水溶液 と、前記 NaCl水溶液とを添加した混合液の画像であり、弱い蛍光のみが観測された 。図 11の c (右写真)は、前記ヘルパーオリゴヌクレオチド水溶液と、前記 MgCl水溶 液とを添加した混合液の画像であり、強 、発光が確認された。
この結果から、前記核酸プローブは、細菌類の細胞に導入することができ、前記へ ルパーオリゴヌクレオチドと、前記 MgClとを添加(マグネシウムイオンが存在)するこ とにより、発光が増幅されることが確認された。
[0182] (実施例 6) 実施例 2にお 、て、下記配列 12— 15の塩基配列を持つ核酸プローブを設計した 以外は、実施例 2と同様にして実施例 6の核酸プローブを合成した。
[0183] (配列 12)
5, -AAAAAGCCGTAGGAGTGCTAGTCTTTTT-3 '
[0184] (配列 13)
5, -CCGTAGGAGTGCTTTTTAGCGGACCGTGTC-3 '
[0185] (配列 14)
5, -AAAAAGCCGTAGGAGTGCTA-3 '
[0186] (配列 15)
5, -GAAGCGGACCGTGTC-3 '
[0187] 前記配列 12— 15の核酸プローブは、前記配列 4及び前記配列 5の核酸プローブ( ステムループ構造を有する)のモデルとなる核酸プローブである。
[0188] 前記標的核酸として、以下の配列を持つオリゴヌクレオチドを用意した。
[0189] (配列 16)
5, -GGCATCCTCAGACCTGGCACAG-3 '
[0190] (配列 17)
5, -CATCCTCAGACCTGGCAC-3 '
[0191] 前記配列 13の核酸プローブは、前記配列 16の標的核酸とハイブリダィゼーシヨン する塩基配列数は、 10 + 10 (2ケ所) = 20 (合計)であり、また、前記配列 17の標的 核酸とハイブリダィゼーシヨンする塩基配列数は、 8 + 8 (2ケ所) = 16 (合計)であつ た。
実施例 2において、前記配列 3— 5との核酸プローブを前記配列 12— 15の核酸プ ローブに、前記配列 6— 7の標的核酸を前記配列 16— 17の標的核酸に代え、温度 条件を変化させ、以下に示す前記核酸プローブと前記標的核酸との組合せで反応 液を組成した以外は、実施例 2と同様にして、前記反応液を 260nmの吸光度を測定 した。吸光度と温度との関係を図 13に示した。
[0192] 前記配列 12の核酸プローブは、標的核酸にハイブリダィゼーシヨンする前におい ては、完全なステムループ構造を有し(図 12A)、図 13に示す線 1のカーブにおける 中心の Tm値は、 43°Cであった。この結果から、前記配列 4の核酸プローブと前記配 列 5の核酸プローブとにおけるステムループ構造は、温度耐久性があることが判った 前記配列 13の核酸プローブと、前記配列 16の標的核酸とをノ、イブリダィゼーシヨン させた結果を図 13の線 2で表し、前記配列 13の核酸プローブと、前記配列 17の標 的核酸とをハイブリダィゼーシヨンさせた結果を線 3で表した(図 12Bの形態である)。 前記線 2のカーブにおける中心の Tm値は、 62°Cであり、前記線 3のカーブにおける 中心の Tm値は、 53°Cであった。
[0193] 前記配列 14及び 15の核酸プローブと、前記配列 16の標的核酸とをノ、イブリダィゼ ーシヨンさせた結果を図 13の線 4で示し、前記配列 14及び 15の核酸プローブと前記 配列 17の標的核酸とをノヽイブリダィゼーシヨンさせた結果を図 13の線 5で示した(図 12Cの形態である)。前記線 4のカーブにおける中心の Tm値は、 50°Cであり、前記 線 5のカーブにおける中心の Tm値は、 43°Cであった。
この結果から、全て Tm値は 37°C以上となり、室温ではハイブリダィゼーシヨンに問 題が生じないことが判った。
[0194] (実施例 7)
実施例 2において、下記配列 18の塩基配列を設計した以外は、実施例 2と同様に して、実施例 7の核酸プローブを合成した。
配列 18では、前記切断部としての rAは、 5'末端側力も数えて 20番目に位置して いた。また、配列 18における、 5 '末端側から 28番目の塩基 (T(dT) )として、前記消 光部としての消光物質(Q):ジメチルァミノベンゼンスルフォ-ル(DABSYL)が結合 したチミン(dT)、即ちジメチルァミノベンゼンスルフォ-ル(DABSYL)— dT (グレンリ サーチ (Glen Reserch)社製)を用い、 5'末端に、前記蛍光部としての蛍光物質 (F ):フルォロセインを結合させた、即ちフルォロセイン((グレンリサーチ(Glen Reser ch)社製)を結合させた。以上により、実施例 7における配列 18の核酸プローブを作 製した。
[0195] (配列 18)
5' CCGGACGAAGCCTAGTTGGTC-3 '
[0196] Dulbecco's培地で、 Hela細胞(子宮癌細胞)を 1日間培養し、増殖して!/、ることを 顕微鏡で確認した。それぞれ 1 X 105個/ mlの濃度であることを確認し、 100マイクロ リットルづっ 96穴プレートに分注した。 100マイクロリットルの PBSバッファーで洗浄 後、 c fos遺伝子を標的とする実施例 7の核酸プローブ(1マイクロリットル)をリポフエ クチン (インビトロゲン社製)とともに添加し、 37°Cで 1時間培養させた。蛍光スぺタト ルを蛍光顕微鏡 (KSオリンノス社製、 FV500)を用いて検出した。
