WO2008017551A2 - Brennkammer einer verbrennungsanlage - Google Patents

Brennkammer einer verbrennungsanlage Download PDF

Info

Publication number
WO2008017551A2
WO2008017551A2 PCT/EP2007/056887 EP2007056887W WO2008017551A2 WO 2008017551 A2 WO2008017551 A2 WO 2008017551A2 EP 2007056887 W EP2007056887 W EP 2007056887W WO 2008017551 A2 WO2008017551 A2 WO 2008017551A2
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
gap
liner
region
cooling
Prior art date
Application number
PCT/EP2007/056887
Other languages
English (en)
French (fr)
Other versions
WO2008017551A3 (de
Inventor
Stefan Tschirren
Daniel Burri
Andreas Abdon
Christian Steinbach
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to EP07787170.5A priority Critical patent/EP2049841B1/de
Publication of WO2008017551A2 publication Critical patent/WO2008017551A2/de
Publication of WO2008017551A3 publication Critical patent/WO2008017551A3/de
Priority to US12/367,908 priority patent/US8006498B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures

Definitions

  • the invention relates to a combustion chamber of a combustion plant, in particular a gas turbine, with a heat shield having at least two segments.
  • combustion chambers of a combustion system such as a gas turbine, equipped with a so-called heat shield, which protects an underlying support structure from direct contact with a hot gas stream.
  • a heat shield which protects an underlying support structure from direct contact with a hot gas stream.
  • the longevity of the incinerator is crucial, so that the proper functioning of the heat shield must be guaranteed.
  • modern heat shields usually consist of several segments, With several liner elements, gaps form between two adjacent liner elements into which a stream of hot gas can enter.
  • a support element is often arranged which on the one hand carries at least one liner element and on the other hand is not protected in the worst case by the liner element from direct access contact with the hot gas stream and this is thus exposed unprotected.
  • Such gaps thus constitute potential weak points.
  • the gaps between the liner elements are to be protected from too high a temperature load.
  • the invention deals with the problem of providing for a combustion chamber of the type mentioned in an improved embodiment, which is characterized in particular by a locally adapted cooling of a heat shield.
  • the invention is based on the general idea of locally cooling a gap which is arranged between two liner elements of a heat shield and open towards a combustion chamber and thereby effectively protecting a support element arranged in the region of a split bottom from direct hot gas exposure.
  • the heat protection shield provided for temperature protection has at least two segments, each of which comprises a, a combustion chamber facing liner element and a holding device which defines the liner element via a support member to a support structure.
  • each liner element has an edge region which simultaneously forms a wall of a gap located between two liner elements and open towards the combustion chamber. In the area of a floor while a support member is arranged, which closes the gap on its side facing away from the combustion chamber.
  • At least one through opening is provided in at least one edge region of a liner element and / or in the bottom, ie, in the support element, through which cooling gas flows into the gap, thereby cooling the film from the two edge regions adjoining liner elements formed gap walls.
  • an effective cooling of the gap can be achieved without substantially increasing the oxygen content in the combustion chamber and thereby the NO x emissions of the incinerator.
  • a passage opening are provided in only one of the two edge regions of the liner elements, in both edge regions, only in the bottom or at least one edge region and the bottom, so adapted depending on locally required cooling demand cooling by different arrangement of the through holes can be.
  • the edge region of the liner element expediently engages behind a flange region formed by the holding device. This allows a reliable Mounting the liner element on the holding device on the support element or on the support structure, wherein in comparison to a direct screwing temperature expansions are easily absorbed. Such a holder of the liner elements thus reduces the risk of excessive voltages due to thermal expansion and thereby contributes to the longevity of the incinerator.
  • At least the edge regions of the liner elements and / or the support element have a temperature protection layer in the region of the split bottom.
  • a temperature protection layer improves the resistance of the liner elements or of the support element to a temperature load resulting from the hot gas flow and thereby increases the service life of the liner elements.
  • the resistance of the liner elements or of the support element to a temperature load which is improved by the temperature protection layer, also reduces maintenance requirements since the temperature protection layers prolong the service life of the liner elements or the support elements. Prolonged life extend the maintenance intervals, which can significantly reduce the downtime of the incinerator and thus the incinerator itself can be operated more cost effective.
  • Fig. 1 is a sectional view through an inventive
  • Fig. 2 shows a possible arrangement of through holes in the gap.
  • FIG. 1 is a sectional view through a combustion chamber wall of an incinerator, in particular a gas turbine, with a heat shield 1, which has at least two juxtaposed segments 2, 2 '.
  • the two segments 2, 2 'each have a combustion element 3 facing a liner element 4 or 4' and a holding device 5, 5 '.
  • the liner element 4 is, like the liner element 4 ', formed from a material insensitive to heat, so that it readily resists direct contact with hot gases present in the combustion chamber 3.
  • the two liner elements 4, 4 ' are fixed via at least one support element 6 to a support structure 7, wherein the support device 5 defines both the liner element 4 and the at least one support element 6 on the support structure 7.
  • a gap 10 for receiving thermal expansions of the two liner elements 4, 4' is provided according to FIG. 1, in which hot gas can penetrate during operation of the combustion chamber and leads there to a high temperature load .
  • the gap 10 is closed by a gap bottom, which is formed, for example, by one or more support elements 6, 6 '.
  • hot gas flowing into the gap 10 acts on a gap bottom almost directly on the support element 6 or 6' and adversely affect this with respect to its function, provided that the gap bottom is not opposed to it Flange portions 11, 11 'of the two liner elements 4, 4' is protected from direct contact with the hot gas stream.
  • At least one through-opening 12 is provided in the edge region 8 of at least one liner element 4 or 4 'and / or in the bottom, ie in the support element 6, through which cooling gas can flow into the gap 10.
  • the reaching into the gap cooling gas is previously used to cool the two liner elements 4, 4 'or flows directly from a cooling gas duct 13 through the support member 6 and between two adjacent support members 6, 6' into the gap 10.
  • Both liner elements 4, 4 ' have these on their side facing away from the combustion chamber 3 side cooling fins 14, 14' on.
  • the passage opening 12 between the cooling gas channel 13 and the gap bottom of the gap 10 can either be formed as a through hole or through hole 12 by a one-piece support member 6 or as a gap channel between two adjacent support members 6, 6 ', whereby a uniform cooling along the gap 10 Gap 10 is reached.
  • at least the edge regions 8, 8 'of the liner elements 4, 4' and / or the support element 6 or 6 ' have a temperature protection layer in the region of the split bottom on. This lowers the sensitivity to temperature stress and increases the resistance of the components coated with the temperature layer.
  • passage openings 12 are provided in both edge regions 8, 8 'as well as in the region of the gap bottom of gap 10, through which cooling gas can penetrate into gap 10.
  • passage openings 12 are provided in both edge regions 8, 8 'as well as in the region of the gap bottom of gap 10, through which cooling gas can penetrate into gap 10.
  • the edge region 8 or 8 'of the liner element 4 or 4' and / or the support element 6 can also be made to have at least one row of passage openings 12 running essentially parallel to the gap 10 in the region of the split bottom (cf. Fig. 2).
  • a reduced cooling requirement only one row with several, but widely spaced, and formed with a small diameter through holes 12 are provided, while provided with high cooling requirements, multiple rows of closely spaced and each having a large diameter through holes 12 are.
  • the solution according to the invention with an arrangement of passage openings 12 in the gap 10 which is adapted to a respective required cooling requirement makes it possible to achieve cooling adapted to the respective cooling requirement, in particular film cooling, which on one hand achieves the gap 10 with the adjacent liner elements 4, 4 'and the support member 6 sufficiently cool and on the other hand only just enough refrigerant gas in the gap 10 and in the combustion chamber 3 enters, as is essential for cooling. Too high a cooling gas flow, which is associated with a concomitant reduced efficiency of the incinerator, can be prevented as well as excessive NO x emissions of the incinerator.

