WO2005019730A1 - Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine - Google Patents

Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine Download PDF

Info

Publication number
WO2005019730A1
WO2005019730A1 PCT/EP2004/008116 EP2004008116W WO2005019730A1 WO 2005019730 A1 WO2005019730 A1 WO 2005019730A1 EP 2004008116 W EP2004008116 W EP 2004008116W WO 2005019730 A1 WO2005019730 A1 WO 2005019730A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat shield
coolant
hot gas
combustion chamber
cooling
Prior art date
Application number
PCT/EP2004/008116
Other languages
English (en)
French (fr)
Inventor
Stefan Dahlke
Heinrich Pütz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2006522925A priority Critical patent/JP4436837B2/ja
Priority to EP04763361.5A priority patent/EP1654495B1/de
Priority to US10/568,115 priority patent/US7849694B2/en
Publication of WO2005019730A1 publication Critical patent/WO2005019730A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices

Definitions

  • Heat shield arrangement for a component carrying a hot gas, in particular for a combustion chamber of a gas turbine
  • the invention relates to a heat shield arrangement for a component carrying a hot gas, which comprises a plurality of heat shield elements which are arranged next to one another on a support structure while leaving a gap, wherein a heat shield element can be attached to the support structure, so that an interior is formed which is partially covered by a to be cooled hot gas wall is limited, with an inlet channel for the inflow of a coolant in the interior.
  • the invention further relates to a combustion chamber with an inner combustion chamber lining, which has such a heat shield arrangement, and to a gas turbine with such a combustion chamber.
  • EP 0 224 817 B1 describes a heat shield arrangement, in particular for structural parts of gas turbine systems.
  • the heat shield arrangement serves to protect a support structure against a hot fluid, in particular for Protection of a hot gas duct wall in gas turbine plants.
  • the heat shield arrangement has an inner lining made of heat-resistant material, which is composed of heat shield elements anchored to the support structure to cover the entire surface. These heat shield elements are arranged next to one another while leaving gaps for the flow of cooling fluid and can be moved by heat.
  • Each of these heat shield elements has a hat part and a shaft part in the manner of a mushroom.
  • the hat part is a flat or spatial, polygonal plate body with straight or curved edge lines.
  • the shaft part connects the central area of the plate body with the support structure.
  • the hat part preferably has a triangular shape, which means that identical hat parts can be used to produce an inner lining of almost any geometry.
  • the hat parts and possibly other parts of the heat shield elements consist of a high-temperature-resistant material, in particular of a steel.
  • the support structure has bores through which a cooling fluid, in particular air, can flow into an intermediate space between the hat part and the support structure and from there through the gaps to flow through the
  • Cooling fluid can flow into a space area surrounded by the heat shield elements, for example a combustion chamber of a gas turbine system. This flow of cooling fluid reduces the penetration of hot gas into the space.
  • US-5,216,886 describes a metallic liner for a combustion chamber.
  • This lining consists of a large number of cube-shaped hollow components (cells) arranged side by side, which are welded or soldered to a common metal plate.
  • the common metal plate has in each case assigned to each cube-shaped cell exactly one opening for the inflow of cooling fluid.
  • the cubic cells are arranged next to each other, leaving a gap. They contain a respective opening for the outflow of cooling fluid on each side wall in the vicinity of the common metal plate.
  • the cooling fluid therefore enters the gaps between adjacent cube-shaped cells and flows through this column and forms a cooling film on a surface of the cells which can be exposed to hot gas and which is directed parallel to the metallic plate.
  • an open cooling system is defined in which cooling air enters the interior of the combustion chamber through a wall structure through the cells. The cooling air is therefore lost for further cooling purposes.
  • the wall in particular for gas turbine plants, which has cooling fluid channels.
  • the wall is preferably arranged between a hot space and a cooling fluid space. It is assembled from individual wall elements, each of the wall elements being a plate body made of high-temperature resistant material. Each plate body has cooling channels which are distributed over one another and parallel to one another and which communicate with a cooling fluid space at one end and with the hot space at the other end. The cooling fluid flowing into the hot space and guided through the cooling fluid channels forms a cooling fluid film on the surface of the wall element and / or adjacent wall elements facing the hot space.
  • GB-A-849255 shows a cooling system for cooling a combustion chamber wall.
  • the combustion chamber wall is formed by wall elements.
  • Each wall element has a hot gas wall with an outside that can be subjected to hot gas and with an inside.
  • Nozzles are arranged perpendicular to the inside. Cooling fluid emerges from these nozzles in the form of a concentrated stream and hits the inside. This cools the hot gas wall.
  • the cooling fluid is collected in a collection chamber and removed from the collection chamber.
  • the object of the invention is to provide a heat shield arrangement which can be cooled with a coolant, so that when the heat shield arrangement is cooled, there is at most a slight loss of cooling fluid.
  • the heat shield arrangement should be usable in a combustion chamber of a gas turbine.
  • a heat shield arrangement for a component carrying a hot gas which comprises a plurality of heat shield elements arranged next to one another on a support structure while leaving a gap, a heat shield element being attachable to the support structure, so that an interior space is formed , which is delimited in some areas by a hot gas wall to be cooled, with an inlet channel for the inflow of a coolant into the interior, for the controlled exit of coolants. tel from the interior, a coolant outlet channel is provided, which opens into the gap from the interior.
  • the invention is based on the consideration that due to the very high flame temperatures in hot gas channels or other hot gas spaces, for example in combustion chambers of stationary gas turbines, the components carrying hot gas have to be actively cooled.
  • the most frequently used cooling concepts are convection cooling, convection cooling with measures to increase turbulence, and impingement cooling. Due to the very intensive efforts in particular to reduce the pollutant emissions from open-cooled systems, for example from open-cooled combustion chambers of gas turbines, the saving of cooling air is a particularly important factor in achieving these goals - here an increased NO x reduction.
  • the goal for openly cooled cooling concepts is therefore to minimize the required cooling air mass flow.
  • the cooling air ultimately escapes through the gap between adjacent heat shield elements after the cooling task has been carried out, in order to subsequently reach the combustion chamber.
  • the outflow of the cooling air protects the system against the penetration of hot gas into the gaps. Due to the uncontrolled blowing out of the cooling air, more cooling air is used to block the gaps than is necessary for the cooling fans. This overdosing leads to excessive cooling air consumption, with disadvantageous consequences for the overall system efficiency and the pollutant emissions of the combustion system that generates the hot gas.
  • the heat shield arrangement of the invention now for the first time proposes a controlled and targeted outlet of the coolant after performing the cooling task on the hot gas wall to be cooled for an open cooling system.
  • the heat shield arrangement is particularly easy to implement and, compared to the closed cooling concepts with coolant return, structurally connected with considerably less manufacturing effort.
  • the controlled coolant outlet into the gap can coolant, z. B. cooling air, can be saved and at the same time a significant reduction in pollutant emissions are effected, in particular the NO x emission. This is achieved in that a coolant outlet channel is provided for the controlled exit of coolant from the interior which opens into the gap from the interior.
  • a particularly high cooling efficiency and blocking effect of the coolant against hot gas attack in the gap on the support structure is hereby achieved in the gap through the targeted and metered application of coolant.
  • the controlled exit of coolant from the interior can be carried out in a simple manner by appropriate dimensioning of the coolant outlet channel, for example with regard to the channel cross section and the channel length.
  • the heat shield element has a side wall which is inclined in relation to the hot gas wall in the direction of the support structure.
  • the heat shield element is designed in its basic geometry as a single-shell hollow body which can be attached to the support structure, the interior being formed. The interior is bounded or fixed in exactly one direction by the support structure and in the other spatial directions by the heat shield element itself.
  • the coolant outlet channel penetrates the side wall.
  • the coolant outlet channel can be designed simply as a bore through the side wall, the interior being connected to the gap space formed by the gap. This means that coolant can due to the pressure difference between the interior and the gap defined by the gap emerge in a controlled manner from the interior through the coolant outlet channel.
  • a sealing element is preferably attached between the side wall and the support structure. Due to the inclination of the side wall in the direction of the support structure, when the heat shield element is detachably attached to the support structure, a gap can be provided for thermomechanical reasons, which gap can lead to undesirable coolant leaks. It is therefore particularly advantageous to seal any gaps that can lead to an uncontrolled blowing out of coolant from the interior by means of suitable sealing measures. This provides a tight connection between the heat shield element and the support structure.
  • the sealing element between the side wall and the support structure is a particularly simple but effective measure to further reduce the coolant consumption.
  • the sealing element can additionally assume a damping function, so that the heat shield elements of the heat shield arrangement are mechanically dampened on the support structure.
  • Impingement cooling is a particularly effective method of cooling the heat shield arrangement, the coolant hitting the hot gas wall in a plurality of discrete coolant jets perpendicular to the hot gas wall and cooling the hot gas wall efficiently from the interior accordingly.
