WO2005026531A1 - Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine - Google Patents

Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine Download PDF

Info

Publication number
WO2005026531A1
WO2005026531A1 PCT/EP2004/051605 EP2004051605W WO2005026531A1 WO 2005026531 A1 WO2005026531 A1 WO 2005026531A1 EP 2004051605 W EP2004051605 W EP 2004051605W WO 2005026531 A1 WO2005026531 A1 WO 2005026531A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection valve
piston
valve according
injection
actuator
Prior art date
Application number
PCT/EP2004/051605
Other languages
English (en)
French (fr)
Inventor
Robert Kuchler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE112004001488T priority Critical patent/DE112004001488D2/de
Publication of WO2005026531A1 publication Critical patent/WO2005026531A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/704Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with actuator and actuated element moving in different directions, e.g. in opposite directions

Definitions

  • Injection valve for injecting fuel into an internal combustion engine
  • the invention relates to an injection valve for injecting fuel into an internal combustion engine according to the preamble of claim 1.
  • Accumulator injection systems are increasingly used for the fuel supply of internal combustion engines, in which very high injection pressures are used.
  • Such injection systems are known as common rail systems (for diesel engines) and HPDI injection systems (for gasoline engines).
  • the fuel is common to all cylinders of the engine using a high-pressure pump
  • Pressure accumulator promoted from which the injectors on the individual cylinders are supplied with fuel.
  • the opening and closing of the injection valves is usually controlled electromagnetically.
  • the injection valves in such systems are equipped with switchable actuators, some with piezoelectric actuators, which control the opening and closing of the nozzle needle of the injection valve, that is to say in particular the timing of the beginning and end of the injection process.
  • the object of the invention is to provide an injection valve whose drive mechanism ensures reliable actuation of the nozzle needle in a compact design.
  • the drive mechanism as a double-piston arrangement according to the invention, it is possible to make this drive effecting the reversal of movement particularly compact.
  • the double-acting pistons of this piston arrangement according to the invention always ensure the same efficiency of the drive.
  • FIG. 1 shows a partial schematic longitudinal section through a first embodiment of an injection valve according to the invention and Figure 2 is a view according to Figure 1, but illustrating a second embodiment of the invention.
  • the illustrated injection valves each consist essentially of a valve housing 1, a nozzle body 3 connected to the valve housing 1 via a union nut 2 and an actuator 4 arranged in the valve housing 1, which is preferably in the form of a valve body 1 piezoelectric actuator is formed.
  • the actuator 4 serves to move nozzle needles 6, which are axially movably mounted in a bore 5 of the nozzle body 3, between a position that does not show injection bores and a position closing these injection bores.
  • nozzle needles 6a and 6b are axially movable in the nozzle body 3, namely an inner nozzle needle 6a and an outer nozzle needle 6b.
  • each nozzle needle ⁇ a, 6b serves to open and close the injection bores associated with the respective nozzle needles 6a, 6b.
  • a drive mechanism 7 which connects the actuator 4 and the outer nozzle needle 6b to one another at any time without play and serves to prevent the downward movement of the actuator 4 in the direction of arrow 8 into an upward movement of the nozzle needles which releases the injection holes 6a, 6b to reverse in the direction of arrow 9.
  • the drive mechanism 7 consists of a counter-rotating double-piston arrangement with an outer piston 10, which bears against the actuator 4 via a piston surface 10a, and an inner piston 11, which is connected to the outer nozzle needle 6b via a piston surface 11a is in operative connection.
  • the piston rings 10b and 11b of the two Double-acting pistons 10 and 11 are supported in a U-shaped annular groove 12 which, in the embodiment according to FIG. 1, is formed in a separate component 13 coaxially surrounding the nozzle needles ⁇ a, 6b.
  • this U-shaped annular groove 12 is formed in the nozzle body 3.
  • the coupling of the two pistons 10, 11 to generate the opposing movements of the two pistons 10 and 11 takes place hydraulically via a working space 14 filled with diesel oil in the annular groove 12.
  • spring elements 15 are located between the inside of the piston surface 10a of the outer piston 10 and the heads of the nozzle needles ⁇ a, 6b. per nozzle needle ⁇ a, 6b, a spring element 15 is arranged, on the one hand, the outer piston 10 is pressed upwards to rest against the actuator 4 and, on the other hand, the nozzle needles ⁇ a and 6b are moved back onto the needle seats of the injection bores.