[0197] コントロールとして用いた正常細胞からは発光が検出されな力つた力 前記 Hela細 胞からは顕著な蛍光増幅が観られらた。この結果から、前記核酸プローブは高等生 物の生細胞でも用いることができ、前記癌細胞と、正常細胞とを診断する上で有用な 情報を得ることができることが判った。
[0198] (実施例 8)
(実施例 8)
Dulbecco's培地で、 Hela細胞(子宮癌細胞)をそれぞれ 1日間培養し、増殖して いることを顕微鏡で確認した。 1 X 105個/ mlの濃度であることを確認し、 100マイク 口リットルづっ 96穴プレートに分注した。培養液に増殖因子 EGFとチロシンキナーゼ 阻害剤を添カ卩し、 37°Cで、 6時間培養した。 100マイクロリットルの PBSバッファーで 洗浄後、 EGFRシグナルマーカー c fos遺伝子を標的とする実施例 8の核酸プロ一 ブ(1マイクロリットル)をリポフエクチン (インビトロゲン社製)とともに添加し、 37°Cで 1 時間培養させた。蛍光スペクトルを確認を蛍光顕微鏡 (KSォリンパス社製、 FV500) を用いて検出した。コントロールとして用いたチロシンキナーゼ阻害剤を添カ卩してい ない細胞力 は発光が検出されたったが、前記チロシンキナーゼ阻害剤添加細胞か らは顕著な蛍光の増幅が観られらた。
この結果から、チロシンキナーゼ阻害剤導入後の前記 Hela細胞では、原癌遺伝子 の発現が抑制されたことが判った。本発明の核酸プローブを用いると、医薬品のスク リー-ングに有用な情報を得られることが判った。
[0199] (実施例 9)
実施例 2にお!/、て、前記配列 5の核酸プローブ(Locked TASC3プローブ)を用 い、最終濃度が ImMの MgCl水溶液、 5mMの MgCl水溶液、 10mMの MgCl水溶 液、 15mMの MgCl水溶液、 20mMの MgCl水溶液、 30mMの MgCl水溶液中で 反応させた以外は、実施例 2と同様にして、前記配列 5の核酸プローブと、前記配列 6の標的核酸を反応させ、反応液をフルォロセイン 96ゥエルミクロプレート(コーニン グ社製)にスポットし、パルサドク 3000フルォロセイン'イメージヤー(バイオラドネ土製) で観察した。
この結果から、添カ卩する MgClの好ましい濃度としては、 20mM— 30mMであるこ とが半 ljつた。
産業上の利用可能性
[0200] 本発明によると、標的核酸にハイブリダィズした核酸プローブ力 生ずる発光を増 幅させることにより、標的核酸に対する選択性が極めて高ぐ微量な標的核酸を高感 度、高精度かつ高速で検出可能であり、遺伝子診断、食中毒菌の存在検査、虫歯乃 至歯周病の診断、血液検査等に好適な核酸プローブを提供することができる。
[0201] 本発明の核酸プローブは、ウィルス、細菌、動物細胞、植物細胞などの微量な標的 核酸 (遺伝子)の検出などに特に好適であり、輸血の血液のウィルス感染を防止する 検査、神経疾患の病態分析に特に好適であり、人類の寿命及び QOLを向上させる ことができる。該核酸プローブは、酵素や試薬が不要であり、加熱等が不要で生体温 度でも機能し、前記シグナルを細胞死を与えるほど増幅させる必要がなぐ細胞を破 壊せずとも標的核酸の検出が可能である等の点で有利である。
[0202] また、本発明によると、前記核酸プローブを固定することにより、微量な標的核酸を 高感度、高精度かつ高速検出乃至分析が可能であり、遺伝子診断、食中毒菌の存 在検査、虫歯乃至歯周病の診断、血液検査等に好適な核酸チップを提供することが できる。該核酸チップは、本発明の前記核酸プローブを用いているので、該核酸プロ ーブの効果をそのまま奏することができる。
[0203] また、本発明によると、前記核酸プローブを用いることにより、微量な標的核酸を高 感度、高精度かつ高速検出乃至分析が可能な標的核酸検出方法及び標的核酸検 出装置を提供することができる。本発明の標的核酸検出方法及び標的核酸検出装 置は、通院の手間を省かせることで、僻地の患者、通院距離の長い地方及び国の患 者の QOLを向上させることができる。該標的核酸検出方法及び標的核酸検出装置 は、本発明の前記核酸プローブを用いているので、該核酸プローブによる効果をそ のまま奏することができる。
[0204] また、本発明によると、前記核酸プローブを用いることにより、薬剤の投与効果を分 析可能であり、所望の薬剤を効率良くスクリーニング可能な薬剤スクリーニング方法 を提供することができる。本発明の薬剤スクリーニング方法は、今まで得ることのでき な力つた遺伝子情報から、副作用及び作用機序を明確にさせ、ティラーメード医療を 実現させる製薬業に革命を起こし得る画期的な技術である。該薬剤スクリーニング方 法は、本発明の前記核酸プローブを用いているので、該核酸プローブによる効果を そのまま奏することができる。
[0205] また、本発明によると、前記核酸プローブを用いることにより、特定疾患の患者であ るかどうかを高効率かつ高精度で診断可能な遺伝子診断方法を提供することができ る。本発明の遺伝子診断方法は、通院の手間を省力ゝせることで、僻地の患者、通院 距離の長い地方及び国の患者の QOLを向上させることができる。該遺伝子診断方 法は、本発明の前記核酸プローブを用いているので、該核酸プローブによる効果を そのまま奏することができる。