  • the impact cooling device is preferably formed by a multiplicity of inlet channels for coolants which are introduced into the support structure. Through a corresponding plurality of inlet channels, which are in an interior of a Impact cooling device is already realized in a simple manner.
  • the support structure also has a coolant distribution function due to the large number of inlet channels for the coolant which are introduced into the support structure.
  • the inlet channels can be designed as bores in the wall of the support structure.
  • the heat shield element consists of a metal or a metal alloy. Highly heat-resistant metallic alloys based on iron, chromium, nickel or cobalt are particularly suitable for this purpose. Since metals or metal alloys are well suited for a casting process, the heat shield element is advantageously designed as a casting.
  • the heat shield arrangement is suitable for use in a combustion chamber lining of a combustion chamber.
  • a combustion chamber provided with a heat shield arrangement is preferably suitable as a combustion chamber of a gas turbine, in particular a stationary gas turbine.
  • FIG. 1 shows a half section through a gas turbine
  • FIG. 2 shows a sectional view of a heat shield arrangement according to the invention
  • 3 shows a detail view of detail III of the heat shield arrangement shown in FIG. 2
  • FIG. 4 shows an alternative embodiment of the heat shield arrangement shown in Figure 3.
  • the gas turbine 1 has a compressor 2 for the combustion air, a combustion chamber 4 and a turbine 6 for driving a compressor 2 and a generator, not shown, or a work machine.
  • the turbine 6 and the compressor 2 are arranged on a common turbine shaft 8, also referred to as a turbine rotor, to which the generator or the working machine is also connected, and which is rotatably mounted about its central axis 9.
  • the combustion chamber 4, which is designed as an annular combustion chamber, is equipped with a number of burners 10 for the combustion of a liquid or gaseous fuel.
  • the turbine 6 has a number of rotatable rotor blades 12 connected to the turbine shaft 8.
  • the rotor blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of rows of rotor blades.
  • the turbine 6 comprises a number of stationary guide vanes 14, which are also attached to an inner casing 16 of the turbine 6 in a ring shape, with the formation of rows of guide vanes.
  • the rotor blades 12 serve to drive the turbine shaft by transmitting impulses from the hot medium, the working medium or the hot gas M flowing through the turbine 6.
  • a successive pair from a ring of guide vanes 14 or a guide vane 3 and from a ring of blades 12 or a row of blades is also referred to as a turbine stage.
  • Each guide vane 14 has a platform 18, also referred to as a blade root, which is arranged as a wall element for fixing the respective guide vane 14 to the inner housing 16 of the turbine 6.
  • the platform 18 is a thermally comparatively heavily loaded component, which forms the outer boundary of a hot gas duct for the working medium M flowing through the turbine 6.
  • Each rotor blade 12 is fastened in an analogous manner to the turbine shaft 8 via a platform 20 which is also referred to as a blade root.
  • each guide ring 21 is arranged on the inner casing 16 of the turbine 6.
  • the outer surface of each guide ring 21 is likewise exposed to the hot working medium M flowing through the turbine 6 and is spaced in the radial direction from the outer end 22 of the rotor blade 12 lying opposite it by a gap.
  • the guide rings 21 arranged between adjacent rows of guide vanes serve in particular as cover elements, which protect the inner wall 16 or other housing built-in parts against thermal overloading by the hot working medium M, the hot gas, flowing through the turbine 6.
  • the combustion chamber 4 is delimited by a combustion chamber housing 29, a combustion chamber wall 24 being formed on the combustion chamber side.
  • the combustion chamber 4 is designed as a so-called annular combustion chamber, in the plurality of which burners 10 arranged in the circumferential direction around the turbine shaft 8 open into a common combustion chamber space.
  • the combustion chamber 4 is configured in its entirety as an annular structure which is positioned around the turbine shaft 8.
  • the combustion chamber is designed for a comparatively high temperature of the working medium M of approximately 1200 ° C. to 1500 ° C.
  • the combustion chamber wall 24 is provided on its side facing the working medium M with a heat shield arrangement 26 which forms a combustion chamber lining. Due to the high temperatures inside the combustion chamber 4, a cooling system is also provided for the heat shield arrangement 26.
  • the cooling system is based on the principle of impingement cooling, in which cooling air as coolant K is blown under pressure at a sufficient number of points onto the cooling component perpendicular to its component surface under pressure.
  • the cooling system can also be based on the principle of convective cooling or, in addition to impact cooling, this cooling principle can also be used.
  • the cooling system is designed for a reliable, area-wide application of coolant K to the heat shield arrangement and, in addition, for particularly low coolant consumption.
  • FIG. 2 shows a heat shield arrangement 26 as is particularly suitable for use as a heat-resistant lining of a combustion chamber 4 of a gas turbine 1.
  • the heat shield arrangement 26 comprises heat shield elements 26A, 26B, which are arranged next to one another on a support structure 31 while leaving a gap 45.
  • the heat shield elements 26A, 26B have a hot gas wall 39 to be cooled, which has a hot side 35 facing the hot gas M and acted upon by the hot gas M during operation, and a cold side 33 opposite the hot side 35.
  • the heat shield elements 26A, 26B are cooled from their cold side 33 by a coolant K, for example cooling air, cooled, which is delivered to the interior space 37 formed between the heat shield elements 26A, 26B and the support structure 31 through suitable inlet channels 41, 41A, 41B, 41C and is directed in a direction perpendicular to the cold side 33 of a respective heat shield element 26A, 26B.
  • a coolant K for example cooling air
  • the at least partially heated air is mixed with the hot gas M.
  • a coolant outlet channel 43 is provided, which opens into the gap 45 from the interior 37.
  • the plurality of inlet channels 41, 41A, 41B, 41C which are each assigned to an interior 37 of a respective heat shield element 26A, 26B, form an impact cooling device 53, so that the hot gas wall 39 can be cooled particularly effectively by means of impact cooling.
  • the inlet channels 41, 41A, 41B, 41C for the coolant K are in this case introduced through corresponding bores in the wall 47 of the support structure.
  • the inlet channels 41, 41A, 41B, 41C open into the interior 37 in such a way that the hot gas wall 39 is acted upon vertically.
  • the coolant K flows from the interior 37 in a controlled manner through the appropriately dimensioned coolant outlet channel 43 into the gap 45, where a blocking effect against the hot gas M is achieved, which protects the critical components, such as the support structure 31 ,
  • FIG 3 shows an enlarged view of detail III of the heat shield arrangement shown in Figure 2.
  • the heat shield element 26A has a side wall 49 which is inclined in relation to the hot gas wall 39 in the direction of the support structure 31.
  • the heat shield element 26B arranged adjacent to the heat shield element 26A is configured in the same way with a side wall 49.
  • the coolant outlet channel 43 is a bore through the side wall 43 of the heat shield elements 26A which opens the side wall 43 into the gap 45 at an oblique angle which rises slightly in the direction of the hot side 35.
  • the coolant K leaves the gap 45 after a blocking action has been performed in the gap 45, forming a cooling film of coolant K along the hot side 35 of the heat shield element 26B adjacent to the heat shield element 26A.
  • This additional film cooling effect which is achieved with the targeted supply of the coolant K into the gap 45, advantageously provides multiple use of the coolant K for different cooling purposes in the heat shield arrangement 26.
  • the side walls 49 do not lie directly on the support structure 31, but are connected to the support structure 31 via a respective sealing element 51.
  • the sealing elements 51 perform both a sealing function for the coolant K and a mechanical damping function for the heat shield arrangement 26.
  • the sealing element 51 prevents coolant K from coming out of the interior 37 into the gap 45 in an uncontrolled manner and being blown out toward the hot side 35 can be. Rather, the sealing element 51 brings about an additional reduction in the need for coolant K for cooling the heat shield arrangement 26.
  • the combination of the sealing element 51 with the coolant outlet duct 43 results in a particularly favorable coolant balance.
  • a longitudinal underflow along the wall 47 of the support structure 31 facing the interior 37 is achieved by the sealing elements 51 assigned to the interior 37.
  • the tight connection between the heat shield element 26A, 26B and the support structure 31 via the sealing elements 51 is a particularly simple and effective measure to further reduce the coolant consumption.
  • telauslasskanal 43 extends through the wall 47 of the support structure 31.
  • a targeted delivery of the coolant K into the gap 45 is possible after performing the cooling tasks on a heat shield element 26A.
  • the gap 45 and the sealing elements 51 delimiting the gap 45 in the vicinity of the mouth of the coolant outlet channel 43 are thereby cooled.
  • the side walls 49 delimiting the gap 45 are additionally cooled convectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Hitzeschildanordnung (26) für eine ein Heissgas (M) führende Komponente, die eine Mehrzahl von unter Belassung eines Spalts (45) nebeneinander an einer Tragstruktur (31) angeordneten Hitzeschildelemente (26A, 26B) umfasst, wobei ein Hitzeschildelement (26A, 26B) auf der Tragstruktur (31) anbringbar ist, so dass ein Innenraum (37) gebildet ist, der bereichsweise von einer zu kühlenden Heissgaswand (39) begrenzt ist, mit einem Einlasskanal (41) zur Einströmung eines Kühlmittels (K) in den Innenraum (37). Gemäss der Erfindung ist zum kontrollierten Austritt von Kühlmittel (K) aus dem Innenraum (37) ein Kühlmittelauslasskanal (43) vorgesehen, der von dem Innenraum (37) in den Spalt (45) einmündet. Durch den gezielten Kühlmittelaustritt durch den Kühlmittelaustrittskanal (43) kann Kühlmittel (K) eingespart und effizienter eingesetzt werden sowie zusätzlich eine Reduzierung von Schadstoffemissionen erreicht werden. Die Hitzeschildanordnung (26) ist insbesondere zur Auskleidung einer Brennkammer (4) einer Gasturbine (1) geeignet.