Abstract

Die Erfindung betrifft eine Brennkammer einer Verbrennungsanlage, insbesondere eine Gasturbine, mit einem zumindest zwei Segmente (2. 2' aufweisenden Hitzeschutzschild (1). Jedes der Segmente (2, 2' weist ein einem Brennraum (3) zugewandtes Linerelement (4, 4´) und eine Halteeinrichtung (5, 5´) auf, wobei das Linerelement (4, 4') über ein Tragelement (6, 6') an einer Tragstruktur (7) befestigt ist. Die Befestigung erfolgt dabei über ein am Linerelement (4) ausgebildeten Randbereich (8), der einen durch die Halteeinrichtung (5) gebildeten Flanschbereich (9) hintergreift. Zur Kühlung der dem Spalt (10) zugewandten Randbereiche (8, 8') der Linerelemente (4, 4') ist im Randbereich (8, 8') zumindest eines Linerelementes (4, 4') und/oder im Boden des Spaltes (10) zumindest eine Durchgangsöffnung (12) vorgesehen, durch welche Kühlgas in den Spalt (10) strömt.

Description

Brennkammer einer Verbrennungsanlage
Technisches Gebiet
Die Erfindung betrifft eine Brennkammer einer Verbrennungsanlage, insbesondere einer Gasturbine, mit einem zumindest zwei Segmente aufweisenden Hitzeschutzschild.
Stand der Technik
Üblicherweise sind Brennkammern einer Verbrennungsanlage, beispielsweise einer Gasturbine, mit einem sogenannten Hitzeschutzschild ausgestattet, welcher eine darunter liegende Tragstruktur vor einem direkten Kontakt mit einem Heißgasstrom schützt. Je nach Lage in dem Brennraum beziehungsweise bezüglich des Heißgasstromes sind dabei der Hitzeschutzschild beziehungsweise einzelne Segmente davon einer unterschiedlichen Temperaturbelastung ausgesetzt.
Für die Langlebigkeit der Verbrennungsanlage ist die Langlebigkeit des in der Brennkammer angeordneten Hitzeschutzschildes ausschlaggebend, so dass die Funktionstüchtigkeit des Hitzeschutzschildes unbedingt gewährleistet werden muss. Da moderne Hitzeschutzschilde üblicherweise aus mehreren Segmenten, mit mehreren Linerelementen bestehen, bilden sich zwischen zwei benachbarten Linerelementen Spalte, in welche ein Heißgasstrom eindringen kann. An einem Boden des Spaltes ist oftmals ein Tragelement angeordnet, welches einerseits zumindest ein Linerelement trägt und andererseits im ungünstigen Fall nicht durch das Linerelement vor einem direktem Zutritt Kontakt mit dem Heißgasstrom geschützt ist und diesem somit ungeschützt ausgeliefert ist. Derartige Spalte bilden demnach potentielle Schwachpunkte. Um die Langlebigkeit der Verbrennungsanlage gewährleisten zu können, sind deshalb insbesondere die Spalte zwischen den Linerelementen von einer zu großen Temperaturbelastung zu schützen.
Darstellung der Erfindung
Hier setzt die Erfindung an. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Brennkammer der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die sich insbesondere durch eine lokal angepasste Kühlung eines Hitzeschutzschildes auszeichnet.
Dieses Problem wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
Die Erfindung beruht auf dem allgemeinen Gedanken, einen zwischen zwei Linerelementen eines Hitzeschutzschildes angeordneten und zu einem Brennraum hin offenen Spalt lokal zu kühlen und dadurch ein im Bereich eines Spaltbodens angeordnetes Tragelement vor einer direkten Heißgaseinwirkung effektiv zu schützen. Das zum Temperaturschutz vorgesehene Hitzeschutzschild weist zumindest zwei Segmente auf, wovon jedes ein, einem Brennraum zugewandtes Linerelement und eine Halteeinrichtung umfasst, die das Linerelement über ein Tragelement an einer Tragstruktur festlegt. Dabei weist jedes Linerelement einen Randbereich auf, der gleichzeitig eine Wandung eines zwischen zwei Linerelementen gelegenen und zum Brennraum hin offenen Spaltes bildet. Im Bereich eines Bodens ist dabei ein Tragelement angeordnet, welches den Spalt auf seiner dem Brennraum abgewandten Seite verschließt. Zur Kühlung der dem Spalt zugewandten Randbereiche der Linerelemente ist dabei in zumindest einem Randbereich eines Linerelements und/oder im Boden, d.h. beispielsweise im Tragelement, zumindest eine Durchgangsöffnung vorgesehen, durch welche Kühlgas in den Spalt strömt und dadurch eine Filmkühlung der von den beiden Randbereichen der angrenzenden Linerelemente gebildeten Spaltwände bewirkt. Hierdurch kann eine effektive Kühlung des Spaltes erreicht werden, ohne den Sauerstoffgehalt in dem Brennraum und dadurch die NOx-Emissionen der Verbrennungsanlage wesentlich zu erhöhen. Denkbar ist hierbei auch, dass eine derartige Durchgangsöffnung in lediglich einer der beiden Randbereiche der Linerelemente, in beiden Randbereichen, lediglich im Boden oder zumindest einem Randbereich und dem Boden vorgesehen sind, so dass je nach lokal erforderlichem Kühlbedarf die Kühlung durch unterschiedliche Anordnung der Durchgangsöffnungen angepasst werden kann. Durch den lokal angepassten Kühlstrom kann eine besonders effektive Kühlung des Spalts erreicht werden, wobei in Spalte mit erhöhtem Kühlbedarf mehr Kühlgas eingeleitet wird als in Spalte mit geringerem Kühlbedarf. Somit wird darüber hinaus vermieden, dass durch eine zu starke Kühlung der Linerelemente bzw. der Spalte der Wirkungsgrad der Verbrennungsanlage verschlechtert wird.
