EP1733139B1 - Common-rail-injektor - Google Patents

Common-rail-injektor Download PDF

Info

Publication number
EP1733139B1
EP1733139B1 EP05707805A EP05707805A EP1733139B1 EP 1733139 B1 EP1733139 B1 EP 1733139B1 EP 05707805 A EP05707805 A EP 05707805A EP 05707805 A EP05707805 A EP 05707805A EP 1733139 B1 EP1733139 B1 EP 1733139B1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure
fuel
valve piston
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05707805A
Other languages
English (en)
French (fr)
Other versions
EP1733139A1 (de
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1733139A1 publication Critical patent/EP1733139A1/de
Application granted granted Critical
Publication of EP1733139B1 publication Critical patent/EP1733139B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/006Springs assisting hydraulic closing force

Definitions

  • the invention relates to a common rail injector for injecting fuel into a combustion chamber of an internal combustion engine, comprising an injector housing having a fuel inlet communicating with a central high pressure fuel reservoir outside the injector housing and with a pressure space within the injector housing, from the in Depending on the position of a 3/2-way valve is injected with high-pressure fuel.
  • a pressure-intensified fuel injector known which is supplied via a high-pressure storage space with high-pressure fuel. From the interior of the high-pressure storage space, a supply line extends to a pressure booster which is integrated in the fuel injector. The pressure booster is enclosed by an injector body of the fuel injector.
  • the fuel injector further comprises a metering valve, which is designed as a 3/2-way valve.
  • the metering valve can be designed both as a solenoid valve and operated via a piezoelectric actuator.
  • the metering valve can also be designed as a servo valve or as a direct-switching valve.
  • the control of known common rail injectors is usually done with servo valves or solenoid valves, which are expensive and sensitive to tolerances.
  • the piezoelectric actuator is located in a fuel collector, which is connected to the high pressure supply line. Thus, the piezoelectric actuator is directly under high fuel pressure.
  • the piezoelectric actuator acts via a hydraulic coupling directly on the injection valve members. A metering valve (control valve) is not provided.
  • the piezoelectric actuator must open against the high fuel pressure, which requires a correspondingly large piezoactuator.
  • an injector is known whose piezoelectric actuator is also under the high pressure of fuel.
  • a control valve is provided, which is designed as a 2/2-way valve. A valve piston of the control valve is acted upon nozzle needle side with different pressure, so that the valve piston is only partially pressure balanced.
  • the object of the invention is a common rail injector for injecting fuel into a combustion chamber of an internal combustion engine, with an injector housing, which has a fuel feed, which is in communication with a central fuel high-pressure accumulator outside the injector housing and with a pressure chamber inside the injector housing, from which high-pressure fuel is injected as a function of the position of a 3/2-way valve, which can be produced cost-effectively and even at high temperatures Press works reliably.
  • the object is with a common-rail injector for injecting fuel into a combustion chamber of an internal combustion engine, having an injector housing having a fuel inlet communicating with a central high-pressure fuel source or a high-pressure fuel reservoir outside of the injector and with a pressure chamber inside the injector from which, depending on the position of a control valve, in the form of a 3/2-way valve, high-pressure fuel is injected, achieved in that the control valve comprises a in the injector between a rest position and an injection position movable back and forth valve piston which is hydraulically coupled to a piezoelectric actuator, which is acted upon by the pressure from the high-pressure fuel source.
  • the piezoelectric actuator is acted upon both axially and radially or transversely with pressure.
  • the piezo actuator is used to actuate the valve piston.
  • control amount of the efficiency of the injector is improved.
  • the necessary axial preload force for the piezoelectric actuator is generated at least partially hydraulically. As a result, no large spring forces must be realized in the injector, resulting in space advantages and cost advantages. Due to the very fast switching speed of the valve with piezo actuator, the tolerance behavior of the injector can be improved. In addition, the smallest quantity capability (pre-injection quantities) is ensured.
  • a preferred embodiment of the common rail injector is characterized in that the injector housing comprises a pressurized from the high-pressure fuel storage hydraulic coupling chamber via which the piezoelectric actuator is hydraulically coupled to the valve piston.
  • the injector housing comprises a pressurized from the high-pressure fuel storage hydraulic coupling chamber via which the piezoelectric actuator is hydraulically coupled to the valve piston.
  • a substantially circular-cylindrical head made of metal can be attached to the piezoactuator, its end face defining the hydraulic coupling space.
  • On the opposite side of the hydraulic coupling space is preferably limited by an end face of the valve piston.
  • the hydraulic coupling space serves to compensate for volume expansions of the piezoelectric actuator due to temperature fluctuations during operation.
  • a force / displacement ratio between piezoelectric actuator and valve piston can thus be realized.
  • a further preferred embodiment of the common rail injector is characterized in that a first end of the valve piston limits the hydraulic coupling space and a second end of the valve piston projects into a valve control chamber, which communicates with a fuel return in the injection position of the valve piston, and the is acted upon in the rest position of the valve piston with the pressure from the high-pressure fuel storage.
  • the fuel return may be in communication with a fuel tank and allows rapid pressure reduction in the valve control room.
  • the injector is at least partially filled with fuel via the valve control chamber.
  • a further preferred embodiment of the common rail injector is characterized in that on the valve piston, a first sealing edge, which interrupts a connection between the valve control chamber and the fuel return in the rest position of the valve piston, and a second sealing edge is formed, which in the injection position of Valve piston breaks a connection between the high-pressure fuel storage and the valve control chamber.
  • the injector In the rest position of the valve piston, the injector is not activated, that is, there is no injection.
  • In the Injection position of the valve piston is injected with high pressure fuel from the injector into the combustion chamber of an internal combustion engine.
  • a further preferred embodiment of the common rail injector is characterized in that at the first end of the valve piston, a valve piston guide portion is formed whose diameter is slightly smaller than the diameter of the first sealing edge.
  • Another preferred embodiment of the common rail injector is characterized in that the diameter of the second sealing edge is slightly smaller than the diameter of the valve piston guide portion. As a result, a small hydraulic contact force is generated in the injection position of the valve piston, which ensures a tight contact of the second sealing edge on its associated valve seat, which may be provided on the injector.
  • valve piston is integrally formed.
  • the one-piece design has the advantage that both sealing edges are guided by the valve piston guide section.
  • a further preferred embodiment of the common rail injector is characterized in that the valve piston is in several parts, in particular in two parts, is formed.
  • the multi-part design provides manufacturing advantages, especially in connection with a multipart valve body.
  • a further preferred embodiment of the common rail injector is characterized in that the valve control chamber communicates with a valve member control chamber.
  • a valve member nozzle needles are preferably used, the tip of which is pressed by means of a biased nozzle spring against a correspondingly formed nozzle needle seat.
  • the pressure in the valve control chamber is reduced via the 3/2-way valve, then the tip of the nozzle needle lifts from its seat and fuel is injected through injection holes in the combustion chamber of the internal combustion engine.
  • valve control chamber is in communication with a pressure booster control chamber.
  • the pressure booster control chamber serves to control a pressure booster piston which can be accommodated to be moved back and forth in the injector housing.
  • FIG. 1 is a longitudinal section through a common rail injector 1 shown, which is supplied via a only schematically indicated high-pressure accumulator space 2 (common rail) with fuel under high pressure.
  • a fuel supply line 3, 4 extends to a pressure booster 5, which is integrated into the fuel injector 1.
  • the pressure booster 5 is enclosed by an injector 6.
  • the injector housing 6 comprises an injector body 7 and a nozzle body 8, which has a central guide bore 9.
  • a nozzle needle 10 is guided back and forth movable.
  • the nozzle needle 10 has a tip 11 on which a sealing surface is formed, which cooperates with a sealing seat, which is formed on the nozzle body 8.