Claims

請求の範囲
[I] 標的核酸を検出するための核酸プローブであって、
該核酸プローブは前記標的核酸にハイブリダィゼーシヨンした後構造変化を生じ、 構造変化した前記核酸プローブはハイブリダィゼーシヨンの結合力が減少し、前記 標的核酸から解離するよう設計されていることを特徴とする核酸プローブ。
[2] 前記構造変化は自己核酸酵素の形成を含む請求の範囲第 1項に記載の核酸プロ ーブ。
[3] 前記核酸プローブは標識物質を有する請求の範囲第 1項から第 2項のいずれかに 記載の核酸プローブ。
[4] 標的核酸を検出するための核酸プローブであって、
前記標的核酸の少なくとも一部の塩基配列と相補的な配列を有する相補部位と、 自己核酸酵素を形成可能な核酸酵素形成部位と、
を有することを特徴とする核酸プローブ。
[5] 前記自己核酸酵素は前記核酸プローブを特異的に切断する切断活性を有するもの である請求の範囲第 4項に記載の核酸プローブ。
[6] 前記核酸プローブ分子内でノ、イブリダィゼーシヨン可能な配列を含む分子内ハイブ リダィズ領域を有する請求の範囲第 4項力 第 5項に記載の核酸プローブ。
[7] 前記標的核酸の存在を認識容易にする標識物質を有する請求の範囲第 4項から第
6項の!/、ずれかに記載の核酸プローブ。
[8] 前記標識物質は少なくとも一対の蛍光物質と消光物質とを有する請求の範囲第 7項 に記載の核酸プローブ。
[9] 担体に固定ィ匕されている請求の範囲第 1項力 第 8項のいずれかに記載の核酸プロ ーブ。
[10] 標的核酸にハイブリダィゼーシヨン可能であり、前記標的核酸にハイブリダィゼーショ ンした際に構造が変化可能な構造可変部を有してなり、該構造可変部の構造が変 化したときに該標的核酸力 解離可能であることを特徴とする核酸プローブ。
[II] 標的核酸にハイブリダィゼーシヨン可能であり、該標的核酸にハイブリダィゼーシヨン したときに切断される切断部を有してなり、標的核酸にハイブリダィゼー に前記切断部に対する切断活性を有する切断活性領域を形成可能であることを特 徴とする核酸プローブ。
[12] 標的核酸にハイブリダィゼーシヨンした際にシグナルを発生させるシグナル発生部を 有する請求の範囲第 10項力も第 11項のいずれかに記載の核酸プローブ。
[13] 標的核酸にハイブリダィゼーシヨン可能であり、該標的核酸にハイブリダィゼーシヨン した際に、
切断されて前記標的核酸から解離可能な第一プローブ断片及び第二プローブ断 片を生成する切断部と、
シグナルを発生させるシグナル発生部と、
を有してなることを特徴とする核酸プローブ。
[14] シグナル発生部が、第一プローブ断片及び第二プローブ断片が標的核酸力 解離 した時、シグナルを発生させる請求の範囲第 12項力も第 13項のいずれかに記載の 核酸プローブ。
[15] シグナル発生部力 発光を生ずる発光部と、該発光部に隣接して位置しているときは 該発光部の発光を消光させる消光部とを含む請求の範囲第 12項から第 14項のいず れかに記載の核酸プローブ。
[16] 発光部が第一プローブ断片に存在し、消光部が第二プローブ断片上に存在する請 求の範囲第 15項に記載の核酸プローブ。
[17] 標的核酸にハイブリダィゼーシヨンするまでは、分子内で一部が互いにノ、イブリダイ ゼーシヨンしてロック構造を形成している請求の範囲第 1項力も第 16項のいずれかに 記載の核酸プローブ。
[18] 標的核酸にハイブリダィゼーシヨン可能であり、該標的核酸にハイブリダィゼーシヨン したときに切断される切断部を有し、標的核酸にハイブリダィゼーシヨンするまでは、 分子内で一部が互いにハイブリダィゼーシヨンしてロック構造を形成して 、ることを特 徴とする核酸プローブ。
[19] ロック構造が、ステムループ構造、ヘアピン構造、及びインターナルループ構造から 選択される少なくとも 1種である請求の範囲第 17項力も第 18項のいずれかに記載の 核酸プローブ。
[20] ロック構造において分子内ハイブリダィゼーシヨンが生じている分子内ハイブリダィゼ ーシヨン領域の内、一方の相補鎖の塩基配列数力 3— 8ntである請求の範囲第 17 項力 第 19項のいずれかに記載の核酸プローブ。