Zweckmäßig hintergreift der Randbereich des Linerelements einen durch die Halteeinrichtung gebildeten Flanschbereich. Dies ermöglicht eine zuverlässige Halterung des Linerelements über die Halteeinrichtung am Tragelement bzw. an der Tragstruktur, wobei im Vergleich zu einem direkten Verschrauben Temperaturdehnungen problemlos aufnehmbar sind. Eine derartige Halterung der Linerelemente vermindert so die Gefahr von zu hohen Spannungen aufgrund von Temperaturdehnungen und trägt dadurch zur Langlebigkeit der Verbrennungsanlage bei.
Bei einer vorteilhaften Ausbildungsform der erfindungsgemäßen Lösung weisen zumindest die Randbereiche der Linerelemente und/oder das Tragelement im Bereich des Spaltbodens eine Temperaturschutzschicht auf. Eine derartige Temperaturschutzschicht verbessert die Widerstandsfähigkeit der Linerelemente bzw. des Tragelementes gegenüber einer aus dem Heißgasstrom resultierenden Temperaturbelastung und erhöht dadurch die Lebensdauer der Linerelemente. Die durch die Temperaturschutzschicht verbesserte Widerstandsfähigkeit der Linerelemente bzw. des Tragelements gegenüber einer Temperaturbelastung, verringert auch einen Wartungsbedarf, da die Temperaturschutzschichten die Standzeiten der Linerelemente bzw. der Tragelemente verlängern. Verlängerte Standzeiten verlängern die Wartungsintervalle, wodurch die Stillstandzeiten der Verbrennungsanlage deutliche reduziert werden können und dadurch die Verbrennungsanlage an sich kostengünstiger betrieben werden kann.
Weitere wichtige Merkmale und Vorteile der erfindungsgemäßen Brennkammer ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Kurze Beschreibung der Zeichnungen Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
Es zeigen dabei, jeweils schematisch,
Fig. 1 eine Schnittdarstellung durch ein erfindungsgemäßes
Hitzeschutzschild einer Brennkammer,
Fig. 2 eine mögliche Anordnung von Durchgangsöffnungen im Spalt.
Wege zur Ausführung der Erfindung
Entsprechend Fig. 1 ist eine Schnittdarstellung durch eine Brennkammerwand einer Verbrennungsanlage gezeigt, insbesondere einer Gasturbine, mit einem Hitzeschutzschild 1 , welches zumindest zwei nebeneinander angeordnete Segmente 2, 2' aufweist. Die beiden Segmente 2, 2' weisen jeweils ein einem Brennraum 3 zugewandtes Linerelement 4 bzw. 4' und eine Halteeinrichtung 5, 5' auf. Das Linerelement 4 ist dabei ebenso wie das Linerelement 4' aus einem gegen Hitze unempfindlichen Material ausgebildet, so dass es einem direkten Kontakt mit im Brennraum 3 vorhandenen Heißgasen problemlos wiedersteht. Fixiert werden die beiden Linerelemente 4, 4' über zumindest ein Tragelement 6 an einer Tragstruktur 7, wobei die Halteeinrichtung 5 sowohl das Linerelement 4 als auch das zumindest eine Tragelement 6 an der Tragstruktur 7 festlegt. Dabei erfolgt eine Befestigung des Linerelements 4 an der Halteeinrichtung 5 durch einen am Linerelement 4 ausgebildeten Randbereich 8, welcher einen durch die Halteeinrichtung 5 gebildeten Flanschbereich 9 hinterschnittartig hintergreift. Zwischen zwei benachbarten Linerelementen 4, 4' ist gemäß Fig. 1 ein zum Brennraum 3 hin offener Spalt 10 zur Aufnahme von Wärmedehnungen der beiden Linerelemente 4, 4' vorgesehen, in welchem bei Betrieb der Brennkammer Heißgas eindringen kann und dort zu einer hohen Temperaturbelastung führt. Auf seiner dem Brennraum 3 abgewandten Seite ist der Spalt 10 durch einen Spaltboden, welcher beispielsweise durch ein oder mehrere Tragelemente 6, 6' gebildet ist, verschlossen. Dabei kann, je nach Ausführung des Linerelementes 4, 4' im Spaltbereich, in den Spalt 10 eingeströmtes Heißgas an einem Spaltgrund nahezu unmittelbar auf das Tragelement 6 bzw. 6' einwirken und dieses hinsichtlich seiner Funktion beeinträchtigen, sofern der Spaltgrund nicht durch sich gegenüber liegende Flanschbereiche 11 , 11 ' der beiden Linerelemente 4, 4' vor einem unmittelbaren Kontakt mit dem Heißgasstrom geschützt ist.