Description

Beschreibung
Hitzeschildanordnung für eine ein Heißgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine
Die Erfindung betrifft eine Hitzeschildanordnung für eine ein Heißgas führende Komponente, die eine Mehrzahl von unter Belassung eines Spalts nebeneinander an einer Tragstruktur angeordnete Hitzeschildelemente umfasst, wobei ein Hitzeschild- element auf der Tragstruktur anbringbar ist, so dass ein Innenraum gebildet ist, der bereichsweise von einer zu kühlenden Heißgaswand begrenzt ist, mit einem Einlasskanal zur Einströmung eines Kühlmittels in dem Innenraum. Die Erfindung betrifft weiterhin eine Brennkammer mit einer inneren Brenn- kammerauskleidung, die eine derartige Hitzeschildanordnung aufweist sowie eine Gasturbine mit einer derartigen Brennkammer .
Aufgrund der in Heißgaskanälen oder anderen Heißgasräumen herrschenden hohen Temperaturen ist es erforderlich, die Innenwandung eines Heißgaskanales bestmöglichst temperatur- resistent zu gestalten. Hierzu bieten sich zum einen hoch- warmfeste Werkstoffe, wie z. B. Keramiken an. Der Nachteil keramischer Werkstoffe liegt sowohl in ihrer starken Sprö- digkeit als auch in ihrem ungünstigen Wärme- und Temperaturleitverhalten. Als Alternative zu keramischen Werkstoffen für Hitzeschilde bieten sich hochwarmfeste metallische Legierungen auf Eisen-, Chrom-, Nickel- oder Kobaltbasis an. Da die Einsatztemperatur von hochwarmfesten Metalllegierungen aber deutlich unter der maximalen Einsatztemperatur von keramischen Werkstoffen liegt, ist es erforderlich, metallische Hitzeschilder in Heißgaskanälen zu kühlen.
In der EP 0 224 817 Bl ist eine Hitzeschildanordnung, insbe- sondere für Strukturteile von Gasturbinenanlagen, beschrieben. Die Hitzeschildanordnung dient dem Schutz einer Tragstruktur gegenüber einem heißen Fluid, insbesondere zum Schutz einer Heißgaskanalwand bei Gasturbinenanlagen. Die Hitzeschildanordnung weist eine Innenauskleidung aus hitzebeständigem Material auf, welche flächendeckend zusammengesetzt ist aus an der Tragstruktur verankerten Hitzeschild- elementen. Diese Hitzeschildelemente sind unter Belassung von Spalten zur Durchströmung von Kühlfluid nebeneinander angeordnet und wärmebeweglich. Jedes dieser Hitzeschildelemente weist nach Art eines Pilzes einen Hutteil und einen Schaftteil auf. Der Hutteil ist ein ebener oder räumlicher, poly- gonaler Plattenkörper mit geraden oder gekrümmten Berandungs- linien. Der Schaftteil verbindet den Zentralbereich des Plattenkörpers mit der Tragstruktur. Der Hutteil hat vorzugsweise eine Dreiecksform, wodurch durch identische Hutteile eine Innenauskleidung nahezu beliebiger Geometrie herstellbar ist. Die Hutteile sowie gegebenenfalls sonstige Teile der Hitzeschildelemente bestehen aus einem hochwarmfesten Werkstoff, insbesondere aus einem Stahl . Die Tragstruktur weist Bohrungen auf durch welche ein Kühlfluid, insbesondere Luft, in einen Zwischenraum zwischen Hutteil und Tragstruktur einströmen kann und von dort durch die Spalte zur Durchströmung des
Kühlfluids in einen von den Hitzeschildelementen umgebenen Raumbereich, beispielsweise einer Brennkammer einer Gasturbinenanlage, einströmen kann. Diese Kühlfluidströmung vermindert das Eindringen von heißem Gas in den Zwischenraum.
In der US-5,216,886 ist eine metallische Auskleidung für eine Verbrennungskammer beschrieben. Diese Auskleidung besteht aus einer Vielzahl nebeneinander angeordneter würfelförmiger Hohlbauteile (Zellen) , die an einer gemeinsamen Metallplatte angeschweißt oder angelötet sind. Die gemeinsame Metallplatte weist jeweils jeder würfelförmigen Zelle zugeordnet genau eine Öffnung zur Einströmung von Kühlfluid auf. Die würfelförmigen Zellen sind jeweils unter Belassung eines Spaltes nebeneinander angeordnet. Sie enthalten an jeder Seitenwand in der Nähe der gemeinsamen Metallplatte eine jeweilige Öffnung zum Ausströmen von Kühlfluid. Das Kühlfluid gelangt mithin in die Spalte zwischen benachbarte würfelförmige Zellen, strömt durch diese Spalte hindurch und bildet an einer einem Heißgas aussetzbaren, parallel der metallischen Platte gerichteten Oberfläche der Zellen, einen Kühlfilm aus. Bei dem in der US-5,216,886 beschriebenen Aufbau einer Wandstruktur wird ein offenes Kühlsystem definiert, bei dem Kühlluft über eine Wandstruktur durch die Zellen hindurch in das Innere der Brennkammer hineingelangt. Die Kühlluft ist mithin für weitere Kühlzwecke verloren.
In der DE 35 42 532 AI ist eine Wand, insbesondere für Gasturbinenanlagen, beschrieben, die Kühlfluidkanale aufweist. Die Wand ist vorzugsweise bei Gasturbinenanlagen zwischen einem Heißraum und einem Kühlfluidraum angeordnet. Sie ist aus einzelnen Wandelementen zusammengefügt, wobei jedes der Wand- elemente ein aus hochwarmfesten Material gefertigter Plattenkörper ist. Jeder Plattenkörper weist über seine Grundfläche verteilte, zueinander parallele Kühlkanäle auf, die an einem Ende mit einem Kühlfluidraum und an dem anderen Ende mit dem Heißraum kommunizieren. Das in den Heißraum einströmende, durch die Kühlfluidkanale geführte Kühlfluid bildet auf der dem Heißraum zugewandten Oberfläche des Wandelements und/oder benachbarter Wandelemente einen Kühlfluidfilm.
In der GB-A- 849255 ist ein Kühlsystem zur Kühlung einer Brennkammerwand gezeigt. Die Brennkammerwand ist durch Wandelemente gebildet . Jedes Wandelement weist eine Heißgaswand mit einer heißgas-beaufschlagbaren Außenseite und mit einer Innenseite auf. Senkrecht zur Innenseite sind Düsen angeordnet. Aus diesen Düsen tritt Kühlfluid in Form eines konzen- trierten Stroms aus und trifft auf die Innenseite. Dadurch wird die Heißgaswand gekühlt. Das Kühlfluid wird in einer Sammelkammer gesammelt und aus der Sammelkammer abgeführt.
Zusammenfassend liegt all diesen Hitzeschildanordnungen ins- besondere für Gasturbinen-Brennkammern das Prinzip zugrunde, dass Verdichterluft als Kühlmedium für die Brennkammer und deren Auskleidung, sowie als Sperrluft benutzt wird. Die Kühl- und Sperrluft tritt in die Brennkammer ein, ohne an der Verbrennung teilgenommen zu haben. Diese kalte Luft vermischt sich mit dem Heißgas . Dadurch sinkt die Temperatur am Brennkammerausgang . Daher sinkt die Leistung der Gasturbine und der Wirkungsgrad des thermodynamisehen Prozesses . Die Kompensation kann teilweise dadurch erfolgen, dass eine höhere Flammentemperatur eingestellt wird. Hierdurch jedoch ergeben sich sodann Werkstoffprobleme und es müssen höhere Emissions- werte in Kauf genommen werden. Ebenfalls nachteilig an den angegebenen Anordnungen ist es, dass sich durch den Eintritt eines nicht unerheblichen Kühlfluidmassenstroms in die Brennkammer bei der dem Brenner zugeführten Luft Druckverluste ergeben .
