WO2005020818A1 - 医療用ディジタルx線撮影装置、x線撮影システム、およびx線蛍光像をディジタル・データとして撮影する方法 - Google Patents

医療用ディジタルx線撮影装置、x線撮影システム、およびx線蛍光像をディジタル・データとして撮影する方法 Download PDF

Info

Publication number
WO2005020818A1
WO2005020818A1 PCT/JP2004/012101 JP2004012101W WO2005020818A1 WO 2005020818 A1 WO2005020818 A1 WO 2005020818A1 JP 2004012101 W JP2004012101 W JP 2004012101W WO 2005020818 A1 WO2005020818 A1 WO 2005020818A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
digital camera
ccd
ray imaging
Prior art date
Application number
PCT/JP2004/012101
Other languages
English (en)
French (fr)
Inventor
Atsushi Goshokubo
Original Assignee
Atsushi Goshokubo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsushi Goshokubo filed Critical Atsushi Goshokubo
Publication of WO2005020818A1 publication Critical patent/WO2005020818A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like

Definitions

  • the present invention relates to the formation of digital 'images that can be provided for diagnosis by a physician, and more particularly to the formation of high quality digital' images that can be used by a physician for diagnosis.
  • the present invention relates to a medical digital radiography apparatus, a radiography system, and a method for capturing an X-ray fluorescence image as digital data.
  • X-ray fluorescence is widely used as a method for observing the state of internal organs and bones in the human body, such as the chest, abdomen, limbs, and head, without performing open surgery.
  • the X-ray fluorescence method is formed by irradiating a fluorescent plate with transmitted X-rays and capturing the corresponding fluorescence based on the fact that the X-ray transmittance of the human body differs at different parts when the X-rays pass through the human body. ing.
  • a conventional X-ray camera uses a high-hardness dedicated silver halide film, eliminates the effects of scattered X-rays, and shoots a fluorescent image with a high SZN ratio.
  • the photographed silver halide film is developed
  • an X-ray fluorescent image is given as a negative film.
  • the negative film thus obtained is provided for reading by a doctor by irradiating a white light from the back.
  • Such a negative film is inconvenient to carry because it is obtained as a non-foldable sheet.
  • a patient receives a diagnosis from another doctor, it is necessary for the patient to bring the patient to another doctor and receive the diagnosis.However, the sheet is bulky because of the sheet. Because it is highly private information, it costs extra time and time for transportation and storage.
  • Patent Document 1 discloses an X-ray inspection apparatus using a digital camera for performing X-ray imaging.
  • a fluorescent plate is disposed between the X-ray generator and the digital camera, and the fluorescent plate is located closer to and closer to the X-ray generator relative to the fluorescent plate.
  • a sample for example, a patient is positioned.
  • the X-rays generated from the X-ray generator pass through the sample and form a strong or weak image on the fluorescent plate according to the intensity of the passed X-rays.
  • the image formed on the phosphor plate is photographed by a digital camera, and the image formed by X-rays is stored as digital data in a rewritable recording medium such as a flash memory or an EEPROM.
  • Patent Document 2 discloses an X-ray imaging apparatus capable of automatically recognizing a fluorescent image even when a specimen moves.
  • Patent Document 3 discloses an X-ray imaging apparatus that digitally acquires a fluorescent image while improving contrast.
  • Patent Document 1 JP 2001-178711 A
  • Patent Document 2 JP-A-5-23326
  • Patent Document 3 JP-A-10-276366
  • the X-ray and scattered X-rays can be directly applied to the lead glass using a large-area lead glass. It is a thing to cut.
  • Lead glass cuts X-rays by adding a high concentration of Pb element to X-ray transparent glass such as quartz glass. This lead glass uses a large amount of lead. However, it is expected that the Pb element will have an undesired effect on the human body, and will cause an environmental burden in the future when disposed of. Therefore, it is preferable to minimize the amount of lead glass used.
  • tungsten glass is also proposed as an alternative to lead glass. Since the melting points of force glass and tungsten are greatly different, it is difficult to produce a large-area plate of constant quality, and the cost is low. There are inconveniences.
  • Patent Document 2 Although the X-ray imaging apparatus described in Patent Document 3 can certainly acquire an X-ray fluorescence image with high accuracy and perform image processing, it is expensive, but is expensive. Although large hospitals are expected to be able to bear the cost burden, they are not necessarily widespread X-ray equipment.
  • FIG. 11 is a schematic perspective view of a small X-ray imaging apparatus that has been used in a small clinic such as a local clinic or a private hospital.
  • An X-ray imaging apparatus 100 shown in FIG. 11 is configured separately from the X-ray generator, and generally includes a camera 102 and a specimen 104 in a box 104, which includes a box 104.
  • a fluorescent plate 106 is provided on the side adjacent to the SP. More specifically, the fluorescent plate 106 includes a grid plate and a fluorescent plate, and forms a fluorescent image corresponding to transmitted X-rays.
  • the fluorescent image formed as fluorescent light passes through a lead glass, an X-ray shielding material (not shown), is reflected by a reflecting plate 108, and is projected to a camera 110.
  • the camera 110 exposes the fluorescent image onto a high-hardness silver halide film to form a latent image of the fluorescent image.
  • the formed latent image is fixed to provide a negative film.
  • a specimen SP such as a patient stands adjacent to the fluorescent plate 106 and places the jaw on a jaw fixing portion 112 formed outside the dark box to stabilize the imaging posture.
  • an X-ray generator (not shown) is irradiated with force X-rays, and a fluorescent image is formed on the fluorescent plate by the X-rays transmitted through the specimen SP.
  • This fluorescent image is photographed by an X-ray camera, and post-processing such as the fixing process is performed as described above to obtain a negative film.
  • the obtained negative film is provided for diagnosis by a doctor, and the result of the diagnosis and the cost of radiography are usually charged as a medical fee.
  • a digital camera is a typical filmless imaging system, and stores an X-ray film size from a six-cut size to a half-cut size used in medical X-ray photography. It is thought that a digital image without waste in resources, computer resources, and medical resources can be formed.
  • the present invention has been made in view of the above-described disadvantages of the related art, and it has been described above that a low-cost digital X-ray imaging apparatus capable of obtaining an X-ray fluorescence image can be provided. It has been made under the idea that the disadvantages of the prior art can be improved.
  • an X-ray imaging apparatus for imaging an X-ray fluorescent image as digital data, comprising: a fluorescent plate that generates image-like fluorescent light by X-ray irradiation;
  • An X-ray imaging apparatus comprising: a digital 'camera for capturing image-like fluorescent light from a light plate; and an X-ray shielding material disposed between the fluorescent plate and the digital' camera.
  • the digital camera is a digital camera.
  • a CCD cooling unit including a lens mounting unit, extending between the housing and the lens mounting unit, and holding the CCD outside the housing;
  • An output unit for outputting image data obtained by the CCD in a predetermined format.
  • the constant magnification lens of the present invention is adjusted in focus so that the surface of the fluorescent plate is imaged on a CCD.
  • the X-ray imaging apparatus of the present invention may further include a driving member that varies a distance between the digital camera and the fluorescent plate.
  • a photograph size dimension is fixed to a magnification that forms an image on the CCD with a predetermined resolution or more. You may.
  • a stretchable bellows member surrounding the fluorescent plate, the digital camera and the X-ray shield material can be included.
  • an X-ray imaging system for displaying an X-ray fluorescence image as a digital image, wherein the X-ray imaging system comprises:
  • a CCD cooling unit including a lens mounting unit, extending between the housing and the lens mounting unit, and holding the CCD outside the housing;
  • a digital camera having a constant magnification lens attached to the lens attachment portion and having an X-ray shielding material filter attached thereto, and outputting an image data acquired by the CCD in a predetermined format;
  • An imaging control device for controlling the exposure of the digital camera in relation to X-ray irradiation
  • An X-ray imaging system including an image processing device for storing image data from the digital camera and performing image processing can be provided.
  • the X-ray imaging system of the present invention may include a function of transmitting the image 'data to a remote server via a network.
  • the X-ray imaging apparatus of the present invention can store image data as image quality of 1000 X 1000 matrix or more.
  • a method of capturing an X-ray contrast image as digital data comprising:
  • a digital camera including a fixed magnification lens equipped with an X-ray shield material filter and a CCD cooling unit for holding the CCD outside of the housing with respect to the fluorescent plate;
  • the step of adjusting the focus in the present invention may include a step of adjusting the focus on a surface of the fluorescent plate on the side of the digital camera.
  • FIG. 1 is a side view of an X-ray imaging apparatus according to the present invention.
  • FIG. 2 is a diagram showing an internal configuration of the X-ray imaging apparatus of the present invention, with a part of a box part being cut away.