  • the spring element 16 which is arranged between the inside of the piston surface 11a of the inner piston 11 and the upper edge of the component 3, 13, in which the U-shaped annular groove 12 is formed, ensures that the piston surface 11a of the inner piston 11 is in constant backlash-free contact with a collar ⁇ c of the outer nozzle needle 6b, a radial tolerance compensation being established between the piston surface 11a of the inner piston 11 and the collar 6c of the outer nozzle needle ⁇ b, which is necessary so that the arrangement does not jam.
  • a driving game is formed between the outer nozzle needle 6b and the inner nozzle needle 6a in order to ensure that after actuation of the actuator 4, the outer nozzle needle 6b first and only after this driving game has been used up the inner nozzle needle ⁇ a is raised to open the respective injection bores.
  • the inner nozzle needle ⁇ a is actuated via a head of the inner nozzle needle ⁇ a which is designed as a driving element 6d and which, after the driving game has been used up, is in operative connection with the collar 6c of the outer nozzle needle ⁇ b such that an upward movement of the outer nozzle needle 6b in the direction of arrow 9 causes the entrainment of the inner nozzle needle ⁇ a and conversely, when the inner nozzle needle ⁇ a moves downward in the direction of arrow 8, the outer nozzle needle 6b is also moved downward.
  • Figures 1 and 2 show the injection valves in the position in which the nozzle needles ⁇ a and ⁇ b with their front sealing areas close the injection bores formed in the nozzle body 3 and leading to the combustion chamber of an internal combustion engine.
  • the actuator 4 expands.
  • This extension of the actuator length causes the actuator 4 to press the outer piston 10 downward in the direction of arrow 8 via the piston surface 10a.
  • the working space 14 within the U-shaped annular groove 12 is filled with diesel oil as hydraulic fluid, the pressing down of the outer piston 10 inevitably causes the inner piston 11 to be pushed upward in the direction of arrow 9 in the direction of arrow 9 via the pressure surfaces of the piston rings 10b and 11b.
  • the outer nozzle needle 6b Due to the play-free contact of the piston surface 11a of the inner piston 11 on the underside of the collar 6c of the outer nozzle needle 6b, the outer nozzle needle 6b is pressed against the force of the The spring 15 moves upwards, so that after the driving play has been used up, the inner nozzle needle ⁇ a is also raised against the force of the spring 15 via the collar 6c running against the driving element 6d of the inner nozzle needle ⁇ a.
  • Raising the nozzle needles ⁇ a and ⁇ b causes the sealing areas of the nozzle needles ⁇ a, ⁇ b to open the injection bores one after the other, so that the fuel supplied to the valve housing 1 from a high-pressure accumulator (not shown) can reach the combustion chamber of the internal combustion engine via the injection bores.
  • the fuel flows to the injection bores via a high-pressure connection on the valve housing 1 through a flow channel 17, which is formed between the actuator 4 and the inside of the valve housing 1, and a groove 17a in the actuator 4 to a bore 18 in the piston surface 10a of the outer Piston 10.
  • a key surface (not shown), which reduces the diameter of the stem, is formed on the stem of the outer nozzle needle ⁇ b to produce a flow channel.
  • the injection bores are closed by deactivating the actuator 4.
  • the lowering of the electrical energy applied to the piezoelectric actuator 4 or the de-energization of the actuator 4 have the effect that the overall length of the actuator 4 is reduced again.
  • the springs 15 arranged between the inside of the piston surface 10a of the outer piston 10 and the collar 6c of the outer nozzle needle 6b and the driving element 6d of the inner nozzle needle 6a push the outer piston 10 upwards again against the actuator 4.
  • the springs 15 cause the nozzle needles ⁇ a and ⁇ b, which ends the injection process, to be moved back into the needle seat closing the injection bores. the.
  • the stroke of the inner piston 11 is also reversed again by the nozzle needle ⁇ a, ⁇ b moved downward into the closed position and the inner piston 11 is moved back into the starting position.
  • the drive mechanism 7 equipped with a throttle 19, via which diesel oil can emerge from the work space 14.
  • the throttle 19 formed as a bore 20 in the component 13 in the embodiment according to FIG. 1 and as a groove 21 in the outer circumferential surface 10c of the outer piston 10 in the embodiment according to FIG.
  • An injection valve designed in this way is characterized in that the drive mechanism 7 in the form of the counter-rotating double-piston arrangement can be made particularly compact and the efficiency of the drive mechanism 7 is always constant.
  • the transmission ratio of the drive mechanism 7 which effects the reversal of movement can be determined by the geometric design of the diameters of the pistons 10 and 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine. Um bei kompakter Bauweise einen Antriebsmechanismus (7) bereitzustellen, der eine zuverlässige Betätigung der Düsennadel gewährleistet, wird vorgeschlagen, dass der Antriebsmechanismus (7) als gegenläufige Doppelkolbenanordnung ausgebildet ist. Der Hub koaxial ineinandergelagerte Düsennadeln (6a,6b) übertragen.