Um jegliches Ausblasen von Kühlmittel in die Brennkammer zu verhindern, sind aufwendige Systeme mit Kühlfluidrückführung bekannt, bei denen das Kühlfluid in einem geschlossenen Kreislauf mit einem Zufuhrsystem und einem Rückfuhrsystem geführt wird. Solche geschlossenen Kühlungskonzepte mit Kühl- fluidrückführung sind beispielsweise in der WO 98/13645 AI, der EP 0 928 396 Bl sowie der EP 1 005 620 Bl beschrieben.
Aufgabe der Erfindung ist es, eine Hitzeschildanordnung, die mit einem Kühlmittel kühlbar ist, anzugeben, so dass bei ei- ner Kühlung der Hitzeschildanordnung allenfalls ein geringer Verlust an Kühlfluid auftritt. Die Hitzeschildanordnung soll in einer Brennkammer einer Gasturbine einsetzbar sein.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Hitze- schildanordnung für eine ein Heißgas führende Komponente, die eine Mehrzahl von unter Belassung eines Spalts nebeneinander an einer Tragstruktur angeordneten Hitzeschildelemente um- fasst, wobei ein Hitzeschildelement auf der Tragstruktur anbringbar ist, so dass ein Innenraum gebildet ist, der be- reichsweise von einer zu kühlenden Heißgaswand begrenzt ist, mit einem Einlasskanal zur Einströmung eines Kühlmittels in den Innenraum, wobei zum kontrollierten Austritt von Kühlmit- tel aus dem Innenraum ein Kühlmittelauslasskanal vorgesehen ist, der von dem Innenraum in den Spalt einmündet.
Die Erfindung geht von der Überlegung aus, dass aufgrund der sehr hohen Flammentemperaturen in Heißgaskanälen oder anderen Heißgasräumen, beispielsweise in Brennkammern von stationären Gasturbinen, die Heißgas führenden Komponenten aktiv gekühlt werden müssen. Hierzu können verschiedenste Kühlungstechnologien - auch in Kombination - eingesetzt werden. Die am häu- figsten angewandten Kühlungskonzepte sind dabei die Konvek- tionskühlung, die Konvektionskühlung mit Turbulenz erhöhenden Maßnahmen sowie die Prallkühlung. Aufgrund der sehr intensiven Bemühungen insbesondere die Schadstoffemissionen von offen gekühlten Systemen, beispielsweise von offen gekühlten Brennkammern von Gasturbinen, zu reduzieren, ist die Einsparung von Kühlluft ein besonders wichtiger Faktor zur Erreichung dieser Ziele - hier eine verstärkte NOx-Reduktion. Das Ziel für offen gekühlte Kühlungskonzepte ist daher die Minimierung des erforderlichen Kühlluftmassenstroms . Bei den be- reits weiter oben diskutierten herkömmlichen, offenen Kühlungskonzepten entweicht die Kühlluft nach der erfolgten Kühlaufgabe letztendlich durch den Spalt benachbarter Hitzeschildelemente, um anschließend in den Brennraum zu gelangen. Die Ausströmung der Kühlluft schützt das System vor Eindrin- gen von Heißgas in die Spalte. Durch das unkontrollierte Ausblasen der Kühlluft wird jedoch mehr Kühlluft zum Sperren der Spalte eingesetzt, als für die Kühlaufgäbe erforderlich ist. Diese Überdosierung führt zu einem überhöhten Kühlluft- verbrauch mit nachteiligen Folgen für den gesamten Anlagen- Wirkungsgrad und die Schadstoffemissionen des das Heißgas erzeugende Verbrennungssystems .
Ausgehend von dieser Erkenntnis wird nunmehr mit der Hitzeschildanordnung der Erfindung erstmals ein kontrollierter und gezielter Austritt des Kühlmittels nach Verrichtung der Kühlaufgabe an der zu kühlenden Heißgaswand für ein offenes Kühl- system vorgeschlagen. Die Hitzeschildanordnung ist dabei be- sonders einfach realisierbar und gegenüber den geschlossenen Kühlungskonzepten mit Kühlmittelrückführung konstruktiv mit erheblich geringerem Fertigungsaufwand verbunden. Durch den kontrollierten Kühlmittelaustritt in den Spalt kann gegenüber den herkömmlichen Konzepten Kühlmittel, z. B. Kühlluft, eingespart werden sowie zugleich eine deutliche Reduzierung der Schadstoffemission bewirkt werden, insbesondere der NOx-Emis- sion. Dies wird dadurch erzielt, dass zum kontrollierten Austritt von Kühlmittel aus dem Innenraum ein Kühlmittelauslass- kanal vorgesehen ist, der von dem Innenraum in den Spalt einmündet .
Vorteilhafterweise wird hierdurch in dem Spalt durch die gezielte und dosierte Beaufschlagung des Spalts mit Kühlmittel eine besonders hohe Kühleffizienz und Sperrwirkung des Kühlmittels gegenüber einem Heißgasangriff in den Spalt auf die Tragstruktur erreicht. Der kontrollierte Austritt von Kühlmittel aus dem Innenraum kann dabei in einfacher Weise durch entsprechende Dimensionierung des Kühlmittelauslasskanals, beispielsweise hinsichtlich des Kanalquerschnitts und der Kanallänge, vorgenommen werden.
In bevorzugter Ausgestaltung weist das Hitzeschildelement eine Seitenwand auf, die gegenüber der Heißgaswand in Richtung der Tragstruktur geneigt ist. Hierdurch ist das Hitzeschildelement in seiner Grundgeometrie als ein einschaliger Hohlkörper ausgebildet, der an der Tragstruktur anbringbar ist, wobei der Innenraum gebildet ist . Der Innenraum ist dabei in genau einer Richtung von der Tragstruktur und in den anderen Raumrichtungen durch das Hitzeschildelement selbst begrenzt bzw. festgelegt.
In besonders bevorzugter Ausgestaltung durchdringt der Kühlmittelauslasskanal die Seitenwand. Der Kühlmittelauslasskanal kann dabei einfach als Bohrung durch die Seitenwand ausgeführt sein, wobei der Innenraum mit dem durch den Spalt gebildeten Spaltraum verbunden ist. Somit kann Kühlmittel auf- grund der Druckdifferenz zwischen dem Innenraum und dem durch den Spalt definierten Spaltraum in kontrollierter Weise aus dem Innenraum durch den Kühlmittelauslaufkanal austreten.