Zur Kühlung der dem Spalt 10 zugewandten Randbereiche 8, 8' der beiden Linerelemente 4, 4' ist im Randbereich 8 zumindest eines Linerelementes 4 oder 4' und/oder im Boden, d.h. im Tragelement 6, zumindest eine Durchgangsöffnung 12 vorgesehen, durch welche Kühlgas in den Spalt 10 strömen kann. Das in den Spalt gelangende Kühlgas wird dabei zuvor zur Kühlung der beiden Linerelemente 4, 4' verwendet oder strömt direkt aus einem Kühlgaskanal 13 durch das Tragelement 6 bzw. zwischen zwei benachbarten Tragelementen 6, 6' hindurch in den Spalt 10. Zur verbesserten Kühlung der beiden Linerelemente 4, 4' weisen diese auf ihrer dem Brennraum 3 abgewandten Seite Kühlrippen 14, 14' auf. Die Durchgangsöffnung 12 zwischen dem Kühlgaskanal 13 und dem Spaltgrund des Spaltes 10 kann dabei entweder als Durchgangsbohrung bzw. Durchgangsöffnung 12 durch ein einteiliges Tragelement 6 ausgebildet sein oder als Spaltkanal zwischen zwei benachbarten Tragelementen 6, 6', wodurch eine entlang des Spaltes 10 gleichmäßige Kühlung des Spaltes 10 erreicht wird. Um sowohl das Tragelement 6 als auch die Tragstruktur 7 besser vor einer Hitzeeinwirkung des Heißgasstromes schützen zu können, weisen zumindest die Randbereiche 8, 8' der Linerelemente 4, 4' und/oder das Tragelement 6 bzw. 6' im Bereich des Spaltbodens eine Temperaturschutzschicht auf. Diese setzt die Empfindlichkeit gegenüber einer Temperaturbelastung herab und erhöht die Widerstandsfähigkeit der mit der Temperaturschicht beschichteten Bauteile.
Wie der Fig. 1 weiter zu entnehmen ist, sind sowohl in beiden Randbereichen 8, 8' als auch im Bereich des Spaltbodens des Spaltes 10 Durchgangsöffnungen 12 vorgesehen, durch welche Kühlgas in den Spalt 10 eindringen kann. Alternativ hierzu ist denkbar, dass entweder lediglich ein Randbereich 8 oder 8' oder nur im Bereich des Spaltbodens oder eine beliebige Kombination von Durchgangsöffnungen 12 vorgesehen sind, so dass beispielsweise je nach erforderlichem Kühlbedarf nur die Randbereiche 8 und/oder 8' oder nur der Spaltboden oder ausschließlich ein Randbereich 8, 8', etc. Durchgangsöffnungen 12 aufweisen. Bei einem erhöhten Kühlbedarf kann auch vorgesehen sein, dass der Randbereich 8 bzw. 8' des Linerelementes 4 bzw. 4' und/oder das Tragelement 6 im Bereich des Spaltbodens zumindest eine im wesentlichen parallel zum Spalt 10 verlaufende Reihe von Durchgangsöffnungen 12 aufweisen (vgl. Fig. 2). Dabei kann über einen Abstand bzw. einen Durchmesser der einzelnen Durchgangsöffnungen 12 Einfluss auf die in den Spalt einströmende Kühlgasmenge und dadurch Einfluss auf die Kühlung des Spaltes 10 selbst genommen werden. So ist denkbar, dass bei einem reduzierten Kühlbedarf lediglich eine Reihe mit mehreren, jedoch weit auseinander liegenden, und mit kleinem Durchmesser ausgebildete Durchgangsöffnungen 12 hervorgesehen sind, während bei einem hohen Kühlbedarf mehrere Reihen mit eng aneinander liegenden und jeweils einen großen Durchmesser aufweisenden Durchgangsöffnungen 12 vorgesehen sind. Hierbei ist es insbesondere möglich eine vordefinierte Kühlgasströmung durch eine entsprechende Orientierung der Durchgangsöffnungen 12 im Randbereich des Linerelementes 4, 4' und/oder im Tragelemente 6, 6' zu schaffen, so dass denkbar ist, dass die Durchgangsöffnungen 12 schräg zum Spalt 10 verlaufen und dadurch eine entlang der Randbereiche 8, 8' der Linerelemente 4, 4' wirkende Filmkühlung erzeugen.
Um außerdem Spannungsspitzen, insbesondere im Übergangsbereich 15 des Linerelementes 4 zwischen dem Spalt 10 und Brennraum 3 abzufedern, bzw. eine verbesserte Kühlung des Übergangsbereiches 15 zu erreichen, kann dieser abgerundet ausgeführt sein.
Durch die erfindungsgemäße Lösung mit einer an einen jeweils erforderlichen Kühlbedarf angepassten Anordnung von Durchgangsöffnungen 12 im Spalt 10, kann eine an den jeweils erforderlichen Kühlbedarf angepasste Kühlung, insbesondere eine Filmkühlung erreicht werden, welche einerseits den Spalt 10 mit den angrenzenden Linerelementen 4, 4' sowie dem Tragelement 6 ausreichend kühlt und andererseits nur gerade soviel Kühlgas in den Spalt 10 bzw. in den Brennraum 3 einträgt, wie zur Kühlung unbedingt erforderlich ist. Ein zu hoher Kühlgaszustrom, der mit einem damit einhergehenden reduzierten Wirkungsgrad der Verbrennungsanlage verbunden ist, kann dadurch ebenso verhindert werden, wie eine zu hohe NOx-Emission der Verbrennungsanlage.
Bezugszeichenliste
Hitzeschutzschild
Segmente
Brennraum
Linerelement
Halteeinrichtung
Tragelement
Tragstruktur
Randbereich
Flanschbereich
Spalt
Flanschbereich der Linerelemente 4 im Spaltbereich
Durchgangsöffnung
Kühlgaskanal
Kühlrippen
Übergangsbereich