  • a plurality of injection holes 12, 13 are closed in the nozzle body 8.
  • high pressure fuel is injected through the injection holes 12, 13 into the combustion chamber of the engine.
  • a pressure shoulder 14 is formed, which is arranged in a pressure chamber 15 in the nozzle body 8.
  • the nozzle needle 10 is biased by a nozzle spring 16 with its tip 11 against the associated nozzle needle seat.
  • the nozzle spring 16 is received in a nozzle spring chamber 17, which is recessed in the injector body 7.
  • the nozzle spring chamber 17 is connected via a connecting channel 18, in which a throttle 19 is arranged, with a pressure booster control chamber 23 in connection.
  • the nozzle spring chamber 17 is connected via a connecting channel 20, in which a throttle 21 is provided, with a pressure booster chamber 22 in connection.
  • the booster chamber 22 is formed by a portion of a central bore in the injector body 7 in which one end 24 of a pressure booster piston 25 is reciprocably received.
  • the end 24 of the pressure booster piston 25 has the shape of a circular cylinder, which has a smaller diameter than the subsequent part of the pressure booster piston 25.
  • the other end of the pressure booster piston 25 projects into a pressure booster working chamber 26, the fuel supply line 3, 4 with the high-pressure fuel storage chamber 2 in combination stands.
  • a pressure booster spring 27 is arranged, with the aid of which the pressure booster piston 25 is biased in the direction of the nozzle needle 10 away.
  • the pressure booster chamber 22 communicates via a connecting channel 28 with the pressure chamber 15 in the nozzle body 8 in connection.
  • the pressure booster control chamber 23 communicates via a connecting channel 29 with a valve control chamber 30, which is recessed in a valve body 31.
  • an intermediate piece 32 is arranged, in which a central connecting channel 33 is recessed.
  • the connection channel 33 creates a connection between the pressure booster working space 26 and the valve control space 30.
  • the valve control space 30 is formed by a portion of a central bore, which is recessed in the valve body 31.
  • the valve control chamber 30 has a larger diameter than the intermediate piece 32 facing away from the portion of the bore.
  • a valve piston 34 is received reciprocally movable in the central bore of the valve body 31.
  • the valve piston 34 has a valve piston guide section 35, which is guided in the central bore of the valve body 31.
  • a first sealing edge 36 is formed, which bears against a sealing seat which is formed on the valve body 31.
  • a second sealing edge 37 is formed, which at the intermediate piece 32nd can come into contact.
  • a return passage 38 is provided in the valve body 31, which is in communication with a fuel tank (not shown).
  • a piezoelectric actuator body 39 which is closed by a cover 40.
  • the cover 40, the piezoelectric actuator body 39, the valve body 31, the intermediate piece 32, the injector body 7 and the nozzle body 8 together form the injector housing 6.
  • a central piezoelectric actuator space 41 is recessed, via a connecting channel 42 with the fuel supply line 3 and thus communicating with the high-pressure accumulator 2.
  • a piezoelectric actuator 43 is arranged, which has a piezoelectric actuator 44 made of metal with a free end face 45.
  • a collar 46 is formed.
  • a piezoelectric actuator spring 47 is clamped between the collar 46 and a piezoelectric actuator sleeve 48.
  • the piezoelectric actuator head 44 is displaceable relative to the piezoelectric actuator sleeve 48 in the axial direction.
  • a sealing edge is formed, which rests against the valve body 31.
  • a hydraulic coupling chamber 41 is formed, which is subjected to high pressure from the high-pressure reservoir 2.
  • FIG. 1 the common rail injector 1 is shown in its deactivated state.
  • the valve piston 34 is in its rest position.
  • the first sealing edge 36 is in contact with the associated sealing seat, which is formed on the valve body 31.
  • the hydraulic coupling chamber 49 is rail pressure. This is ensured by a suitable design of the sealing gaps.
  • the components are formed in the guide region of both coupler pistons so that they are also acted upon from the outside with high pressure. As a result, a function-impairing widening of the sealing gaps is avoided by the coupler space pressure.
  • the filling of the coupler space could also be done by a correspondingly small throttle.
  • the valve control chamber 30 is also acted upon via the fuel supply lines 3, 4, the pressure booster working chamber 26 and the connecting channel 33 with the rail pressure from the high-pressure accumulator chamber 2.
  • the pressure intensifier control chamber 23 is also acted upon by the rail 29 via the rail pressure.
  • the nozzle filter chamber 17 and the pressure chamber 15 also there is rail pressure.
  • the piezoelectric actuator 43 is energized via electrical lines 51, 52 and expands.
  • the expansion of the piezoelectric actuator 43 leads via the piezoelectric actuator 44 to an increase in pressure in the hydraulic coupling chamber 49.
  • This pressure increase leads to an axial movement of the valve piston 34 downwards, that is to the nozzle needle 10.
  • the valve piston 34 moves down while until the second Sealing edge 37 comes to the intermediate piece 32 to the plant and the connection between the connecting channel 33 and the valve control chamber 30 interrupts.
  • the valve piston 34 is then in its (not shown) injection position.
  • the valve control chamber 30 is relieved of pressure due to the connection to the return passage 38. About the connecting channel 29 between the valve control chamber 30 and the pressure booster control chamber 23 of the latter is also relieved of pressure. Since the pressure booster working chamber 26 is still acted upon by the rail pressure from the high-pressure reservoir 2 via the fuel supply lines 3, 4, the pressure booster piston 25 moves downward, that is to the nozzle needle 10, whereby the fuel in the pressure booster chamber 22 is compressed. This pressure increase has an effect on the connecting channel 28 in the pressure chamber 15. This in turn causes the nozzle needle 10 lifts off its seat and fuel is injected.
  • valve assembly with the valve body 31 and the intermediate piece 32 in conjunction with the one-piece valve piston 34 with flat seat allows easy manufacturability.
  • the valve piston 34 can also be designed completely pressure-balanced. In this case, the necessary closing forces to ensure the tightness of the valve seats must be provided by prestressed springs or the actuator.
  • the valve piston 34 can also be designed as a multi-part piston assembly, wherein the two control edges in a component and the piston portion which limits the coupler space is arranged in a further component.
  • the valve body can also be designed in several parts. This offers advantages in the production of very small valve geometries.
  • FIG. 2 is a common rail injector 1 shown without pressure booster.
  • the in FIG. 2 illustrated common rail injector 1 comprises the same piezoelectric actuator body, the same injector body and the same intermediate piece as the one in FIG. 1 illustrated common rail injector. Identical parts are provided with the same reference numerals. To avoid repetition, the preceding description of the FIG. 1 directed. In the following, only the differences between the two embodiments will be discussed.
  • common rail injector 1 is the valve control chamber 30 via a connecting channel 55, in which a throttle 56 is arranged, with a nozzle needle control chamber 57 in connection.
  • the nozzle needle control chamber 57 is disposed within a sealing sleeve 58 which is equipped with a biting edge.
  • the nozzle needle control chamber 57 is limited by an end face of a nozzle needle 59.
  • a collar 60 is formed at the nozzle needle 59.
  • a spring 61 is biased so that the biting edge of the sealing sleeve 58 is pressed against the injector.
  • the nozzle needle 59 is held with its tip due to the biasing force of the spring 61 in abutment with the associated nozzle needle seat.
  • a pressure chamber 63 is connected via flats 65, 66 with the nozzle needle tip in connection.
  • the pressure chamber 63 is connected via a connecting channel 68 and the fuel supply lines 3, 4 with the high-pressure accumulator chamber 2 in connection.
  • the connecting channel 68 communicates with the nozzle needle control chamber 57 via a connecting channel 69 and a connecting channel 70, in which a throttle 71 is arranged.
  • FIG. 2 illustrated common rail injector 1 is in the deactivated state.
  • the first sealing edge 36 is closed and the second sealing edge 37 is open.
  • In the coupling space 49 is rail pressure.
  • the valve control chamber 30, the nozzle needle control chamber 57 and the pressure chamber 63 are also under rail pressure.
  • the valve piston 34 is in its rest position.
  • the piezoelectric actuator 43 is energized and expands. This causes a pressure increase in the hydraulic coupling chamber 49 and thereby a movement of the valve piston 34 down.
  • the first sealing edge 36 opens and the second sealing edge 37 closes, so that a connection between the valve control chamber 30 and the return 38 is released.
  • the valve control chamber 30 is depressurized. This pressure relief affects via the connecting channel 55 in the nozzle needle control chamber 51, so that the nozzle needle 59 lifts off with its tip from the associated seat, whereby fuel is injected into the combustion chamber of the internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Seats For Vehicles (AREA)