  • FIG. 3 is a diagram showing a digital camera used in the present invention in detail.
  • FIG. 4 is a diagram showing a specific embodiment of a digital camera according to a specific embodiment of the present invention.
  • FIG. 5 is a view for explaining the function and operation of the X-ray imaging apparatus of the present invention.
  • FIG. 6 is a schematic diagram showing a relationship between a CCD according to the present invention and an X-ray contrast image P formed on the CCD.
  • FIG. 7 is a diagram showing another use mode of the digital camera used in the present invention.
  • FIG. 8 is an exploded view showing a configuration of an X-ray shield filter used in the present invention.
  • FIG. 9 is a diagram showing an optical configuration inside a box portion of an X-ray imaging apparatus that performs imaging by reflecting a fluorescent image in the present invention.
  • FIG. 10 is a diagram showing a schematic configuration of an X-ray imaging system of the present invention.
  • FIG. 11 is a diagram showing a schematic configuration of a conventional X-ray imaging apparatus.
  • Power on / off switch 64 ... Connector, 66--EXT. Terminal, 68 ... Constant magnification lens, 70 ... ' ⁇ X-ray imaging system, 82 ... imaging control device, 84 ... image analysis device, 88 ... storage means, 90 ... network
  • FIG. 1 is a side view of the X-ray imaging apparatus of the present invention.
  • the X-ray imaging apparatus 10 of the present invention generally includes a box part 12, a support part 14, and a specimen positioning part 16.
  • the box section 12 contains an optical system for removing scattered X-rays, forming a high-resolution X-ray fluorescent image, and capturing the fluorescent image.
  • the support portion 14 includes a support leg 18, a support base 20, and a weight portion 22 for maintaining a balance even when a sample is loaded on the sample positioning portion 16 and positioning is performed. Contains.
  • the support leg 18 is bolted to the support base 20 via a mounting member 24. Further, the box connecting member 26 is melted on the support base 20.
  • the box part 12 is fixed to the dark box connecting member 26 by contact or the like. Further, the support portion 14 is fixed firmly, for example, by bolting the support leg 18 to the floor surface FL. Further, in another embodiment of the present invention, the support legs 18 can be fixed to a plate having an appropriate size, and the plate can be fixed to the floor surface FL.
  • the sample positioning section 16 is connected to the weight section 22 so as to be movable in the direction of arrow A so that the sample can be appropriately positioned on the fluorescent panel 28 according to the height and the imaging position of the sample.
  • a hydraulic jack or a manual or motor-driven mechanical jack for movably supporting the sample positioning section 16 is provided inside the weight section 22, and is movable with respect to the sample positioning section 16. And weight retention.
  • the box part 12 is generally constituted by three sections including a first section 30, a second section 32, and a third section 34. .
  • FIG. 2 is a view showing the internal configuration of the box part 12 of the X-ray imaging apparatus 10 of the present invention, with a part of the box part 12 being cut away.
  • a fluorescent panel 28 is attached to the first section 30 via a hinge 28a so as to be freely opened and closed with respect to the first section 30. Improve the quality.
  • the fluorescent panel 28 includes a grid plate 36 for removing scattered X-rays and a fluorescent plate 38 for forming an image by X-rays.
  • the grid 'plate 36 a glass (plate) having a grid (10: 1) for reducing X-ray scattering may be used in a specific embodiment of the present invention.
  • the fluorescent plate 38 depending on the specific embodiment of the present invention, any known high-sensitivity fluorescent plate such as a gadolinium-based rare earth fluorescent material can be used.
  • the second section 32 in certain embodiments of the present invention, holds an x-ray shield 40, such as lead glass or tungsten 'glass, near the boundary with the first section, and includes a digital' camera. A space for changing the distance to the fluorescent panel 28 is provided.
  • the third section 34 is shown to house a digital camera 42. This position is the position where the largest X-ray fluorescence image can be taken, and specifically, an image of X-ray photograph dimensions such as half-cut and half-cut This is shown as the position that is imaged at the highest resolution on the force CCD.
  • the second section 32 and the third section 34 contain a driving device 44 for driving the digital camera 42.
  • the driving device 44 may be configured using a worm gear 44a, a motor 44b, a mount 44c, and the like in a specific embodiment of the present invention, and controls the relative position of the digital camera 42 with respect to the fluorescent plate 38. Is changing.
  • the digital camera 42 is fixed on a mount 44c so as to be adjustable, and is movable in a defined z-direction in the left-right direction of the drawing with the rotation of the worm gear 44a.
  • the mount 44c is provided with adjustment means (not shown) for finely adjusting the digital camera 42 in the x and y directions defined in directions orthogonal to the z direction, respectively. It is configured to be able to provide various imaging positions to each X-ray imaging apparatus 10.
  • a shooting control line (not shown) and an image data output line are derived from the third section.
  • the imaging control line is connected to an exposure adjusting device (not shown) to adjust the exposure of the digital camera 42 and the amount of X-ray irradiation by the X-ray irradiation device.
  • the photographing control line sends a signal for driving the driving device 44 to the driving device 44, and the driving device 44 receives the signal and acquires an image of a predetermined size with an optimum size.
  • the digital camera 42 is positioned to a position where the digital camera 42 can operate.
  • the image 'data output line also sends the image' data from the digital 'camera 42' to an image analyzer (not shown), enabling it to provide an image for diagnosis. .
  • a bellows member 46 for reducing stray light which is configured to be stretchable as a waveform, is arranged between the first section and the digital camera 42 installed in the third section, so that ambient light and Thus, the amount of stray light X-rays incident on the digital camera 42 is reduced.
  • FIG. 3 is a diagram showing the digital camera 42 used in the present invention in detail.
  • 3 (a) is a front view
  • FIG. 3 (b) is a side view
  • FIG. 3 (c) is a view showing a rear configuration.
  • the digital camera 42 used in the present invention includes a housing 50, a CCD cooling unit 52, and a lens mounting unit 54 for mounting a constant magnification lens. I have.
  • the CCD 56 is located in the CCD cooling section 52 at the back of the center of the lens mounting section 54. X-ray fluorescence images can be obtained digitally upon rejection.
  • the CCD cooling section 52 is formed integrally with the lens mounting section 54, and extends between the housing 50 and the lens mounting section 54.
  • the CCD cooling section 52 includes a plurality of cooling fins 52a to increase the cooling efficiency of the CCD 56.
  • the CCD cooling unit 52 may be cooled by a fluid refrigerant such as air cooling or water cooling. The reason for cooling the CCD 56 is to suppress the generation of heat carriers due to the temperature rise of the CCD 56, to provide a high-contrast image comparable to the image of a high-hardness silver halide film, and to ensure the accuracy of diagnosis.
  • a brightness multiplying CCD can be used.
  • the brightness multiplying CCD means a CCD having a sensitivity capable of acquiring an X-ray fluorescence image with sufficiently high accuracy without using an image intensifier. Even in this case, the size of the pixel must be equal to or larger than the 1000 ⁇ 1000 matrix described above, which is necessary for performing highly accurate diagnosis.
  • a brightness multiplication CCD when used, not only a still image but also a moving image can be acquired by an X-ray imaging apparatus.
  • the CCD 56 has as high a resolution as possible.
  • a digital image can be formed using a CCD having 1024 ⁇ 1360 pixels (1.4 million pixels) in width and height.
  • the force CCD 56 which can use a high-pixel CCD if necessary, should be appropriately selected in consideration of cost and size as long as pixels of at least 1000 ⁇ 1000 matrix can be provided.
  • FIG. 3C shows a rear configuration of the housing 50. On the rear side of the housing 50, an input port of a control line for driving the digital camera 42, a port for connecting an image data output line, and the like are arranged.
  • a power input connector 60 a data input / output connector 60 such as a USB connector or an ILINK, and a power on 'off' on the rear of the housing 50.
  • a switch 62 a connector 64 for receiving a trigger signal for releasing a shutter, and an EXT terminal 66 for receiving an external control signal are provided.
  • the digital camera 42 temporarily stores the image data formed on the CCD 56 in an appropriate memory such as a random access memory or a small hard disk after the exposure. Thereafter, a processing unit included in the digital 'camera 42 reads the stored image' data and converts it into an appropriate format.
  • the converted image data is stored in a rewritable recording medium such as a flash memory, an EEPROM, or a small hard disk as image data to be sent to an image analyzer (computer: not shown).
  • any known format can be used, such as a bitmap (BMP) format, a format such as JPEG, JPEG2000, TIFF, MPEG, or DICOM3 compatible. can do.
  • BMP bitmap
  • the number of data bits of the stored image data is preferably in a format of I6 bits or more.