Description

Beschreibung
Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
Die Erfindung betrifft ein Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine nach dem Oberbegriff des Patentanspruchs 1.
Für die Kraftstoffversorgung von Verbrennungsmotoren werden zunehmend Speichereinspritzsysteme verwendet, bei denen mit sehr hohen Einspritzdrücken gearbeitet wird. Solche Einspritzsysteme sind als Common-Rail-Systeme (für Dieselmotoren) und HPDI-Einspritzsysteme (für Ottomotoren) bekannt. Bei diesen Einspritzsystemen wird der Kraftstoff mit einer Hoch- druckpumpe in einen allen Zylindern des Motors gemeinsamen
Druckspeicher gefördert, von dem aus die Einspritzventile an den einzelnen Zylindern mit Kraftstoff versorgt werden. Das Öffnen und Schließen der Einspritzventile wird dabei in der Regel elektromagnetisch gesteuert.
Zu diesem Zweck sind die Einspritzventile bei solchen Systemen mit schaltbaren Aktoren, teilweise mit piezoelektrischen Aktoren, ausgerüstet, die das Öffnen und Schließen der Düsennadel des Einspritzventils steuern, das heißt insbesondere den Beginn und das Ende des Einspritzvorgangs zeitlich festlegen .
Aus der DE 101 62 045 AI ist ein hydraulischer Hubumkehrer für einen Injektor bekannt, bei dem zwei Kolben ineinander greifen.
Bei den über einen Aktor direktangetriebenen Einspritzventilen muss die in Richtung der Düsennadel wirkende Bewegung des Aktors mittels eines Antriebsmechanismus umgekehrt werden, um die nach innen öffnende Düsennadel von einer Einspritzbohrung fort entgegen der Bewegungsrichtung des Aktors abzuheben. Aus DE 197 57 659 Cl ist es bekannt, einen solchen Antriebsmechanismus als aus zweiarmigen Kipphebeln bestehenden Kipp- hebelmechamsmus auszubilden. Diese bekannte Ausgestaltungsform des Antriebsmechanismus weist jedoch die Nachteile auf, dass die Ausbildung der Kipphebel bei den in der Regel sehr begrenzten Platzverhaltnissen nicht realisierbar sind und darüber hinaus der Wirkungsgrad des Antriebsmechanismus sehr stark von den realisierbaren Hebelverhaltnissen abhangt.
Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Einspritzventil bereitzustellen, dessen Antriebsmechanismus bei kompakter Bauweise eine zuverlässige Betätigung der Du- sennadel gewährleistet.
Die Merkmale eines erfmdungsgemaßen Emspritzventils werden im Patentanspruch 1 genannt.
Vorteilhafte Ausgestaltungen des Emspritzventils werden in den Unteranspruchen beschrieben.
Durch das erfindungsgemaße Ausbildung des Antriebsmechanismus als Doppelkolbenanordnung ist es möglich diesen die Bewegungsumkehr bewirkenden Antrieb besonders kompakt auszuges- talten. Darüber hinaus gewährleisten die doppelt wirkenden Kolben dieser erfmdungsgemaßen Kolbenanordnung einen stets gleichen Wirkungsgrad des Antriebs .
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der zwei Ausfuhrungsbeispiele eines erfmdungsgemaßen Emspritzventils dargestellt sind. In der Zeichnung zeigt:
Figur 1 einen ausschnittweisen schematischen Längsschnitt durch eine erste Ausfuhrungsform eines erfindungs- gemaßen Emspritzventils und Figur 2 eine Ansicht gemäß Figur 1, jedoch eine zweite erfindungsgemäße Ausführungsform darstellend.
Wie aus den nur ausschnittweise dargestellten Abbildung Figur 1 und 2 ersichtlich, bestehen die dargestellten Einspritzventile jeweils im wesentlichen aus einem Ventilgehäuse 1, einem über eine Überwurfmutter 2 mit dem Ventilgehäuse 1 verbundenen Düsenkörper 3 sowie einem in dem Ventilgehäuse 1 angeordneten Aktor 4, der vorzugsweise als piezoelektrischer Aktor ausgebildet ist.
Der Aktor 4 dient dazu, in einer Bohrung 5 des Düsenkörpers 3 axial beweglich gelagerte Düsennadeln 6 zwischen einer nicht dargestellte Einspritzbohrungen freigebenden Stellung und ei- ner diese Einspritzbohrungen verschließenden Stellung zu verlagern. Bei den dargestellten Ausführungsformen sind jeweils zwei koaxial zueinander angeordnete Düsennadeln 6a und 6b a- xial beweglich im Düsenkörper 3 gelagert, nämlich eine innere Düsennadel 6a und eine äußere Düsennadel 6b. Bei dieser Re- gisterdüsen genannten Anordnung dient jede Düsennadel βa, 6b zum Öffnen und Verschließen den jeweiligen Düsennadeln 6a, 6b zugeordneten Einspritzbohrungen.
Die Betätigung der Düsennadel 6 mittels des Aktors 4 erfolgt über einen Antriebsmechanismus 7, welcher den Aktor 4 und die äußere Düsennadel 6b jederzeit spielfrei miteinander verbindet und dazu dient, die Abwärtsbewegung des Aktors 4 in Richtung des Pfeils 8 in eine die Einspritzbohrungen freigebende Aufwärtsbewegung der Düsennadeln 6a, 6b in Richtung des Pfeils 9 umzukehren.
Wie weiterhin aus Figur 1 und 2 ersichtlich, besteht der Antriebsmechanismus 7 aus einer gegenläufigen Doppelkolbenanordnung mit einem äußeren Kolben 10, der über eine Kolbenflä- ehe 10a am Aktor 4 anliegt und einem inneren Kolben 11, der über eine Kolbenfläche 11a mit der äußeren Düsennadel 6b in Wirkverbindung steht. Die Kolbenringe 10b und 11b der beiden doppelt wirkenden Kolben 10 und 11 sind in einer u-formigen Ringnut 12 gelagert, die bei der Ausfuhrungsform gemäß Figur 1 in einem separaten, die Dusennadeln βa, 6b koaxial umgebenden Bauteil 13 ausgebildet ist. Bei der Ausfuhrungsform gemäß Figur 2 ist diese u-formige Ringnut 12 im Düsenkorper 3 ausgebildet. Die Kopplung der beiden Kolben 10, 11 zur Erzeugung der gegenläufigen Bewegungen der beiden Kolben 10 und 11 erfolgt hydraulisch über einen mit Dieselöl gefüllten Arbeitsraum 14 in der Ringnut 12.
Um zu gewahrleisten, dass nach dem Ende der Bestromung des Aktors 4 die Dusennadeln 6a, 6b wieder in die die Einspritzbohrungen verschließende Stellung überfuhrt werden, sind zwischen der Innenseite der Kolbenflache 10a des äußeren Kolbens 10 und den Köpfen der Dusennadeln βa, 6b Federelemente 15, je Dusennadel βa, 6b ein Federelement 15, angeordnet, über die einerseits der äußere Kolben 10 wieder nach oben zur Anlage an den Aktor 4 gedruckt wird und andererseits die Dusennadeln βa und 6b zurück auf die Nadelsitze der Einspritzbohrungen bewegt werden.