Vorzugsweise ist zur Vermeidung von residualen Kühlmittel- leckagen aus dem Innenraum ein Dichtelement zwischen der Seitenwand und der Tragstruktur angebracht . Durch die Neigung der Seitenwand in Richtung der Tragstruktur kann bei einer lösbaren Befestigung des Hitzeschildelements an der Trag- Struktur aus thermomechanischen Gründen ein Spalt vorgesehen sein, der zu unerwünschten Kühlmittelleckagen führen kann. Daher ist es besonders vorteilhaft, jegliche Spalte, die zu einem unkontrollierten Ausblasen von Kühlmittel aus dem Innenraum führen können, durch geeignete Dichtungsmaßnahmen ab- zudichten. Hierdurch wird eine dichte Verbindung zwischen dem Hitzeschildelement und der Tragstruktur bereitgestellt ist. Das Dichtelement zwischen der Seitenwand und der Tragstruktur ist dabei eine besonders einfache aber wirksame Maßnahme, um den Kühlmittelverbrauch weiter zu reduzieren. Überdies kann das Dichtelement je nach Ausgestaltung zusätzlich eine Dämpfungsfunktion übernehmen, so dass die Hitzeschildelemente der Hitzeschildanordnung mechanisch gedämpft auf der Tragstruktur angebracht sind.
Bevorzugt ist dem Innenraum eines Hitzeschildelements eine
Prallkühleinrichtung zugeordnet, so dass die Heißgaswand mittels Prallkühlung kühlbar ist. Die Prallkühlung ist dabei eine besonders wirkungsvolle Methode der Kühlung der Hitzeschildanordnung, wobei das Kühlmittel in einer Vielzahl von diskreten Kühlmittelstrahlen senkrecht zur Heißgaswand auf die Heißgaswand aufprallt und die Heißgaswand entsprechend vom Innenraum her effizient kühlt.
Vorzugsweise ist dabei die Prallkühleinrichtung durch eine Vielzahl von Einlasskanälen für Kühlmittel gebildet, die in die Tragstruktur eingebracht sind. Durch eine entsprechende Vielzahl von Einlasskanälen, die in einen Innenraum eines Hitzeschildelements münden, wird bereits auf einfacher Weise eine Prallkühleinrichtung realisiert. Die Tragstruktur hat neben der Funktion die Hitzeschildanordnung zu tragen zugleich eine Kühlmittelverteilungsfunktion durch die Vielzahl von Einlasskanälen für das Kühlmittel, die in die Tragstruktur eingebracht sind. Die Einlasskanäle können dabei als Bohrungen in der Wand der Tragstruktur ausgeführt sein.
In bevorzugter Ausgestaltung besteht das Hitzeschildelement aus einem Metall oder aus einer Metalllegierung. Hierzu bieten sich insbesondere hochwarmfeste metallische Legierungen auf Eisen-, Chrom-, Nickel-, oder Kobaltbasis an. Da sich Metalle oder Metalllegierungen gut für einen Gießprozess eignen, ist das Hitzeschildelement vorteilhafterweise als ein Gussteil ausgestaltet.
Die Hitzeschildanordnung ist in besonders bevorzugter Ausgestaltung geeignet für den Einsatz bei einer Brennkammerauskleidung einer Brennkammer. Eine derartige mit einer Hitze- schildanordnung versehene Brennkammer eignet sich bevorzugt als Brennkammer einer Gasturbine, insbesondere einer stationären Gasturbine .
Die Vorteile einer solchen Gasturbine und einer solchen Brennkammer ergeben sich entsprechend den obigen Ausführungen zur Hitzeschildanordnung.
Die Erfindung wird nachfolgend beispielhaft anhand der Zeichnungen näher erläutert .
Es zeigen hierbei schematisch und teilweise stark vereinfacht :
Figur 1 einen Halbschnitt durch eine Gasturbine,
Figur 2 eine Schnittansicht einer Hitzeschildanordnung gemäß der Erfindung, Figur 3 in einer Detailansicht die Einzelheit III der in Figur 2 gezeigten Hitzeschildanordnung, und
Figur 4 eine alternative Ausgestaltung der in Figur 3 gezeigten Hitzeschildanordnung.
Gleiche Bezugszeichen haben in den einzelnen Figuren die gleiche Bedeutung.
Die Gasturbine 1 gemäß Figur 1 weist einen Verdichter 2 für die Verbrennungsluft, eine Brennkammer 4 sowie eine Turbine 6 zum Antrieb eines Verdichters 2 und eines nicht näher dargestellten Generators oder eine Arbeitsmaschine auf. Dazu sind die Turbine 6 und der Verdichter 2 auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle 8 angeordnet, mit der auch der Generator bzw. die Arbeitsmaschine verbunden ist, und die um ihre Mittelachse 9 drehbar gelagert ist. Die in der Art einer Ringbrennkammer ausgeführte Brenn- kammer 4 ist mit einer Anzahl von Brennern 10 zur Verbrennung eines flüssigen oder gasförmigen Brennstoffs bestückt.
Die Turbine 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschau- fein 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbine 6 eine Anzahl von feststehenden Leit- schaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Innengehäuse 16 der Turbine 6 be- festigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle durch Impulsübertrag vom die Turbine 6 durchströmenden heißen Medium, dem Arbeitsmedium oder dem Heißgas M. Die Leitschaufeln 14 dienen hingehen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums M gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinander folgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufel 3 und aus einem Kranz von Laufschaufeln 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet.
Jede Leitschaufel 14 weist eine auch als Schaufelfuß bezeichnete Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 am Innengehäuse 16 der Turbine 6 als Wandelement angeordnet ist. Die Plattform 18 ist dabei ein thermisch vergleichsweise stark belastetes Bauteil, das die äuße- re Begrenzung eines Heißgaskanals für das die Turbine 6 durchströmende Arbeitsmedium M bildet. Jede Laufschaufei 12 ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform 20 an der Turbinenwelle 8 befestigt.
Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 am Innengehäuse 16 der Turbine 6 angeordnet. Die äußere Oberfläche jedes Führungsrings 21 ist dabei ebenfalls dem heißen, die Turbine 6 durch- strömenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende 22 der ihm gegenüberliegenden Lauf- schaufel 12 durch einen Spalt beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Führungsringe 21 dienen dabei insbesondere als Abdeckelemente, die die Innen- wand 16 oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M, dem Heißgas, schützt.
Die Brennkammer 4 ist von einem Brennkammergehäuse 29 be- grenzt, wobei brennkammerseitig eine Brennkammerwand 24 gebildet ist. Im Ausführungsbeispiel ist die Brennkammer 4 als eine so genannte Ringbrennkammer ausgestaltet, bei deren Vielzahl von in Umfangsrichtung um die Turbinenwelle 8 herum angeordneten Brennern 10 in einem gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 4 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 8 herum positioniert ist. Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1200 °C bis 1500 °C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebspa- rametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 24 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer Hitzeschildanordnung 26 versehen, die eine Brennkammerauskleidung bildet. Aufgrund der hohen Temperaturen im Inneren der Brennkammer 4 ist zudem für die Hitzeschildanordnung 26 ein Kühlsystem vorgesehen. Das Kühlsystem basiert dabei auf dem Prinzip der Prallkühlung, bei dem Kühlluft als Kühlmittel K unter ausreichend hohem Druck an einer Vielzahl von Stellen an das kühlende Bauteil senkrecht seiner Bauteiloberfläche unter Druck geblasen wird. Alternativ kann das Kühlsystem auch auf dem Prinzip einer konvektiven Kühlung basieren oder sich dieses Kühlungsprinzip zusätzlich neben der Prallkühlung zunutze machen.