Claims

Patentansprüche
1. Brennkammer einer Verbrennungsanlage, insbesondere einer Gasturbine, mit einem zumindest zwei Segmente (2, 2') aufweisenden Hitzeschutzschild (1),
- wobei jedes Segment (2, 2') ein einem Brennraum (3) zugewandtes Linerelement (4, 4') und eine Halteeinrichtung (5) aufweist, die das Linerelement (4, 4') über ein Tragelement (6, 6') an einer Tragstruktur (7) festlegt,
- wobei das Linerelement (4, 4') einen Randbereich (8, 8') aufweist,
- wobei zwischen den Randbereichen (8, 8') zweier benachbarter Linerelemente (4, 4') ein zum Brennraum (3) hin offener Spalt (10) verbleibt,
- wobei das jeweilige Tragelement (6, 6') im Bereich eines Bodens des Spaltes (10) angeordnet ist,
- wobei zur Kühlung der dem Spalt (10) zugewandten Randbereiche (8, 8') der Linerelemente (4, 4') im Randbereich (8, 8') zumindest eines Linerelementes (4, 4') und/oder im Boden zumindest eine Durchgangsöffnung (12) vorgesehen ist, durch welche Kühlgas in den Spalt (10) strömt.
2. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der Randbereich (8, 8') des Linerelements (4, 4') einen durch die Halteeinrichtung (5) gebildeten Flanschbereich (9) hintergreift.
3. Brennkammer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest die Randbereiche (8, 8') der Linerelemente (4, 4') und/oder das Tragelement (6, 6') im Bereich des Spaltbodens eine Temperaturschutzschicht aufweisen.
4. Brennkammer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Randbereich (8, 8') des Linerelementes (4, 4') und/oder das Tragelement (6, 6') im Bereich des Spaltbodens zumindest eine im wesentlichen parallel zum Spalt (10) verlaufende Reihe von Durchgangsöffnungen aufweisen.
5. Brennkammer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Linerelement (4, 4') auf seiner dem Brennraum (3) abgewandten Seite Kühlrippen (14) aufweist.
6. Brennkammer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zumindest eine Durchgangsöffnung (12) im Randbereich (8, 8') des Linerelementes (4, 4') und/oder im Tragelement (6, 6') schräg zum Spalt (10) verlaufen und dadurch eine vordefinierte Kühlgasströmung erzeugen.
7. Brennkammer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Übergangsbereich (15) des Linerelementes (4, 4') zwischen dem Spalt (10) und der Brennraum (3) abgerundet ist.
8. Verbrennungsanlage, insbesondere eine Gasturbine, mit einer Brennkammer nach zumindest einem der Ansprüche 1 bis 7.
PCT/EP2007/056887 2006-08-07 2007-07-06 Brennkammer einer verbrennungsanlage WO2008017551A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07787170.5A EP2049841B1 (de) 2006-08-07 2007-07-06 Brennkammer einer verbrennungsanlage
US12/367,908 US8006498B2 (en) 2006-08-07 2009-02-09 Combustion chamber of a combustion system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01260/06 2006-08-07
CH12602006 2006-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/367,908 Continuation US8006498B2 (en) 2006-08-07 2009-02-09 Combustion chamber of a combustion system

Publications (2)

Publication Number Publication Date
WO2008017551A2 true WO2008017551A2 (de) 2008-02-14
WO2008017551A3 WO2008017551A3 (de) 2008-04-17

Family

ID=37400851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/056887 WO2008017551A2 (de) 2006-08-07 2007-07-06 Brennkammer einer verbrennungsanlage

Country Status (3)