Das zwischen der Innenseite der Kolbenflache 11a des inneren Kolbens 11 und der Oberkante des Bauteils 3, 13, in dem die u-formige Ringnut 12 ausgebildet ist, angeordnete, als Tel- lerfeder ausgebildete Federelement 16 stellt sicher, dass die Kolbenflache 11a des inneren Kolbens 11 in standigem spielfreien Kontakt mit einem Bund βc der äußeren Dusennadel 6b steht, wobei sich zwischen der Kolbenflache 11a des inneren Kolbens 11 und dem Bund 6c der äußeren Dusennadel βb ein ra- dialer Toleranzausgleich einstellt, der notig ist, damit die Anordnung nicht klemmt.
Zwischen der äußeren Dusennadel 6b und der inneren Dusennadel 6a ist ein Mitnahmespiel ausgebildet um zu gewahrleisten, dass nach dem Betatigen des Aktors 4 zunächst die äußere Dusennadel 6b und erst nach dem Aufbrauch dieses Mitnahmespiels die innere Düsennadel βa zum Öffnen der jeweiligen Einspritzbohrungen angehoben wird.
Das Betätigen der inneren Dusennadel βa erfolgt über einen als Mitnahmeelement 6d ausgebildeten Kopf der inneren Düsennadel βa, der nach dem Aufbrauchen des Mitnahmespiels derart in Wirkverbindung mit dem Bund 6c der äußeren Düsennadel βb steht, dass eine Aufwärtsbewegung der äußeren Düsennadel 6b in Richtung des Pfeils 9 die Mitnahme der inneren Düsennadel βa bewirkt und umgekehrt bei einer Abwärtsbewegung der inneren Düsennadel βa in Richtung des Pfeils 8 auch die äußere Düsennadel 6b abwärts bewegt wird.
Das Betätigen der Düsennadeln βa und 6b über den Aktor 4 ge- schieht bei den solchermaßen ausgestalteten Einspritzventilen wie folgt :
Die Abbildungen Figur 1 und 2 zeigen die Einspritzventile in der Stellung, in der die Düsennadeln βa und βb mit ihrem vor- deren Dichtbereichen die im Düsenkörper 3 ausgebildeten, zum Brennraum eines Verbrennungsmotors führenden Einspritzbohrungen verschließen.
Sobald der piezoelektrische Aktor 4 elektrisch angeregt wird, dehnt sich der Aktor 4 aus. Diese Verlängerung der Aktorlänge bewirkt, dass der Aktor 4 über die Kolbenfläche 10a den äußeren Kolben 10 nach unten, in Richtung des Pfeils 8 drückt. Da der Arbeitsraum 14 innerhalb der u-förmigen Ringnut 12 mit Dieselöl als Hydraulikflüssigkeit gefüllt ist, bewirkt das Herabdrücken des äußeren Kolbens 10 zwangsläufig ein gegenläufiges Aufwärtsdrücken des inneren Kolbens 11 in Richtung des Pfeils 9 über die Druckflächen der Kolbenringe 10b und 11b.
Durch die spielfreie Anlage der Kolbenfläche 11a des inneren Kolbens 11 an der Unterseite des Bunds 6c der äußeren Düsennadel 6b wird die äußere Düsennadel 6b gegen die Kraft der Feder 15 aufwärts bewegt, wodurch nach Aufbrauch des Mitnahmespiels über den gegen das Mitnahmeelement 6d der inneren Düsennadel βa anlaufenden Bund 6c auch die innere Düsennadel βa gegen die Kraft der Feder 15 angehoben wird.
Das Anheben der Düsennadeln βa und βb bewirkt, dass die Dichtbereiche der Düsennadeln βa, βb die Einspritzbohrungen nacheinander freigeben, so dass der ausgehend von einem nicht dargestellten Hochdruckspeicher dem Ventilgehäuse 1 zugeführ- te Kraftstoff über die Einspritzbohrungen in die Brennkammer des Verbrennungsmotors gelangen kann.