Das Kühlsystem ist bei einem einfachen Aufbau für eine zuver- lässige, flächendeckende Beaufschlagung der Hitzeschildanordnung mit Kühlmittel K und zudem zu einem besonders geringen Kühlmittelverbrauch ausgelegt.
Zur näheren Illustration und zur Erläuterung des Kühlungs- konzepts der Erfindung zeigt Figur 2 eine Hitzeschildanordnung 26, wie sie für den Einsatz als hitzebeständige Auskleidung einer Brennkammer 4 einer Gasturbine 1 besonders geeignet ist. Die Hitzeschildanordnung 26 umfasst Hitzeschildelemente 26A, 26B, die unter Belassung eines Spalts 45 nebenein- ander an einer Tragstruktur 31 angeordnet sind. Die Hitzeschildelemente 26A, 26B weisen eine zu kühlende Heißgaswand 39 auf, die eine dem Heißgas M zugewandte und im Betrieb von dem Heißgas M beaufschlagte Heißseite 35 sowie eine der Heißseite 35 gegenüberliegende Kaltseite 33 aufweist.
Zur Kühlung werden die Hitzeschildelemente 26A, 26B von ihrer Kaltseite 33 her durch ein Kühlmittel K, beispielsweise Kühl- luft, gekühlt, die dem zwischen den Hitzeschildelementen 26A, 26B und der Tragstruktur 31 gebildeten Innenraum 37 durch geeignete Einlasskanäle 41, 41A, 41B, 41C zugestellt wird und in eine Richtung senkrecht zur Kaltseite 33 eines jeweiligen Hitzeschildelements 26A, 26B geleitet wird. Hierbei wird das Prinzip der offenen Kühlung verwendet . Nach Abschluss der Kühlaufgäbe an den Hitzeschildelementen 26A, 26B wird die zumindest teilweise erwärmte Luft dem Heißgas M zugemischt . Für einen kontrollierten Austritt und eine präzise Dosierung von Kühlmittel K aus dem Innenraum 37 ist ein Kühlmittelauslasskanal 43 vorgesehen, der von dem Innenraum 37 in den Spalt 45 einmündet. Auf diese Weise ist dem Spalt 45 ein genau vorbestimmter Massenstrom an Kühlmittel K zustellbar. Die Vielzahl von Einlasskanälen 41, 41A, 41B, 41C, die jeweils einem In- nenraum 37 eines jeweiligen Hitzeschildelements 26A, 26B zugeordnet sind, bilden eine Prallkühleinrichtung 53, so dass die Heißgaswand 39 besonders effektiv mittels Prallkühlung kühlbar ist. Die Einlasskanäle 41, 41A, 41B, 41C für das Kühlmittel K sind hierbei durch entsprechende Bohrungen in die Wand 47 der Tragstruktur eingebracht. Die Einlasskanäle 41, 41A, 41B, 41C münden dabei so in den Innenraum 37, dass eine senkrechte Beaufschlagung der Heißgaswand 39 erreicht ist. Nach der Prallkühlung der Heißgaswand 39 strömt das Kühlmittel K aus dem Innenraum 37 in kontrollierter Weise durch den entsprechend dimensionierten Kühlmittelauslasskanal 43 in den Spalt 45, wo eine Sperrwirkung gegenüber dem Heißgas M erzielt wird, die die kritische Komponenten, wie beispielsweise die Tragstruktur 31, schützt.
Figur 3 zeigt in einer vergrößerten Darstellung die Einzelheit III der in Figur 2 dargestellten Hitzeschildanordnung. Das Hitzeschildelement 26A weist eine Seitenwand 49 auf, die gegenüber der Heißgaswand 39 in Richtung der Tragstruktur 31 geneigt ist. Das zum Hitzeschildelement 26A benachbart ange- ordnete Hitzeschildelement 26B ist in gleicher Weise mit einer Seitenwand 49 ausgestaltet. Der Kühlmittelauslasskanal 43 ist als Bohrung durch die Seitenwand 43 des Hitzeschildele- ments 26A ausgeführt, die die Seitenwand 43 unter einem schrägen, leicht in Richtung der Heißseite 35 ansteigenden Winkel in den Spalt 45 einmündet. Durch die schräge Einmündung wird erreicht, dass das Kühlmittel K nach Verrichtung einer Sperrwirkung im Spalt 45 den Spalt 45 möglichst unter Ausbildung eines Kühlfilms aus Kühlmittel K entlang der Heißseite 35 des zum Hitzeschildelement 26A benachbarten Hitzeschildelement 26B verlässt. Durch diese zusätzliche Filmkühlwirkung, die mit der gezielten Zufuhr des Kühlmittels K in den Spalt 45 erreicht ist, ist vorteilhafterweise eine Mehrfachnutzung des Kühlmittels K für unterschiedliche Kühlzwecke in der Hitzeschildanordnung 26 gegeben.
Für eine wärmedehnungstolerante Befestigung der Hitzeschild- elemente 26A, 26B liegen die Seitenwände 49 nicht direkt auf der Tragstruktur 31 auf, sondern sind über ein jeweiliges Dichtelement 51 mit der Tragstruktur 31 verbunden. Die Dichtelemente 51 erfüllen dabei sowohl eine Dichtfunktion für das Kühlmittel K als auch eine mechanische Dämpfungsfunktion für die Hitzeschildanordnung 26. Durch das Dichtelement 51 wird verhindert, dass Kühlmittel K in unkontrollierter Weise aus dem Innenraum 37 in den Spalt 45 gelangen und ausgeblasen in Richtung der Heißseite 35 werden kann. Vielmehr bewirkt das Dichtelement 51 eine zusätzliche Verringerung des Bedarfs an Kühlmittel K zur Kühlung de Hitzeschildanordnung 26. Durch die Kombination des Dichtelements 51 mit dem Kuhlmittelauslasskanal 43 wird eine besonders günstige Kühlmittelbilanz erzielt . Weiterhin wird eine Längsunterströmung entlang der dem Innenraum 37 zugewandten Wand 47 der Tragstruktur 31 durch die jeweils am Innenraum 37 zugeordneten Dichtelemente 51 erreicht. Die dichte Verbindung zwischen dem Hitzeschildelement 26A, 26B und der Tragstruktur 31 über die Dichtelemente 51 ist eine besonders einfache und wirksame Maßnahme, den Kühlmittelverbrauch weiter zu reduzieren.
Es ist auch möglich, wenn auch fertigungstechnisch aufwendiger, - wie in Figur 4 dargestellt -, dass sich der Kühlmit- telauslasskanal 43 durch die Wand 47 der Tragstruktur 31 erstreckt. Auch mit dieser Ausführungsform ist eine gezielte Zustellung des Kühlmittels K in den Spalt 45 nach Verrichtung der Kühlaufgäbe an einen Hitzeschildelement 26A möglich. Der Spalt 45 und die den Spalt 45 in der Nähe der Mündung des Kühlmittelauslasskanals 43 begrenzenden Dichtelemente 51 werden hierdurch gekühlt. Insbesondere werden die den Spalt 45 begrenzenden Seitenwände 49 zusätzlich konvektiv gekühlt.