[21] 標的核酸にハイブリダィゼーシヨンした際に、分子内で一部が互いにハイブリダィゼ ーシヨン可能な分子内ハイブリダィゼーシヨン領域を有する請求の範囲第 1項力 第
20項の!/、ずれかに記載の核酸プローブ。
[22] 分子内ハイブリダィゼーシヨン領域が、 2以上存在し、該領域の内、切断部を間にし て互いに隣接して位置する 2つの内の一方を Yとし、他方を Zとしたとき、 Y及び Zの 合計の塩基配列数が、 2— 12ntである請求の範囲第 21項に記載の核酸プローブ。
[23] Yの塩基配列数が 1一 8であり、 Zの塩基配列数が 1一 8である請求の範囲第 22項に 記載の核酸プローブ。
[24] 標的核酸と相補的な塩基配列を少なくとも 2つ有し、該少なくとも 2つの相補的な塩 基配列における塩基数が 6— 10である請求の範囲第 1項力も第 23項のいずれかに 記載の核酸プローブ。
[25] 切断部がヌクレオチドで形成されており、該ヌクレオチドにおける糖力 ^ボースである 請求の範囲第 11項、第 13項及び第 18項のいずれかに記載の核酸プローブ。
[26] 標的核酸にハイブリダィゼーシヨンした際に、切断部に対する切断活性を示す切断 活性領域を形成可能な請求の範囲第 11項、第 13項及び第 18項のいずれかに記載 の核酸プローブ。
[27] 切断活性領域が、 DNAザィム活性、 RNAザィム活性及びリボザィム活性の少なくと もいずれか有する請求の範囲第 26項に記載の核酸プローブ。
[28] 切断活性領域が、金属イオンと相互作用することにより、切断部に対する切断活性を 示す請求の範囲第 27項に記載の核酸プローブ。
[29] 金属イオンが、マグネシウムイオンである請求の範囲第 28項に記載の核酸プローブ
[30] 発光部が発光物質を有し、消光部が消光物質を有してなり、
該発光物質と該消去物質との組合せ力 フルォロセインイソチオシァネート (FITC )とテトラメチルローダミンイソチオシァネート(TRITC)との組合せ、ジメチルァミノべ ンゼンスルフォ-ル(DABSYL)とフルォロセインとの組合せ、から選択される請求の 範囲第 15項力も第 29項のいずれかに記載の核酸プローブ。
[31] 請求の範囲第 1項力 第 30項のいずれかに記載の核酸プローブを担体に固定して なることを特徴とする核酸チップ。
[32] 核酸プローブを用いて標的核酸を検出する核酸検出方法であって、
前記核酸プローブは前記標的核酸にハイブリダィゼーシヨンした後構造変化を生じ 、構造変化した前記核酸プローブはハイブリダィゼーシヨンの結合力が減少し前記 標的核酸から解離するよう設計されていることを特徴とする標的核酸検出方法。
[33] 前記構造変化は自己核酸酵素の形成を含む請求の範囲第 32項に記載の標的核酸 検出方法。
[34] 前記核酸プローブは標識物質を有し、該標識物質力 発せられるシグナルは前記核 酸プローブが前記標的核酸力 解離する前後で異なるものである請求の範囲第 32 項力も第 33項のいずれかに記載の標的核酸検出方法。
[35] 標的核酸の少なくとも一部の塩基配列と相補的な配列を有する相補部位と、自己核 酸酵素を形成可能な核酸酵素形成部位と、を有する核酸プローブを用いる標的核 酸の検出方法であって、
標的核酸に前記核酸プローブを相補的に結合させるハイブリダィゼーシヨン工程と ハイブリダィゼーシヨン形成の後、前記自己核酸酵素が形成され前記核酸プローブ の構造が変化し、その結果ハイブリダィゼーシヨンの結合力が減少して該核酸プロ一 ブが前記標的核酸力 解離する解離工程と、
前記解離工程で解離した前記核酸プローブの少なくとも一部を検出する検出工程 と、
を有することを特徴とする標的核酸検出方法。
[36] 前記自己核酸酵素により前記核酸プローブが切断される請求の範囲第 35項に記載 の核酸検出方法。
[37] 前記核酸プローブが担体に固定されている請求の範囲第 35項力も第 36項のいず れかに記載の標的核酸検出方法。
[38] 請求の範囲第 1項力 第 30項のいずれかに記載の核酸プローブを標的核酸にハイ ブリダィゼーシヨンさせるハイブリダィゼーシヨン工程と、