  • the image data stored in an appropriate format is output to the image analysis device via the connected image data output line, for example, when a USB connector is used as the data input / output connector 60, and the image analysis is performed. It is displayed on the screen, hard copied as necessary, and provided for diagnosis by a doctor.
  • FIG. 4 shows a specific embodiment of the digital camera 42 according to a specific embodiment of the present invention.
  • a constant-magnification lens 68 is mounted on the lens mounting section 54.
  • the constant magnification lens 68 a lens with a fixed magnification can be used, but a lens that can adjust the magnification and the focal length independently can be used.
  • An image equivalent to the size of an X-ray photograph, such as a sliced or half-cut size, can be used as a constant-magnification lens adjusted to a magnification given with a resolution of at least 1000 ⁇ 1000 matrix. Specifically, it is used in the present invention.
  • the constant magnification lens 68 that can be used a commercial product manufactured by CBC Corporation, trade name “Megapixel Lens”, model number M0814-MP can be used.
  • This lens has a feature that an image can be formed with high contrast on a CCD having 1 million pixels or more, and a high fidelity with a deformation ratio of 1.0% or less. Further, in the present invention, by using the constant magnification lens 68 having the above-described characteristics, the depth of field can be reduced as compared with a conventional X-ray imaging apparatus. This makes it possible to selectively focus on the fluorescent plate 38, so that the effect of the grid formed on the grid plate 36 being photographed is significantly reduced.
  • FIG. 5 is a diagram illustrating the above-described functions and operations of the present invention.
  • the digital camera 42 is equipped with a fixed-magnification lens fixed at the above-described magnification, so that the viewing angle ⁇ seen from the CCD 56 is always the same.
  • Power S can. That is, according to the present invention, for example, six cuts (201 X 252 mm), four cuts (252 X 303 mm), large four cuts (279 X 354 mm), large corners (354 X 354 mm), half cuts (354 X 430 mm) It is possible to provide an appropriate diagnostic image without wasting a distance d that gives a prospective area corresponding to such a size.
  • FIG. 6 shows the relationship between the CCD 56 and the X-ray fluorescence image P formed on the CCD in the present invention.
  • the CCD 56 has 1024 horizontal pixels and 1360 vertical pixels.
  • the X-ray fluorescence image P is reduced and projected by the constant-magnification lens 68, and is formed on a CCD.
  • the magnification of the constant-magnification lens 68 is determined so that the X-ray fluorescence image P has a size corresponding to 1000 ⁇ 1000 matrix or more in the lateral direction of the CCD 56.
  • the size of the X-ray fluorescence image P is fixed because the magnification of the attached lens is fixed. Further, the distance between the fluorescent plate 38 and the CCD 56 can be made substantially constant even when the distance is changed. Further, in the present invention, it is possible to set the pixel area so that it almost coincides with the whole pixel of the CCD 56. In addition, it is preferable to form an X-ray fluorescence image so that a resolution of 1000 X 1000 matrix or more can be secured.
  • FIG. 7 is a diagram showing another use mode of the digital camera 42 used in the present invention.
  • an X-ray shield filter 70 is attached to the tip of the constant magnification lens 68.
  • an X-ray shielding material such as a large-area lead glass or tungsten glass is not necessary.
  • the acquired image although there is no difference in the quality of the data, the amount of X-ray shield material can be significantly reduced, such as the use of expensive tungsten glass. Even if an X-ray shielding filter is manufactured by using the X-ray imaging device, the cost of the X-ray imaging device will not be high, and the environmental load can be significantly reduced.
  • FIG. 8 is an exploded view showing a configuration of the X-ray shield 'filter 70 used in the present invention.
  • the X-ray shield 'filter 70 used in the present invention generally includes a filter' holder 70a, a spacer 70b, and an X-ray filter 70c.
  • the filter 'holder 70a is provided with a screw portion 70d for screwing to the constant-magnification lens 68, so that the filter' holder 70a can be attached to the constant-magnification lens 68 without rattling.
  • the filter holder 70a is formed with an opening 70e having a diameter that does not impair the viewing angle of the constant magnification lens 68 so as not to impair the optical relationship described above.
  • the spacer 70b is inserted between the filter holder 70a and the X-ray filter 70c, and is used to hold the X-ray filter 70c without play.
  • the spacer 70b can be used in any thickness and diameter as long as it can stably hold the X-ray filter 70c, in such thickness and diameter or in the number and arrangement.
  • the X-ray filter 70c can be made of a material such as lead glass, tungsten 'glass, or lead-tungsten' glass, and has any thickness as long as it can sufficiently shield X-rays. Can be.
  • the diameter of the X-ray filter 70c should be larger than the diameter given by the viewing angle of the constant magnification lens. Needed to get.
  • FIG. 9 is a diagram showing an optical configuration inside the box 12 of the X-ray imaging apparatus that performs imaging by reflecting a fluorescent image in the present invention.
  • the configuration shown in Fig. 9 is effective when saving space, such as in a car-mounted X-ray imaging device.
  • Fig. 9 (a) is a diagram showing the internal configuration of the X-ray box unit 12 of the X-ray imaging apparatus for performing horizontal imaging when imaging the abdomen, etc.
  • Fig. 9 (b) is the chest.
  • FIG. 3 is a diagram showing an internal configuration of a box section 12 of a vertically arranged X-ray imaging apparatus when taking an X-ray photograph or the like. In each of the X-ray imaging apparatuses shown in FIG.
  • a reflecting member 72 is disposed inside the box portion 12 so as to once reflect a fluorescent image to perform imaging. Even in this case, the magnification of the constant-magnification lens is fixed so as to correspond to a photograph size such as six-cut or half-cut according to the distance from the reflecting member 72 as described above.
  • the reflection member 72 of the present invention can be configured as a reflection mirror. In still another embodiment, a prism can be used and total reflection by the prism can be used.
  • FIG. 10 is a diagram showing a schematic configuration of the X-ray imaging system of the present invention.
  • the X-ray imaging system 80 shown in FIG. 10 includes the X-ray imaging device 10, an imaging control device 82, and an image analysis device 84.
  • the imaging control unit 82 includes a shutter control unit for starting exposure, a trigger signal generation unit for irradiating X-rays from the X-ray generator in association with a signal for instructing exposure start, and a trigger signal or exposure signal.
  • the exposure control unit includes an exposure control unit such as an integrated exposure meter and a timer for controlling exposure to give a predetermined exposure amount, and a drive control unit for driving the drive unit 44. It is configured.
  • the imaging control device 82 sends each signal to the X-ray imaging device through the imaging control line 86a to form image data.
  • the formed image data is sent to the image analysis device 84 through the image data output line 86b, and is stored in an appropriate memory and then subjected to various processes. Further, the image analysis device 84 can also control the imaging control device 82 via the line 86c as needed. Further, in another embodiment of the X-ray imaging system 80 of the present invention, the image analysis device 84 and the imaging control device 82 may be integrally configured. Image data obtained by photographing for a predetermined exposure time or exposure amount is sent to an image analyzer 84, where image processing is performed.
  • the keyboard 84a and the mouse 84b can be used, for example, by a medical radiologist. Such operations can be performed by a qualified operator.
  • the image 'data whose image processing has been completed is displayed on the display' screen 84c and can be used for interpretation by a doctor or the like.
  • the obtained image data is stored in storage means 88 configured as a database or the like connected to the image analysis device 84. Is stored in a format that can be referred to.
  • This image data is diagnosed by direct interpretation by a physician. For example, in the future, a radiologist may need to interpret the image data. In this case, it is possible to make a diagnosis if a radiologist is present at the site where the radiograph was taken. Even if a radiologist is available, it may be necessary for the patient to obtain a second opinion if desired.
  • the image analysis apparatus 84 is connected to the Internet or a network 90 connected by a dedicated communication line, and, for example, to a remote server (not shown) by an appropriate method such as e-mail.
  • a remote server can be configured to include a mail 'server function, and can protect privacy by issuing a dedicated mail' address, user account, password, and the like.
  • transmitting and receiving it is preferable to transmit and receive using encryption software in order to further protect privacy.
  • an X-ray imaging apparatus capable of digitally recording a highly accurate X-ray fluorescence image at low cost while reducing environmental load is provided.
  • an X-ray imaging apparatus and a X-ray fluorescence image that can flexibly cope with the size of a specimen by utilizing the characteristics of a film-less digital camera are used. It is possible to provide a method for forming the target.
  • X-ray imaging system by transmitting an X-ray fluorescence image acquired as digital data via the Internet, a second opinion can be obtained easily and without regional differences.
  • X-ray imaging system can be provided.