Claims

Patentansprüche
1. Hitzeschildanordnung (26) für eine ein Heißgas (M) führende Komponente, die eine Mehrzahl von unter Belassung eines Spalts (45) nebeneinander an einer Tragstruktur (31) angeordneten Hitzeschildelemente (26A, 26B) umfasst, wobei ein Hitzeschildelement (26A, 26B) auf der Tragstruktur (31) anbringbar ist, so dass ein Innenraum (37) gebildet ist, der bereichsweise von einer zu kühlenden Heißgaswand (39) be- grenzt ist, mit einem Einlaßkanal (41) zur Einströmung eines Kühlmittels (K) in den Innenraum (37) , d a du r c h g e k e nn z e i c hn e t , dass zum kontrollierten Austritt von Kühlmittel (K) aus dem Innenraum (37) ein Kühlmittelauslasskanal (43) vorgesehen ist, der von dem Innenraum (37) in den Spalt (45) einmündet.
2. Hitzeschildanordnung (26) nach Anspruch 1, d a du r c h g e k e nn z e i c hn e t , dass das Hitzeschildelement (26A, 26B) eine Seitenwand (49) aufweist, die gegenüber der Heißgaswand (39) in Richtung der Tragstruktur (31) geneigt ist.
3. Hitzeschildanordnung (26) nach Anspruch 2, d a du r c h g e k e nn z e i c hne t , dass der Kühl- mittelauslasskanal (43) die Seitenwand (49) durchdringt.
4. Hitzeschildanordnung (26) nach Anspruch 2 oder 3, da dur c h ge ke nn z e i c hne t , dass zur Vermeidung von residualen Kühlmittelleckagen aus dem Innenraum (37) ein Dichtelement (51) zwischen der Seitenwand (49) und der Tragstruktur (31) angebracht ist.
5. Hitzeschildanordnung (26) nach einem der vorhergehenden Ansprüche , d a du r c h g e k e nn z e i c hne t , dass dem Innenraum (37) eines Hitzeschildelements (26A, 26B) eine Prall- kühleinrichtung (53) zugeordnet ist, so dass die Heisgaswand (39) mittels Prallkühlung kühlbar ist.
6. Hitzeschildanordnung (26) nach Anspruch 5, da du r c h g e k e nn z e i c hn e t , dass die Prallkühleinrichtung (53) durch eine Vielzahl von Einlasskanälen (41, 41A, 41B, 41C) für Kühlmittel (K) gebildet ist, die in die Tragstruktur (31) eingebracht sind.
7. Hitzeschildanordnung (26) nach einem der vorhergehenden Ansprüche , d a dur c h g e k e nn z e i c hne t , dass das Hitzeschildelement (26A, 26B) aus einem Metall oder einer Metalllegierung besteht .
8. Brennkammer (4) mit einer Hitzeschildanordnung (26) nach einem der vorhergehenden Ansprüche .
9. Gasturbine (1) mit einer Brennkammer (4) nach Anspruch 8.
PCT/EP2004/008116 2003-08-13 2004-07-20 Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine WO2005019730A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006522925A JP4436837B2 (ja) 2003-08-13 2004-07-20 燃焼ガスを案内する構成要素
EP04763361.5A EP1654495B1 (de) 2003-08-13 2004-07-20 Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine
US10/568,115 US7849694B2 (en) 2003-08-13 2004-07-20 Heat shield arrangement for a component guiding a hot gas in particular for a combustion chamber in a gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03018415.4 2003-08-13
EP03018415A EP1507116A1 (de) 2003-08-13 2003-08-13 Hitzeschildanordnung für eine ein Heissgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine

Publications (1)

Publication Number Publication Date
WO2005019730A1 true WO2005019730A1 (de) 2005-03-03

Family

ID=33560795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/008116 WO2005019730A1 (de) 2003-08-13 2004-07-20 Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine

Country Status (5)

Country Link
US (1) US7849694B2 (de)
EP (2) EP1507116A1 (de)
JP (1) JP4436837B2 (de)
CN (1) CN1829879A (de)
WO (1) WO2005019730A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100077764A1 (en) * 2008-10-01 2010-04-01 United Technologies Corporation Structures with adaptive cooling
DE102015205975A1 (de) * 2015-04-02 2016-10-06 Siemens Aktiengesellschaft Umführungs-Hitzeschildelement