Der Kraftstoffzufluss zu den Einspritzbohrungen erfolgt über einen Hochdruckanschluss am Ventilgehäuse 1 durch einen Strö- mungskanal 17, der zwischen dem Aktor 4 und der Innenseite des Ventilgehäuses 1 ausgebildet ist, sowie eine Nut 17a im Aktor 4 zu einer Bohrung 18 in der Kolbenfläche 10a des äußeren Kolbens 10. Damit der Kraftstoff durch die Bohrung 5 im Düsenkörper 3 zu den Einspritzbohrungen gelangen kann, ist am Schaft der äußeren Düsennadel βb eine nicht dargestellte, den Durchmesser des Schaftes reduzierende Schlüsselfläche zur Erzeugung eines Strömungskanals ausgebildet.
Das Schließen der Einspritzbohrungen erfolgt durch Deaktivie- ren des Aktors 4. Das Herabfahren der auf den piezoelektrischen Aktor 4 aufgeschalteten elektrischen Energie bzw. das stromlos Schalten des Aktors 4 bewirkt, dass sich die Baulänge des Aktors 4 wieder verkürzt.
Sobald der Aktor 4 nicht mehr bestromt wird, drücken die zwischen der Innenseite der Kolbenfläche 10a des äußeren Kolbens 10 und dem Bund 6c der äußeren Düsennadel 6b sowie dem Mitnahmeelement 6d der inneren Düsennadel 6a angeordneten Federn 15 den äußeren Kolben 10 wieder nach oben gegen den Aktor 4. Gleichzeitig bewirken die Federn 15, dass Düsennadel βa und βb den Einspritzvorgang beendend, wieder in den die Einspritzbohrungen verschließenden Nadelsitz zurück bewegt wer- den. Durch die abwärts in die Schließstellung bewegten Düsennadel βa, βb wird auch der Hub des inneren Kolbens 11 wieder rückgängig gemacht und der innere Kolben 11 wieder in die Ausgangsstellung zurück bewegt.
Um thermisch und verschleißbedingte Längenänderungen im Aktor 4 und im Antriebsmechanismus 7, die bewirken können, dass die Düsennadeln βa, βb die Einspritzbohrungen nicht mehr vollständig verschließen, so ausgleichen zu können, dass diese Längenänderungen keine Betätigung der Düsennadeln βa, βb bewirken, ist der Antriebsmechanismus 7 mit einer Drossel 19 ausgestattet, über die Dieselöl aus dem Arbeitsraum 14 heraustreten kann. Die bei der Ausführungsform gemäß Figur 1 als Bohrung 20 im Bauteil 13 und bei der Ausgestaltungsform gemäß Figur 2 als Nut 21 in der äußeren Mantelfläche 10c des äußeren Kolbens 10 ausgebildete Drossel 19 ist dabei so dimensioniert, dass schnelle kurzzeitige Bewegungen des Aktors 4 möglichst hubverlustfrei in eine Verlagerung des inneren Kolbens 11 und somit der Düsennadeln βa, βb umgesetzt werden, thermisch und verschleißbedingte Längenänderungen aber durch Abfließen des Dieselöls über die Drossel 19 kompensiert werden.
Ein solchermaßen ausgestaltetes Einspritzventil zeichnet sich dadurch aus, dass der Antriebsmechanismus 7 in Form der gegenläufigen Doppelkolbenanordnung besonders kompakt ausführbar ist und ein stets gleichbleibender Wirkungsgrad des Antriebsmechanismus 7 gegeben ist. Das Übersetzungsverhältnis des die Bewegungsumkehr bewirkenden Antriebsmechanismus 7 lässt sich durch die geometrische Auslegung der Durchmesser der Kolben 10 und 11 bestimmen.