Abstract

 医療用ディジタルX線撮影装置、X線撮影システム、およびX線蛍光像をディジタル・データとして撮影する方法を提供する。本発明のX線撮影装置10は、X線の照射により像状の蛍光を発生する蛍光プレート38と、蛍光プレート38からの像状の蛍光を撮影するためのディジタル・カメラ42と、蛍光プレート38とディジタル・カメラ42との間に配置されたX線シールド材40とを含んでいる。本発明のX線撮影装置10は、ディジタル・カメラ42と蛍光プレート38との間の距離を可変とする駆動装置44を含んでおり、ディジタル・カメラ42は、ディジタル・カメラ42が蛍光プレート38から最も離れた位置とされた状態で、医療用の写真寸法が、CCDに所定の解像度以上で結像するように固定された倍率で撮影を行っている。

Description

明 細 書
医療用ディジタル X線撮影装置、 X線撮影システム、および X線蛍光像を ディジタル 'データとして撮影する方法
技術分野
[0001] 本発明は、医師による診断に提供することができるディジタル 'イメージの形成に関 し、より詳細には、医師が診断に使用することができる高画質のディジタル 'イメージ を形成することができる医療用ディジタル X線撮影装置、 X線撮影システム、および X 線蛍光像をディジタル ·データとして撮影する方法に関する。
背景技術
[0002] X線蛍光法は、胸部、腹部、四肢部、頭部など、人体内部の臓器や骨の状態を切 開手術などすることなく観測できる方法として、広く使用されている。 X線蛍光法は、 X 線が人体を透過する際に、人体の X線透過率が部位において異なることに基づき、 透過 X線を蛍光プレートに照射し、対応する蛍光を撮影することにより形成されてい る。
[0003] 従来の X線カメラは、高硬調の専用の銀塩フィルムを使用し、散乱した X線の影響 を排除し、高い SZN比での蛍光像の撮影を行う。撮影された銀塩フィルムは、現像
、定着処理を行うことにより、ネガフィルムとして X線蛍光イメージを与える。このように して得られたネガフィルムは、背面から白色光線を照射することにより、医師による読 影に提供される。このようなネガフィルムは、折りたたみできないシートとして得られる ので、持ち運びに不便である。また、例えば患者が他の医師の診断を受ける場合に は、患者自身が他の医師のもとへと持参して診断を受けることが必要となるが、シート であるがために嵩高ぐまた、高度にプライベートな情報であるため、運搬、保管など に対して費用や時間が余分に力かることにもなる。
[0004] 現在、光電変換技術およびフォトリソグラフィ一の進歩により、高感度かつ高精細な CCD (charge coupled device)が生産されるようになっており、この CCDを撮像手段と して使用する、いわゆるディジタル 'カメラ技術が普及している。医療分野においても 画像ディジタル化技術が進められており、 MRI、血管撮影装置、 X線テレビなどにお いて、ディジタル的に画像を記録するシステムまたは装置が提供されている。
[0005] さらに X線蛍光像についてもディジタル的に記録するための装置およびシステムが 種々提案されている。例えば、特許文献 1では、 X線撮影を行うためのディジタル '力 メラを使用した X線検査装置が開示されている。特許文献 1に記載された X線検査装 置では、 X線発生装置とディジタル 'カメラとの間に蛍光プレートが配設され、蛍光プ レートに相対して X線発生装置に近レ、側に検体、例えば患者が位置決めされる構成 とされている。 X線発生装置から発生した X線は、検体を通過し、通過した強度に応じ て蛍光プレート上に強弱の像を形成させる。蛍光プレート上に形成された像は、ディ ジタル'カメラにより撮影され、 X線により形成された像がディジタル ·データとして、例 えばフラッシュ 'メモリ、 EEPROMといった書き換え可能な記録媒体に格納される。
[0006] また、特許文献 2では、検体の動きがあっても蛍光像を自動認識することが可能な X線撮影装置が開示されている。また、特許文献 3では、コントラストを向上させつつ 、蛍光像をディジタル的に取得する X線撮影装置が開示されてレ、る。
特許文献 1 :特開 2001 - 178711号公報
特許文献 2:特開平 5 - 23326号公報
特許文献 3:特開平 10 - 276366号公報
[0007] 上述したように種々の X線蛍光像をディジタル的に取得する装置が開示されている ものの、レ、ずれもが大面積の鉛ガラスを使用して直接 X線 ·散乱 X線を力ットするもの である。鉛ガラスは、石英ガラスなどの X線透過性のガラスに対して高濃度の Pb元素 を添加することにより X線をカットする。この鉛ガラスは、大量の鉛を使用する。しかし ながら、 Pb元素は、人体に対して好ましくない影響を与えるので廃棄するにあたり、 将来的に環境負荷を与えてしまうことになることも予測される。このため、鉛ガラスの 使用量を極力少なくすることが好ましい。また、鉛ガラスの代替として、現在のところタ ングステン'ガラスも提案されている力 ガラスとタングステンとの融点が大きく異なる ので、大面積の一定品質のプレートを作成するのが困難で、かつコストが高レ、、とレ、う 不都合がある。
[0008] このため、大面積のタングステン 'ガラスを X線シールド材として用いつつ、低価格 でディジタル X線蛍光像を提供する目的には不向きである。また、特許文献 2や、特 許文献 3に記載された X線撮影装置は、確かに X線蛍光像をディジタル的に高精度 の取得することを可能とし、画像処理を行うことを可能とするものの、高価格であり、大 規模な病院は費用負担に耐えられると考えられるものの、必ずしも普及型の X線撮影 装置とはいえない。
[0009] 図 11には、これまで地域診療所や、個人病院などの小規模診療施設において使 用されている小型 X線撮影装置の概略的な斜視図を示す。図 11に示す X線撮影装 置 100は、 X線発生装置とは別体として構成されており、概ね、カメラ 102と、喑箱 10 4とを含んで構成されている、喑箱 104の検体 SPに隣接する側には、蛍光プレート 1 06が配設されている。蛍光プレート 106は、より詳細には、グリッド 'プレートと、蛍光 プレートとを含んで構成されてレ、て、透過 X線に対応して蛍光像を形成させてレ、る。 蛍光として形成された蛍光像は、鉛ガラスとレ、つた X線シールド材(図示せず)を通過 した後、反射プレート 108により反射され、カメラ 110へと投影される。
[0010] カメラ 110は、蛍光像を高硬調の銀塩フィルム上に露光し、蛍光像の潜像を形成さ せる。形成された潜像は、定着され、ネガフィルムが提供される。 X線撮影を行う場合 、患者などの検体 SPは、蛍光プレート 106に隣接して立ち、暗箱外部に形成された 顎部固定部 112に顎部を乗せて、撮影姿勢を安定化させる。その後、 X線発生装置 (図示せず)力 X線が照射され、検体 SPを透過した X線により蛍光プレート上に蛍 光像が形成される。この蛍光像は、 X線カメラにより撮影され、上述したように定着処 理などの後処理が行われ、ネガフィルムとされる。得られたネガフィルムは、医師によ る診断に提供され、通常では、診断の結果および X線撮影の費用が診療報酬として 請求される。
[0011] 近年では、一人の医師だけの診断により診療を受けるのではなぐ複数の医師によ り診断を受け、患者が判断を行う、いわゆるセカンド 'オピニオンの重要性が指摘され ている。し力 ながら、従来の場合には、医師が互いに連絡を取り合って、患者が X 線フィルムを持参または送付することによりセカンド'オピニオンを取得するのが通常 の方法である。このためには患者が紹介状を医師に対して作成することを依頼したり
、高度にプライベートな情報である X線蛍光像の運搬や、送付などを必要とするので
、医師の密度の少ない地域において、患者に対して極めて大きな負担を強いること になる。
[0012] また、近年では、コンピュータおよびネットワーク技術の進歩に伴レ、、いわゆるインタ 一ネットといった通信インフラ基盤のもとに、ほとんど時間差無ぐ情報を共有ことがで きるようになってきている。このため、低価格で高精度の X線蛍光像のディジタル'デ ータを取得することができれば、取得された X線蛍光像を、ネットワークを介して、例 えば診断サイトに配置された遠隔サーバに転送することにより、容易にセカンド 'ォピ 二オンを得ることができる医療診断システムが提供できると考えられる。
[0013] また、ディジタル 'カメラは、典型的なフィルムレス撮像系であり、医療用 X線写真に おいて使用される六ッ切サイズから半切サイズまでの X線フィルムサイズに対して、記 憶資源、コンピュータ資源、および医療資源において無駄のないディジタル'ィメー ジを形成することができるものと考えられる。
発明の開示
発明が解決しょうとする課題
[0014] すなわち、これまで環境的な負荷を軽減させつつ、かつ低コストに高精度の X線蛍 光像をディジタル的に記録することができる X線撮影装置が必要とされていた。
[0015] また、フィルムレスというディジタル 'カメラの特性を利用して、検体の大きさに柔軟 に対応することが可能な X線撮影装置および X線蛍光像をディジタル的に形成させ る方法が必要とされていた。
[0016] さらに、ディジタル ·データとして取得された X線蛍光像をインターネットを介して送 信することにより、容易かつ地域的な格差無くセカンド 'オピニオンを得ることができる