該標的核酸にハイブリダィゼーシヨンした際に前記核酸プローブ力 発生したシグ ナルを検出することにより該標的核酸の存在を検出する標的核酸検出工程と、 を含むことを特徴とする標的核酸検出方法。
[39] 標的核酸検出工程が、標的核酸にハイブリダィゼーシヨンした際に前記核酸プロ一 ブが切断されて生じた、第一プローブ断片及び第二プローブ断片の内、該第一プロ ーブ断片に存在する発光部の発光を検出することにより前記標的核酸の存在を検出 する請求の範囲第 38項に記載の標的核酸検出方法。
[40] 標的核酸が、細胞内に存在する核酸及びウィルスの核酸のいずれかである請求の 範囲第 38項力も第 39項のいずれかに記載の標的核酸検出方法。
[41] 標的核酸とのハイブリダィゼーシヨン力 ヘルパーオリゴヌクレオチドの存在下で行わ れる請求の範囲第 38項力も第 40項に記載の標的核酸検出方法。
[42] 請求の範囲第 1項力も第 23項のいずれかに記載の核酸プローブを、薬剤投与により 発現した標的核酸にハイブリダィゼーシヨンさせるハイブリダィゼーシヨン工程と、 該標的核酸にハイブリダィゼーシヨンした際に前記核酸プローブ力 発生したシグ ナルの有無を検出することにより該標的核酸の存在の有無を検出する標的核酸検出 工程と、
を含み、
前記標的核酸の存在の有無により薬剤をスクリーニングすることを特徴とする薬剤 スクリーニング方法。
[43] 標的核酸検出工程が、標的核酸にハイブリダィゼーシヨンした際に前記核酸プロ一 ブが切断されて生じた、第一プローブ断片及び第二プローブ断片の内、該第一プロ ーブ断片に存在する発光部の発光を検出することにより前記標的核酸の存在を検出 する請求の範囲第 42項に記載の薬剤スクリーニング方法。
[44] 試料中の標的核酸を検出するための核酸プローブが担体に固定された核酸分析用 デバイスであって、
前記核酸プローブは標的核酸にハイブリダィゼーシヨンした後構造変化を生じ、構 造変化した前記核酸プローブはハイブリダィゼーシヨンの結合力が減少し前記標的 核酸から解離するよう設計されていることを特徴とする標的核酸検出装置。
[45] 前記構造変化は自己核酸酵素の形成を含む請求の範囲第 44項に記載の標的核酸 検出装置。
[46] 前記核酸プローブは前記標的核酸を認識容易にする標識物質を有する請求の範囲 第 44項力も第 45項のいずれかに記載の標的核酸検出装置。
[47] 試料中の標的核酸を検出するための核酸分析用デバイスであって、
前記標的核酸の少なくとも一部の塩基配列と相補的な配列を有する相補部位と、 自己核酸酵素を形成可能な核酸酵素形成部位と、
を有する核酸プローブが担体上に固定されていることを特徴とする標的核酸検出装
[48] 前記自己核酸酵素は前記核酸プローブを特異的に切断する切断活性を有するもの である請求の範囲第 47項に記載の標的核酸検出装置。
[49] 前記核酸プローブは分子内でノヽイブリダィゼーシヨン可能な配列を含む分子内ハイ ブリダィゼーシヨン領域を有する請求の範囲第 44項力も第 48項のいずれかに記載 の標的核酸検出装置。
[50] 前記核酸プローブは前記標的核酸を認識容易にする標識物質を備える請求の範囲 第 44項力も第 49項のいずれかに記載の標的核酸検出装置。
[51] 請求の範囲第 1項力 第 30項のいずれかに記載の核酸プローブを標的核酸にハイ ブリダィゼーシヨンさせるハイブリダィゼーシヨン手段と、
該標的核酸にハイブリダィゼーシヨンした際に前記核酸プローブ力 発生したシグ ナルを検出することにより該標的核酸の存在を検出する標的核酸検出手段と、 を含むことを特徴とする標的核酸検出装置。
[52] 標的核酸検出手段力 標的核酸にノ、イブリダィゼーシヨンした際に前記核酸プロ一 ブが切断されて生じた、第一プローブ断片及び第二プローブ断片の内、該第一プロ ーブ断片に存在する発光部の発光を検出することにより前記標的核酸の存在を検出 する請求の範囲第 51項に記載の標的核酸検出装置。
[53] 遺伝子情報データベースを格納するデータベース部と、標的核酸検出手段の検出 結果データと、前記データベース部に格納された遺伝子情報データとを比較し分析 するデータ分析部と、を有する請求の範囲第 51項力も第 52項のいずれかに記載の 標的核酸検出装置。