Claims

Patentansprüche
1. Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine mit einem Aktor (4), der zur Steuerung der Kraftstoffeinspritzung über einen Antriebsmechanismus (7) auf eine axial beweglich in einem Ventilgehäuse (1) gelagerte Düsennadel (6) so einwirkt, dass diese in Abhängigkeit von Betriebszustand des Aktors (4) Einspritzbohrungen freigibt oder verschließt, dadurch gekennzeichnet , dass der Antriebsmechanismus (7) als gegenläufige Doppelkolbenanordnung ausgebildet ist.
2. Einspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Kolben (10, 11) des Antriebsmechanismus (7) hydraulisch miteinander gekoppelt sind.
3. Einspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Doppelkolbenanordnung aus einem äuße- ren, über eine Kolbenfläche (10a) mit dem Aktor (4) zusammenwirkenden Kolben (10) und einem inneren, über eine Kolbenfläche (11a) mit der Düsennadel (β) zusammenwirkenden Kolben (11) besteht.
4. Einspritzventil nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kolbenringe (10b, 11b) der Kolben (10, 11) in einer im Querschnitt u-förmigen Ringnut (12) gelagert sind.
5. Einspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass die u-förmige Ringnut (12) in einem separaten, die Düsennadel (6) koaxial umgebenden Bauteil (13) ausgebildet ist.
6. Einspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass die u-förmige Ringnut (12) in einem Düsenkörper (3) ausgebildet ist.
7. Einspritzventil nach mindestens einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass zwischen der inneren Kolbenfläche (10a) des äußeren Kolbens (10) und der Dü- sennadel (6) mindestens ein Federelement (15) angeordnet ist .
8. Einspritzventil nach mindestens einem der Ansprüche 1 bis 7, wobei in dem Ventilgehäuse (1) mehrere Düsenna- dein (βa, βb) gelagert sind, dadurch gekennzeichnet, dass die einzelnen Düsennadeln (βa, βb) koaxial ineinander gelagert über Bünde/Mitnahmeelemente (βc, βd) in Wirkverbindung miteinander bringbar sind, wobei zwischen den einzelnen Düsennadeln (βa, βb) ein Mitnahmespiel ausgebildet ist.
9. Einspritzventil nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Antriebsmechanismus (7) eine Drossel (19) umfasst.
10. Einspritzventil nach Anspruch 9, dadurch gekennzeichnet, dass die Drossel (19) als Bohrung (20) im die u-förmige Ringnut (12) aufweisenden Bauteil (3, 13) ausgebildet ist.
11. Einspritzventil nach Anspruch 9, dadurch gekennzeichnet, dass die Drossel (19) als Nut (21) in der Mantelfläche (10c) des äußeren Kolbens (10) ausgebildet ist.
PCT/EP2004/051605 2003-09-10 2004-07-26 Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine WO2005026531A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004001488T DE112004001488D2 (de) 2003-09-10 2004-07-26 Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10341798.2 2003-09-10
DE10341798 2003-09-10

Publications (1)

Publication Number Publication Date
WO2005026531A1 true WO2005026531A1 (de) 2005-03-24

Family

ID=34305659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051605 WO2005026531A1 (de) 2003-09-10 2004-07-26 Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine

Country Status (2)