X線撮影システムが必要とされてレ、た。
課題を解決するための手段
[0017] 本発明は、上記従来技術の不都合に鑑みてなされたものであり、 X線蛍光像を取 得することが可能な低価格のディジタル X線撮影装置を提供することができれば、上 述した従来技術の不都合を改善することができるという着想の下になされたものであ る。
[0018] すなわち、本発明によれば、 X線蛍光像をディジタル 'データとして撮影するための X線撮影装置であって、 X線の照射により像状の蛍光を発生する蛍光プレートと、蛍 光プレートからの像状の蛍光を撮影するためのディジタル 'カメラと、前記蛍光プレー トと前記ディジタル 'カメラとの間に配置された X線シールド材とを含む X線撮影装置 において、
前記ディジタル 'カメラは、
筐体と、
レンズ取り付け部を備え、かつ筐体とレンズ取り付け部との間に延び、 CCDを前記 筐体の外部で保持する CCD冷却部と、
前記レンズ取り付け部に取り付けられ、 X線シールド材のフィルタが取り付けられた 定倍率レンズと、
前記 CCDにより取得されたイメージ ·データを所定の形式として出力させる出力部 とを含む X線撮影装置が提供される。
[0019] 本発明の前記定倍率レンズは、前記蛍光プレート表面が CCD上に結像されるよう に焦点調整される。
[0020] 本発明の前記 X線撮影装置は、さらに前記ディジタル 'カメラと前記蛍光プレートと の間の距離を可変とする駆動部材を含むことができる。
[0021] 本発明の前記定倍率レンズは、前記ディジタル 'カメラが蛍光プレートから最も離れ た位置とされた状態で、写真サイズ寸法が、前記 CCDに所定の解像度以上で結像 する倍率に固定されてもよい。
[0022] 本発明においては、前記蛍光プレートと前記ディジタル 'カメラと X線シールド材とを 包囲する伸縮自在の蛇腹部材を含むことができる。
[0023] また、本発明によれば、 X線蛍光像をディジタル 'イメージとして表示させるための X 線撮影システムであって、前記 X線撮影システムは、
レンズ取り付け部を備え、かつ筐体とレンズ取り付け部との間に延び、 CCDを前記 筐体の外部で保持する CCD冷却部と、
前記レンズ取り付け部に取り付けられ、 X線シールド材のフィルタが取り付けられた 定倍率レンズとを備え、前記 CCDにより取得されたイメージ 'データを所定の形式で 出力するディジタル 'カメラと、
前記ディジタル 'カメラを X線照射に関連して露光量を制御するための撮影制御装 置と、
前記ディジタル 'カメラからのイメージ ·データを格納し、画像処理するための画像 処理装置とを含む X線撮影システムが提供できる。
[0024] 本発明の前記 X線撮影システムは、ネットワークを介して、前記イメージ 'データを遠 隔サーバに送信する機能を含むことができる。
[0025] 本発明の前記 X線撮影装置は、 1000 X 1000マトリックス以上の画質としてイメージ' データを格納することができる。
[0026] さらに、本発明によれば、 X線造影像をディジタル ·データとして撮影する方法であ つて、前記方法は、
X線シールド材のフィルタを取り付けた定倍率レンズと、 CCDを筐体の外部で保持 する CCD冷却部とを含むディジタル ·カメラを蛍光プレートに対して可動に配置する ステップと、
前記ディジタル 'カメラが蛍光プレートから最も離間した位置で写真サイズ寸法の蛍 光像が CCDに所定の解像度以上で取得されるように定倍率レンズの倍率を固定す るステップと
前記ディジタル 'カメラの前記蛍光プレートに対する所定位置に応答して焦点を調 節するステップと
前記位置で X線蛍光像を CCDに取得させるステップと
を含む X線蛍光像をディジタル 'データとして撮影する方法が提供できる。
[0027] 本発明における前記焦点を調節するステップは、前記蛍光プレートの前記ディジタ ノぃカメラ側の表面に焦点を調節するステップを含むことができる。
図面の簡単な説明
[0028] [図 1]本発明の X線撮影装置の側面図。
[図 2]本発明の X線撮影装置を、喑箱部を一部切り欠いて、内部構成を示した図。
[図 3]本発明において使用するディジタル 'カメラを詳細に示した図。
[図 4]本発明の特定の実施の形態におけるディジタル 'カメラの具体的な実施の形態 を示した図。
[図 5]本発明の X線撮影装置の機能 ·作用を説明した図。 [図 6]本発明における CCDと、 CCD上に結像される X線造影像 Pの関係を示した概 略図。
[図 7]本発明において使用するディジタル 'カメラの他の使用態様を示した図。
[図 8]本発明において使用する X線シールド 'フィルタの構成を示した分解図。
[図 9]本発明において蛍光像を反射させて撮影を行う X線撮影装置の喑箱部の内部 の光学的構成を示した図。
[図 10]本発明の X線撮影システムの概略的構成を示した図。
[図 11]従来の X線撮影装置の概略的構成を示した図。
符号の説明
[0029] 10· · ·Χ線撮影装置、 12…暗箱部、 14…支持部、 16…検体位置決め部、 18…支持 脚、 20…支持台、 22…ウェイト部、 24…取り付け部材、 26…暗箱連結部材、 28· · · 光ノヽ。ネノレ、 30· · ·第 1セクション、 32· · ·第 2セクション、 34· · ·第 3セクション、 36· · ·^ リツド 'プレート、 38· · · 光プレート、 40· · ·Χ'ί泉シーノレド材、 42…ディジタノレ'カメラ、 4 4…駆動装置、 46…蛇腹部材、 50…筐体、 52— CCD冷却部、 54…レンズ取り付け 部、 56" 'CCD、 58…電源コネクタ、 60…データ入出力コネクタ、 62…電源オン'ォ フ.スィッチ、 64…コネクタ、 66· - -EXT.端子、 68…定倍率レンズ、 70· · ·Χ線シーノレ ド'フィノレタ、 72…反射部材、 80· ' ·Χ線撮影システム、 82…撮影制御装置、 84…画 像解析装置、 88…記憶手段、 90…ネットワーク
発明を実施するための最良の形態
[0030] 以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、上述す る実施の形態に限定されるものではない。
[0031] 図 1は、本発明の X線撮影装置の側面図である。本発明の X線撮影装置 10は、概 ね喑箱部 12と、支持部 14と、検体位置決め部 16とを含んでいる。喑箱部 12は、散 乱 X線を除去し、高い解像度での X線蛍光像を形成させ、そして蛍光像を撮影する ための光学系を収容している。また、支持部 14は、より詳細には、支持脚 18と、支持 台 20と、検体位置決め部 16に検体が乗って、位置決めを行ったときにでもバランス を保持させるためのウェイト部 22とを含んでいる。支持脚 18は、支持台 20に取り付け 部材 24を介してボルト止めされている。また、支持台 20には、喑箱連結部材 26が溶 接などにより固定されて、この暗箱連結部材 26に喑箱部 12が固定されている。また、 支持部 14は、例えば、支持脚 18が床面 FLに対してボルト止め等されて、堅固に固 定されている。また、本発明の他の実施の形態では、支持脚 18を適切な大きさのプ レートに固定し、プレートを床面 FLに対して固定することもできる。
[0032] 検体位置決め部 16は、検体の身長や撮影位置に応じて、検体が蛍光パネル 28に 適切に位置決めできるように、矢線 Aの方向に移動可能にウェイト部 22に連結されて いる。ウェイト部 22の内部には、検体位置決め部 16を可動に支持するための油圧ジ ャツキまたは手動またはモータ駆動の機械式ジャッキが備えられてレ、て、検体位置決 め部 16に対して移動性および加重保持性を付与している。
[0033] また、図 1に示した実施の形態では、喑箱部 12は、概ね、第 1セクション 30と、第 2 セクション 32と第 3セクション 34力、らなる 3つのセクションにより構成されている。
[0034] 図 2は、本発明の X線撮影装置 10を、喑箱部 12の一部を切り欠いて、喑箱部 12の 内部構成を示した図である。図 2に示されるように、第 1セクション 30には、ヒンジ 28a などにより、蛍光パネル 28が第 1セクション 30に対して開閉自在に取り付けられてい て、喑箱部 12内部または蛍光パネル 28に対する作業性を向上させている。また、蛍 光パネル 28は、より詳細に説明すると、散乱 X線を除去するためのグリッド 'プレート 3 6と、 X線による像を形成させるための蛍光プレート 38とを含んで構成されている。グ リツド 'プレート 36は、本発明の特定の実施の形態では X線散乱を低下させるための グリッド(10 : 1)が形成されたガラス'プレートを使用することができる。また、蛍光プレ ート 38としては、本発明の特定の実施の形態によってはガドリニュゥム系希土類蛍光 体といった、これまで知られているいかなる高感度蛍光板であっても使用することが できる。
[0035] 第 2セクション 32は、本発明の特定の実施の形態では、第 1セクションとの境界付近 において鉛ガラスまたはタングステン 'ガラスといった X線シールド材 40を保持してい ると共に、ディジタル 'カメラの蛍光パネル 28に対する距離を変更させるための空間 を提供している。図 2に示した実施の形態では、第 3セクション 34は、ディジタル 'カメ ラ 42を収容しているのが示されている。この位置は、最大の X線蛍光像を撮影するこ とが可能な位置であり、具体的には、六ッ切ゃ半切といった X線写真寸法のイメージ 力 CCDの上に、最も高い解像度で結像される位置として示されている。さらに、第 2 セクション 32および第 3セクション 34は、ディジタル.カメラ 42を駆動させるための駆 動装置 44を収容している。