Country Link
US (1) US8006498B2 (de)
EP (1) EP2049841B1 (de)
WO (1) WO2008017551A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100300106A1 (en) * 2009-06-02 2010-12-02 General Electric Company System and method for thermal control in a cap of a gas turbine combustor
CN104662367A (zh) * 2012-09-21 2015-05-27 西门子公司 具有支撑结构的隔热屏和用于冷却支撑结构的方法
EP2952812A1 (de) * 2014-06-05 2015-12-09 Alstom Technology Ltd Verkleidungssegement für eine ringförmige Innenauskleidung einer Ringbrennkammer einer Gasturbine und Gasturbine mit solchen Verkleidungssegmenten
EP3531020A1 (de) * 2018-02-22 2019-08-28 United Technologies Corporation Mehrrichtungsloch für schieneneffusionierung
US10830435B2 (en) 2018-02-06 2020-11-10 Raytheon Technologies Corporation Diffusing hole for rail effusion
US11009230B2 (en) 2018-02-06 2021-05-18 Raytheon Technologies Corporation Undercut combustor panel rail
US11248791B2 (en) 2018-02-06 2022-02-15 Raytheon Technologies Corporation Pull-plane effusion combustor panel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8359865B2 (en) * 2010-02-04 2013-01-29 United Technologies Corporation Combustor liner segment seal member
US9534783B2 (en) * 2011-07-21 2017-01-03 United Technologies Corporation Insert adjacent to a heat shield element for a gas turbine engine combustor
US9021812B2 (en) 2012-07-27 2015-05-05 Honeywell International Inc. Combustor dome and heat-shield assembly
US9423129B2 (en) * 2013-03-15 2016-08-23 Rolls-Royce Corporation Shell and tiled liner arrangement for a combustor
US10634351B2 (en) * 2013-04-12 2020-04-28 United Technologies Corporation Combustor panel T-junction cooling
US10830433B2 (en) 2016-11-10 2020-11-10 Raytheon Technologies Corporation Axial non-linear interface for combustor liner panels in a gas turbine combustor
US10935236B2 (en) 2016-11-10 2021-03-02 Raytheon Technologies Corporation Non-planar combustor liner panel for a gas turbine engine combustor
US10655853B2 (en) 2016-11-10 2020-05-19 United Technologies Corporation Combustor liner panel with non-linear circumferential edge for a gas turbine engine combustor
US10935235B2 (en) 2016-11-10 2021-03-02 Raytheon Technologies Corporation Non-planar combustor liner panel for a gas turbine engine combustor
US10619854B2 (en) * 2016-11-30 2020-04-14 United Technologies Corporation Systems and methods for combustor panel
US10739001B2 (en) * 2017-02-14 2020-08-11 Raytheon Technologies Corporation Combustor liner panel shell interface for a gas turbine engine combustor
US10677462B2 (en) 2017-02-23 2020-06-09 Raytheon Technologies Corporation Combustor liner panel end rail angled cooling interface passage for a gas turbine engine combustor
US10830434B2 (en) 2017-02-23 2020-11-10 Raytheon Technologies Corporation Combustor liner panel end rail with curved interface passage for a gas turbine engine combustor
US10823411B2 (en) * 2017-02-23 2020-11-03 Raytheon Technologies Corporation Combustor liner panel end rail cooling enhancement features for a gas turbine engine combustor
US10718521B2 (en) 2017-02-23 2020-07-21 Raytheon Technologies Corporation Combustor liner panel end rail cooling interface passage for a gas turbine engine combustor
US10941937B2 (en) 2017-03-20 2021-03-09 Raytheon Technologies Corporation Combustor liner with gasket for gas turbine engine
US11098899B2 (en) 2018-01-18 2021-08-24 Raytheon Technologies Corporation Panel burn through tolerant shell design
US10995955B2 (en) * 2018-08-01 2021-05-04 Raytheon Technologies Corporation Combustor panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8618859U1 (de) * 1986-07-14 1988-01-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
WO1998013645A1 (de) * 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
DE19727407A1 (de) * 1997-06-27 1999-01-07 Siemens Ag Hitzeschild
EP1022437A1 (de) * 1999-01-19 2000-07-26 Siemens Aktiengesellschaft Bauteil zur Verwendung in einer thermischen Machine
EP1507116A1 (de) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Hitzeschildanordnung für eine ein Heissgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321311A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