Description

  • Die Erfindung betrifft einen Common-Rail-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem Injektorgehäuse, das einen Kraftstoffzulauf aufweist, der mit einem zentralen Kraftstoffhochdruckspeicher außerhalb des Injektorgehäuses und mit einem Druckraum innerhalb des Injektorgehäuses in Verbindung steht, aus dem in Abhängigkeit von der Stellung eines 3/2-Wegeventils mit Hochdruck beaufschlagter Kraftstoff eingespritzt wird.
  • Stand der Technik
  • Aus der deutschen Offenlegungsschrift DE 102 29 415 A1 ist ein druckübersetzter Kraftstoffinjektor bekannt, der über einen Hochdruckspeicherraum mit unter hohem Druck stehendem Kraftstoff versorgt wird. Vom Innenraum des Hochdruckspeicherraums erstreckt sich eine Zuleitung zu einem Druckübersetzer, der in den Kraftstoffinjektor integriert ist. Der Druckübersetzer ist von einem Injektorkörper des Kraftstoffinjektors umschlossen. Der Kraftstoffinjektor umfasst ferner ein Zumessventil, das als 3/2-Wege-ventil ausgebildet ist. Das Zumessventil kann sowohl als Magnetventil ausgebildet sein als auch über einen Piezoaktor betätigt werden. Daneben kann das Zumessventil auch als Servoventil oder als direkt schaltendes Ventil ausgebildet sein. Die Steuerung bekannter Common-Rail-Injektoren erfolgt meist mit Servoventilen oder Magnetventilen, die teuer und toleranzempfindlich sind.
  • Aus der US-B-6 420 817 ist ein Injektor mit Piezoaktor bekannt. Der Piezoaktor befindet sich in einem Kraftstoffsammler, der mit der Hochdruckzuleitung verbunden ist. Somit steht der Piezoaktor unmittelbar unter Kraftstoffhochdruck. Der Piezoaktor wirkt über eine hydraulische Kopplung direkt auf die Einspritzventilglieder. Ein Zumessventil (Steuerventil) ist nicht vorgesehen. Der Piezoaktor muss gegen den Kraftstoffhochdruck öffnen, was einen entsprechend großen Piezoaktor erforderlich macht.
  • Aus der WO-A-2005/010342 , die einen Stand der Technik nach Artikel 54(3) bildet, ist ein Injektor bekannt, dessen Piezoaktor ebenfalls unter dem Kraftstoffhochdruck steht. Zusätzlich zu einem hydraulischen Koppler ist ein Steuerventil vorgesehen, das als 2/2-Wegeventil ausgebildet ist. Ein Ventilkolben des Steuerventils ist düsennadelseitig mit unterschiedlichem Druck beaufschlagt, so dass der Ventilkolben lediglich teilweise druckausgeglichen ist.
  • Aufgabe der Erfindung ist es, einen Common-Rail-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem Injektorgehäuse, das einen Kraftstoffzulauf aufweist, der mit einem zentralen Kraftstoffhochdruckspeicher außerhalb des Injektorgehäuses und mit einem Druckraum innerhalb des Injektorgehäuses in Verbindung steht, aus dem in Abhängigkeit von der Stellung eines 3/2-Wegeventils mit Hochdruck beaufschlagter Kraftstoff eingespritzt wird, zu schaffen, der kostengünstig herstellbar ist und auch bei hohen Drücken zuverlässig arbeitet.
  • Darstellung der Erfindung
  • Die Aufgabe ist bei einem Common-Rail-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem Injektorgehäuse, das einen Kraftstoffzulauf aufweist, der mit einer zentralen Kraftstoffhochdruckquelle beziehungsweise einem Kraftstoffhochdruckspeicher außerhalb des Injektorgehäuses und mit einem Druckraum innerhalb des Injektorgehäuses in Verbindung steht, aus dem in Abhängigkeit von der Stellung eines Steuerventils, in Form eines 3/2-Wegeventils, mit Hochdruck beaufschlagter Kraftstoff eingespritzt wird, dadurch gelöst, dass das Steuerventil einen in dem Injektorgehäuse zwischen einer Ruhestellung und einer Einspritzstellung hin und her bewegbaren Ventilkolben umfasst, der hydraulisch mit einem Piezoaktor gekoppelt ist, der mit dem Druck aus der Kraftstoffhochdruckquelle beaufschlagt ist. Der Piezoaktor ist dabei sowohl axial wie auch radial beziehungsweise quer mit Druck beaufschlagt. Der Piezoaktor dient zur Betätigung des Ventilkolbens. Durch den Wegfall der bei Servoventilen anfallenden Steuermenge wird der Wirkungsgrad des Injektors verbessert. Die notwendige axiale Vorspannkraft für den Piezoaktor wird zumindest teilweise hydraulisch erzeugt. Dadurch müssen im Injektor keine großen Federkräfte realisiert werden, wodurch sich Bauraumvorteile und Kostenvorteile ergeben. Durch die sehr schnelle Schaltgeschwindigkeit des Ventils mit Piezoaktor kann das Toleranzverhalten des Injektors verbessert werden. Zudem wird die Kleinstmengenfähigkeit (Voreinspritzmengen) sichergestellt.
  • Ein bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass das Injektorgehäuse einen mit dem Druck aus dem Kraftstoffhochdruckspeicher beaufschlagten hydraulischen Kopplungsraum umfasst, über den der Piezoaktor hydraulisch mit dem Ventilkolben gekoppelt ist. An dem Piezoaktor kann zum Beispiel ein im Wesentlichen kreiszylinderförmiger Kopf aus Metall angebracht sein, dessen Stirnseite den hydraulischen Kopplungsraum begrenzt. Auf der gegenüberliegenden Seite wird der hydraulische Kopplungsraum vorzugsweise durch eine Stirnseite des Ventilkolbens begrenzt.
  • Der hydraulische Kopplungsraum dient dazu, Volumenausdehnungen des Piezoaktors aufgrund von Temperaturschwankungen im Betrieb auszugleichen. Zusätzlich kann damit eine Kraft/Weg-Übersetzung zwischen Piezoaktor und Ventilkolben realisiert werden.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass ein erstes Ende des Ventilkolbens den hydraulischen Kopplungsraum begrenzt und ein zweites Ende des Ventilkolbens in einen Ventilsteuerraum ragt, der in der Einspritzstellung des Ventilkolbens mit einem Kraftstoffrücklauf in Verbindung steht, und der in der Ruhestellung des Ventilkolbens mit dem Druck aus dem Kraftstoffhochdruckspeicher beaufschlagt ist. Der Kraftstoffrücklauf kann zum Beispiel mit einem Kraftstofftank in Verbindung stehen und ermöglicht einen schnellen Druckabbau in dem Ventilsteuerraum. In der Ruhestellung des Ventilkolbens wird der Injektor, zumindest teilweise, über den Ventilsteuerraum mit Kraftstoff gefüllt.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass an dem Ventilkolben eine erste Dichtkante, die in der Ruhestellung des Ventilkolbens eine Verbindung zwischen dem Ventilsteuerraum und dem Kraftstoffrücklauf unterbricht, und eine zweite Dichtkante ausgebildet ist, die in der Einspritzstellung des Ventilkolbens eine Verbindung zwischen dem Kraftstoffhochdruckspeicher und dem Ventilsteuerraum unterbricht. In der Ruhestellung des Ventilkolbens ist der Injektor nicht aktiviert, das heißt, es findet keine Einspritzung statt. In der Einspritzstellung des Ventilkolbens wird mit Hochdruck beaufschlagter Kraftstoff aus dem Injektor in den Brennraum einer Brennkraftmaschine eingespritzt.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass an dem ersten Ende des Ventilkolbens ein Ventilkolbenführungsabschnitt ausgebildet ist, dessen Durchmesser etwas kleiner als der Durchmesser der ersten Dichtkante ist. Dadurch wird in der Ruhestellung des Ventilkolbens eine kleine hydraulische Anpresskraft erzeugt, die eine dichte Anlage der ersten Dichtkante an ihrem zugehörigen Ventilsitz gewährleistet, der an dem Injektorgehäuse vorgesehen sein kann.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass der Durchmesser der zweiten Dichtkante etwas kleiner als der Durchmesser des Ventilkolbenführungsabschnitts ist. Dadurch wird in der Einspritzstellung des Ventilkolbens eine kleine hydraulische Anpresskraft erzeugt, die eine dichte Anlage der zweiten Dichtkante an ihrem zugehörigen Ventilsitz gewährleistet, der an dem Injektorgehäuse vorgesehen sein kann.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass der Ventilkolben einteilig ausgebildet ist. Die einteilige Ausführung hat den Vorteil, dass beide Dichtkanten durch den Ventilkolbenführungsabschnitt geführt werden.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass der Ventilkolben mehrteilig, insbesondere zweiteilig, ausgebildet ist. Die mehrteilige Ausführung liefert fertigungstechnische Vorteile, besonders in Verbindung mit einem mehrteiligen Ventilkörper.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass der Ventilsteuerraum mit einem Ventilgliedsteuerraum in Verbindung steht. Als Ventilglied werden bevorzugt Düsennadeln eingesetzt, deren Spitze mit Hilfe einer vorgespannten Düsenfeder gegen einen entsprechend ausgebildeten Düsennadelsitz gedrückt wird. Wenn der Druck in dem Ventilsteuerraum über das 3/2-Wegeventil abgebaut wird, dann hebt die Spitze der Düsennadel von ihrem Sitz ab und Kraftstoff wird durch Spritzlöcher in den Brennraum der Brennkraftmaschine eingespritzt.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Common-Rail-Injektors ist dadurch gekennzeichnet, dass der Ventilsteuerraum mit einem Druckverstärkersteuerraum in Verbindung steht. Der Druckverstärkersteuerraum dient zur Steuerung eines Druckverstärkerkolbens der in dem Injektorgehäuse hin und her bewegbar aufgenommen sein kann.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung verschiedene Ausführungsbeispiele der Erfindung im Einzelnen beschrieben sind.
  • Zeichnung
  • Es zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel im Längsschnitt durch den Injektor mit einem Druckverstärker und
    Figur 2
    ein zweites Ausführungsbeispiel im Längsschnitt durch den Injektor ohne Druckverstärker.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein Längsschnitt durch einen Common-Rail-Injektor 1 dargestellt, der über einen nur schematisch angedeuteten Hochdruckspeicherraum 2 (Common-Rail) mit unter hohem Druck stehendem Kraftstoff versorgt wird. Vom Innenraum des Hochdruckspeicherraums 2 erstreckt sich eine Kraftstoffzuleitung 3, 4 zu einem Druckübersetzer 5, der in den Kraftstoffinjektor 1 integriert ist. Der Druckübersetzer 5 ist von einem Injektorgehäuse 6 umschlossen.
  • Das Injektorgehäuse 6 umfasst einen Injektorkörper 7 und einen Düsenkörper 8, der eine zentrale Führungsbohrung 9 aufweist. In der Führungsbohrung 9 ist eine Düsennadel 10 hin und her bewegbar geführt. Die Düsennadel 10 weist eine Spitze 11 auf, an der eine Dichtfläche ausgebildet ist, die mit einem Dichtsitz zusammenwirkt, der an dem Düsenkörper 8 ausgebildet ist. Wenn sich die Spitze 11 der Düsennadel 10 mit ihrer Dichtfläche in Anlage an dem Dichtsitz befindet, sind mehrere Spritzlöcher 12, 13 in dem Düsenkörper 8 verschlossen. Wenn die Düsennadelspitze 11 von ihrem Sitz abhebt, wird mit Hochdruck beaufschlagter Kraftstoff durch die Spritzlöcher 12, 13 in den Brennraum der Brennkraftmaschine eingespritzt.
  • An der Düsennadel 10 ist eine Druckschulter 14 ausgebildet, die in einem Druckraum 15 in dem Düsenkörper 8 angeordnet ist. Die Düsennadel 10 ist durch eine Düsenfeder 16 mit ihrer Spitze 11 gegen den zugehörigen Düsennadelsitz vorgespannt. Die Düsenfeder 16 ist in einem Düsenfederraum 17 aufgenommen, der in dem Injektorkörper 7 ausgespart ist. Der Düsenfederraum 17 steht über einen Verbindungskanal 18, in dem eine Drossel 19 angeordnet ist, mit einen Druckverstärkersteuerraum 23 in Verbindung. Außerdem steht der Düsenfederraum 17 über einen Verbindungskanal 20, in dem eine Drossel 21 vorgesehen ist, mit einem Druckverstärkerraum 22 in Verbindung.
  • Der Druckverstärkerraum 22 wird von einem Abschnitt einer zentralen Bohrung in dem Injektorkörper 7 gebildet, in der ein Ende 24 eines Druckverstärkerkolbens 25 hin und her bewegbar aufgenommen ist. Das Ende 24 des Druckverstärkerkolbens 25 hat die Gestalt eines Kreiszylinders, der einen kleineren Durchmesser aufweist als der anschließende Teil des Druckverstärkerkolbens 25. Das andere Ende des Druckverstärkerkolbens 25 ragt in einen Druckverstärkerarbeitsraum 26, der über die Kraftstoffzuleitung 3, 4 mit dem Kraftstoffhochdruckspeicherraum 2 in Verbindung steht. In dem Druckverstärkerarbeitsraum 26 ist eine Druckverstärkerfeder 27 angeordnet, mit deren Hilfe der Druckverstärkerkolben 25 in Richtung von der Düsennadel 10 weg vorgespannt ist.
  • Der Druckverstärkerraum 22 steht über einen Verbindungskanal 28 mit dem Druckraum 15 in dem Düsenkörper 8 in Verbindung. Der Druckverstärkersteuerraum 23 steht über einen Verbindungskanal 29 mit einem Ventilsteuerraum 30 in Verbindung, der in einem Ventilkörper 31 ausgespart ist. Zwischen dem Ventilkörper 31 und dem Injektorkörper 7 ist ein Zwischenstück 32 angeordnet, in dem ein zentraler Verbindungskanal 33 ausgespart ist. Der Verbindungskanal 33 schafft eine Verbindung zwischen Druckverstärkerarbeitsraum 26 und dem Ventilsteuerraum 30.
  • Der Ventilsteuerraum 30 wird von einem Abschnitt einer zentralen Bohrung gebildet, die in dem Ventilkörper 31 ausgespart ist. Der Ventilsteuerraum 30 hat einen größeren Durchmesser als der dem Zwischenstück 32 abgewandte Abschnitt der Bohrung. In der zentralen Bohrung des Ventilkörpers 31 ist ein Ventilkolben 34 hin und her bewegbar aufgenommen. Der Ventilkolben 34 weist einen Ventilkolbenführungsabschnitt 35 auf, der in der zentralen Bohrung des Ventilkörpers 31 geführt ist. An dem dem Ventilkolbenführungsabschnitt 35 abgewandten Ende des Ventilkolbens 34 ist eine erste Dichtkante 36 ausgebildet, die an einem Dichtsitz anliegt, der an dem Ventilkörper 31 ausgebildet ist. An der dem Ventilkolbenführungsabschnitt 35 abgewandten Stirnseite des Ventilkolbens 34 ist eine zweite Dichtkante 37 ausgebildet, die an dem Zwischenstück 32 in Anlage kommen kann. Zwischen dem Ventilkolbenführungsabschnitt 35 und der ersten Dichtkante 36 ist in dem Ventilkörper 31 ein Rücklaufkanal 38 vorgesehen, der mit einem (nicht dargestellten) Kraftstofftank in Verbindung steht.
  • An den Ventilkörper 31 schließt ein Piezoaktorkörper 39 an, der durch einen Deckel 40 verschlossen ist. Der Deckel 40, der Piezoaktorkörper 39, der Ventilkörper 31, das Zwischenstück 32, der Injektorkörper 7 und der Düsenkörper 8 bilden zusammen das Injektorgehäuse 6. In dem Piezoaktorkörper 39 ist ein zentraler Piezoaktorraum 41 ausgespart, der über einen Verbindungskanal 42 mit der Kraftstoffzuleitung 3 und somit mit dem Hochdruckspeicherraum 2 in Verbindung steht. In dem mit Hochdruck beaufschlagten Piezoaktorraum 41 ist ein Piezoaktor 43 angeordnet, der einen Piezoaktorkopf 44 aus Metall mit einer freien Stirnseite 45 aufweist. An dem Piezoaktorkopf 44 ist ein Bund 46 ausgebildet. Zwischen dem Bund 46 und einer Piezoaktorhülse 48 ist eine Piezoaktorfeder 47 eingespannt. Der Piezoaktorkopf 44 ist relativ zu der Piezoaktorhülse 48 in axialer Richtung verschiebbar. An der Piezoaktorhülse 48 ist eine Dichtkante ausgebildet, die an dem Ventilkörper 31 anliegt. Im Inneren der Piezoaktorhülse 48 ist zwischen der Stirnseite 45 des Piezoaktorkopfs 44 und der freien Stirnseite des Ventilkolbenführungsabschnitts 35 des Ventilkolbens 34 ein hydraulischer Kopplungsraum 41 ausgebildet, der mit Hochdruck aus dem Hochdruckspeicherraum 2 beaufschlagt ist.
  • In Figur 1 ist der Common-Rail-Injektor 1 in seinem deaktivierten Zustand dargestellt. Der Ventilkolben 34 befindet sich in seiner Ruhestellung. Dabei befindet sich die erste Dichtkante 36 in Anlage an dem zugehörigen Dichtsitz, der an dem Ventilkörper 31 ausgebildet ist. In dem hydraulischen Kopplungsraum 49 steht Raildruck an. Das wird durch eine geeignete Auslegung der Dichtspalte sichergestellt. Die Bauteile sind im Führungsbereich beider Kopplerkolben so ausgebildet, dass sie auch von außen mit Hochdruck beaufschlagt sind. Dadurch wird eine funktionsbeeinträchtigende Aufweitung der Dichtspalte durch den Kopplerraumdruck vermieden. Alternativ könnte die Befüllung des Kopplerraumes auch durch eine entsprechend kleine Drossel erfolgen. Der Ventilsteuerraum 30 ist über die Kraftstoffzuleitungen 3, 4, den Druckverstärkerarbeitsraum 26 und den Verbindungskanal 33 ebenfalls mit dem Raildruck aus dem Hochdruckspeicherraum 2 beaufschlagt. Der Druckverstärkersteuerraum 23 ist über den Verbindungskanal 29 ebenfalls mit dem Raildruck beaufschlagt. In dem Druckverstärkerraum 22, dem Düsenfilterraum 17 und dem Druckraum 15 herrscht ebenfalls Raildruck.
  • Zur Aktivierung des Common-Rail-Injektors 1 wird der Piezoaktor 43 über elektrische Leitungen 51, 52 bestromt und dehnt sich aus. Die Ausdehnung des Piezoaktors 43 führt über den Piezoaktorkopf 44 zu einer Druckzunahme in dem hydraulischen Kopplungsraum 49. Diese Druckzunahme führt zu einer axialen Bewegung des Ventilkolbens 34 nach unten, das heißt zur Düsennadel 10 hin. Der Ventilkolben 34 bewegt sich dabei solange nach unten, bis die zweite Dichtkante 37 an dem Zwischenstück 32 zur Anlage kommt und die Verbindung zwischen dem Verbindungskanal 33 und dem Ventilsteuerraum 30 unterbricht. Gleichzeitig hebt die erste Dichtkante 36 von ihrem Dichtsitz an dem Ventilkörper 31 ab und öffnet eine Verbindung zu dem Ventilsteuerraum 30 und dem Rücklaufkanal 38. Der Ventilkolben 34 befindet sich dann in seiner (nicht dargestellten) Einspritzstellung. Der Ventilsteuerraum 30 wird aufgrund der Verbindung mit dem Rücklaufkanal 38 druckentlastet. Über den Verbindungskanal 29 zwischen dem Ventilsteuerraum 30 und dem Druckverstärkersteuerraum 23 wird der letztgenannte ebenfalls druckentlastet. Da der Druckverstärkerarbeitsraum 26 über die Kraftstoffzuleitungen 3, 4 nach wie vor mit dem Raildruck aus dem Hochdruckspeicherraum 2 beaufschlagt ist, bewegt sich der Druckverstärkerkolben 25 nach unten, das heißt zur Düsennadel 10 hin, wodurch der Kraftstoff in dem Druckverstärkerraum 22 komprimiert wird. Diese Druckerhöhung wirkt sich über den Verbindungskanal 28 auch in dem Druckraum 15 aus. Das wiederum führt dazu, dass die Düsennadel 10 von ihrem Sitz abhebt und Kraftstoff eingespritzt wird.
  • Durch die optimierte konstruktive Auslegung mit dem Piezoaktor 43 im Raildruck, mit dem Raildruck in dem hydraulischen Kopplungsraum 49 und geeigneten Druckflächen an dem Ventilkolben 34 wird eine sehr einfache und kostengünstige Gesamtkonstruktion erreicht. Die notwendige axiale Vorspannkraft für den Piezoaktor 43 wird hauptsächlich hydraulisch erzeugt. Der 3/2-Ventilkolben 34 wird direkt von dem Piezoaktor 43 gesteuert. Der hydraulische Kopplungsraum 49 ist zum Ausgleich von Temperaturausdehnungen und zur Kraft/Weg-Übersetzung vorgesehen. Der Ventilkolben 34 ist nahezu vollständig druckausgeglichen ausgeführt. Dies wird dadurch erreicht, dass am Ventilkolben eine Druckfläche X ausgebildet ist, die ständig mit Hochdruck aus dem Injektorzulauf beaufschlagt ist. Dadurch wird nur eine kleine Aktorkraft zum Bewegen des Ventils notwendig und es kann ein kleiner und kostengünstiger Piezoaktor verwendet werden. Der Ventilaufbau mit dem Ventilkörper 31 und dem Zwischenstück 32 in Verbindung mit dem einteiligen Ventilkolben 34 mit Flachsitz erlaubt eine einfache Fertigbarkeit.
  • Der Ventilkolben 34 kann auch vollständig druckausgeglichen ausgeführt sein. In diesem Fall müssen die notwendigen Schließkräfte zur Sicherstellung der Dichtheit der Ventilsitze durch vorgespannte Federn beziehungsweise den Aktor bereitgestellt werden.
  • Der Ventilkolben 34 kann auch als mehrteiliger Kolbenverbund ausgeführt werden, wobei die beiden Steuerkanten in einem Bauteil und der Kolbenabschnitt, der den Kopplerraum begrenzt, in einem weiteren Bauteil angeordnet ist. Dadurch kann auch der Ventilkörper mehrteilig ausgebildet sein. Dies bietet Vorteile bei der Fertigung sehr kleiner Ventilgeometrien.
  • In Figur 2 ist ein Common-Rail-Injektor 1 ohne Druckverstärker dargestellt. Der in Figur 2 dargestellte Common-Rail-Injektor 1 umfasst den gleichen Piezoaktorkörper, den gleichen Injektorkörper und das gleiche Zwischenstück wie der in Figur 1 dargestellte Common-Rail-Injektor. Gleiche Teile sind mit gleichen Bezugszeichen versehen. Um Wiederholungen zu vermeiden, wird auf die vorangegangene Beschreibung der Figur 1 verwiesen. Im Folgenden wird nur auf die Unterschiede zwischen den beiden Ausführungsformen eingegangen.
  • Bei dem in Figur 2 dargestellten Common-Rail-Injektor 1 steht der Ventilsteuerrraum 30 über einen Verbindungskanal 55, in dem eine Drossel 56 angeordnet ist, mit einem Düsennadelsteuerraum 57 in Verbindung. Der Düsennadelsteuerraum 57 ist innerhalb einer Dichthülse 58 angeordnet, die mit einer Beißkante ausgestattet ist. Außerdem wird der Düsennadelsteuerraum 57 durch eine Stirnseite einer Düsennadel 59 begrenzt. An der Düsennadel 59 ist ein Bund 60 ausgebildet. Zwischen dem Bund 60 und der Dichthülse 58 ist eine Feder 61 so vorgespannt, dass die Beißkante der Dichthülse 58 gegen das Injektorgehäuse gedrückt wird. Auf der anderen Seite wird die Düsennadel 59 mit ihrer Spitze aufgrund der Vorspannkraft der Feder 61 in Anlage an dem zugehörigen Düsennadelsitz gehalten. Ein Druckraum 63 steht über Abflachungen 65, 66 mit der Düsennadelspitze in Verbindung. Außerdem steht der Druckraum 63 über einen Verbindungskanal 68 und die Kraftstoffzuleitungen 3, 4 mit dem Hochdruckspeicherraum 2 in Verbindung. Der Verbindungskanal 68 steht über einen Verbindungskanal 69 und einem Verbindungskanal 70, in dem eine Drossel 71 angeordnet ist, mit dem Düsennadelsteuerraum 57 in Verbindung.
  • Der in Figur 2 dargestellte Common-Rail-Injektor 1 befindet sich im deaktivierten Zustand. Die erste Dichtkante 36 ist geschlossen und die zweite Dichtkante 37 ist geöffnet. In dem Kopplungsraum 49 steht Raildruck an. Der Ventilsteuerraum 30, der Düsennadelsteuerraum 57 und der Druckraum 63 stehen ebenfalls unter Raildruck. Der Ventilkolben 34 befindet sich in seiner Ruhestellung.
  • Zur Aktivierung des in Figur 2 dargestellten Common-Rail-Injektors 1 wird der Piezoaktor 43 bestromt und dehnt sich aus. Dies bewirkt eine Druckzunahme in dem hydraulischen Kopplungsraum 49 und dadurch eine Bewegung des Ventilkolbens 34 nach unten. Dabei öffnet die erste Dichtkante 36 und die zweite Dichtkante 37 schließt, so dass eine Verbindung zwischen dem Ventilsteuerraum 30 und dem Rücklauf 38 freigegeben wird. Dadurch wird der Ventilsteuerraum 30 druckentlastet. Diese Druckentlastung wirkt sich über den Verbindungkanal 55 auch in dem Düsennadelsteuerraum 51 aus, so dass die Düsennadel 59 mit ihrer Spitze von dem zugehörigen Sitz abhebt, wodurch Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt wird.

Claims (11)

  1. Common-Rail-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem Injektorgehäuse (7,8,31,32,39,40), das einen Kraftstoffzulauf (3,4) aufweist, der mit einer zentralen Kraftstoffhochdruckquelle (2) außerhalb des Injektorgehäuses und mit einem Druckraum (15;63) innerhalb des Injektorgehäuses in Verbindung steht, aus dem in Abhängigkeit von der Stellung eines Steuerventils mit Hochdruck beaufschlagter Kraftstoff eingespritzt wird, dadurch gekennzeichnet, dass das Steuerventil als 3/2-Wegeventil ausgebildet ist und einen in dem Injektorgehäuse zwischen einer Ruhestellung und einer Einspritzstellung hin und her bewegbaren Ventilkolben (34) umfasst, der hydraulisch mit einem Piezoaktor (43) gekoppelt ist, der mit dem Druck aus der Kraftstoffhochdruckquelle (2) beaufschlagt ist.
  2. Common-Rail-Injektor nach Anspruch 1, dadurch gekennzeichnet, dass das Injektorgehäuse (7,8,31,32,39,40) einen mit dem Druck aus dem Kraftstoffhochdruckspeicher beaufschlagten hydraulischen Kopplungsraum (49) umfasst, über den der Piezoaktor (43) hydraulisch mit dem Ventilkolben (34) gekoppelt ist.
  3. Common-Rail-Injektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an dem Ventilkolben (34) eine Druckfläche ausgebildet ist, die ständig mit Hochdruck aus dem Kraftstoffzulauf (3) beaufschlagt ist.
  4. Common-Rail-Injektor nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass ein erstes Ende des Ventilkolbens (34) den hydraulischen Kopplungsraum (49) begrenzt und ein zweites Ende des Ventilkolbens (34) in einen Ventilsteuerraum (30) ragt, der in der Einspritzstellung des Ventilkolbens (34) mit einem Kraftstoffrücklauf (38) in Verbindung steht und der in der Ruhestellung des Ventilkolbens (34) mit dem Druck aus dem Kraftstoffhochdruckspeicher (2) beaufschlagt ist.
  5. Common-Rail-Injektor nach Anspruch 4, dadurch gekennzeichnet, dass an dem Ventilkolben 34 eine erste Dichtkante (36), die in der Ruhestellung des Ventilkolbens (34) eine Verbindung zwischen dem Ventilsteuerraum (30) und dem Kraftstoffrücklauf (38) unterbricht, und eine zweite Dichtkante (37) ausgebildet ist, die in der Einspritzstellung des Ventilkolbens (34) eine Verbindung zwischen dem Kraftstoffhochdruckspeicher (2) und dem Ventilsteuerraum (30) unterbricht.
  6. Common-Rail-Injektor nach Anspruch 5, dadurch gekennzeichnet, dass an dem ersten Ende des Ventilkolbens (34) ein Ventilkolbenführungsabschnitt (35) ausgebildet ist, dessen Durchmesser etwas kleiner als der Durchmesser der ersten Dichtkante (36) ist.
  7. Common-Rail-Injektor nach Anspruch 6, dadurch gekennzeichnet, dass der Durchmesser der zweiten Dichtkante (37) etwas kleiner als der Durchmesser des Ventilkolbenführungsabschnitts (35) ist.
  8. Common-Rail-Injektor nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Ventilkolben (34) einteilig ausgebildet ist.
  9. Common-Rail-Injektor nach Anspruch 7, dadurch gekennzeichnet, dass der Ventilkolben (34) mehrteilig, insbesondere zweiteilig, ausgebildet ist.
  10. Common-Rail-Injektor nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass der Ventilsteuerraum (30) mit einem Ventilgliedsteuerraum (57) in Verbindung steht.
  11. Common-Rail-Injektor nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass der Ventilsteuerraum (30) mit einem Druckverstärkersteuerraum (23) in Verbindung steht.
EP05707805A 2004-03-31 2005-01-19 Common-rail-injektor Not-in-force EP1733139B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004015744A DE102004015744A1 (de) 2004-03-31 2004-03-31 Common-Rail-Injektor
PCT/EP2005/050224 WO2005095788A1 (de) 2004-03-31 2005-01-19 Common-rail-injektor

Publications (2)

Publication Number Publication Date
EP1733139A1 EP1733139A1 (de) 2006-12-20
EP1733139B1 true EP1733139B1 (de) 2008-03-26

Family

ID=34960313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707805A Not-in-force EP1733139B1 (de) 2004-03-31 2005-01-19 Common-rail-injektor

Country Status (5)

Country Link
US (1) US7387110B2 (de)
EP (1) EP1733139B1 (de)
AT (1) ATE390557T1 (de)
DE (2) DE102004015744A1 (de)
WO (1) WO2005095788A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102016285A (zh) * 2008-04-23 2011-04-13 罗伯特·博世有限公司 内燃机用燃料喷射阀

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058444A1 (de) * 2004-12-03 2006-06-08 Ganser-Hydromag Ag Brennstoffeinspritzventil mit druckverstärkung
DE102006026400A1 (de) 2006-06-07 2007-12-13 Robert Bosch Gmbh Kraftstoffinjektor mit Servounterstützung
DE102006027330A1 (de) 2006-06-13 2007-12-20 Robert Bosch Gmbh Kraftstoffinjektor
DE102006036779A1 (de) 2006-08-07 2008-02-14 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Nadelsteurung und Servoventil-Unterstützung
DE102006047133A1 (de) * 2006-10-05 2008-04-10 Robert Bosch Gmbh Injektor für eine Kraftstoffeinspritzanlage
DE102006051205A1 (de) 2006-10-30 2008-05-08 Robert Bosch Gmbh Kraftstoffinjektor mit einer Messeinrichtung
DE102006055801A1 (de) * 2006-11-27 2008-05-29 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102007034318A1 (de) 2007-07-24 2009-01-29 Robert Bosch Gmbh Injektor
DE102007034319A1 (de) * 2007-07-24 2009-01-29 Robert Bosch Gmbh Injektor
US20090126689A1 (en) * 2007-11-16 2009-05-21 Caterpillar Inc. Fuel injector having valve with opposing sealing surfaces
JP6926836B2 (ja) * 2017-08-30 2021-08-25 株式会社Soken 燃料噴射装置
DE102018200288A1 (de) * 2018-01-10 2019-07-11 Continental Automotive Gmbh Piezo-Common-Rail-Injektor mit nach innen öffnendem Servoventil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010342A1 (de) * 2003-07-24 2005-02-03 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152271A (en) * 1985-07-15 1992-10-06 Osamu Matsumura Fuel injection apparatus
US6420817B1 (en) * 2000-02-11 2002-07-16 Delphi Technologies, Inc. Method for detecting injection events in a piezoelectric actuated fuel injector
DE10019764B4 (de) * 2000-04-20 2004-09-23 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
US20030062026A1 (en) * 2000-09-07 2003-04-03 Friedrich Boecking Common rail system
DE10147483B4 (de) * 2001-09-26 2005-05-19 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
JP2003111448A (ja) 2001-09-28 2003-04-11 Denso Corp ピエゾアクチュエータ駆動回路
DE10151688A1 (de) * 2001-10-19 2003-04-30 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10203655A1 (de) 2002-01-30 2004-01-22 Robert Bosch Gmbh Brennstoffeinspritzventil
JP3832401B2 (ja) 2002-08-07 2006-10-11 トヨタ自動車株式会社 燃料噴射装置
US7108200B2 (en) * 2003-05-30 2006-09-19 Sturman Industries, Inc. Fuel injectors and methods of fuel injection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010342A1 (de) * 2003-07-24 2005-02-03 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102016285A (zh) * 2008-04-23 2011-04-13 罗伯特·博世有限公司 内燃机用燃料喷射阀
US8662411B2 (en) 2008-04-23 2014-03-04 Robert Bosch Gmbh Fuel injection valve for internal combustion engines

Also Published As

Publication number Publication date
DE102004015744A1 (de) 2005-10-13
WO2005095788A1 (de) 2005-10-13
US20070221177A1 (en) 2007-09-27
US7387110B2 (en) 2008-06-17
ATE390557T1 (de) 2008-04-15
DE502005003465D1 (en) 2008-05-08
EP1733139A1 (de) 2006-12-20

Similar Documents

Publication Publication Date Title
EP1733139B1 (de) Common-rail-injektor
EP1688611B1 (de) Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine
DE10221384A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1766225B1 (de) Common-rail-injektor
EP2310662B1 (de) Kraftstoff-injektor
WO2005015002A1 (de) Schaltventil für einen kraftstoffinjektor mit druckübersetzer
EP1117922B1 (de) Common-rail-injektor
EP2032835B1 (de) Kraftstoffinjektor
EP1872008B1 (de) Zweistufig öffnender kraftstoffinjektor
EP1252433A2 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1983186A2 (de) Druckausgeglichenes Stellelement
EP1840366B1 (de) Kraftstoffinjektor
EP2426348B1 (de) Brennstoffeinspritzventil
EP1740821B1 (de) Common-rail-injektor
EP2439398B1 (de) Brennstoffeinspritzventil
EP1740822A1 (de) Common-rail-injektor
DE10006319A1 (de) Einspritzventil
EP2165069B1 (de) Steuerventil, insbesondere für einen kraftstoffinjektor einer brennkraftmaschine
EP2019198A2 (de) Injektor
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
WO2016058969A1 (de) Einspritzventil zum einspritzen von fluid in einen brennraum einer brennkraftmaschine
WO2004074672A1 (de) Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine
EP2282045B1 (de) Brennstoffeinspritzventil
DE102005024721A1 (de) Common-Rail-Injektor
WO2008049726A1 (de) Fluiddosiervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070118

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005003465

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080726

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090123

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090126

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090120

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090119

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100119

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130326

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003465

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003465

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801