[54] インターネットに通信可能であり、該インターネット上の遺伝子情報データベースにァ クセス可能な通信部と、標的核酸検出手段の検出結果データと、前記インターネット 上の遺伝子情報データベースの遺伝子情報データとを比較し分析するデータ分析 部と、を有する請求の範囲第 51項力も第 53項のいずれかに記載の標的核酸検出装
[55] 遺伝子情報データベースが、特定の疾患に関する、健常人の遺伝子情報と患者の 遺伝子情報とを含む請求の範囲第 51項力も第 54項のいずれかに記載の標的核酸 検出装置。
[56] 標的核酸検出手段が、標的核酸の量を定量する請求の範囲第 55項に記載の標的 核酸検出装置。
[57] 請求の範囲第 56項に記載の標的遺伝子検出装置を用い、
被検者における、特定疾患に関する標的核酸の発現量を定量する標的核酸発現 量定量ステップと、
該被検者における前記特定疾患に関する標的核酸の発現量と、遺伝子情報デー タベースに含まれる、該特定疾患に関する標的核酸の健常人の発現量及び患者の 発現量とをデータ分析部により比較し、該被検者が前記特定疾患の患者である力否 かを診断する診断ステップと、
を含むことを特徴とする遺伝子診断方法。
[58] 診断ステップにおいて、特定疾患に関する標的遺伝子の、患者の発現量を Mとし、 健常人の発現量を Sとし、被検者の発現量を XIとしたとき、 (Xi-S/M-S)≥0. 9、 を満たすとき、該被検者を前記特定疾患の患者であると診断する請求の範囲第 57 項に記載の遺伝子診断方法。
PCT/JP2004/013740 2003-09-22 2004-09-21 核酸プローブ、核酸チップ、標的核酸検出方法、薬剤スクリーニング方法、標的核酸検出装置及び遺伝子診断方法 WO2005028647A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04787923A EP1717313A4 (en) 2003-09-22 2004-09-21 NUCLEIC ACID PROBE, NUCLEIC ACID CHIP, METHOD FOR DETECTION OF TARGET NUCLEIC ACID, METHOD FOR DETECTING MEDICINE, APPARATUS FOR DETECTING TARGET NUCLEIC ACID, AND GENE DIAGNOSTIC METHOD
JP2005514080A JPWO2005028647A1 (ja) 2003-09-22 2004-09-21 核酸プローブ、核酸チップ、標的核酸検出方法、薬剤スクリーニング方法、標的核酸検出装置及び遺伝子診断方法
US11/384,858 US20080124706A1 (en) 2003-09-22 2006-03-21 Nucleic acid probe, nucleic acid chip, method for detecting target nucleic acid, method for screening drug, apparatus for detecting target nucleic acid, and, gene diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-329619 2003-09-22
JP2003329619 2003-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/384,858 Continuation US20080124706A1 (en) 2003-09-22 2006-03-21 Nucleic acid probe, nucleic acid chip, method for detecting target nucleic acid, method for screening drug, apparatus for detecting target nucleic acid, and, gene diagnosis method

