WO2005023853A1 - プロテアーゼ耐性seb改変体およびそれを含むワクチン - Google Patents

プロテアーゼ耐性seb改変体およびそれを含むワクチン Download PDF

Info

Publication number
WO2005023853A1
WO2005023853A1 PCT/JP2004/012545 JP2004012545W WO2005023853A1 WO 2005023853 A1 WO2005023853 A1 WO 2005023853A1 JP 2004012545 W JP2004012545 W JP 2004012545W WO 2005023853 A1 WO2005023853 A1 WO 2005023853A1
Authority
WO
WIPO (PCT)
Prior art keywords
seb
variant
modified
amino acid
derivative
Prior art date
Application number
PCT/JP2004/012545
Other languages
English (en)
French (fr)
Inventor
Toshihiro Nakashima
Takumi Sasaki
Tsukasa Nishihara
Sumiyo Takemoto
Atsuko Sakata
Masao Ohkuchi
Tomoyuki Koshi
Toshiyuki Edano
Original Assignee
Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Kowa Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juridical Foundation The Chemo-Sero-Therapeutic Research Institute, Kowa Company, Ltd. filed Critical Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Priority to EP04772501A priority Critical patent/EP1661911B8/en
Priority to JP2005513635A priority patent/JP4571586B2/ja
Publication of WO2005023853A1 publication Critical patent/WO2005023853A1/ja
Priority to US12/644,952 priority patent/US7947290B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention provides a Staphylococcus aureus intestinal endotoxin B (known as one of superantigens)
  • Staphylococcal enterotoxin B (hereinafter sometimes referred to as “SEB”) or a derivative thereof, a vaccine containing the same as an active ingredient, and use thereof. More specifically, the present invention relates to a modified SEB or a derivative thereof having resistance to proteases and, as a result, reduced toxicity, a peptide containing the same as an active ingredient and a use thereof.
  • SEB is a type of enterotoxin (enteric toxin; causative toxin-type food poisoning toxin) produced by Staphylococcus aureus.
  • SEB consists of 239 amino acid residues, and its amino acid sequence is also known (SEQ ID NO: 1).
  • the SEB molecule is composed of two domains, the first domain consisting of residues 1-120, and the second domain consisting of residues 127-239.
  • Staphylococcus aureus is an indigenous bacterium, it is known that infections caused by Staphylococcus aureus, which is resistant to many antibiotics, are extremely serious and have a poor prognosis. Severe staphylococcal infections, as typified by food poisoning, are mainly caused by toxins released from the cells. Among them, Staphylococcal enterotoxin (Staphylococcal enterotoxin, sometimes abbreviated as “SE”) is a type of superantigen that acts on many T lymphocytes and produces a large amount of inflammation that does not normally occur Promotes the production of site force-in (Non-Patent Document 1).
  • SE Staphylococcal enterotoxin
  • Non-patent Document 2 Non-patent Document 2
  • SEB Staphylococcus aureus intestinal endotoxin B
  • Non-patent Document 3 In addition, it has been reported that a high proportion of atopic patients have an IgE-type anti-SEB antibody, and a relationship between SEB and pathogenesis is suspected (Non-patent Document 3). [0005] Furthermore, in rheumatic patients, epidemiological data suggesting a relationship between SEB and onset and pathogenesis has been reported, and the relationship between IgM-type anti-SEB antibodies and pathology has been reported (Non-patent Document 4). ).
  • Non-Patent Document 7 So far, from the analysis of the three-dimensional structure of SEB and the like, a variant in which the contact site with MHC has been modified, a variant in which the contact site with TCR has been modified, and the like have been reported (Non-Patent Document 7).
  • Patent document 1 WO99 / 40935
  • Non-Patent Document 1 V. Micusan and J. Thibodeau, "Seminars in Immunol 1 ", 1993, Vol. 5, p. 3-11
  • Non-Patent Document 2 Kuwahata, ⁇ ., Et al., "Acta Pediatnca Japonica", 199b, 38, ⁇ .1-Non-Patent Document 3: Zone (Sohn MH.), Kim ( Kim GH), Kim (Kim WK), Young (Jang GC), Kim (Kim KE), "Allergy Asthma Pro", 2003, 24 (1), p.67-71
  • Non-Patent Document 4 Origuchi T., Eguchi K., Kawabe Y., Yamashita I., Mizokami A., Ida H. , Nagataki S., "Annual Rheum. Dis.”, 1995, 54 (9), p.713-720
  • Non-Patent Document 5 Kuwahata, M., Imanaka, H., Takei, S., and Masuda, K., "Acta Oediatrica Japonica” , 1996, 38, ⁇ .1-7
  • Non-Patent Document 6 Puddy (Woody MA), Krakauer T, Styles (Stiles BG), "Vaccine”, 1997, 15 (2), ⁇ ⁇ 133-139
  • Non-Patent Document 7 Leader (Leder L,) et al., "Journal of Experimental Medicine", 1998, 187 (6), p.823-833.
  • the present inventors have conducted extensive studies on the change in activity caused by amino acid mutations in SEB, and as a result, focused on mutations in the protease cleavage site and onset of toxicity.
  • SEB In the intestinal tract, SEB is almost present in such a truncated form due to trypsin derived from ⁇ , and it is thought that SEB expresses its activity.
  • human SEB antibodies include antibodies against multiple linear epitopes from analysis using Western plots, etc., indicating that SEB is processed not only as a superantigen but also as an antigen into antigen-presenting cells. It has been suggested that antigen is presented. Therefore, mutations in the protease cleavage site may alter antibody-inducing ability. It is.
  • the present inventors focused on lysine at position 97 and lysine at position 98 based on the information and analysis results described above. Structurally, these two amino acids exist on the loop that connects the N-terminal domain and the C-terminal domain of SEB, and the movement and cleavage of this loop may play a significant role in the structural changes involved in the expression of SEB activity. Sex is considered. Furthermore, the present inventors have found that this site is a cleavage site for forceepsin B as well as trypsin.
  • Cathepsin B is an enzyme that has been shown to be significantly involved in antigen processing in antigen presenting cells. Therefore, it was predicted that mutagenesis at this site would have a significant effect on the dynamics of SEB, antigen presentation and toxicity in vivo.
  • the present inventors have used a genetic engineering technique to modify the amino acid sequence of SEB in which the asparagine at position 23 in the SEB amino acid sequence has been substituted with tyrosine to give a lysine at position 97 and a lysine at position 98.
  • the mutant in which both lysines at positions 97 and 98 were substituted with serine showed good expression. .
  • the notation relating to the modification used in the present specification is the notation of the amino acid name before the modification before the number at the amino acid residue position and the amino acid name after the modification after the modification.
  • N Asparagine
  • Y Tetyrosine
  • N23YK97SK98S is The 23rd (23rd) N (Asn: asparagine) from the N-terminus is replaced by Y (Tyr: tyrosine) and the 97th (97th) and 98th (98th) (Lys: lysine) are replaced by S (Ser: Serine).
  • SEQ ID NO: 2 The amino acid sequence of the N23YK97SK98S variant is shown in SEQ ID NO: 2.
  • this purified variant exhibits resistance to trypsin and cathepsin B treatment, but has sufficient reactivity with the SEB antibody, and has a natural antigenicity as SEB. It was thought that there was no big difference from the type.
  • the N23YK97SK98S variant had a lymphocyte proliferating activity that was reduced by a factor of about 1,000,000 compared to the native type and to about 1 / 10,000 compared to the N23Y variant.
  • the modified N23YK97SK98S of the present invention also has a markedly reduced cytodynamic force-inducing stimulating activity. It showed an excellent effect of reducing the activity, such as no production induction.
  • Some toxicity caused by SEB may be due to monoforces produced by leukocytes stimulated by SEB, especially tumor necrosis factor-spike (TNF-spike). Therefore, a decrease in the lymphocyte proliferation stimulating activity or the activity of inducing cytotoxicity is an indicator of a decrease in toxicity due to SEB.
  • FIG. 1 shows the results of SDS-PAGE examination of the N23Y modified SEB and the N23YK97SK98S modified SEB-treated fragment of the present invention after trypsinization.
  • T trypsinized
  • M molecular weight standard.
  • FIG. 2 Purified SEB N23Y mutant or N23YK97SK9 of the present invention was expressed in BALBZc mice.
  • FIG. 7 is a graph showing the distribution of anti-SEB antibody titers in mice after inoculation of the 8S variant.
  • FIG. 3 The reactivity of the antiserum obtained by immunizing the mutant N23YK97SK98S of the present invention with N2
  • FIG. 4 is a graph showing the cell growth stimulating activity of the modified N23YK97SK98S of the present invention in comparison with wild-type SEB and the N23Y modified SEB.
  • FIG. 5 shows that the N23YK97SK98S variant of the present invention has
  • FIG. 6 shows that the modified N23YK97SK98S of the present invention has a
  • FIG. 7 shows that the modified N23YK97SK98S of the present invention was orally administered to induce anti-SEB antibodies.
  • the wild-type SEB (SEB prepared based on a genetic recombination technique having the same amino acid sequence as SEB derived from Staphylococcus aureus), which is the basis of the SEB variant according to the present invention, is, for example, schematically described It can be prepared by the following method.
  • a 5 ′ sense primer and a 3 ′ antisense primer can be synthesized using a DNA synthesizer or the like. Plaques are collected by plaque hybridization using the primers and chromosomal DNA present in a commercially available Staphylococcus aureus DNA library, and PCR is further performed using sense primers to extract DNA from the resulting band. . Then, the extracted DNA is inserted into a suitable cloning vector and cloned.
  • the cloned gene encoding SEB is digested with restriction enzymes such as Sacl, HindIII, EcoRI, BamHI, Xbal, Sail and Pstl, and the restriction enzymes Xmnl, Hindlll, EcoRI, BamHI, Xbal, Sail and Recombinant DNA is obtained by incorporation into a vector cut with Pstl et al. (Sambrook et al., Molecular Cloning, Second Edition, Chapter 9, 1989, New York, Cornoredo 'Spring' Harbor 'Laboratory' Press).
  • a secretion expression vector pTrc99A or the like can be suitably used.
  • a transformant By incorporating the obtained recombinant DNA into an appropriate host, for example, Escherichia coli, a transformant can be obtained. After culturing the transformant by a conventional method, cells are collected after completion of the culture, and the cells are disrupted by a conventional method to obtain a desired wild-type SEB from the suspension. In some cases, wild-type SEB is preferably secreted into the culture supernatant depending on the conditions. In this case, the culture supernatant can be used as a starting material for preparation. The starting material is purified by a purification means such as immunoaffinity chromatography in which an anti-SEB monoclonal antibody is bound to an adsorbent.
  • the buffer of the final preparation used in various tests is preferably a tris-hydrochloric acid buffer, a phosphate buffer or the like.
  • the modified SEB of the present invention can be prepared according to the preparation of the wild-type SEB described above. [0035] In order to maintain the prepared wild-type SEB and the modified SEB to the maximum, it is preferable that the wild-type SEB and the SEB variant be stored within 4 days when stored at 4 ° C. Alternatively, the SEB variants of the present invention can be stored in a suitable environment such as gelatin, salts, sugars, sugar alcohols or amino acids.
  • the vaccine preparation of the present invention can be prepared by a known method by combining a modified SEB as an active ingredient and a known suitable excipient.
  • the final dosage form of the drug product may be in the form of a powder (solid), solution, or syrup that allows subcutaneous, intramuscular, or oral administration.
  • a SEB variant alone or an adjuvant typified by an aluminum adjuvant and freeze-dried into a solid form with a suitable dosage form such as a carbohydrate, a sugar, a sugar alcohol and an amino acid, or SEB
  • a liquid preparation or the like in which the variant is dissolved in physiological saline and a suitable buffer having an acceptable ionic strength is a preferred embodiment.
  • SEB O. lig—100 mg (0.002—2 mg / Kg body weight), preferably 1 ⁇ g—5 mg (0.02 / ig-100 / ig / Kg body weight) per administration Drugs containing variants are preferred.
  • the effective dose of the vaccine preparation based on the SEB variant or a derivative thereof of the present invention varies depending on, for example, the age, symptoms and severity of the administration subject, and ultimately varies according to the intention of the physician.
  • it when converted to a modified SEB, it is 0.1 ⁇ g to 1 mg per adult per day, preferably 1 ⁇ g to 5 mg in 1 or 2 divided doses. In some cases, it can be used in combination with another drug such as a steroid.
  • the "derivative" of the SEB variant of the present invention refers to a SEB variant having at least one amino acid residue substitution further modified with an amino acid. Any amino acid residue in the amino acid sequence of the natural SEB other than the acid, in which the amino acid residue has been further substituted, deleted, or inserted, and which has the same activity as the modified SEB of the present invention, is the present invention. Is included.
  • Nii 1 (Preparation and expression of recombinant SEB variant)
  • a DNA library of Staphylococcus aureus enterotoxin A + B + D was purchased from CLONOTEC, and a plaque hybridization method was performed. Antisense synthetic DNA or PCR fragment was used as a probe. Sail cleavage sites were added to both ends of the primer to facilitate subsequent cloning operations.
  • Antisense 5'-AAG TCG ACA ATA TTA GAA AAG GCA GGT ACT-3 '(SEQ ID NO: 3)
  • the DNA base sequence of the obtained SEB gene was determined using an auto-sequencer.
  • the SEB gene obtained as described above did not contain a mutation.
  • the SEB gene that does not contain the promoter region is cut with Sail, cloned into the secretory expression vector pTrc99A (Pharmacia Biotech) having the same cleavage site, and inserted into the normal direction. Induction was performed using E. coli, and it was confirmed that SEB was secreted and expressed.
  • PCR polymerase chain reaction
  • PCR was performed using Taq polymerase and a DNA thermal cycler from Perkin Elmer Cetus (Norwalk, CT, USA) according to the report of Saiki et al. (Science vol. 239, p. 487 (1988)).
  • 1 minute denaturation step (94 ° C) to denature and dissociate double-stranded template DNA
  • 2 minute annealing step 55 ° C to associate primer with template
  • 2 minute extension for synthesis The process (72 ° C) was performed for 30 35 cycles.
  • the template concentration was 1 ⁇ M InM
  • the oligonucleotide primer concentration was ImM.
  • variants were prepared using PCR primers having mutations in the nucleotide sequence so that the amino acids at positions 97 and 98 were converted to the desired amino acids by PCR. Mutagenesis was performed as follows.
  • a primer corresponding to a region corresponding to the 5 'end of SEB to which the Sfil sequence of pTrc99A / N23Y was added was used as a primer, and a primer corresponding to the 3' end of SEB to which Notl recognition sequence was added was used as a primer.
  • a primer (antisense) corresponding to the corresponding region was synthesized. Furthermore, K97SK98S sense primer and antisense primer were synthesized to convert the amino acids at positions 97 and 98.
  • K97SK98S antisense primer [0052] pTrc99A / N23Y was made into type III, and the 5 'region containing the mutation with the primer and the K97SK98S antisense primer was replaced with the K97SK98S sense primer and the 3' region containing the mutation with the primer. was amplified by the PCR method.
  • the expression of the SEB variant was performed using the variant gene inserted into the pTrc99A vector.
  • the gene-incorporated E. coli was cultured in a medium containing 4% CIRCLEGROW (BIO 101 Inc., Vista, CA, USA) and ampicillin (50 mg / ml) at 37 ° C for 18 hours, and the cells were collected. Suspend the culture medium so that the OD 550nm is 0.3-1.0, add 2mM isopropyl-B-D (-)-thiogalatatopyranoside (IPTG) and shake at 37 ° C. Induction was thus performed. After induction, Escherichia coli as a host was removed by centrifugation, followed by filtration through a 0.45 ⁇ m filtration membrane.
  • the culture supernatant thus prepared was passed through a Sepharose 4B column on which anti-SEB monoclonal antibody SA58_2_6IgG had been immobilized, and the contained SEB variant was adsorbed. After washing with 0.1 M Tris HCl (pH 8.0), elution was performed with 4 M MgCl. Elution fraction, 20 volumes
  • the amount of endotoxin contained in the SEB variant preparation was removed so that the final dose was SlOng / mouse or less, and the experiment was performed using males.
  • the lethal toxicity of SEB after D-galactosamine administration was expressed when more than 100 ⁇ gZ mice were administered, so the dose of the modified SEB was 100 xgZ mice.
  • the mortality of the mouse was higher in the native SEB and the wild-type SEB, and the lethal toxicity was shown to be lower in the other variants.
  • the natural SEB means an intestinal endotoxin derived from Staphylococcus aureus
  • the wild-type SEB means an SEB prepared based on a genetic recombination technique having the same amino acid sequence as the natural SEB. .
  • SEB modified form (100 g / head) Mortality rate (total number of dead individuals Z total number of individuals)
  • SEB-N23Y was decomposed into two fragments, N-terminal (near 21 Kda) and C-terminal (near lOKda) by trypsin treatment, whereas the modified SEB-N23YK97SK98S had the same position (32 kda ) And two bands around 28Kda.
  • FIG. 1 shows that these bands had reactivity with SEB antibody (FIG. 1).
  • FIG. 1 As a result of N-terminal analysis, these two bands have the same SEB N-terminal sequence, and the band around 28 Kda has reduced basicity as a result of digestion of lysine on the C-terminal side with trypsin. It was considered that the SEB-N23YK97SK98S variant migrated at a position close to the theoretical value (28.3 Kda).
  • the modified SEB-N23YK97SK98S had sufficient resistance to serine proteases that could not be cleaved by trypsin at other sites.
  • it exhibited the same behavior with respect to cathepsin B, and it was confirmed that it had resistance to cathepsin B.
  • BALB / c mice 3-4 weeks old (female) were inoculated intraperitoneally with 20 ⁇ g of the purified SEB-N23YK97SK98S variant or purified SEB-N23Y after forming FCA and emulsion.
  • the endotoxin content of the purified variant and purified SEB-N23Y was less than 0.05 EU / mg.
  • FIG. 2 shows the distribution of the anti-SEB antibody titer of each mouse measured at a dilution of 10,000-fold.
  • the serum anti-SEB antibody titer of the group immunized with the variant was significantly increased as compared with the SEB-N23Y immunized group.
  • PBMC peripheral blood mononuclear cell
  • IX 10 5 / Ueru become as 96 Uwerupureto
  • SEB, SEB- N23Y, N23YK97SK98 variants were stimulated at concentrations of 0.01, 1, 100, and 10,000 ng / mL for 3 days, and 16 hours before harvest, tritium-thymidine (0.5 / i Ci) was incorporated and proliferation-inducing activity was examined. .
  • PBMC peripheral blood mononuclear cell
  • Each of the above PBMCs was cultured for 6 days in the presence of the same concentration of the SEB variant, and the degree of T cell blastogenesis was determined by flow cytometry (hereinafter sometimes referred to as "FACS") FSC. Investigated by / SSC analysis. As a result, N23Y induced significant blastogenesis in less than 40% of cells at Ing / mL or higher, but the inducing activity of the modified N23YK97SK98S was further reduced to about 1/2 that of N23Y (Fig. 5). .
  • FACS flow cytometry
  • Healthy human PBMCs were seeded at 1 ⁇ 10 6 / mL on a 24-well plate, and stimulated with 100 ng / mL of each of SEB, N23Y and a cathepsin B site variant (N23YK97SK98S variant) for 2 days, and the supernatant was collected. .
  • the production of various cytokins (TNF_a, IL-1 ⁇ , IL-6, IL_8, IL-12, IFN- ⁇ , IL_lra, IL_4, IL_10, and GM-CSF) in the culture supernatant was measured using an ELISA kit (CytoSets , CytoFix, Asahi Techno Glass Co., Ltd.).
  • N23YK97SK98SS female variant had significantly reduced ability to produce cytokin in comparison with N23Y and SEB.
  • the production of IL-11 ⁇ , IL-6, TNF—H, IL-12, GM—CSF, and IFN— ⁇ is significantly reduced, while the IL Production of 1-4 was maintained at about the same level as ⁇ 23 ⁇ ( Figure 6).
  • the modified SEB of the present invention has resistance to proteases, particularly trypsin and cathepsin B, and has extremely reduced toxicity as compared with the conventional modified SEB. Therefore, the SEB variant (N23YK97SK98S variant) of the present invention is a vaccine for preventing and treating severe diseases caused by opportunistic infections and toxins produced by bacteria resistant to antibiotics, and type 1 allergic diseases. Can be used effectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 プロテアーゼに対する耐性を有し、より毒性の低減された黄色ブドウ球菌腸管内毒素B(SEB)改変体、および該SEB改変体を含むワクチンを提供する。  配列番号1において97位のリジンおよび98位のリジンを任意のアミノ酸に置換したアミノ酸配列を有するSEB改変体またはその誘導体、および該SEB改変体またはその誘導体を含むワクチン。

Description

明 細 書
プロテアーゼ耐性 SEB改変体およびそれを含むワクチン
技術分野
[0001] 本発明は、スーパー抗原の一つとして知られる黄色ブドウ球菌腸管内毒素 B (
Staphylococcal enterotoxin B、以下「SEB」と呼称することもある)の改変体またはそ の誘導体、およびそれを有効成分として含有するワクチンおよびその利用に関する。 さらに詳細には、本発明は、プロテアーゼに対して耐性を有し、その結果、毒性の低 減した SEB改変体またはその誘導体、およびそれを有効成分として含有するヮクチ ンおよびその利用に関する。
背景技術
[0002] SEBは黄色ブドウ球菌によって産生されるェンテロトキシン (腸管毒;毒素型食中毒 の原因毒素)の 1種である。 SEBは 239個のアミノ酸残基よりなり、そのアミノ酸配列も 知られている(配列番号 1)。 SEB分子は 2つのドメイン力 構成され、最初のドメイン は残基 1一 120よりなり、 2番目のドメインは残基 127— 239よりなる。
[0003] 黄色ブドウ球菌は常在菌である一方、多くの抗生物質に耐性の黄色ブドウ球菌に よる感染症は、極めて重篤で予後も悪いことが知られている。食中毒に代表されるよ うな重症のブドウ球菌感染症は、主として菌体から放出される毒素によって引き起こ されている。その中で黄色ブドウ球菌腸管内毒素(Staphylococcal enterotoxin,以下 「SE」と略することがある)は、スーパー抗原の一種で多くの Tリンパ球に作用して通 常では起こらないほど大量の炎症性サイト力インの産生を促す(非特許文献 1)。炎症 性サイト力インが大量に作用するとショック様症状を引き起こし、生体を死に至らせる こともある。成人の健常人は加齢と共に黄色ブドウ球菌腸管内毒素(SE)に対する抗 体を有する割合が高くなることが報告されているが (非特許文献 2)、悪性腫瘍の末期 状態などの免疫不全の状態では、薬剤耐性ブドウ球菌の侵入を容易に許してしまい 、黄色ブドウ球菌腸管内毒素 B (SEB)による炎症も起こりやすいと考えられている。
[0004] またアトピー患者が IgE型抗 SEB抗体を有する割合が高いことが報告され、 SEBと 病態形成との関連が疑われてレ、る(非特許文献 3)。 [0005] さらにリウマチ患者の場合も SEBと発症、病態形成との関係を示唆する疫学データ が報告されており、 IgM型抗 SEB抗体と病態との関係が報告されている(非特許文 献 4)。
[0006] 疫学的には SEBに対する抗体はヒトでは加齢と共に保有率が増加し、 7歳以上の 殆どの成人ではほぼ 100%になることが報告されている(非特許文献 5)。
[0007] し力、しながら、一般的にその抗体価は高くなぐ血中で SEBを中和するのに充分な 親和性を有しているかどうかは不明である。
[0008] 一方、 SEBが関与すると考えられる食中毒を始めとした種々の疾患の予防や治療 を目的として、 SEBを改変して毒性を低減させた改変体の報告が数多く行われてき た (非特許文献 6)。本発明者らも SEBの毒性を大きく低減した改変体を作出し、この 改変体が SEBとしての抗体産生誘導能を有していることを確認している(SEBの 23 位のァスパラギン残基をチロシン残基に置き換えた変異体;特許文献 1)。
[0009] し力 ながら、本発明者らのものも含め、これまでの改変体は毒性を低減させたとは いえ、数 10ng/mlの濃度でヒトのリンパ球を活性化する性質を有しており、ワクチン 抗原の毒性として考えた場合には更なる改良が必要であった。
[0010] これまでにも SEBの立体構造解析などから MHCとの接触部位を改変した改変体、 TCRとの接触部位を改変した改変体などが報告されている(非特許文献 7)。
特許文献 1: WO99/40935号公報
非特許文献 1 :ミクサン (V· V. Micusan)およびチボドー(J. Thibodeau)、 "セミナーズ' イン · ムノロン1 ~~ (Seminars in Immunology) , 1993, Vol5, p.3-11
非特許文献 2:クヮハタ(Kuwahata, Μ·)ら、 "ァクタ'ぺディアトリ力'ジャポニカ(Acta Pediatnca Japonica) , 199b, 38, ρ.1 - 非特許文献 3:ゾーン(Sohn MH.)、キム(Kim GH)、キム(Kim WK)、ヤング(Jang GC )、キム(Kim KE)、 "ァラジー 'ァズマ'プロシーディングス(Allergy Asthma Pro )", 2003, 24(1), p.67-71
非特許文献 4:オリグチ(Origuchi T.)、ェグチ(Eguchi K.)、カヮべ(Kawabe Y.)、ャマ シタ (Yamashita I.)、ミゾカミ (Mizokami A.)、イダ (Ida H.)、ナガタキ (Nagataki S.)、 " ァニュアル'リューマトロジカノレ'ディジーズ(Ann. Rheum. Dis.) ", 1995, 54(9), p.713-720
非特許文献 5:クヮハタ(Kuwahata, M.)、イマナカ(Imanaka, H.)、タケイ( Takei, S.) およびマスダ(Masuda, K.)、 "ァクタ'エディアトリカ'ジャポニカ(Acta Oediatrica Japonica) ", 1996, 38, ρ.1-7
非特許文献 6:ゥッディー (Woody MA)、クラカヮー (Krakauer T)、スタイルズ (Stiles BG)、 "ワクチン (Vaccine) ", 1997, 15(2), ρ· 133-139
非特許文献 7 :リーダー(Leder L,)ら、 "ジャーナル'ォブ'ェクスペリメンタル 'メディス ン(Journal of Experimental Medicine) ", 1998, 187(6), p.823-833
発明の開示
発明が解決しょうとする課題
[0011] し力、しながら、前述のようにこれらの改変体の毒性の低減は不十分であり、単純な 接触部位の変異のみでは毒性の低減に限界があると考えられた。
課題を解決するための手段
[0012] 本発明者らは、 SEBのアミノ酸変異が及ぼす活性の変化を鋭意検討した結果、プ 口テアーゼ切断サイトの変異と毒性発現に着目した。
[0013] 野生型 SEBの一次配列上には 37箇所のトリプシン認識配列がある力 通常の生体 と同様の中性バッファー条件で実際に切断されるのは、 97位のリジン、 98位のリジン の C末端側、 238位、 239位のリジンの C末端側のみであることが実験的に確認され ている。
[0014] し力しながら、これらのサイトが切断されても SEBの活性 (リンパ球活性化、増殖能) には全く影響ないこと、また SEB抗体との反応性についても変化がないことを見出し た。
[0015] 腸管内では陴由来のトリプシンにより SEBは殆どこのような切断型で存在し、活性 を発現してレ、るものと考えられる。
[0016] 一方、ヒト SEB抗体中にはウェスタンプロットを用いた解析などから、複数のリニア ーェピトープに対する抗体が含まれ、 SEBがスーパー抗原としてのみならず、抗原と して抗原提示細胞にプロセッシングされて抗原提示されていることが示唆されている 。従ってプロテアーゼ切断サイトの変異は抗体誘導能を変化させる可能性が考えら れる。
[0017] 本発明者らは、前述の情報や解析結果から、 97位のリジン、 98位のリジンに着目し た。構造上はこの 2つのアミノ酸は SEBの N末端ドメインと C末端ドメインを結ぶルー プ上に存在しており、このループの動きや切断が SEBの活性発現に関わる構造変化 に大きく関与している可能性が考えられる。さらにこのサイトはトリプシンのみならず力 テプシン Bの切断サイトであることを本発明者らは見出した。
[0018] カテブシン Bは抗原提示細胞内で抗原プロセッシングに大きく関与していることが 明らかにされている酵素である。従って、このサイトへの変異導入は生体内での SEB の動態、抗原提示、毒性発現に大きな影響を及ぼすことが予測された。
[0019] そこで、本発明者らは、遺伝子工学的手法を用い、 SEBのアミノ酸配列中の 23位 のァスパラギンをチロシンに置換した SEB改変体に対して 97位のリジンおよび 98位 のリジンにアミノ酸変異を加えた複数の変異体を作製し、大腸菌での発現を試みたと ころ、 97位および 98位のリジンがともにセリンに置換された改変体(N23YK97SK9 8S改変体)が良好な発現を示した。なお、本明細書に用いられる改変に係る表記は 、アミノ酸残基位置の数字の前に改変前のアミノ酸名を、後に改変後のアミノ酸名を 表記したものであり、たとえば「N23Y」の場合、 N末端から 23番目(23位)の N (Asn :ァスパラギン)を Y (Tyr:チロシン)に置換した改変体を意味する。また、 2以上のァ ミノ酸残基が置換された改変体の場合は、各アミノ酸残基に係る表記をそのまま N末 端側から順に列記して記載してある(たとえば、「N23YK97SK98S」は、 N末端から 23番目(23位)の N (Asn:ァスパラギン)を Y (Tyr:チロシン)に、 97番目(97位)お よび 98番目(98位)の (Lys:リジン)を S (Ser:セリン)にそれぞれ置換した改変体 を意味する)。 N23YK97SK98S改変体のアミノ酸配列を配列番号 2に示す。
発明の効果
[0020] 精製したこの改変体は予測されたとおり、トリプシンやカテブシン B処理に対して耐 性を示す一方で、 SEB抗体との反応性は充分に有しており、 SEBとしての抗原性に 天然型と大きな差はないと考えられた。
[0021] このように、 23位のァスパラギンのチロシンへの変異(N23Y改変体)に加えて 97 位および 98位の 2つのリジンをさらに改変することにより、リンパ球増殖活性やサイト 力イン産生誘導活性が大幅に低下していることが確認された。とりわけ本発明による
N23YK97SK98S改変体は、天然型と比べリンパ球増殖活性で 100万分の 1、 N2 3Y改変体に比べても 1万分の 1程度にまで減少していた。
[0022] さらに、本発明の N23YK97SK98S改変体はサイト力イン産生刺激活性について も大幅に低下しており、 IL一 4の誘導が天然型の 40%程度認められる以外は、炎症 性サイト力インの産生誘導も認められなレ、など活性低減に優れた効果を示した。 SE Bによるいくつかの毒性は SEBによって刺激された白血球が産生するモノ力イン、とく に腫瘍壊死因子-ひ (TNF—ひ)に起因すると考えられる。従って、リンパ球増殖刺激 活性やサイト力イン産生誘導活性の低下は、 SEBによる毒性低下の指標となるもの である。
[0023] 本発明の N23YK97SK98S改変体を通常の方法と同様の手法でマウス腹腔にァ ジュバントとともに免疫すると、 N23Y改変体に比べ有意に高い抗体価を示す抗体が 誘導でき、またその抗体は N23Y改変体を免疫した場合と同質の抗体であった。 図面の簡単な説明
[0024] [図 1]SEBの N23Y改変体および本発明の N23YK97SK98S改変体をトリプシン処 理した後のフラグメントを SDS— PAGEにより調べた結果を示す。 T:トリプシン処理、 M :分子量標準。
[0025] [図 2]BALBZcマウスに SEBの精製 N23Y改変体または本発明の N23YK97SK9
8S改変体を接種後、マウスにおける抗 SEB抗体価の分布を示すグラフ。
[0026] [図 3]本発明の N23YK97SK98S改変体を免疫して得られる抗血清の反応性を N2
3Y改変体を免疫して得られる抗血清の反応性と比較して示すグラフ。
[0027] [図 4]本発明の N23YK97SK98S改変体の細胞増殖刺激活性を、野生型 SEBおよ び SEBの N23Y改変体と比較して示すグラフ。
[0028] [図 5]本発明の N23YK97SK98S改変体の幼若化刺激活性を、野生型 SEBおよび
SEBの N23Y改変体と比較して示すグラフ。
[0029] [図 6]本発明の N23YK97SK98S改変体のサイト力イン産生刺激活性を、野生型 S
EBおよび SEBの N23Y改変体と比較して示すグラフ。
[0030] [図 7]本発明の N23YK97SK98S改変体を経口投与した場合の抗 SEB抗体誘導を 、 SEBの N23Y改変体と比較して示すグラフ。
発明を実施するための最良の形態
[0031] 本発明による SEB改変体の基本となる野生型 SEB (黄色ブドウ球菌に由来する SE Bと同じアミノ酸配列を有する遺伝子組換え技術に基づいて調製された SEB)は、た とえば、概略以下の方法で調製することができる。
[0032] SEBの染色体 DNAは公知であるので(Ranelli D. M.ら、 Pro Natl. Acad. Sci.
USA. , Vol.82, ρ·5850— (1985))、 DNA合成機等を用いて 5'センスプライマーおよ び 3'アンチセンスプライマーを合成することができる。該プライマーと市販されている 黄色ブドウ球菌の DNAライブラリーに存する染色体 DNAによるプラークハイブリダィ ゼーシヨンによりプラークを採取し、さらにセンスのプライマーを用いて PCRを行ない 、得られたバンドから DNAを抽出する。そして、好適なクローニングベクターに抽出さ れた DNAを挿入してクローニングする。
[0033] クローニングされた SEBをコードする遺伝子を Sacl、 HindIII、 EcoRI、 BamHI、 X bal、 Sailおよび Pstl等の制限酵素で切断し、同じく制限酵素 Xmnl、 Hindlll, Eco RI、 BamHI、 Xbal、 Sailおよび Pstl等で切断したベクターに組み込むことによって 組換え体 DNAを得る(Sambrookら、 Molecular Cloning,第 2版、第 9章、 1989年、二 ユーヨーク、コーノレド 'スプリング 'ハーバー 'ラボラトリー 'プレス)。ベクターとしては、 分泌発現用ベクター pTrc99A等が好適に用いられ得る。
[0034] 得られた組換え体 DNAを適当な宿主、たとえば大腸菌に組み込むことにより、形 質転換体を得ることができる。当該形質転換体を常法により培養した後、培養終了後 に菌体を採取し、常法により菌体を破砕し懸濁液より所望の野生型 SEBを得ることが できる。なお、条件によっては培養上清中に好適に野生型 SEBが分泌されている場 合があり、この場合、培養上清が調製の出発原料となり得る。出発原料を、たとえば、 抗 SEB単クローン抗体を吸着体に結合させた免疫ァフィ二ティークロマトグラフィー 等の精製手段により精製する。なお、各種試験に用いられる最終調剤の緩衝液は、ト リス一塩酸緩衝液、リン酸緩衝液等を用いることが好ましレ、。
本発明の SEB改変体の調製は前述の野生型 SEBの調製に準じて行うことができる [0035] 調製された野生型 SEBおよび SEB改変体を最大限に維持するためには、新鮮で ある力、 4°Cで保存する場合は保存後約 5日以内のものが好ましい。あるいは、本発 明の SEB改変体は、ゼラチン、塩、糖、糖アルコールまたはアミノ酸等の好適な環境 で保存すること力 Sできる。
[0036] また、本発明では有効成分としての SEB改変体と公知の適当な賦形剤とを組み合 わせ、公知の方法で本発明のワクチン製剤とすることができる。本製剤の最終的な剤 形については、皮下投与、筋肉内投与あるいは経口投与を可能にする粉末(固形) 状、溶液状あるいはシロップ状のものが考慮されうる。例えば、 SEB改変体単独を或 いはアルミアジュバントに代表されるようなアジュバントと共に、適当な剤形剤、たとえ ば炭水化物、糖、糖アルコールおよびアミノ酸等とともに凍結乾燥し固形状としたもの 、または SEB改変体を生理食塩水および許容しうる強度のイオン強度を有する適当 な緩衝液中に溶解した液状製剤等は好適な態様である。また、本態となる SEB改変 体を市販の飲料水に溶解し経口的に摂取することも考えられる。薬剤中の含量につ いては、 1回の投与当たり O. l i g— 100mg (0.002— 2mg/Kg体重)、好ましくは 1 μ g— 5mg (0.02 /i g- 100 /i g/Kg体重)の SEB改変体を含有する薬剤が好まし レ、。
[0037] 本発明の SEB改変体もしくはその誘導体を本態とするワクチン製剤の有効投与量 は、たとえば投与対象者の年齢、症状および重症度などにより変動し、最終的には 医師の意図により変動するものである力 たとえば SEB改変体に換算した場合、成 人 1日当たり 0.1 μ g— lmgであり、好ましくは 1 μ g— 5mgを 1一 2回に分けて投与す るのがよい。また、場合によりステロイド剤などの他の薬剤との併用も可能である。
[0038] また、本発明の SEB改変体の「誘導体」とは、上記少なくとも 1のアミノ酸残基の置 換を有する SEB改変体がさらにアミノ酸修飾を受けたものをレ、い、上記特定のァミノ 酸以外に天然型 SEBのアミノ酸配列中のいずれかのアミノ酸残基がさらに置換、欠 失、揷入等されたもので、本発明の SEB改変体と同等の活性を有するものはいずれ も本発明に包含される。
[0039] 実施例
以下に、調製例および実施例を挙げて本発明を具体的に説明するが、本発明はこ れらに何ら限定されるものではない。
[0040] 邇 1 (組換え SEB改変体の作製と発現)
1-1 SEB遺伝子のクローニング
CLONOTEC社より Staphylococcus aureus enterotoxin A + B + Dの DNAライブラリ 一を購入し、プラークハイブリダィゼーシヨン法を行なった。プローブとして、アンチセ ンスの合成 DNAあるいは PCR断片を用いた。プライマーは以後のクローニング操作 を容易にするために両端に Sail切断部位を付加した。
[0041] 上記プライマーと結合したプラークを採取し、さらにセンスのプライマーを用いて PC Rを行なレ、、得られたバンド力、ら DNAを抽出し、 PCR—IIベクター (Invitrogen社)にク ローニングした。上記ハイブリダィゼーシヨンに用いたプライマーを表 1に示す。
[0042] 表 1
アンチセ ンス : 5 ' -AAG TCG ACA ATA TTA GAA AAG GCA GGT ACT - 3 ' (配列番号 3 )
Sa l I
セ ンス : 5 ' -ATG TCG ACT TAA TTG AAT ATT TAA GAT TAT - 3 ' (配列番号 4 )
Sa l I
[0043] その後、オートシークェンサ一を使用して、 DNAの塩基配列を確認した。得られた SEB遺伝子はプロモーター領域(SEB_Pro)を含んでレ、たので、プロモーター領域 を含まない SEB遺伝子を得るために更に、表 2に記載のプライマーを用いて PCRを 行ない、得られた DNA断片を PCR— IIベクターにクローニングした。
[0044] 表 2
セ ンス: 5 ' -AAG TCG ACA AAA AAT GTA TAA GAG AT T ATT- 3 ' (配歹' I番号 5 )
S a l I
アンチセ ンス: 5 ' -AAG TCG ACT TTC ACT TT T TCT TTG TC G TAA— 3 ' (配歹 '1番号 6 )
S a l I
[0045] 得られた SEB遺伝子の DNA塩基配列は、オートシークェンサ一を用いて決定した 、上記のようにして得られた SEB遺伝子には突然変異は含まれていなかった。プロ モーター領域を含まない SEB遺伝子を、 Sailで切断し、同じ切断部位を持つ分泌発 現用ベクター pTrc99 A (Pharmacia Biotech社)にクローニングし、正常な方向に挿入 されているものを使用して、 IPTGを用いた誘導を行ない、 SEBが分泌発現されるこ とを確認した。
[0046] 1-2ポリメラーゼチェイン反応(PCR) 本実施例では、 PCRは Saikiら(Science vol. 239, p.487 (1988))の報告に従い、 Ta qポリメラーゼと Perkin Elmer Cetus (Norwalk, CT, USA)の DNAサーマルサイクラ一 を用いて行なった。二本鎖テンプレート DNAを変性解離させるための 1分間の変性 工程(94°C)、プライマーとテンプレートを会合させるための 2分間のアニーリングェ 程(55°C)および合成のための 2分間の延長工程(72°C)を 30 35サイクル行なつ た。テンプレート濃度は InM 1 μ Μであり、オリゴヌクレオチドプライマー濃度は ImM とした。
[0047] 1-3組換え SEB改栾体の作製と発現
SEB改変体は、アミノ酸置換導入を行なったもののみ組換え発現した。表 3にァミノ 酸置換の導入部位について示す。
[0048] 表 3
改変位置 変化 呼称
N 23 As n→Tyr N23Y
N 23 , K 97 , K 98 As n→Tyr , Ly s→S er; Lys→S er N23Y K97S K98S
[0049] 1-4アミノ酸置換の導入
SEB改変体の一つである N23Y (SEBの 23位のァスパラギン残基をチロシン残基 に置き換えた変異体;国際出願番号: PCT/JP99/00638)を pTrc99Aに組み込 んだプラスミド pTrc99A/N23Yを铸型にして、 PCR法にて 97位、 98位のアミノ酸 が目的のアミノ酸に変換されるように塩基配列に変異を入れた PCR用プライマーを 用いて、改変体を作製した。変異導入は以下のようにして行った。
[0050] 5しプライマーには pTrc99A/N23Yの Sfil配列を付加した SEBの 5'端に相当す る領域に対応したプライマーを、 3しプライマーには Notl認識配列を付加した SEB の 3'端に相当する領域に対応したプライマー(アンチセンス)を合成した。さらに、 97 位、 98位のアミノ酸を変換するために、 K97SK98Sセンスプライマー、アンチセンス プライマーを合成した。
[0051] K97SK98Sセンスプライマー
K97SK98Sアンチセンスプライマー [0052] pTrc99A/N23Yを铸型にして、 5しプライマーと K97SK98Sアンチセンスプライ マーで変異を含んだ 5'側の領域を、 K97SK98Sセンスプライマーと 3しプライマー で変異を含んだ 3'側の領域を PCR法にて増幅した。
[0053] 得られた 2本の DNA断片を使用して、アッセンブリー PCRを行レ、、全長の変異型 N 23YK97SK98S DNAを作製した。この全長の DNA断片を pTrc99Aにクローニン グした。クローニングした N23YK97SK98S SEB改変体の DNA塩基配列のシーク ェンシングを行い、変異の導入が正確になされているかどうか確認した。
[0054] 1-5 SEB改栾体の発現および該改栾体の調製
SEB改変体の発現は pTrc99Aベクターに揷入された改変体遺伝子を用いて行な つた。遺伝子を組み込んだ大腸菌を 4% CIRCLEGROW (BIO 101 Inc., Vista, CA, USA),アンピシリン (50mg/ml)を溶力、した培地で 37°C18時間培養し、細胞を集めた 後、さらに同じ培地に、 O.D.550nmが 0.3— 1.0になるように調整して浮遊し、 2mM イソプロピル一 B—D (—)一チォガラタトピラノシド(IPTG)を加えて 37°Cでー晚振とうす ることにより誘導を行なった。誘導後、遠心分離により宿主の大腸菌を除去し、 0.45 β mの濾過膜で濾過した。
[0055] このようにして調製した培養上清を、抗 SEB単クローン抗体 SA58_2_6IgGを固 相化した Sepharose4Bカラムに通液し、含まれる SEB改変体を吸着させた。 0.1M Tris HCl (pH8.0)で洗浄したのち、 4M MgClで溶出した。溶出画分は、 20倍容
2
の生理食塩水に 3回透析後、 20倍容の PBSに 2回透析した。今回調製した SEB改 変体は全てこの単クローン抗体カラムで精製することが可能であった。
[0056] 実施例 1 (マウスを用いた致死毒性試験)
Miethke T.らが報告しているように、天然型 SEBは通常はマウスに致死毒性をもた らさないが、これに D—ガラクトサミンを 20 μ g/kgで投与し、さらに マウスの SE Bを投与静脈内若しくは腹腔内に投与することで、死亡することが知られている (J. Exp. Med., Vol. 175, p. 91-98 (1992))。本実施例では予め D—ガラクトサミンを投与 したマウスに引き続き SEBおよび SEB改変体を投与して、これらが実際に死亡率を 改善するものであるかどうかを調べた。
[0057] 先ず、エンドトキシンに対する感受性を調べるため、 BALBZcマウスに D—ガラタト サミン 20mg/マウスを投与後、大腸菌 B4株由来の LPS (リポ多糖)を静脈内投与し て 24時間後の死亡率を調べた。その結果、 LPS投与量力 Sing/マウス以下では死 亡例は 0であった(表 4)。
[0058] 表 4
投与量 死亡個体数 z全個体数
1 β g / h e a d 7 / 9
1 0 0 n g / h e a d 8 / 9
1 0 n g / e a d 5 / 9
1 n g / h e a d 0 / 9
0 . 1 r l g / h e i a d 0 / 9
[0059] SEB改変体標品中に含まれるエンドトキシンの量を最終投与量力 SlOng/マウス以 下になるように除去し、雄を使用して実験を行なった。雄では、 D-ガラクトサミン投与 後の SEBの致死毒性は 100 μ gZマウス以上を投与したときに発現されたので、 SEB 改変体の投与量は 100 xgZマウスとした。表 5に示すように、天然型 SEBおよび野 生型 SEBではマウスの死亡率は高ぐ致死毒性があることが示された力 他の改変 体では致死毒性は低減されていた。なお、ここでいう天然型 SEBとは黄色ブドウ球菌 に由来する腸管内毒素を意味し、野生型 SEBは天然型 SEBとアミノ酸配列を同じく する遺伝子組換え技術に基づいて調製された SEBを意味する。
[0060] 表 5.
S E B改変体(100 g/head) 死亡率(合計死亡個体数 Z全個体数)
2 4時間後 4 8時間後
天然型 8 / 1 0 8 / 1 0
野生型 7 / 1 0 9 / 1 0
N 23Y 0 / 1 0 0 / 1 0
N 23Y K97 S K 98 S 0 / 1 0 0 / 1 0
P B S 0 / 1 0 0 / 1 0
[0061] 次に、雌の BALB/cマウスを用いて実験を行なった。雌では D—ガラクトサミン
40mg/マウスを投与したとき、 SEB20/ig/マウスで高い致死毒性が認められた。天 然型ー SEBおよび野生型一 SEBでは高い死亡率となった力 その他の改変体では死 亡率は低ぐ致死毒性が低減されていることが示された。
[0062] 実施例 2 (改変体のプロテアーゼ耐性)
リン酸バッファー平衡化生理食塩水(PBS, pH7.2)に溶解した精製 SEB— N23Yお よび SEB— N23YK97SK98S改変体 100 μ g/ml(500 μ 1)に対し、 10 μ gのトリプシ ンを添加し、 37°Cで 1時間反応させた。 lmgのトリプシンインヒビターを添加して反応を 停止後、 20 /i lを取り、 SDS— PAGEを行い、生成物の解析行った。その結果、 SEB -N23Yはトリプシン処理により N末(21Kda付近)および C末(lOKda付近)の 2つ のフラグメントに分解されたのに対し、 SEB—N23YK97SK98S改変体では消化前 と同一の位置(32kda付近)と 28Kda付近の 2つのバンドが確認された。ウェスタンブ ロットの結果、これらのバンドが SEB抗体に反応性を有することが確認できた(図 1)。 また N末分析の結果、この 2つのバンドは同一の SEBの N末の配列を有しており、 28 Kda付近のバンドは C末側のリジンがトリプシンで消化された結果、塩基性が低下し、 理論値(28.3Kda)に近い位置に泳動された SEB—N23YK97SK98S改変体であ ると考えられた。
[0063] 従って、 SEB—N23YK97SK98S改変体はその他の部位でトリプシンにより切断さ れることはなぐセリンプロテアーゼに対して充分に耐性を有していることが確認され た。またカテブシン Bに対しても同様の挙動を示し、カテブシン Bに対しても耐性を有 することが確認できた。
[0064] 直 ¾m (改変体の免疫実験)
BALB/cマウス 3— 4週齢(メス)に 20 μ gの精製 SEB—N23YK97SK98S改変体も しくは精製 SEB— N23Yを FCAとェマルジヨンを形成後、腹腔内に接種した。精製改 変体および精製 SEB—N23Yのエンドトキシン含量は 0.05EU/mg以下であった。
[0065] 2週間後採血し、血中の抗 SEB抗体価を ELISAにより測定した。 1万倍希釈して測 定したときの各マウスの抗 SEB抗体価の分布を図 2に示す。改変体を免疫した群の 血中抗 SEB抗体価は SEB— N23Y免疫群に比べ、有意に上昇していることが示され た。
[0066] また生成した抗体の性状を野生型の SEBや SEB—N23Yを免疫して得られた抗血 清と比較した結果、野生型 SEBに対して同様の反応性を示し、質的に同一であり、 充分に中和活性を持ちうることが確認された(図 3)。
[0067] 実施例 4 (改変体のリンパ球増殖ならびに幼若化誘導活性の評価)
健常人の末梢血単核球(peripheral blood mononuclear cell;以下「PBMC」と称す ることがある)を I X 105/ゥエルとなるように 96ゥヱルプレートに播種し、 SEB、 SEB- N23Y、 N23YK97SK98改変体を 0.01、 1、 100、 10000ng/mLの濃度で 3日間刺激 し、ハーべスト 16時間前にトリチウムーチミジン (0.5 /i Ci)を取り込ませて増殖誘導活 性を調べた。その結果、図 4に示すように、 SEBは 0.01ng/mL以上で PBMCに濃度 依存的に強い増殖誘導活性を示した。 N23Yは SEBより増殖誘導活性はかなり弱く 、 lOOngZmL以上でトリチウムーチミジンの取り込みが検出されはじめ、 lOOOOngZmL でも SEBの 1/10程度のカウントであった。 N23YK97SK98S改変体はさらに増殖刺 激活性が低下しており、 10000ng/mLでもほとんどトリチウムーチミジンの取り込みは 認められなかった(図 4)。
[0068] また、上記 PBMCを各々同濃度の SEB改変体存在下で 6日間培養し、 T細胞の幼 若化の程度をフローサイトメトリー(以下、「FACS」と称することこともある)の FSC/S SC解析により調べた。その結果、 N23Yは Ing/mL以上で 40%弱の細胞に有意な 幼若化を誘導したが、 N23YK97SK98S改変体の誘導活性は N23Yの約 1/2程度 にさらに低下していた(図 5)。
[0069] これらの成績から、 N23YK97SK98S改変体は in vitroでヒト PBMCに対し増殖刺 激活性や幼若化誘導活性が野生型 SEBと比較して著しく低下していることが明らか となった。
[0070] 直 ^ ^ (N23YK97SK98S改変体のサイト力イン誘導活性の評価)
健常人の PBMCを 1 X 106/mLで 24ゥエルプレートに播種し、 SEB、 N23Yおよび カテブシン B部位改変体(N23YK97SK98S改変体)の各 100ng/mLで 2日間刺激 後、上清を回収した。この培養上清の種々のサイト力イン (TNF_ a、 IL-1 β、 IL-6 、 IL_8、 IL-12, IFN- γ、 IL_lra、 IL_4、 IL_10、 GM— CSF)産生を ELISAキッ ト(CytoSets、 CytoFix,旭テクノグラス社)を用いて測定した。 SEBlOOng/mL刺激 時のサイト力イン誘導活性を 100%としたときの N23Y、 N23YK97SK98S改変体 の相対活性を図 5に示す。その結果、 N23YK97SK98SS女変体は N23Y、 SEBと 比較してサイト力イン産生能は著しく低下していた。とりわけ炎症性サイト力イン IL一 1 β、 IL-6, TNF—ひ、 IL-12, GM— CSF、 IFN— γの産生は顕著に低減している一 方で、抑制性サイト力インの IL一 4の産生は Ν23Υと同程度に維持されていた(図 6)。
[0071] 皇 M £ (N23YK97SK98S改変体の経口投与による抗体誘導) SEB—N23Yおよび N23YK97SK98S改変体を経口投与し、抗体誘導の惹起を 調べた。
[0072] 10 μ g/マウスでゾンデを使って 4週間連日経口投与した。試験終了後に全採血し 、血中の抗 SEB抗体価を ELISA法にて測定した。その結果、 N23YK97SK98S改 変体投与群では非投与群、コントロールの生理食塩水投与群よりも高い抗 SEB抗体 価を有するマウスが多ぐ経口投与でも抗 SEB抗体が惹起されていることが示された (図 7)。
産業上の利用可能性
[0073] 本発明の SEB改変体はプロテアーゼ、とりわけトリプシンやカテブシン Bに対して耐 性を有し、従来の SEB改変体に比べて毒性が極めて低減されている。それゆえ、本 発明の SEB改変体(N23YK97SK98S改変体)は、 日和見感染症や抗生物質耐 性の細菌によって産生される毒素が引き起こす重症疾患、および 1型アレルギー性 疾患を予防および治療するためのワクチンとして有効に用いることができる。

Claims

請求の範囲
[1] プロテアーゼに耐性を有するようにアミノ酸置換を導入した黄色ブドウ球菌腸管内 毒素 B (SEB)改変体またはその誘導体。
[2] 配列番号 1におレ、て 97位のリジンおよび 98位のリジンを任意のアミノ酸に置換した アミノ酸配列を有する、請求項 1に記載の SEB改変体またはその誘導体。
[3] 配列番号 1において 97位のリジンおよび 98位のリジンがそれぞれセリンに置換され ている、請求項 2に記載の SEB改変体またはその誘導体。
[4] 配列番号 1におレ、て 23位のァスパラギンがチロシンで置換されたアミノ酸配列を有 する、請求項 1から 3のレ、ずれかに記載の SEB改変体またはその誘導体。
[5] プロテアーゼがトリプシンおよびカテブシン Bから選ばれる、請求項 1から 4のいず れかに記載の SEB改変体またはその誘導体。
[6] 請求項 1から 5のいずれかに記載の SEB改変体またはその誘導体を主成分とする ワクチン。
[7] 日和見感染症や抗生物質耐性の細菌によって産生される毒素が引き起こす重症 疾患に対するものである、請求項 6に記載のワクチン。
[8] 1型アレルギー性疾患に対するものである、請求項 6に記載のワクチン。
[9] 経口投与用である請求項 6から 8のレ、ずれかに記載のワクチン。
PCT/JP2004/012545 2003-09-05 2004-08-31 プロテアーゼ耐性seb改変体およびそれを含むワクチン WO2005023853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04772501A EP1661911B8 (en) 2003-09-05 2004-08-31 Protease-resistant modified seb and vaccine containing the same
JP2005513635A JP4571586B2 (ja) 2003-09-05 2004-08-31 プロテアーゼ耐性seb改変体およびそれを含むワクチン
US12/644,952 US7947290B2 (en) 2003-09-05 2009-12-22 Protease-resistant modified SEB and vaccine containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003314187 2003-09-05
JP2003-314187 2003-09-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10570499 A-371-Of-International 2004-08-31
US12/644,952 Continuation US7947290B2 (en) 2003-09-05 2009-12-22 Protease-resistant modified SEB and vaccine containing the same

Publications (1)

Publication Number Publication Date
WO2005023853A1 true WO2005023853A1 (ja) 2005-03-17

Family

ID=34269793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012545 WO2005023853A1 (ja) 2003-09-05 2004-08-31 プロテアーゼ耐性seb改変体およびそれを含むワクチン

Country Status (4)

Country Link
US (1) US7947290B2 (ja)
EP (1) EP1661911B8 (ja)
JP (1) JP4571586B2 (ja)
WO (1) WO2005023853A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944034B1 (ko) 2007-04-19 2010-02-24 한올제약주식회사 프로테아제-내성 폴리펩티드의 경구 투여 제형
US9084751B2 (en) 2004-07-16 2015-07-21 Swecure Ab Prevention of allergy in children
CN112028994A (zh) * 2020-07-30 2020-12-04 北京三安新特生物科技有限公司 抗金黄色葡萄球菌肠毒素b的抗体、检测试纸及试剂盒
JP2023512344A (ja) * 2020-12-18 2023-03-24 ビオメディツィニッシュ・フォルシュング・ウント・ビオ-プロドゥクテ・アクチェンゲゼルシャフト ブドウ球菌外毒素防御ワクチン

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2619943T3 (es) 2007-01-03 2017-06-27 Morphotek, Inc. Anticuerpos de alta afinidad que neutralizan la enterotoxina B estafilocócica
WO2023247747A1 (en) 2022-06-23 2023-12-28 Biomedizinische Forschung & Bio-Produkte AG Protective staphylococcal exotoxin vaccine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500328A (ja) * 1992-01-28 1996-01-16 ナショナル ジューイッシュ センター フォア イミュノロジィ アンド レスパラトリィ メディスン 突然変異したスーパー抗原の保護作用
WO1999040935A1 (fr) * 1998-02-15 1999-08-19 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Nouveaux medicaments preventifs/curatifs de l'immunopathie

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728388A (en) 1989-10-03 1998-03-17 Terman; David S. Method of cancer treatment
US5935568A (en) 1995-05-18 1999-08-10 National Jewish Medical & Research Center Gene therapy for effector cell regulation
US6248329B1 (en) * 1998-06-01 2001-06-19 Ramaswamy Chandrashekar Parasitic helminth cuticlin nucleic acid molecules and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500328A (ja) * 1992-01-28 1996-01-16 ナショナル ジューイッシュ センター フォア イミュノロジィ アンド レスパラトリィ メディスン 突然変異したスーパー抗原の保護作用
WO1999040935A1 (fr) * 1998-02-15 1999-08-19 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Nouveaux medicaments preventifs/curatifs de l'immunopathie

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BOLES JW.ET AL.: "GENERATION OF PROTECTIVE IMMUNITY BY INACTIVATED RECOMBINANT STAPHYLOCOCCAL ENTEROTOXIN B VACCINE IN NINHUMAN PRIMATES AND IDENTIFICATION OF CORRELATES OF IMMUNITY", CLIN.IMMUNOL., vol. 108, no. 1, July 2003 (2003-07-01), pages 51 - 59, XP002903427 *
DERESIEWICZ RL ET AL: "MUTATIONS AFFECTING THE ACTIVITY OF TOXIC SHOCK SYNDROME TOXIN-1", BIOCHEMISTRY, vol. 33, no. 43, 1994, pages 12844 - 12851, XP002903429 *
KLINE JB ET AL: "ANALYSIS OF THE SUPERANTIGENIC ACTIVITY OF MUTANT AND ALLELIC FORMS OF STREPTOCOCCAL PYROGENIC EXOTOXIN A.", INFECT IMMUN., vol. 65, no. 3, 1996, pages 861 - 869, XP002066999 *
LEDER L.ET AL: "A MUTATIONAL ANALYSIS OF THE BINDING OF STAPHYLOCOCCAL ENTEROTOXINS B AND C3 TO THE T CELL RECEPTOR BETA CHAIN ANDMAJOR HISTOCOMPATIBILITY COMPLEX CLASS II", J.EXP.MED., vol. 187, no. 6, 1998, pages 823 - 833, XP002903430 *
MAGAGNOLI C, ET AL.: "MUTATIONS IN THE A SUBUNIT AFFECT YIELD, STABILITY, AND PROTEASE OF NONTOXIC DERIVATIVES OF HEAT-LABILE ENTEROTOXIN", INFECT.IMMUN,, vol. 64, no. 12, 1996, pages 5434 - 5438, XP002970709 *
ROGGIANI M. ET AL: "ANALYSIS OF TOXICITY OF STREPTOCOCCAL PYROGENIC EXOTOXIN A MUTANTS", INFECT.IMMUN., vol. 65, no. 7, 1997, pages 2868 - 2875, XP002067015 *
SPERO L. ET AL: "EFFECT OF SINGLE PEPTIDE BOND SCISSION BY TRYPSIN ON THE STRUCTURE AND ACTIVITY OF STAPHYLOCCAL ENTEROTOXIN B,", J.BIOL.CHEM., vol. 248, no. 21, 1973, pages 7289 - 7294, XP002903428 *
WOODY MA. ET AL: "STAPHYLOCOCCAL ENTEROTOXIN B MUTANTS (N23K AND F44S):BIOLOGICAL EFFECTS AND VACCINE POTENTIAL IN A MOUSE MODEL", VACCINE, vol. 15, no. 2, 1997, pages 133 - 139, XP004054362 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084751B2 (en) 2004-07-16 2015-07-21 Swecure Ab Prevention of allergy in children
KR100944034B1 (ko) 2007-04-19 2010-02-24 한올제약주식회사 프로테아제-내성 폴리펩티드의 경구 투여 제형
CN112028994A (zh) * 2020-07-30 2020-12-04 北京三安新特生物科技有限公司 抗金黄色葡萄球菌肠毒素b的抗体、检测试纸及试剂盒
JP2023512344A (ja) * 2020-12-18 2023-03-24 ビオメディツィニッシュ・フォルシュング・ウント・ビオ-プロドゥクテ・アクチェンゲゼルシャフト ブドウ球菌外毒素防御ワクチン

Also Published As

Publication number Publication date
EP1661911B1 (en) 2012-11-07
US20100166793A1 (en) 2010-07-01
JPWO2005023853A1 (ja) 2008-01-17
EP1661911B8 (en) 2013-02-13
EP1661911A1 (en) 2006-05-31
EP1661911A4 (en) 2008-09-17
JP4571586B2 (ja) 2010-10-27
US7947290B2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
KR101035053B1 (ko) 감염 잠복기 동안 발현되는 항원을 포함하는 결핵 백신
JP4940479B2 (ja) マイコバクテリウム・ツベルクローシス融合蛋白質及びその応用
JP7072921B2 (ja) A群レンサ球菌ワクチン
KR20070114263A (ko) 바실러스 안트라시스 유래의 방어 항원 제조 방법
US9982024B2 (en) CyaA-based chimeric proteins comprising a heterologous polypeptide and their uses in the induction of immune responses
US7947290B2 (en) Protease-resistant modified SEB and vaccine containing the same
KR19990022750A (ko) 스트렙토코커스 독소a의 변이체 및 그의 사용방법
US20090246228A1 (en) Moraxella catarrhalis Proteins
WO2020046982A1 (en) Compositions and methods for preventing and treating virus infection
EP0948624B1 (en) Mutants of streptococcal toxin a and methods of use
US9827302B2 (en) HPV/CyaA-based chimeric proteins and their uses in the induction of immune responses against HPV infection and HPV-induced disorders
EP1240332B1 (en) Streptococcus pyogenes virulence genes and proteins and their use
AU2010228168B2 (en) DNA vaccine for Alzheimer's disease
JP4422330B2 (ja) 新規な免疫異常性疾患予防・治療用剤
US20230136602A1 (en) Use of the Salmonella SPP Type III Secretion Proteins as a Protective Vaccination
US9950053B2 (en) Use of the Salmonella SPP type III secretion proteins as a protective vaccination
KR20080026085A (ko) 곤충세포에서 제조한 재조합 e-셀렉틴
EP1290137B1 (en) Virulence genes, proteins, and their use
US20230190906A1 (en) Non-toxic listeriolysin o polypeptides and uses thereof
WO2000012717A1 (fr) Nouveau gene de lysozyme humain, polypeptide codant pour celui-ci et leur procede de preparation
KR20090012237A (ko) 황색포도상구균 감염 치료용 의약을 제조하기 위한 활성 성분으로서의 trap 자체의 용도
WO2014140562A1 (en) Immunogenic composition to neisseria
CN114957409A (zh) 基于s蛋白r815位点的冠状病毒干预的方法和产品
AU2007202896A1 (en) Genes and proteins, and their uses
NZ541257A (en) 14 kDa Moraxella Catarrhalis protein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513635

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004772501

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004772501

Country of ref document: EP