Country Link
DE (1) DE112004001488D2 (de)
WO (1) WO2005026531A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571328A3 (de) * 2004-03-02 2006-06-14 Siemens Aktiengesellschaft Einspritzventil
US7699242B2 (en) 2007-03-05 2010-04-20 Denso Corporation Injector
US7931211B2 (en) 2007-03-05 2011-04-26 Denso Corporation Injector
WO2013087475A1 (de) * 2011-12-12 2013-06-20 Continental Automotive Gmbh Einspritzventil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19500706A1 (de) * 1995-01-12 1996-07-18 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen
DE19519191A1 (de) * 1995-05-24 1996-12-19 Siemens Ag Einspritzventil
EP0864743A2 (de) * 1997-03-10 1998-09-16 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19843578A1 (de) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19950760A1 (de) * 1999-10-21 2001-04-26 Bosch Gmbh Robert Brennstoffeinspritzventil
EP1256708A2 (de) * 2001-05-09 2002-11-13 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19500706A1 (de) * 1995-01-12 1996-07-18 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen
DE19519191A1 (de) * 1995-05-24 1996-12-19 Siemens Ag Einspritzventil
EP0864743A2 (de) * 1997-03-10 1998-09-16 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19843578A1 (de) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19950760A1 (de) * 1999-10-21 2001-04-26 Bosch Gmbh Robert Brennstoffeinspritzventil
EP1256708A2 (de) * 2001-05-09 2002-11-13 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571328A3 (de) * 2004-03-02 2006-06-14 Siemens Aktiengesellschaft Einspritzventil
US7699242B2 (en) 2007-03-05 2010-04-20 Denso Corporation Injector
DE102008000301B4 (de) * 2007-03-05 2011-02-03 DENSO CORPORATION, Kariya-shi Injektor
US7931211B2 (en) 2007-03-05 2011-04-26 Denso Corporation Injector
WO2013087475A1 (de) * 2011-12-12 2013-06-20 Continental Automotive Gmbh Einspritzventil

Also Published As

Publication number Publication date
DE112004001488D2 (de) 2006-07-27

Similar Documents

Publication Publication Date Title
EP1115970B1 (de) Brennstoffeinspritzventil
EP1733139B1 (de) Common-rail-injektor
WO2006067015A1 (de) Injektor eines kraftstoffeinspritzsystems einer brennkraftmaschine
EP1688611A2 (de) Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine
DE112006003076T5 (de) Brennstoffsystem mit mehreren Quellen für Einspritzung mit variablem Druck
EP1693564A2 (de) Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine
EP1563182B1 (de) Injektor mit einer direkt angetriebenen register-düsennadel für die kraftstoffeinspritzung in einen verbrennungsmotor
WO2008077657A1 (de) Kraftstoffinjektor
DE102009039647A1 (de) Kraftstoffinjektor und Kraftstoff-Einspritzsystem
EP1252433B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1872008B1 (de) Zweistufig öffnender kraftstoffinjektor
EP1682769B1 (de) Kraftstoffinjektor mit mehrteiligem, direktgesteuertem einspritzventilglied
DE10353045A1 (de) Kraftstoffeinspritzventil
WO2005026531A1 (de) Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine
EP2458194B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102006029392A1 (de) Injektor
WO2001029407A1 (de) Doppeltschaltendes steuerventil mit kugelförmigem stellglied
DE10307003B3 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
EP1961953A1 (de) Mehrwegeventil
DE19963926A1 (de) Steuerventil für eine Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen mit verstellbarem Hubanschlag
DE102006003486A1 (de) Pumpe-Düse-Injektor mit direkter Nadelsteuerung
DE102004044462A1 (de) Steuerventil für einen Injektor
EP1825137A1 (de) Kraftstoffeinspritzdüse
DE102005025138B4 (de) Dosierventil
DE102007003847B4 (de) Steuerventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120040014883

Country of ref document: DE

REF Corresponds to

Ref document number: 112004001488

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001488

Country of ref document: DE

122 Ep: pct application non-entry in european phase