[0036] 駆動装置 44は、本発明の特定の実施の形態では、ウォームギア 44a、モータ 44b、 マウント 44cなどを使用して構成させることができ、蛍光プレート 38に対するディジタ ノぃカメラ 42の相対位置を変化させている。ディジタル 'カメラ 42は、マウント 44c上に 調節可能に固定されていて、ウォームギア 44aの回転と共に紙面左右方向に定義さ れた z方向に移動可能とされている。また、マウント 44cには、ディジタル.カメラ 42を z 方向に対してそれぞれ直交する方向に定義された x、 y方向に微調節するための調 節手段(図示せず)が備えられていて、最適な結像位置を、各 X線撮影装置 10に対 して提供することができる構成とされてレ、る。
[0037] また、第 3セクションからは図示しない撮影制御ラインと、イメージ 'データ出力ライン とが導出されている。撮影制御ラインは、露光調整装置(図示せず)に接続されて、 ディジタル 'カメラ 42の露光および X線照射装置による X線照射量を調節している。ま た、撮影制御ラインは、駆動装置 44を駆動させるための信号を駆動装置 44へと送つ ていて、駆動装置 44は、信号を受け取って、所定の大きさのイメージを最適な寸法 で取得することができる位置へと、ディジタル 'カメラ 42を位置決めさせている。また、 イメージ 'データ出力ラインは、ディジタル 'カメラ 42からのイメージ 'データを画像解 析装置(図示せず)へと送っており、診断のためのイメージを提供することを可能とさ せている。さらに、第 1セクションから第 3セクションに設置されたディジタル 'カメラ 42 までの間には、波形形状として伸縮自在に構成された迷光低減のための蛇腹部材 4 6が配置されていて、周囲光や、迷光 X線のディジタル 'カメラ 42への入射量を低減 させている。なお、本発明の上述した各装置についてはより詳細に後述する。
[0038] 図 3は、本発明において使用するディジタル 'カメラ 42を詳細に示した図である。図 3 (a)が正面図、図 3 (b)が側面図、および図 3 (c)が背面構成を示した図である。図 3 (a)に示されるように、本発明に使用するディジタル 'カメラ 42は、筐体 50と、 CCD冷 却部 52と、定倍率レンズを装着するためのレンズ取り付け部 54とを備えている。レン ズ取り付け部 54の中心奥側の CCD冷却部 52には、 CCD56が配置されていて、冷 却下で X線蛍光像をディジタル的に取得することが可能とされている。
[0039] さらに、 CCD冷却部 52は、図 3 (b)に示されるように、レンズ取り付け部 54と一体と して形成され、筐体 50とレンズ取り付け部 54との間に延びている。また、 CCD冷去 部 52は、冷却フィン 52aを複数備えており、 CCD56の冷却効率を高めている。なお 、本発明においては、 CCD冷却部 52は、空冷でもよぐまた水冷など、流体冷媒に よる冷却が行われていても良レ、。 CCD56を冷却する理由は、 CCD56の温度上昇に 伴う熱キャリアの発生を抑え、高硬調の銀塩フィルムのイメージに匹敵するハイコント ラストな画像を与え、診断の正確さを確保するためである。
[0040] さらに、本発明においては、輝度増倍 CCDを使用することもできる。本発明におい て輝度増倍 CCDとは、イメージ'インテンシファイアを使用せずとも充分に高い精度 の X線蛍光像を取得することができる感度の CCDを意味する。この場合でも画素の 大きさは、上述した 1000 X 1000マトリックス以上であること力 高精度の診断を行うに は必要とされる。また、本発明において、輝度増倍 CCDを使用する場合には、静止 画像の他、動画についても X線撮影装置により取得することができる。
[0041] 熱キャリアが発生すると、 CCD56のピクセルのうち、イメージが記録された部分の 電荷は、熱キャリアのためリークし、またイメージの記録されていない部分では、熱キ ャリアの発生によりいわゆる空間電荷などが発生しがちとなり、相対的なコントラストが 低下する。このコントラストの低下は、 X線蛍光像においては、患部部位のぼやけを 生じさせてしまうので、ディジタル的にイメージを取得しても、結果として医師たちのレ ベルで診断に使用することができる画像を与えることができないためである。
[0042] また、本発明においては、 CCD56は、できるだけ高解像であることが好ましい。こ のため、本発明においては、特定の実施の形態において、横 X縦が、 1024 X 1360 画素(140万画素)の CCDを使用して、ディジタル 'イメージを形成させることができる 。本発明においては、必要により高画素の CCDを使用することもできる力 CCD56 としては、最低で 1000 X 1000マトリックス以上の画素を提供できる限り、コストおよびサ ィズなどを考慮して適宜選択することができる。図 3 (c)には、筐体 50の背面構成を 示す。筐体 50の背面側には、ディジタル 'カメラ 42を駆動する制御ラインの入力ポー トおよびイメージ ·データ出力ラインを接続するためのポートなどが配置されている。 筐体 50の背面構成をより具体的な実施の形態に基づいて説明すれば、筐体 50の 背面には、電源コネクタ 58、 USBコネクタまたは ILINKといったデータ入出力コネク タ 60、電源オン 'オフ'スィッチ 62、シャッターを切るためのトリガー信号を受け取るた めのコネクタ 64、および外部制御信号を受け取るための EXT端子 66などが設けら れている。
[0043] ディジタノレ'カメラ 42は、 CCD56上に結像されたイメージ 'データを、露光終了後、 適切なメモリ、例えばランダム ·アクセス 'メモリ、小型ハードディスクといった記憶手段 に一旦格納させる。その後、ディジタル 'カメラ 42に含まれた処理装置は、格納され たイメージ 'データを読み出して、適切な形式に変換する。変換後のイメージ 'データ は、画像解析装置 (コンピュータ:図示せず)へと送られるイメージ 'データとして例え ばフラッシュ 'メモリ、 EEPROM、小型ハードディスクといった書き換え可能な記録媒 体に格納される。
[0044] この際、適切なイメージ形式としては、これまで知られたいかなる形式でも使用する ことができ、例えばビットマップ(BMP)形式、 JPEG、JPEG2000、 TIFF, MPEG, DICOM3対応といった形式などを使用することができる。また、濃度階調はできるだ け細分できることが高画質化のためには好ましいので、格納されるイメージ 'データの データ ·ビット数は、 I6bit以上のフォーマットとすることが好ましい。適切な形式として 格納されたイメージ ·データは、例えばデータ入出力コネクタ 60として USBコネクタを 使用する場合には、接続されたイメージ 'データ出力ラインを介して、画像解析装置 へと出力され、画像解析、画面表示、必要に応じてハード 'コピーなどが行われ、医 師による診断のために提供される。
[0045] 図 4には、本発明の特定の実施の形態におけるディジタル 'カメラ 42の具体的な実 施の形態を示す。図 4に示す具体的な実施の形態では、レンズ取り付け部 54には、 定倍率レンズ 68が装着されている。定倍率レンズ 68は、特に倍率を固定したレンズ を使用することもできるが、倍率と焦点距離とを独立して調節できるレンズを使用して 、蛍光プレート 38から最大に離間した位置で、六ッ切、半切サイズといった X線写真 寸法に相当する画像を、 1000 X 1000マトリックス以上の分解能で与える倍率に調整 した定倍率レンズとして使用することができる。具体的には、本発明において使用す ることができる定倍率レンズ 68としては、 CBC株式会社製の市販品である、商品名「 メガピクセルレンズ」、型番 M0814—MPを使用することができる。
[0046] このレンズは、 100万画素以上の CCDに対して高コントラストに結像可能で、かつ 変形率が 1. 0%以下の高い忠実性を与える特徴を有している。さらに、本発明にお いて、上述した特性の定倍率レンズ 68を使用することにより、従来の X線撮影装置に 比較して、被写界深度を浅くすることができる。このことは、蛍光プレート 38に選択的 にフォーカシングすることを可能とすることになるので、グリッド 'プレート 36に形成さ れたグリッドが撮影されることによる影響を、著しく低減している。
[0047] 本発明においてレンズを定倍率として使用することにより、ディジタノレ'カメラ 42と、 蛍光プレート 38との間の距離を調整するだけで、六ッ切から半切までの蛍光像を、 一定の解像度で取得することが可能となる。図 4に示した破線が、定倍率レンズの視 野範囲を示す。図 5は、本発明の上述した機能 ·作用を説明した図である。ディジタ ノレ'カメラ 42には、上述した倍率に固定された定倍率レンズが装着されており、この ため CCD56から見た視野角 αは常に同一となる。このため、蛍光プレート 38に対す る距離 dが短くなるにつれて蛍光プレート 38の見込み領域 Lは狭まることとなり、この 結果、同一の CCD56により、異なる大きさのイメージを概ね一定の解像力で形成す ること力 Sできる。すなわち、本発明によれば、例えば六ッ切(201 X 252mm)、四ッ切 (252 X 303mm)、大四ッ切(279 X 354mm)、大角(354 X 354mm)、半切(354 X 430mm)といった大きさに対応する見込み領域を与える距離 dを、無駄なく適切な 診断画像を提供することができる。