Publications (1)

Publication Number Publication Date
WO2005028647A1 true WO2005028647A1 (ja) 2005-03-31

Family

ID=34372965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013740 WO2005028647A1 (ja) 2003-09-22 2004-09-21 核酸プローブ、核酸チップ、標的核酸検出方法、薬剤スクリーニング方法、標的核酸検出装置及び遺伝子診断方法

Country Status (4)

Country Link
US (1) US20080124706A1 (ja)
EP (1) EP1717313A4 (ja)
JP (1) JPWO2005028647A1 (ja)
WO (1) WO2005028647A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126212A (ja) * 2016-01-14 2017-07-20 富士通株式会社 パスウェイ解析プログラム、パスウェイ解析方法、及び、情報処理装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092980A1 (en) * 2008-10-02 2010-04-15 Blood Systems, Inc. Reagent for elimination of red blood cells and hemoglobin in a sample
US8470308B2 (en) * 2009-01-03 2013-06-25 Ray C. Wasielewski Enhanced medical implant comprising disrupted tooth pulp and tooth particles
US10328103B2 (en) 2009-01-03 2019-06-25 Ray C. Wasielewski Medical treatment composition comprising mammalian dental pulp stem cells
WO2010147673A2 (en) * 2009-06-19 2010-12-23 University Of Florida Research Foundation, Inc. Single-dna molecule nanomotor regulated by photons
JP5936541B2 (ja) * 2010-07-16 2016-06-22 日本碍子株式会社 識別対象を識別するための識別情報の保持体及びその利用
US20160202154A1 (en) * 2013-09-05 2016-07-14 Nec Solution Innovators, Ltd. Method for producing sample and method for analyzing target
JP7035972B2 (ja) * 2018-11-09 2022-03-15 横河電機株式会社 核酸配列計測用デバイス
CN115232616B (zh) * 2022-06-30 2023-10-03 昆明学院 基于防己诺林碱碳点的比率型荧光探针的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502250A (ja) * 1987-11-24 1990-07-26 ジェン―プローブ・インコーポレイテッド 核酸ハイブリダイゼーションの増進手段および方法
JPH02257898A (ja) * 1988-09-30 1990-10-18 Gene Trak Syst Rnaの鋳型の末端に結合したプローブ構造およびその使用方法
JP2002508770A (ja) * 1997-06-26 2002-03-19 フアーマシア・アンド・アツプジヨン・アー・ベー Ucp−2の調節を変化させることが可能な薬剤の使用および肥満に対抗する可能性のある薬剤のスクリーニング方法
JP2002186485A (ja) * 2000-12-22 2002-07-02 Shiseido Co Ltd エオタキシン、RANTES又はβ−ディフェンシン−2の核酸の測定方法及びそのための試薬、並びに抗炎症剤のスクリーニング方法
WO2002068683A2 (en) * 2001-02-27 2002-09-06 Virco Bvba Circular probe amplification (cpa) using energy-transfer primers
JP2003508853A (ja) * 1999-08-27 2003-03-04 アイリス・バイオ・テクノロジーズ・インコーポレイテッド 遺伝子分析用人工知能システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118801A (en) * 1988-09-30 1992-06-02 The Public Health Research Institute Nucleic acid process containing improved molecular switch
DE69331911T2 (de) * 1992-12-04 2002-11-21 Ribozyme Pharmaceuticals, Inc. Diagnose mittels signalverstärkung durch ein ribozym

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502250A (ja) * 1987-11-24 1990-07-26 ジェン―プローブ・インコーポレイテッド 核酸ハイブリダイゼーションの増進手段および方法
JPH02257898A (ja) * 1988-09-30 1990-10-18 Gene Trak Syst Rnaの鋳型の末端に結合したプローブ構造およびその使用方法
JP2002508770A (ja) * 1997-06-26 2002-03-19 フアーマシア・アンド・アツプジヨン・アー・ベー Ucp−2の調節を変化させることが可能な薬剤の使用および肥満に対抗する可能性のある薬剤のスクリーニング方法
JP2003508853A (ja) * 1999-08-27 2003-03-04 アイリス・バイオ・テクノロジーズ・インコーポレイテッド 遺伝子分析用人工知能システム
JP2002186485A (ja) * 2000-12-22 2002-07-02 Shiseido Co Ltd エオタキシン、RANTES又はβ−ディフェンシン−2の核酸の測定方法及びそのための試薬、並びに抗炎症剤のスクリーニング方法
WO2002068683A2 (en) * 2001-02-27 2002-09-06 Virco Bvba Circular probe amplification (cpa) using energy-transfer primers