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650503A1 (de) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Verfahren zur Kühlung eines Hitzeschildelements und Hitzeschildelement
DE102005046731A1 (de) * 2005-04-19 2006-11-02 Siemens Ag Hitzeschildanordnung
EP2049840B1 (de) 2006-08-07 2018-04-11 Ansaldo Energia IP UK Limited Brennkammer einer verbrennungsanlage
WO2008017551A2 (de) * 2006-08-07 2008-02-14 Alstom Technology Ltd Brennkammer einer verbrennungsanlage
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
DE102008028025B4 (de) * 2008-06-12 2011-05-05 Siemens Aktiengesellschaft Hitzeschildanordnung
US9534783B2 (en) * 2011-07-21 2017-01-03 United Technologies Corporation Insert adjacent to a heat shield element for a gas turbine engine combustor
EP2549063A1 (de) 2011-07-21 2013-01-23 Siemens Aktiengesellschaft Hitzeschildelement für eine Gasturbine
DE102012204103A1 (de) * 2012-03-15 2013-09-19 Siemens Aktiengesellschaft Hitzeschildelement für einen Verdichterluftbypass um die Brennkammer
EP2728255A1 (de) * 2012-10-31 2014-05-07 Alstom Technology Ltd Heißgas-Segmentanordnung
US9714611B2 (en) 2013-02-15 2017-07-25 Siemens Energy, Inc. Heat shield manifold system for a midframe case of a gas turbine engine
WO2014169127A1 (en) 2013-04-12 2014-10-16 United Technologies Corporation Combustor panel t-junction cooling
US10816201B2 (en) * 2013-09-13 2020-10-27 Raytheon Technologies Corporation Sealed combustor liner panel for a gas turbine engine
EP3047127B1 (de) 2013-09-16 2021-06-23 Raytheon Technologies Corporation Angewinkelte kühlungslöcher durch eine transversale struktur einer brennkammerwand einer gasturbinenbrennkammer
WO2015039074A1 (en) 2013-09-16 2015-03-19 United Technologies Corporation Controlled variation of pressure drop through effusion cooling in a double walled combustor of a gas turbine engine
EP3060847B1 (de) 2013-10-24 2019-09-18 United Technologies Corporation Durchgangsgeometrie für eine gasturbinenbrennkammer
EP3071816B1 (de) * 2013-11-21 2019-09-18 United Technologies Corporation Kühlung einer mehrwandigen struktur eines turbinenmotors
EP3074618B1 (de) * 2013-11-25 2021-12-29 Raytheon Technologies Corporation Anordnung für ein turbinentriebwerk
EP3099976B1 (de) * 2014-01-30 2019-03-13 United Technologies Corporation Kühlfluss für führungspaneel in einer gasturbinenbrennkammer
EP2927592A1 (de) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Hitzeschildelement, Hitzeschild und Turbinenmaschine
US10041675B2 (en) 2014-06-04 2018-08-07 Pratt & Whitney Canada Corp. Multiple ventilated rails for sealing of combustor heat shields
JP6282184B2 (ja) 2014-06-19 2018-02-21 三菱日立パワーシステムズ株式会社 伝熱装置及びそれを備えたガスタービン燃焼器
US10012385B2 (en) * 2014-08-08 2018-07-03 Pratt & Whitney Canada Corp. Combustor heat shield sealing
US9534785B2 (en) 2014-08-26 2017-01-03 Pratt & Whitney Canada Corp. Heat shield labyrinth seal
DE102014221225A1 (de) * 2014-10-20 2016-04-21 Siemens Aktiengesellschaft Hitzeschildelement und Verfahren zu seiner Herstellung
US9896970B2 (en) 2014-11-14 2018-02-20 General Electric Company Method and system for sealing an annulus
DE102015202570A1 (de) 2015-02-12 2016-08-18 Rolls-Royce Deutschland Ltd & Co Kg Abdichtung eines Randspalts zwischen Effusionsschindeln einer Gasturbinenbrennkammer
GB201603166D0 (en) * 2016-02-24 2016-04-06 Rolls Royce Plc A combustion chamber
US10619854B2 (en) 2016-11-30 2020-04-14 United Technologies Corporation Systems and methods for combustor panel
US10739001B2 (en) 2017-02-14 2020-08-11 Raytheon Technologies Corporation Combustor liner panel shell interface for a gas turbine engine combustor
US10677462B2 (en) 2017-02-23 2020-06-09 Raytheon Technologies Corporation Combustor liner panel end rail angled cooling interface passage for a gas turbine engine combustor
US10718521B2 (en) 2017-02-23 2020-07-21 Raytheon Technologies Corporation Combustor liner panel end rail cooling interface passage for a gas turbine engine combustor
US10823411B2 (en) 2017-02-23 2020-11-03 Raytheon Technologies Corporation Combustor liner panel end rail cooling enhancement features for a gas turbine engine combustor
US10830434B2 (en) 2017-02-23 2020-11-10 Raytheon Technologies Corporation Combustor liner panel end rail with curved interface passage for a gas turbine engine combustor
US10941937B2 (en) 2017-03-20 2021-03-09 Raytheon Technologies Corporation Combustor liner with gasket for gas turbine engine
KR101872856B1 (ko) * 2017-04-27 2018-07-02 연세대학교 산학협력단 다층 복합 충돌 및 유출 냉각이 가능한 중공 핀과 충돌 흡입 구조의 가스터빈 연소기 라이너
US10663168B2 (en) 2017-08-02 2020-05-26 Raytheon Technologies Corporation End rail mate-face low pressure vortex minimization
US11009230B2 (en) 2018-02-06 2021-05-18 Raytheon Technologies Corporation Undercut combustor panel rail
US11248791B2 (en) 2018-02-06 2022-02-15 Raytheon Technologies Corporation Pull-plane effusion combustor panel
US10830435B2 (en) 2018-02-06 2020-11-10 Raytheon Technologies Corporation Diffusing hole for rail effusion
US11022307B2 (en) * 2018-02-22 2021-06-01 Raytheon Technology Corporation Gas turbine combustor heat shield panel having multi-direction hole for rail effusion cooling
DE102018212394B4 (de) 2018-07-25 2024-03-28 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerbaugruppe mit Strömungsleiteinrichtung aufweisendem Wandelement
US11073285B2 (en) * 2019-06-21 2021-07-27 Raytheon Technologies Corporation Combustor panel configuration with skewed side walls
CN112923398B (zh) * 2021-03-04 2022-07-22 西北工业大学 一种加力燃烧室防振隔热屏
CN115930259A (zh) * 2023-01-31 2023-04-07 上海电气燃气轮机有限公司 一种燃气轮机燃烧室的隔热瓦及热屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224817B1 (de) * 1985-12-02 1989-07-12 Siemens Aktiengesellschaft Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen
US5216886A (en) * 1991-08-14 1993-06-08 The United States Of America As Represented By The Secretary Of The Air Force Segmented cell wall liner for a combustion chamber
GB2298266A (en) * 1995-02-23 1996-08-28 Rolls Royce Plc A cooling arrangement for heat resistant tiles in a gas turbine engine combustor
EP1005620B1 (de) * 1997-08-18 2002-07-03 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung
US6470685B2 (en) * 2000-04-14 2002-10-29 Rolls-Royce Plc Combustion apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
US4838030A (en) * 1987-08-06 1989-06-13 Avco Corporation Combustion chamber liner having failure activated cooling and dectection system
EP0539359B1 (de) * 1990-07-17 1994-04-20 Siemens Aktiengesellschaft Rohrstück, insbesondere Flammrohr, mit gekühltem Stützrahmen für eine hitzefeste Auskleidung
US5431020A (en) * 1990-11-29 1995-07-11 Siemens Aktiengesellschaft Ceramic heat shield on a load-bearing structure
US5435139A (en) * 1991-03-22 1995-07-25 Rolls-Royce Plc Removable combustor liner for gas turbine engine combustor
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
FR2752916B1 (fr) 1996-09-05 1998-10-02 Snecma Chemise de protection thermique pour chambre de combustion de turboreacteur
WO1998013645A1 (de) 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
US6397765B1 (en) * 1998-03-19 2002-06-04 Siemens Aktiengesellschaft Wall segment for a combustion chamber and a combustion chamber
DE19963371A1 (de) * 1999-12-28 2001-07-12 Alstom Power Schweiz Ag Baden Gekühltes Hitzeschild
US6606861B2 (en) * 2001-02-26 2003-08-19 United Technologies Corporation Low emissions combustor for a gas turbine engine
EP1284390A1 (de) * 2001-06-27 2003-02-19 Siemens Aktiengesellschaft Hitzeschildanordnung für eine Heissgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
DE10214570A1 (de) * 2002-04-02 2004-01-15 Rolls-Royce Deutschland Ltd & Co Kg Mischluftloch in Gasturbinenbrennkammer mit Brennkammerschindeln
EP1443275B1 (de) * 2003-01-29 2008-08-13 Siemens Aktiengesellschaft Brennkammer
US7219498B2 (en) * 2004-09-10 2007-05-22 Honeywell International, Inc. Waffled impingement effusion method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224817B1 (de) * 1985-12-02 1989-07-12 Siemens Aktiengesellschaft Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen
US5216886A (en) * 1991-08-14 1993-06-08 The United States Of America As Represented By The Secretary Of The Air Force Segmented cell wall liner for a combustion chamber
GB2298266A (en) * 1995-02-23 1996-08-28 Rolls Royce Plc A cooling arrangement for heat resistant tiles in a gas turbine engine combustor
EP1005620B1 (de) * 1997-08-18 2002-07-03 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung
US6470685B2 (en) * 2000-04-14 2002-10-29 Rolls-Royce Plc Combustion apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100077764A1 (en) * 2008-10-01 2010-04-01 United Technologies Corporation Structures with adaptive cooling
US9587832B2 (en) * 2008-10-01 2017-03-07 United Technologies Corporation Structures with adaptive cooling
DE102015205975A1 (de) * 2015-04-02 2016-10-06 Siemens Aktiengesellschaft Umführungs-Hitzeschildelement

Also Published As

Publication number Publication date
EP1654495A1 (de) 2006-05-10
EP1507116A1 (de) 2005-02-16
JP2007501927A (ja) 2007-02-01
US7849694B2 (en) 2010-12-14
JP4436837B2 (ja) 2010-03-24
CN1829879A (zh) 2006-09-06
EP1654495B1 (de) 2017-04-12
US20090077974A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
EP1654495B1 (de) Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine
EP1005620B1 (de) Hitzeschildkomponente mit kühlfluidrückführung
EP0928396B1 (de) Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
DE102005025823B4 (de) Verfahren und Vorrichtung zum Kühlen einer Brennkammerauskleidung und eines Übergangsteils einer Gasturbine
DE60224339T2 (de) Kühleinsatz mit tangentialer Ausströmung
EP0244693B1 (de) Heissgasüberhitzungsschutzeinrichtung für Gasturbinentriebwerke
DE60221820T2 (de) Prallanordnung für eine konvektive kühlung mit aussenluftzufuhr
DE60202212T2 (de) Kühlbares segment für turbomaschinen und turbinen mit brennkammer
DE60027967T2 (de) Turbinenschaufel mit thermisch isolierter Spitze
EP1636526A1 (de) Brennkammer
EP2084368B1 (de) Turbinenschaufel
DE102008002890A1 (de) Wechselseitig gekühltes Turbinenleitrad
DE102005044183A1 (de) Vorrichtung und Verfahren zur Kühlung von Turbinenschaufelplattformen
WO2006064038A1 (de) Hitzeschildelement
EP3132202B1 (de) Umführungs-hitzeschildelement
WO2014177371A1 (de) Brennerlanze mit hitzeschild für einen brenner einer gasturbine
WO2013135859A2 (de) Ringbrennkammer-bypass
EP1409926A1 (de) Prallkühlvorrichtung
EP1510653B1 (de) Gekühlte Turbinenschaufel
EP1165942B1 (de) Strömungsmaschine mit einer kühlbaren anordnung von wandelementen und verfahren zur kühlung einer anordnung von wandelementen
EP2347100B1 (de) Gasturbine mit kühleinsatz
WO2004109187A1 (de) Hitzeschildelement
EP2270397A1 (de) Gasturbinenbrennkammer und Gasturbine
DE102006010863A1 (de) Turbomaschine, insbesondere Verdichter
EP2184449A1 (de) Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021635.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004763361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004763361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006522925

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004763361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10568115

Country of ref document: US