WO1989012789A1 (fr) * 1988-06-13 1989-12-28 Siemens Aktiengesellschaft Bouclier thermique n'exigeant que peu de fluide de refroidissement
US5431020A (en) * 1990-11-29 1995-07-11 Siemens Aktiengesellschaft Ceramic heat shield on a load-bearing structure
GB9112324D0 (en) * 1991-06-07 1991-07-24 Rolls Royce Plc Gas turbine engine combustor
GB2298267B (en) 1995-02-23 1999-01-13 Rolls Royce Plc An arrangement of heat resistant tiles for a gas turbine engine combustor
DE29714742U1 (de) * 1997-08-18 1998-12-17 Siemens Ag Hitzeschildkomponente mit Kühlfluidrückführung und Hitzeschildanordnung für eine heißgasführende Komponente
US6331096B1 (en) 2000-04-05 2001-12-18 General Electric Company Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment
EP1199520A1 (de) * 2000-10-16 2002-04-24 Siemens Aktiengesellschaft Hitzeschildstein zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine
EP1284390A1 (de) * 2001-06-27 2003-02-19 Siemens Aktiengesellschaft Hitzeschildanordnung für eine Heissgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
DE50111316D1 (de) * 2001-08-28 2006-12-07 Siemens Ag Hitzeschildstein sowie Verwendung eines Hitzeschildsteins in einer Brennkammer
DE50212581D1 (de) * 2002-12-10 2008-09-11 Siemens Ag Gasturbine
ES2307834T3 (es) * 2003-01-29 2008-12-01 Siemens Aktiengesellschaft Camara de combustion.
US6931855B2 (en) 2003-05-12 2005-08-23 Siemens Westinghouse Power Corporation Attachment system for coupling combustor liners to a carrier of a turbine combustor
EP1650503A1 (de) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Verfahren zur Kühlung eines Hitzeschildelements und Hitzeschildelement
EP1715248A1 (de) * 2005-04-19 2006-10-25 Siemens Aktiengesellschaft Halteelement und Hitzeschildelement für einen Hitzeschild sowie mit einem Hitzeschild versehene Brennkammer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8618859U1 (de) * 1986-07-14 1988-01-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
WO1998013645A1 (de) * 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
DE19727407A1 (de) * 1997-06-27 1999-01-07 Siemens Ag Hitzeschild
EP1022437A1 (de) * 1999-01-19 2000-07-26 Siemens Aktiengesellschaft Bauteil zur Verwendung in einer thermischen Machine
EP1507116A1 (de) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Hitzeschildanordnung für eine ein Heissgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495881B2 (en) * 2009-06-02 2013-07-30 General Electric Company System and method for thermal control in a cap of a gas turbine combustor
US20100300106A1 (en) * 2009-06-02 2010-12-02 General Electric Company System and method for thermal control in a cap of a gas turbine combustor
CN104662367A (zh) * 2012-09-21 2015-05-27 西门子公司 具有支撑结构的隔热屏和用于冷却支撑结构的方法
EP2952812A1 (de) * 2014-06-05 2015-12-09 Alstom Technology Ltd Verkleidungssegement für eine ringförmige Innenauskleidung einer Ringbrennkammer einer Gasturbine und Gasturbine mit solchen Verkleidungssegmenten
KR20150140234A (ko) * 2014-06-05 2015-12-15 알스톰 테크놀러지 리미티드 가스 터빈의 환형 연소 챔버 및 이러한 연소 챔버를 구비한 가스 터빈
US10139112B2 (en) 2014-06-05 2018-11-27 General Electric Company Annular combustion chamber of a gas turbine and gas turbine with such a combustion chamber
KR102365971B1 (ko) 2014-06-05 2022-02-22 제네럴 일렉트릭 테크놀러지 게엠베하 가스 터빈의 환형 연소 챔버 및 이러한 연소 챔버를 구비한 가스 터빈
US11248791B2 (en) 2018-02-06 2022-02-15 Raytheon Technologies Corporation Pull-plane effusion combustor panel
US10830435B2 (en) 2018-02-06 2020-11-10 Raytheon Technologies Corporation Diffusing hole for rail effusion
US11009230B2 (en) 2018-02-06 2021-05-18 Raytheon Technologies Corporation Undercut combustor panel rail
EP3531020A1 (de) * 2018-02-22 2019-08-28 United Technologies Corporation Mehrrichtungsloch für schieneneffusionierung
US11022307B2 (en) 2018-02-22 2021-06-01 Raytheon Technology Corporation Gas turbine combustor heat shield panel having multi-direction hole for rail effusion cooling
US11359812B2 (en) 2018-02-22 2022-06-14 Raytheon Technologies Corporation Multi-direction hole for rail effusion
US20230076312A1 (en) * 2018-02-22 2023-03-09 Raytheon Technologies Corporation Multi-direction hole for rail effusion
US11725816B2 (en) 2018-02-22 2023-08-15 Raytheon Technologies Corporation Multi-direction hole for rail effusion