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CLOAD S.T. ET AL.: "Kinetic and thermodynamic analysis of RNA binding by tethered oligonucleotides probes: Alternative structures and confomational changes", J.AM.CHEM.SOC., vol. 115, 1993, pages 5505 - 5014, XP000910296 *
HARRIS M.E. ET AL.: "Identification of phosphates involved in catalysis by the ribozyme RNase P RNA", RNA, vol. 1, no. 2, 1995, pages 210 - 218, XP000609328 *
MONFORTE J.A. ET AL.: "RNA folding during transcription by Escherichia coli RNA polymerase analyzed by RNA self-cleavage", BIOCHEMISTRY, vol. 29, no. 34, 1990, pages 7882 - 7890, XP002986219 *
SANDO S. ET AL.: "Amplified nucleic acid sensing using programmed self-cleaving DNAzyme", J. AM. CHEM. SOC., vol. 125, no. 51, December 2003 (2003-12-01), pages 15720 - 15721, XP002986218 *
SASAKI Y. ET AL.: "Saibonai idenshi chindan o kano ni suru kinosei kakusan probe no sekkei", ABSTRACTS, SYMPOSIUM ON BIOFUNCTIONAL CHEMISTRY, vol. 18, 1 October 2003 (2003-10-01), pages 556 - 557, XP002986217 *
See also references of EP1717313A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126212A (ja) * 2016-01-14 2017-07-20 富士通株式会社 パスウェイ解析プログラム、パスウェイ解析方法、及び、情報処理装置

Also Published As

Publication number Publication date
US20080124706A1 (en) 2008-05-29
EP1717313A4 (en) 2007-11-14
JPWO2005028647A1 (ja) 2006-11-30
EP1717313A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US11021737B2 (en) Compositions and methods for analyte detection
JP4035589B2 (ja) 修飾バックボーンを有するアンチセンスプローブと核酸の液中ハイブリッド形成
CN102912036B (zh) 快速检测和鉴定生物物体的方法
CN104372076B (zh) 用于核酸指数式扩增的切口和延长扩增反应
KR102026096B1 (ko) 핵산 검출용 형광핵산나노구조체-그래핀 바이오센서
US20070148690A1 (en) Analysis of gene expression profiles using sequential hybridization
AU2015280326A1 (en) On-slide staining by primer extension
US20080124706A1 (en) Nucleic acid probe, nucleic acid chip, method for detecting target nucleic acid, method for screening drug, apparatus for detecting target nucleic acid, and, gene diagnosis method
CN106319089B (zh) lncRNA在缺血性脑卒中诊断中的应用
CN110499359A (zh) 一种快速鉴别日本血吸虫,曼式血吸虫,东毕吸虫的lf-rpa方法及其应用
CN109735624A (zh) 基因标志物在甲状腺癌诊断中的应用
KR101663136B1 (ko) 색소옥수수 판별용 특이 ssr 프라이머 및 이의 용도
RU2720255C1 (ru) Способы и наборы для выявления мучнистой росы
CHUNG et al. A rapid molecular method for diagnosing epidemic dermatophytosis in a racehorse facility
KR102366553B1 (ko) CRISPR-Cas 시스템과 RT-LAMP용 프라이머 세트를 이용한 SARS-CoV-2의 검출 방법
KR102526656B1 (ko) 핵산 검출 방법
EP3597770A1 (en) Dna chip for detecting dental caries bacteria
KR102639331B1 (ko) SPF(specific pathogen free) 넙치 판정을 위한 감염성 바이러스 검출 및 판별 방법
KR102142137B1 (ko) 광견병 바이러스 및 백신주를 감별하기 위한 프라이머 및 이를 이용한 광견병 바이러스 및 백신주의 감별방법
KR101967733B1 (ko) 테트라사이클린계 항생제 내성균 판별용 pna 프로브 및 이를 이용한 항생제 내성균 판별 방법
Khare et al. Salivary DNA for sex determination and forensic individualization
CN108251531A (zh) Ensg00000267549在判断骨肉瘤转移中的应用
KR20200026356A (ko) 광견병 바이러스 및 백신주를 감별하기 위한 프라이머 및 프로브, 및 이를 이용한 광견병 바이러스 및 백신주의 감별방법
JP2004008084A (ja) ヒトabcトランスポーター遺伝子を検出するためのプライマーセットおよび検出方法
JP2004057058A (ja) プレボテラ・インターメディアの検出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005514080

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004787923

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004787923

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11384858

Country of ref document: US