[0048] 図 6は、本発明において CCD56と、 CCD上に結像される X線蛍光像 Pの関係を示 す。 CCD56は、図 6に示した実施の形態では、横 1024ドット、縦 1360ドットの画素 を有している。 X線蛍光像 Pは、定倍率レンズ 68により縮小投影され、 CCD上に結像 されている。このとき、定倍率レンズ 68の倍率は、 X線蛍光像 Pが CCD56の横方向 に 1000 X 1000マトリックス以上に対応する大きさとなるように、決定される。上述した光 学的関係で、 X線蛍光像 Pをディジタル化させることにより、高解像度のイメージ'デ ータが形成できる。
[0049] さらに、 X線蛍光像 Pの大きさは、装着されるレンズの倍率が固定されているので、 さらに蛍光プレート 38と CCD56との間の距離を変化させても概ね一定とすることが できる。また、本発明においては、 CCD56の画素全体にちようど一致するように設定 することも可能ではある力 焦点調節による画像サイズの微少変動などに関連して、 ある程度 CCD56の画素領域よりも小さぐかつ 1000 X 1000マトリックス以上の解像度 が確保できるように X線蛍光像を結像させることが好ましレ、。
[0050] 図 7には、本発明において使用するディジタル 'カメラ 42の他の使用態様を示した 図である。図 7に示した使用態様では、定倍率レンズ 68の先端部には X線シールド' フィルタ 70が装着されている。この実施の形態の場合には、大面積の鉛ガラスや、タ ングステン 'ガラスといった X線シールド材は必要ではなレ、。図 7に示した実施の形態 においては、取得されるイメージ.データの品質には相違は生じないものの、 X線シ 一ルド材の量を著しく低下させることができるので、例えば高額なタングステン 'ガラス を使用して X線シールド 'フィルタを製造しても X線撮影装置が高価格にはならず、さ らに環境負荷を大きく低減することが可能となる。
[0051] 図 8は、本発明において使用する X線シールド 'フィルタ 70の構成を示した分解図 である。本発明において使用する X線シールド 'フィルタ 70は、概ねフィルタ 'ホルダ 70aと、スぺーサ 70bと、 X線フィルタ 70cとを備えている。フィルタ 'ホルダ 70aは、定 倍率レンズ 68に螺合させるためのねじ部 70dが設けられており、がたつき無ぐ定倍 率レンズ 68に装着することができる構成とされている。また、フィルタ 'ホルダ 70aには 、定倍率レンズ 68の視野角を妨げない径の開口 70eが形成されていて、上述した光 学的関係を害さないようにされている。また、スぺーサ 70bは、フィルタ 'ホルダ 70aと 、 X線フィルタ 70cとの間に挿入され、がたつき無く X線フィルタ 70cを保持させるため に使用される。
[0052] このスぺーサ 70bは、 X線フィルタ 70cを安定に保持させることができる厚さおよび 径であれば、レ、かなる厚さおよび径または枚数、配置でも使用することができる。本 発明においては、 X線フィルタ 70cは、例えば鉛ガラスや、タングステン 'ガラス、鉛一 タングステン 'ガラスなどの材料力 構成することができ、 X線を充分にシールドできる 厚さであれば、いかなる厚さとすることができる。また、 X線フィルタ 70cの径は、定倍 率レンズの視野角で与えられる径よりも大径とすること力 良好な X線シールド特性を 得るためには必要とされる。
[0053] 図 9は、本発明において、蛍光像を反射させて撮影を行う X線撮影装置の喑箱部 1 2内部の光学的構成を示した図である。図 9に示した構成は、車載型 X線撮影装置な どのように、省スペース化を行うときに有効である。図 9 (a)が腹部などを撮影する場 合の横配置の撮影を行うための X線撮影装置の喑箱部 12の内部の構成を示した図 であり、図 9 (b)が、胸部レントゲン写真などを撮影する場合の縦配置の X線撮影装 置の喑箱部 12の内部構成を示した図である。図 9に示された X線撮影装置では、い ずれも喑箱部 12内部に反射部材 72が配置されて、蛍光像を一旦反射させて、撮影 を行う構成とされている。この場合でも定倍率レンズの倍率は、上述したように、反射 部材 72からの距離に応じて六切から半切などの写真サイズに対応することができる ように固定されている。また、本発明の反射部材 72は、反射ミラーとして構成させるこ ともできる力 さらに別の実施の形態では、プリズムを使用し、プリズムによる全反射を 使用することちできる。
[0054] 図 10は、本発明の X線撮影システムの概略的構成を示した図である。図 10に示し た X線撮影システム 80は、 X線撮影装置 10と、撮影制御装置 82と、画像解析装置 8 4とを含んで構成されている。撮影制御装置 82は、露光開始を行わせるシャッター制 御部と、露光開始を指令する信号に関連して、 X線発生装置から X線を照射させるト リガ一信号発生部と、トリガー信号または露光開始を指令する信号によりトリガーされ 、所定の露光量を与えるように露光を制御させるための、例えば積算露光計やタイマ といった露光調節部と、駆動装置 44を駆動させるための駆動制御装置を含んで構 成されている。
[0055] 撮影制御装置 82は、撮影制御ライン 86aを通して各信号を X線撮影装置に送り、ィ メージ ·データを形成させる。形成されたイメージ ·データは、イメージ 'データ出カラ イン 86bを通して、画像解析装置 84へと送られ、適切なメモリに格納された後、種々 の処理が行われる。また、画像解析装置 84は、必要に応じてライン 86cを介して撮影 制御装置 82を制御することもできる。また、本発明の X線撮影システム 80の他の態 様においては、画像解析装置 84と撮影制御装置 82とは、一体として構成することも できる。 [0056] 所定の露光時間または露光量の撮影により取得されたイメージ ·データは、画像解 析装置 84へと送られて、画像処理が実行される。本発明における画像処理は、コント ラストや、濃度などの調整の他、所定のサイズのイメージを与えるトリミング処理など、 これまで知られた処理を、キーボード 84aや、マウス 84bを、たとえば診療放射線技 師などの資格を有するオペレータが操作して実行することができる。画像処理が終了 したイメージ 'データは、ディスプレイ 'スクリーン 84c上に表示され、医師などの読影 のために使用することができる。
[0057] 得られたイメージ ·データは、画像解析装置 84に接続されたデータベースなどとし て構成された記憶手段 88へと、患者の氏名、部位、撮影日時、所見、撮影者などの テキスト 'データを参照できる形式で格納される。このイメージ ·データは、医師が直接 読影することにより診断が行われるが、例えば将来的には放射線専門医が読影しな ければならない場合なども想定される。この場合、撮影したサイトに放射線専門医が いれば診断することもできょうが、例えば個人病院や、地方における医療過疎地域で は、放射線専門医を常駐配置することができるわけではない。また、放射線専門医が いる場合でも、患者などに希望によりセカンド 'オピニオンを得ることが必要な場合も ある。
[0058] このような目的から、画像解析装置 84には、インターネットまたは専用の通信回線 により接続されたネットワーク 90が接続されていて、例えば図示しない遠隔サーバへ と、適切な方法、例えば電子メールなどを使用して、ディジタル 'イメージを付随する テキスト 'データと共に送付することができる。この場合、遠隔サーバは、メール'サー バ機能を含んで構成することができ、専用のメール'アドレス、ユーザ.アカウント、パ スワードなどを発行することにより、プライバシーの保護を行うことができる。また、送 受信に際しては、さらにプライバシーを保護するために、暗号ソフトウェアを使用して 送受信することが好ましい。
[0059] これまで本発明を、図面に示した具体的な実施の形態をもって説明してきたが、本 発明は、図面に示した実施の形態に限定されるものではなぐ同等の機能'作用を与 えることができるものとしてこれまで当業者に知られた手段や手法、または材料など、 いかなるものでも使用することができる。 産業上の利用可能性
[0060] 異常説明したように、本発明によれば、環境的な負荷を軽減させつつ、かつ低コス トに高精度の X線蛍光像をディジタル的に記録することができる X線撮影装置を提供 すること力 sできる。
[0061] また、本発明によれば、フィルムレスというディジタル 'カメラの特性を利用して、検 体の大きさに柔軟に対応することが可能な X線撮影装置および X線蛍光像をディジタ ル的に形成させる方法を提供することができる。
[0062] さらに、本発明によれば、ディジタル ·データとして取得された X線蛍光像を、インタ 一ネットを介して送信することにより、容易かつ地域的な格差無くセカンド 'オピニオン を得ることができる X線撮影システムが提供できる。

Claims

請求の範囲
[1] X線蛍光像をディジタル 'データとして撮影するための X線撮影装置であって、 X線 の照射により像状の蛍光を発生する蛍光プレートと、蛍光プレートからの像状の蛍光 を撮影するためのディジタル 'カメラと、前記蛍光プレートと前記ディジタル 'カメラとの 間に配置された X線シールド材とを含む X線撮影装置にぉレ、て、
前記ディジタル 'カメラは、
筐体と、
レンズ取り付け部を備え、かつ筐体とレンズ取り付け部との間に延び、 CCDを前記 筐体の外部で保持する CCD冷却部と、
前記レンズ取り付け部に取り付けられ、 X線シールド材のフィルタが取り付けられた 定倍率レンズと、
前記 CCDにより取得されたイメージ ·データを所定の形式として出力させる出力部 とを含む X線撮影装置。
[2] 前記定倍率レンズは、前記蛍光プレート表面が CCD上に結像されるように焦点調 整された、請求項 1に記載の X線撮影装置。
[3] 前記 X線撮影装置は、さらに前記ディジタル 'カメラと前記蛍光プレートとの間の距 離を可変とする駆動部材を含む、請求項 1または 2に記載の X線撮影装置。
[4] 前記定倍率レンズは、前記ディジタル 'カメラが蛍光プレートから最も離れた位置と された状態で、写真サイズ寸法が、前記 CCDに所定の解像度以上で結像する倍率 に固定された、請求項 1一 3のいずれか 1項に記載の X線撮影装置。
[5] 前記蛍光プレートと前記ディジタル 'カメラと X線シールド材とを包囲する伸縮自在 の蛇腹部材を含む、請求項 1一 4のいずれ力 4項に記載の X線撮影装置。
[6] X線蛍光像をディジタル 'イメージとして表示させるための X線撮影システムであつ て、前記 X線撮影システムは、
レンズ取り付け部を備え、かつ筐体とレンズ取り付け部との間に延び、 CCDを前記 筐体の外部で保持する CCD冷却部と、
前記レンズ取り付け部に取り付けられ、 X線シールド材のフィルタが取り付けられた 定倍率レンズとを備え、前記 CCDにより取得されたイメージ 'データを所定の形式で 出力するディジタル 'カメラと、
前記ディジタル ·カメラを X線照射に関連して露光量を制御するための撮影制御装 置と、
前記ディジタル 'カメラからのイメージ ·データを格納し、画像処理するための画像 処理装置とを含む X線撮影システム。
[7] 前記 X線撮影システムは、ネットワークを介して、前記イメージ ·データを遠隔サーバ に送信する機能を含む、請求項 6に記載のシステム。
[8] 前記 X線撮影装置は、 1000 X 1000マトリックス以上の画質としてイメージ 'データを 格納する、請求項 6または 7に記載のシステム。
[9] X線造影像をディジタル 'データとして撮影する方法であって、前記方法は、
X線シールド材のフィルタを取り付けた定倍率レンズと、 CCDを筐体の外部で保持 する CCD冷却部とを含むディジタル ·カメラを蛍光プレートに対して可動に配置する ステップと、
前記ディジタル 'カメラが蛍光プレートから最も離間した位置で写真サイズ寸法の蛍 光像が CCDに所定の解像度以上で取得されるように定倍率レンズの倍率を固定す るステップと
前記ディジタル 'カメラの前記蛍光プレートに対する所定位置に応答して焦点を調 節するステップと
前記位置で X線蛍光像を CCDに取得させるステップと
を含む X線蛍光像をディジタル 'データとして撮影する方法。
[10] 前記焦点を調節するステップは、前記蛍光プレートの前記ディジタル 'カメラ側の表 面に焦点を調節するステップを含む、請求項 9に記載の方法。
PCT/JP2004/012101 2003-08-29 2004-08-24 医療用ディジタルx線撮影装置、x線撮影システム、およびx線蛍光像をディジタル・データとして撮影する方法 WO2005020818A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003306612A JP3645559B2 (ja) 2003-08-29 2003-08-29 医療用ディジタルx線撮影装置、x線撮影システム、およびx線蛍光像をディジタル・データとして撮影する方法
JP2003-306612 2003-08-29

Publications (1)

Publication Number Publication Date
WO2005020818A1 true WO2005020818A1 (ja) 2005-03-10

Family

ID=34269396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012101 WO2005020818A1 (ja) 2003-08-29 2004-08-24 医療用ディジタルx線撮影装置、x線撮影システム、およびx線蛍光像をディジタル・データとして撮影する方法

Country Status (3)

Country Link
JP (1) JP3645559B2 (ja)
KR (1) KR20060038336A (ja)
WO (1) WO2005020818A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842424B1 (ko) * 2006-08-31 2008-07-01 주식회사 뷰웍스 형광 촬영장치
KR101012506B1 (ko) * 2008-09-03 2011-02-08 김재철 디지털 엑스레이 촬영방법 및 엑스레이 촬영장치
KR101022803B1 (ko) * 2009-02-26 2011-03-17 전남대학교산학협력단 형광영상 및 감마선영상 촬영을 위한 소 동물용 이중영상 촬영장치
KR101019714B1 (ko) * 2009-04-01 2011-03-07 쓰리디이미징앤시뮬레이션즈(주) 디지털 엑스레이 영상 획득장치
KR101371225B1 (ko) * 2012-12-26 2014-03-10 동명대학교산학협력단 엑스레이 영상 검사 자동화를 위한 카메라 렌즈의 자동초점 조절장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140096A (ja) * 1993-11-13 1995-06-02 Rigaku Corp ラングカメラ
JPH08248542A (ja) * 1995-03-13 1996-09-27 Konica Corp 放射線画像読取装置
JPH09138203A (ja) * 1995-11-14 1997-05-27 Marcom:Kk X線蛍光画像検査装置
JP2000356604A (ja) * 1999-06-14 2000-12-26 Mac Science Co Ltd X線透過検査装置
JP2001178711A (ja) * 1999-12-24 2001-07-03 Hidekazu Inami デジタルカメラを使用したx線検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140096A (ja) * 1993-11-13 1995-06-02 Rigaku Corp ラングカメラ
JPH08248542A (ja) * 1995-03-13 1996-09-27 Konica Corp 放射線画像読取装置
JPH09138203A (ja) * 1995-11-14 1997-05-27 Marcom:Kk X線蛍光画像検査装置
JP2000356604A (ja) * 1999-06-14 2000-12-26 Mac Science Co Ltd X線透過検査装置
JP2001178711A (ja) * 1999-12-24 2001-07-03 Hidekazu Inami デジタルカメラを使用したx線検査装置

Also Published As

Publication number Publication date
KR20060038336A (ko) 2006-05-03
JP3645559B2 (ja) 2005-05-11
JP2005073857A (ja) 2005-03-24

Similar Documents

Publication Publication Date Title
EP1870770B1 (en) Remote triggered X-ray image capture device
JP4488948B2 (ja) X線ct撮影用ユニットおよびx線撮影装置
JPH06217966A (ja) 手動モード及びパス・スルーモードで作動可能なディジタルx線像画質制御ワークステーション
JP3506746B2 (ja) X線イメージ信号の処理およびルーティング方法
JP2005073706A (ja) X線画像撮影装置
JP2000037374A (ja) 放射線撮影装置
JP2003248060A (ja) 放射線画像撮影装置
JP2001218759A (ja) 医用画像読取装置
Diwakar et al. Recent advancements in dental digital radiography
JP4352644B2 (ja) X線画像撮像システム
JP2002143138A (ja) カセッテ型x線画像撮影装置
JP3485339B2 (ja) X線画像信号処理方法
JP3645559B2 (ja) 医療用ディジタルx線撮影装置、x線撮影システム、およびx線蛍光像をディジタル・データとして撮影する方法
JP3989659B2 (ja) 放射線検出用カセッテ
JP2000030046A (ja) 放射線画像検出処理装置
JP2009085642A (ja) 放射線画像撮影装置
CN1610481A (zh) X射线透视摄影装置及方法
KR100813149B1 (ko) 이미지 센서를 이용하여 x선 조사 영역을 확인할 수 있는 x선 촬영 장치
JP2002072386A (ja) 放射線画像撮影装置および放射線画像読み取り装置ならびに放射線画像情報記録媒体
RU46166U1 (ru) Устройство для проведения рентгеновских исследований
JP2003290197A (ja) 医用画像処理装置、医用画像処理方法、プログラム、及び、記録媒体
KR101551636B1 (ko) 엑스레이 시스템의 시각 표시 장치 및 동기화 장치
JP2000037382A (ja) ブッキー撮影台
RU46866U1 (ru) Рентгенографический комплекс
JP2003014848A (ja) 放射線撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020047016031

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020047016031

Country of ref document: KR

122 Ep: pct application non-entry in european phase