Also Published As

Publication number Publication date
US8006498B2 (en) 2011-08-30
WO2008017551A3 (de) 2008-04-17
EP2049841B1 (de) 2016-12-28
EP2049841A2 (de) 2009-04-22
US20090199837A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
EP2049841B1 (de) Brennkammer einer verbrennungsanlage
EP1872058B1 (de) Brennkammer mit einem hitzeschild
EP1701095B1 (de) Hitzeschild
EP2363643B1 (de) Hitzeschildelement
EP1310735B1 (de) Hitzeschildanordnung mit Dichtungselement
EP2423599B1 (de) Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens
EP1193451B1 (de) Brennkammerkopf für eine Gasturbine
DE10059997B4 (de) Kühlbare Schaufel für eine Gasturbinenkomponente
EP2049840B1 (de) Brennkammer einer verbrennungsanlage
EP0558540B1 (de) Keramischer hitzeschild an einer tragstruktur
EP1983265A2 (de) Gasturbinenbrennkammerwand
EP2992270B1 (de) Hitzeschild
DE102018212394B4 (de) Brennkammerbaugruppe mit Strömungsleiteinrichtung aufweisendem Wandelement
EP1163430A1 (de) Abdeckelement und anordnung mit einem abdeckelement und mit einer tragstruktur
DE102009033592A1 (de) Gasturbinenbrennkammer mit Starterfilm zur Kühlung der Brennkammerwand
EP3219918A1 (de) Kühleinrichtung zur kühlung von plattformen eines leitschaufelkranzes einer gasturbine
DE102006048842B4 (de) Brennkammer für eine Gasturbine
EP2428647A1 (de) Übergangsbereich für eine Brennkammer einer Gasturbine
EP2883003B1 (de) Hitzeschild mit einer tragstruktur und verfahren zum kühlen der tragstruktur
DE60300423T2 (de) Kühlsystem für eine Nachbrennerdüse in einer Turbomaschine
WO2009109430A1 (de) Dichtungsanordnung und gasturbine
WO2009115384A1 (de) Leitschaufel mit hakenförmigem befestigungselement für eine gasturbine
EP3087254B1 (de) Heissgasbeaufschlagbares bauteil für eine gasturbine sowie dichtungsanordnung mit einem derartigen bauteil
EP3670845B1 (de) Strömungsmaschine mit statischer dichtungsanordnung
DE102006024632A1 (de) Walzenrost

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787170

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2007787170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007787170

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU