EP2423599B1 - Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens - Google Patents

Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP2423599B1
EP2423599B1 EP11177535.9A EP11177535A EP2423599B1 EP 2423599 B1 EP2423599 B1 EP 2423599B1 EP 11177535 A EP11177535 A EP 11177535A EP 2423599 B1 EP2423599 B1 EP 2423599B1
Authority
EP
European Patent Office
Prior art keywords
burner
burner wall
cooling air
effusion
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11177535.9A
Other languages
English (en)
French (fr)
Other versions
EP2423599A2 (de
EP2423599A3 (de
Inventor
Madhavan Poyyapakkam
Adnan Ergolu
Andrea Ciani
Diane Lauffer
Uwe Ruedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Publication of EP2423599A2 publication Critical patent/EP2423599A2/de
Publication of EP2423599A3 publication Critical patent/EP2423599A3/de
Application granted granted Critical
Publication of EP2423599B1 publication Critical patent/EP2423599B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03045Convection cooled combustion chamber walls provided with turbolators or means for creating turbulences to increase cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners

Definitions

  • the present invention relates to the field of burner technology, in particular gas turbines. It relates to methods for operating a burner assembly according to the preamble of claim 1. It further relates to a burner assembly for carrying out the method.
  • SEV burners are used in the applicant, which are described, for example, in the article " Field experience with the sequential combustion system of the GT24 / GT26 gas turbine family ", ABB Review 5, 1998, pp. 12-20 , or in the publication EP 2 169 314 A2 (see the local there Fig. 1 ) to be discribed.
  • the SEV burner 10 of Fig. 1 includes a mixing space 12 extending in a flow direction (see the elongated arrows). Upstream of the mixing chamber 12 is an inlet 11, can enter through the combustion gases 18 from the first (not shown) combustion chamber to relax in the first (not shown) turbine in the mixing chamber 12. Downstream of the mixing chamber 12 is followed by a combustion chamber 13, in which a burner flame with a corresponding flame boundary 17 is formed during operation.
  • the mixing space 12 is bounded outwardly by a burner wall 15 having a plurality of effusion holes 16.
  • Into the mixing chamber 12 projects an angled fuel lance 14, from which a fuel 19 is injected into the mixing chamber 12.
  • the EP 0 918 190 A1 further discloses an annular space which guides the cooling air outside the burner along the burner wall.
  • the JP 58 072822 A shows an effusion cooled burner wall in which each effusion hole has a cylindrical extension.
  • the object is achieved by the method of claim 1 and by the burner assembly of claim 9.
  • Essential for the invention is that the cooling air is deflected targeted on the outside of the burner wall in its flow direction by distributed deflecting elements.
  • effusion cooling can, so to speak, be "tailored” to enhance its effect in the most critical areas of the burner.
  • the use of the deflection allows a greatly improved adjustment of the direction of injected effusion cooling air.
  • the flow conditions are optimized within the mixing chamber, which - especially with regard to the stability of combustion in particularly reactive fuels - the reliability benefits.
  • the deflection allow in their area a more concentrated effusion cooling of the burner.
  • the deflecting elements are mounted directly on the outer surface of the burner wall.
  • they have the shape of a halved ball half shell and resemble an orchestra shell.
  • the height and width of the semicircular opening of the deflecting elements can be varied as a function of the diameter and spacing of the effusion holes covered therewith.
  • the number and placement of the deflectors depend on the shape of the burner.
  • the orientation of the baffles that is, the orientation of their openings
  • the deflecting elements can either be manufactured and fastened individually or together in the form of a correspondingly punched and / or embossed sheet metal.
  • the deflecting elements may be welded or cast on the burner wall.
  • the number and diameter of the effusion holes can also be adapted to the positions of the deflection elements.
  • An embodiment of the method according to the invention is characterized in that the cooling air is deflected by a deflection in each case in one of the effusion holes.
  • Another embodiment of the method according to the invention is characterized in that the cooling air is deflected by a deflecting element in each case in several effusion holes.
  • Another embodiment of the method according to the invention is characterized in that the effusion holes are inclined with their axes relative to the burner wall, and that the cooling air is deflected by the deflecting elements such that it flows on entry into the effusion holes substantially parallel to the axes of the effusion holes.
  • a further embodiment of the method according to the invention is characterized in that the effusion holes are inclined with their axes relative to the burner wall, and that the cooling air is deflected by the deflecting elements such that it flows substantially perpendicular to the burner wall when entering the effusion holes.
  • Another embodiment of the method according to the invention is characterized in that a perforated plate with holes is arranged on the outside of the burner wall and at a distance from the burner wall, and that the cooling air is introduced on the side facing away from the burner wall of the perforated plate and by the deflection into the holes of the perforated plate is deflected and flows to the burner wall.
  • Yet another embodiment of the method according to the invention is characterized in that spoon-like shells are used as deflecting elements which shield the associated effusion holes from one side and are open in the direction of the approaching cooling air.
  • An embodiment of the burner assembly according to the invention is characterized in that in each case a deflecting element is associated with one of the effusion holes.
  • Another embodiment of the burner assembly according to the invention is characterized in that a deflecting element is assigned in each case to a plurality of effusion holes.
  • Another embodiment of the burner assembly according to the invention is characterized in that the effusion holes are inclined with their axes relative to the burner wall, and that the deflection elements are designed such that the cooling air flows in the entry into the effusion holes substantially parallel to the axes of the effusion holes.
  • Another embodiment of the burner assembly according to the invention is characterized in that the effusion holes are inclined with their axes relative to the burner wall, and that the deflection elements are formed such that the cooling air flows when entering the effusion holes substantially perpendicular to the burner wall.
  • a further embodiment of the burner arrangement according to the invention is characterized in that a perforated plate with holes is arranged on the outside of the burner wall and at a distance from the burner wall, and that the deflecting elements are arranged on the side facing away from the burner wall of the perforated plate such that cooling air through the deflecting elements in the holes of the perforated plate is deflected and flows to the burner wall.
  • Yet another embodiment of the burner assembly according to the invention is characterized in that the deflecting elements are designed as spoon-like shells which shield the associated effusion holes from one side and are open in the direction of the approaching cooling air.
  • Yet another embodiment of the burner assembly according to the invention is characterized in that the deflecting elements are applied to the outer surface of the burner wall or the perforated plate.
  • the invention gives the possibility of the effusion cooling of the burner Fig. 1 "tailor" or optimize in order to increase their impact in the most critical areas of the burner (the particularly hot areas). This happens because aerodynamically shaped deflecting elements (21 in FIG. 3 and FIG. 4 ) are arranged on the cold or outer side of the burner wall 15. The presence of this spoon-like, designed in the manner of a half-spherical half-deflection elements 21 makes it possible to adjust the direction of the injected effusion cooling air according to the particular needs.
  • the diverting elements 21 allow the flow to accumulate and convert at least part of the dynamic pressure into static pressure.
  • the deflecting elements 21 thus allow the feed pressure for the effusion cooling to be raised and adjusted.
  • Fig. 3 shows a small section of the burner wall 15 with a plurality of distributed therein effusion holes 16, by the according Fig. 1 Cooling air flows into the mixing chamber 12.
  • Fig. 3 further shows a single deflecting element 21, which, representative of other deflecting elements, not shown, several of the effusion holes 16 so covered that in the direction of the arrow on the burner wall 15 along the cooling air flow 20 captured and deflected in the direction of the effusion holes 16. Over the entire burner wall 15, many such deflecting elements 21 may be arranged in different density and orientation, in order to deflect the cooling air 20 in an optimum manner.
  • Fig. 4 shows a single arrangement of a deflecting element 21, which is associated with only a single effusion hole 16.
  • the function can be set as a deflecting element or as a stowage element for recovering the dynamic pressure.
  • the effusion holes 16 can be oriented with their hole axes perpendicular to the plane of the burner wall 10. In most cases, however, as in Fig. 2 shows the axes of the effusion holes 16 with respect to the plane of the Burner wall 15 inclined so that the inflowing through the effusion holes 16 cooling air has a velocity component parallel to the main flow in the mixing chamber 12 and increases the axial length and thus the cooling effect.
  • the angle ⁇ which includes the axis with the wall plane, may be in a range between 10 ° and 80 °, in particular between 20 ° and 50 °, preferably between 30 ° and 40 °. A particularly suitable value has been found to be an angle of 35 °.
  • the deflecting elements 21, as in Fig. 5 shown be shaped so that the deflected cooling air largely perpendicular to the burner wall 15 and thus meets the hole entrances.
  • it can be more favorable in terms of flow technology according to Fig. 6 adjust the curvature of the deflection elements 22 so that the deflected cooling air enters the effusion holes 16 practically in the direction of the hole axes.
  • the effusion cooling described is not limited to the mixing chamber 12, but may also extend to the liner of the combustion chamber 13.
  • the effusion cooling in the liner has the task of avoiding the self-ignition of the air-fuel mixture.
  • the effusion cooling in the mixing chamber 12 or premixer has the task of avoiding the stagnation of combustion gases on the burner wall 15 by forming a boundary layer.
  • the function of the vortex formation of the cooling air by the deflecting elements 21, 22 can be reinforced by the fact that the deflecting elements 21, 20 are mounted in a specific overall arrangement (graduation) in order to influence them in terms of flow.
  • the convective cooling on the outside of the burner wall 15 is increased.
  • rows of deflection elements 21, 22 are arranged at right angles to the flow direction of the cooling air 22, wherein the deflection elements 21, 22 of two successive rows are each arranged offset from one another.
  • the deflection elements 21, 22 locally enhance the effusion cooling of the burner. If according to Fig. 7 a perforated plate 23 is used as an impingement cooling plate with deflecting elements, the heat transfer coefficient increases on the cold side of the burner wall 15.
  • the deflecting elements 21, 22 are preferably arranged in the areas where the cooling air has a particularly high speed to more cooling air into the effusion holes 16th redirect.
  • Some areas of the effusion cooling are disadvantaged in that the speed of the cooling air is high there and only a low static pressure prevails.
  • Some areas of effusion cooling need to be reinforced because the heat load on the hot gas side (because of a high heat transfer coefficient or a high flame temperature) is particularly high there.
  • the deflection elements according to the invention catch cooling air through a combination of damming and diverting, which otherwise would have flowed past the effusion holes. In this way, the cooling can be local be reinforced without increasing the number of effusion holes or the diameter of the effusion holes increases the risk of cracking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung bezieht sich auf das Gebiet der Brennertechnologie, insbesondere von Gasturbinen. Sie betrifft Verfahren zum Betrieb einer Brenneranordnung gemäss dem Oberbegriff des Anspruchs 1. Sie betrifft weiterhin eine Brenneranordnung zur Durchführung des Verfahrens.
  • STAND DER TECHNIK
  • Seit längerem sind im Stand der Technik Gasturbinen mit so genannter sequenzieller Verbrennung bekannt, bei denen die Verbrennungsgase aus einer ersten Brennkammer nach Arbeitsleistung in einer ersten Turbine einer zweiten Brennkammer zu geführt werden, wo mithilfe der in den Verbrennungsgasen enthaltenen Verbrennungsluft eine zweite Verbrennung erfolgt, und die erneut erhitzten Gase einer zweiten Turbine zugeführt werden.
  • Für diese zweite Verbrennung werden bei der Anmelderin so genannte SEV-Brenner eingesetzt, die beispielsweise in dem Artikel "Field experience with the sequential combustion system of the GT24/GT26 gas turbine family", ABB Review 5, 1998, S. 12-20, oder in der Druckschrift EP 2 169 314 A2 (siehe die dortige Fig. 1) beschrieben werden.
  • Ein solcher SEV-Brenner ist schematisch in der Fig. 1 dargestellt: Der SEV-Brenner 10 der Fig. 1 umfasst einen Mischraum 12, der sich in einer Strömungsrichtung (siehe die länglichen Pfeile) erstreckt. Stromaufwärts schließt sich an den Mischraum 12 ein Einlass 11 an, durch den Verbrennungsgase 18 aus der ersten (nicht dargestellten) Brennkammer nach Entspannung in der ersten (nicht dargestellten) Turbine in den Mischraum 12 eintreten können. Stromabwärts schließt sich an den Mischraum 12 ein Verbrennungsraum 13 an, in dem sich während des Betriebs eine Brennerflamme mit einer entsprechenden Flammengrenze 17 ausbildet. Der Mischraum 12 ist nach außen durch eine Brennerwand 15 begrenzt, die eine Vielzahl von Effusionslöchern 16 aufweist. In den Mischraum 12 ragt eine abgewinkelte Brennstofflanze 14 hinein, aus der ein Brennstoff 19 in den Mischraum 12 eingedüst wird.
  • Entgegen der Strömungsrichtung der Verbrennungsgase 18 im Mischraum 12 wird außen Kühlluft 20 zugeführt, die durch die Effusionslöcher 16 in der Brennerwand 15 in den Mischraum 12 eintritt und eine Effusionskühlung bewirkt (siehe Fig. 2). Durch die Zuführung der Kühlluft entlang der Brennerwand 15 wird diese konvektiv gekühlt. Wie bereits in der eingangs genannten Druckschrift EP 2 169 314 A2 ausgeführt worden ist, besteht bei derartigen SEV-Brennern der Wunsch, die Kühlung zu verbessern und die Rückzündung noch stärker zu unterdrücken, damit die sequenziellen Brenner bei noch höheren Heissgastemperaturen und mit hoch reaktiven Brennstoffen betrieben werden können.
  • Bei herkömmlichen Brennern von Gasturbinen ist vorgeschlagen worden (siehe die Druckschrift US 7,493,767 B2 ; Fig. 8 und 9), bei der Prallkühlung von Übergangsstücken die Verteilung der Kühlluft über das Prallkühlungsblech dadurch zu verändern und zu beeinflussen, dass bestimmte Löcher in dem Blech mit so genannten "Strömungseinfangelementen" oder "scoops" ausgestattet werden, um lokal höhere Massenströme an Kühlluft bereitzustellen. Da in diesem Fall wegen der fehlenden Effusionskühlung die Kühlluft nicht direkt durch die Brennerwand in den Mischraum eintritt, sondern außen an der Brennerwand entlang geführt wird, muss auf das Zusammenwirken der Strömung im Mischraum mit durch die Brennerwand einströmender Kühlluft keine Rücksicht genommen werden.
  • Im Fall eines SEV-Brenners besteht jedoch eine enge Beziehung zwischen der Verteilung der einströmenden Diffusions-Kühlluft und den Strömungsverhältnissen im Mischraum beziehungsweise in dem dahinter folgenden Verbrennungsraum.
  • Aus der EP 0 918 190 A1 und der EP 2 169 314 A2 sind Brenneranordnungen mit effusionsgekühlten Brennerwänden bekannt. Die EP 0 918 190 A1 offenbart weiter einen Ringraum der die Kühlluft ausserhalb des Brenners entlang der Brennerwand führt.
  • Die JP 58 072822 A zeigt eine effusionsgekühlte Brennerwand bei der jedes Effusionsloch über einen zylindrischen Fortsatz verfügt.
  • Aus der US 2006/059916 A1 ist weiter eine Effusionskühlung bekannt, in der ein Lochblech der Brennkammerwand vorgeschaltet ist.
  • DARSTELLUNG DER ERFINDUNG
  • Es ist eine Aufgabe der Erfindung, das eingangs genannte Verfahren zum Betrieb einer Brenneranordnung so zu verbessern, dass höhere Verbrennungstemperaturen erreicht beziehungsweise hoch reaktive Brennstoffe eingesetzt werden können, sowie eine Brenneranordnung zur Durchführung des Verfahrens anzugeben.
  • Die Aufgabe wird durch das Verfahren von Anspruch 1 und durch die Brenneranordnung von Anspruch 9 gelöst. Wesentlich für die Erfindung ist, dass die Kühlluft auf der Außenseite der Brennerwand in ihrer Strömungsrichtung durch verteilt angeordnete Umlenkelemente gezielt umgelenkt wird. Hierdurch kann die Effusions-Kühlung gewissermaßen "maßgeschneidert" werden, um ihren Effekt in den besonders kritischen Bereichen des Brenners zu verstärken. Der Einsatz der Umlenkelemente ermöglicht eine stark verbesserte Einstellung der Richtung der eingedüsten Effusions-Kühlluft. Hierdurch werden die Strömungsverhältnisse innerhalb des Mischraums optimiert, was - gerade im Hinblick auf die Stabilität der Verbrennung bei besonders reaktiven Brennstoffen - der Betriebssicherheit zugutekommt.
  • Die Umlenkelemente erlauben in ihrem Bereich eine stärker konzentrierte Effusionskühlung des Brenners. Vorzugsweise sind die Umlenkelemente direkt auf der Außenfläche der Brennerwand angebracht. Sie haben insbesondere die Form einer halbierten Kugel-Halbschale und ähneln so einer Orchestermuschel. Die Höhe und Breite der halbkreisartigen Öffnung der Umlenkelemente kann als Funktion des Durchmessers und Abstandes der damit überdeckten Effusionslöcher variiert werden. Die Anzahl und die Platzierung der Umlenkelemente hängen von der Gestalt des Brenners ab. Die Orientierung der Umlenkelemente (das heißt die Ausrichtung ihrer Öffnungen) kann so gewählt werden, dass der maximale Kühlluftstrom in die Effusionslöcher gelenkt wird. Die Umlenkelemente können entweder einzeln hergestellt und befestigt werden oder gemeinsam in Form eines entsprechend gestanzten und/oder geprägten Bleches. Die Umlenkelemente können an der Brennerwand angeschweißt oder angegossen sein. Anzahl und Durchmesser der Effusionslöcher können aber auch an die Positionen der Umlenkelemente angepasst sein.
  • Eine Ausgestaltung des erfindungsgemäßen Verfahrens zeichnet sich dadurch aus, dass die Kühlluft durch ein Umlenkelement jeweils in eines der Effusionslöcher umgelenkt wird.
  • Eine andere Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass die Kühlluft durch ein Umlenkelement jeweils in mehrere Effusionslöcher umgelenkt wird.
  • Eine andere Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass die Effusionslöcher mit ihren Achsen gegenüber der Brennerwand geneigt sind, und dass die Kühlluft durch die Umlenkelemente derart umgelenkt wird, dass sie beim Eintritt in die Effusionslöcher im Wesentlichen parallel zu den Achsen der Effusionslöcher strömt.
  • Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass die Effusionslöcher mit ihren Achsen gegenüber der Brennerwand geneigt sind, und dass die Kühlluft durch die Umlenkelemente derart umgelenkt wird, dass sie beim Eintritt in die Effusionslöcher im Wesentlichen senkrecht zur Brennerwand strömt.
  • Eine andere Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass auf der Außenseite der Brennerwand und mit Abstand zur Brennerwand ein Lochblech mit Löchern angeordnet ist, und dass die Kühlluft auf der der Brennerwand abgewandten Seite des Lochblechs herangeführt und durch die Umlenkelemente in die Löcher des Lochblechs umgelenkt wird und zur Brennerwand strömt.
  • Eine noch andere Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass als Umlenkelemente löffelartige Schalen verwendet werden, welche die zugehörigen Effusionslöcher von einer Seite her abschirmen und in Richtung der heranströmenden Kühlluft offen sind.
  • Eine Ausgestaltung der erfindungsgemäßen Brenneranordnung ist dadurch gekennzeichnet, dass jeweils ein Umlenkelement einem der Effusionslöcher zugeordnet ist.
  • Eine andere Ausgestaltung der erfindungsgemäßen Brenneranordnung ist dadurch gekennzeichnet, dass ein Umlenkelement jeweils mehreren Effusionslöchern zugeordnet ist.
  • Eine andere Ausgestaltung der erfindungsgemäßen Brenneranordnung ist dadurch gekennzeichnet, dass die Effusionslöcher mit ihren Achsen gegenüber der Brennerwand geneigt sind, und dass die Umlenkelemente derart ausgebildet sind, dass die Kühlluft beim Eintritt in die Effusionslöcher im Wesentlichen parallel zu den Achsen der Effusionslöcher strömt.
  • Eine andere Ausgestaltung der erfindungsgemäßen Brenneranordnung ist dadurch gekennzeichnet, dass die Effusionslöcher mit ihren Achsen gegenüber der Brennerwand geneigt sind, und dass die Umlenkelemente derart ausgebildet sind dass die Kühlluft beim Eintritt in die Effusionslöcher im Wesentlichen senkrecht zur Brennerwand strömt.
  • Eine weitere Ausgestaltung der erfindungsgemäßen Brenneranordnung ist dadurch gekennzeichnet, dass auf der Außenseite der Brennerwand und mit Abstand zur Brennerwand ein Lochblech mit Löchern angeordnet ist, und dass die Umlenkelemente auf der der Brennerwand abgewandten Seite des Lochblechs derart angeordnet sind, dass Kühlluft durch die Umlenkelemente in die Löcher des Lochblechs umgelenkt wird und zur Brennerwand strömt.
  • Eine wieder andere Ausgestaltung der erfindungsgemäßen Brenneranordnung ist dadurch gekennzeichnet, dass die Umlenkelemente als löffelartige Schalen ausgebildet sind, welche die zugehörigen Effusionslöcher von einer Seite her abschirmen und in Richtung der heranströmenden Kühlluft offen sind.
  • Eine noch andere Ausgestaltung der erfindungsgemäßen Brenneranordnung ist dadurch gekennzeichnet, dass die Umlenkelemente auf der äußeren Oberfläche der Brennerwand beziehungsweise des Lochblechs aufgebracht sind.
  • KURZE ERLÄUTERUNG DER FIGUREN
  • Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen
  • Fig. 1
    in einer vereinfachten Darstellung den Aufbau eines SEV-Brenners, wie er zur Ausführung der Erfindung geeignet ist;
    Fig. 2
    den Schnitt durch die Brennerwand eines SEV-Brenners mit Effusionskühlung gemäß Fig. 1, wobei die Effusionslöcher gegen die Brennerwand geneigt sind;
    Fig. 3
    in perspektivischer Darstellung einen Ausschnitt aus einer Brennerwand, die gemäß einem Ausführungsbeispiel der Erfindung mit einem Umlenkelement ausgestattet ist, welches die Kühlluft in mehrere Effusionslöcher gleichzeitig umgelenkt;
    Fig. 4
    in perspektivischer Darstellung einen Ausschnitt aus einer Brennerwand, die gemäß einem anderen Ausführungsbeispiel der Erfindung mit einem Umlenkelement ausgestattet ist, welches die Kühlluft in nur ein Effusionsloch umgelenkt;
    Fig. 5
    eine zu Fig. 2 vergleichbare Brennerwand, die gemäß einem anderen Ausführungsbeispiel der Erfindung mit Umlenkelementen einer ersten Art ausgestattet ist;
    Fig. 6
    eine zu Fig. 2 vergleichbare Brennerwand, die gemäß einem anderen Ausführungsbeispiel der Erfindung mit Umlenkelementen einer zweiten Art ausgestattet ist; und
    Fig. 7
    eine zu Fig. 2 vergleichbare Brennerwand, die gemäß einem weiteren Ausführungsbeispiel der Erfindung von einem Lochblech mit Umlenkelementen im Abstand umgeben ist.
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Die Erfindung gibt die Möglichkeit, die Effusions-Kühlung des Brenners aus Fig. 1 "masszuschneidern" beziehungsweise zu optimieren, um ihre Wirkung in den besonders kritischen Bereichen des Brenners (den besonders heissen Bereichen) zu verstärken. Dies geschieht dadurch, dass aerodynamisch geformte Umlenkelemente (21 in Fig. 3 und Fig. 4) auf der kalten beziehungsweise äusseren Seite der Brennerwand 15 angeordnet werden. Die Anwesenheit dieser löffelartigen, nach Art einer halben Kugelhalbschale ausgebildeten Umlenkelemente 21 ermöglicht es, die Richtung der eingedüsten Effusions-Kühlluft nach den jeweiligen Bedürfnissen einzustellen.
  • Weiter ermöglichen die Umlenkelemente 21 in Bereichen, in denen die Strömungsgeschwindigkeit der Kühlluft auf der äusseren Seite der Brennerwand 15 und der statische Druck aufgrund der hohen Strömungsgeschwindigkeit reduziert ist, die Strömung aufzustauen und zumindest einen Teil des dynamischen Druckes in statischen Druck umzuwandeln. Die Umlenkelemente 21 erlauben so den Einspeisedruck für die Effusions- Kühlung anzuheben und einzustellen.
  • Fig. 3 zeigt einen kleinen Ausschnitt der Brennerwand 15 mit einer Vielzahl von darin verteilt angeordneten Effusionslöchern 16, durch die gemäss Fig. 1 Kühlluft in den Mischraum 12 einströmt. Fig. 3 zeigt weiterhin ein einzelnes Umlenkelement 21, das, stellvertretend für weitere nicht gezeigte Umlenkelemente, mehrere der Effusionslöcher 16 so überdeckt, dass die in Richtung des Pfeils an der Brennerwand 15 entlangströmende Kühlluft 20 eingefangen und in Richtung auf die Effusionslöcher 16 umgelenkt wird. Über die gesamte Brennerwand 15 können viele solcher Umlenkelemente 21 in unterschiedlicher Dichte und Orientierung angeordnet sein, um auf optimale Weise die Kühlluft 20 umzulenken.
  • Selbstverständlich kann im Rahmen der Erfindung auch die Grösse der Umlenkelemente 21 relativ zu den Durchmessern der Effusionslöcher 16 verändert werden. Fig. 4 zeigt eine einzelne Anordnung eines Umlenkelementes 21, dem nur ein einzelnes Effusionsloch 16 zugeordnet ist. Hierdurch kann die Verteilung der umgelenkten Kühlluft in der Fläche noch feiner unterteilt werden.
  • Durch die Wahl der Grösse der Umlenkelemente 21 relativ zu den Durchmessern der Effusionslöcher 16 kann die Funktion als Umlenkelement oder als Stauelement zur Rückgewinnung des dynamischen Druckes eingestellt werden.
  • Grundsätzlich können die Effusionslöcher 16 mit ihren Lochachsen senkrecht zur Ebene der Brennerwand 10 orientiert sein. In den meisten Fällen sind jedoch, wie in Fig. 2 zeigt, die Achsen der Effusionslöcher 16 gegenüber der Ebene der Brennerwand 15 so geneigt, dass die durch die Effusionslöcher 16 einströmende Kühlluft eine Geschwindigkeitskomponente parallel zur Hauptströmung im Mischraum 12 aufweist und sich die axiale Länge und damit die Kühlwirkung vergrössert. Der Winkel α, den die Achse mit der Wandebene einschliesst, kann in einem Bereich zwischen 10° und 80° liegen, insbesondere zwischen 20° und 50°, vorzugsweise zwischen 30° und 40°. Als besonders geeigneter Wert hat sich ein Winkel von 35° erwiesen.
  • Bei derartig geneigten Effusionslöchern 16 können die Umlenkelemente 21, wie in Fig. 5 gezeigt, so geformt sein, dass die umgelenkte Kühlluft weitgehend senkrecht auf die Brennerwand 15 und damit die Locheingänge trifft. Strömungstechnisch günstiger kann es jedoch sein, gemäss Fig. 6 die Wölbung der Umlenkelemente 22 so einzustellen, dass die umgelenkte Kühlluft praktisch in Richtung der Lochachsen in die Effusionslöcher 16 eintritt.
  • Schliesslich ist es im Rahmen der Erfindung auch möglich, gemäss Fig. 7 im Abstand von der Brennerwand 15 aussen ein Lochblech 23 anzuordnen, das mit entsprechenden Löchern 25 versehen ist, in die Kühlluft durch die auf dem Lochblech 23 angeordneten Umlenkelemente 21 umgelenkt wird, um dann den Zwischenraum 24 zwischen Lochblech 23 und Brennerwand 15 zu durchqueren und in die Effusionslöcher 16 einzutreten. Durch diese Anordnung wird einerseits ein zusätzlicher Prallkühlungseffekt an der Brennerwand 15 erzielt. Andererseits ist die Zuordnung der umgelenkten Kühlluft zu den Effusionslöchern gegenüber der Konfiguration aus Fig. 5 und Fig. 6 indirekter.
  • Die beschriebene Effusionskühlung ist nicht auf den Mischraum 12 beschränkt, sondern kann sich auch auf den Liner des Verbrennungsraum 13 erstrecken Neben der eigentlichen Kühlung hat die Effusionskühlung im Liner die Aufgabe, die Selbstzündung des Luft-Brennstoff-Gemischs zu vermeiden. Neben der Kühlung hat die Effusionskühlung im Mischraum 12 beziehungsweise Vormischer die Aufgabe, die Stagnation von Brenngasen an der Brennerwand 15 zu vermeiden durch Bildung einer Grenzschicht.
  • Die Umlenkelemente 21, 22 erfüllen damit die folgenden Aufgaben:
    • Erhöhung des Kühlluftmassenstroms durch die kleinen Löcher (Umwandlung des dynamischen Drucks in statischen Druck)
    • Verhinderung eines Flashbacks
    • Auf der kalten Seite der Brennerwand 15 ausserdem die Funktion eines Wirbelgenerators (Turbulator).
  • Insbesondere kann die Funktion der Wirbelbildung der Kühlluft durch die Umlenkelemente 21, 22 dadurch verstärkt werden, dass die Umlenkelemente 21, 20 in einer bestimmten Gesamtanordnung (Staffelung) angebracht werden, um sie strömungstechnisch gegenseitig zu beeinflussen. Damit wird die konvektive Kühlung auf der Aussenseite der Brennerwand 15 erhöht. Beispielsweise werden dafür Reihen von Umlenkelementen 21, 22 im rechten Winkel zur Strömungsrichtung der Kühlluft 22 angeordnet, wobei die Umlenkelemente 21, 22 zweier aufeinanderfolgender Reihen jeweils versetzt zueinander angeordnet sind.
  • Die Umlenkelemente 21, 22 verstärken lokal die Effusionskühlung des Brenners. Wenn gemäss Fig. 7 ein Lochblech 23 als Prallkühlungsblech mit Umlenkelementen eingesetzt wird, erhöht sich der Wärmeübertragungskoeffizient auf der kalten Seite der Brennerwand 15. Die Umlenkelemente 21, 22 werden vorzugsweise in den Bereichen angeordnet, wo die Kühlluft eine besonders hohe Geschwindigkeit hat, um mehr Kühlluft in die Effusionslöcher 16 umzulenken.
  • Manche Bereiche der Effusionskühlung sind dadurch benachteiligt, dass die Geschwindigkeit der Kühlluft dort hoch ist und nur ein geringer statischer Druck herrscht. Manche Bereiche der Effusionskühlung müssen verstärkt werden, weil dort die Wärmebelastung auf der Heissgasseite (wegen eines hohen Wärmeübertragungskoeffizienten oder einer hohen Flammentemperatur) besonders hoch ist. Die erfindungsgemässen Umlenkelemente fangen durch eine Kombination von Aufstauen und Umlenken Kühlluft ein, die sonst an den Effusionslöchern vorbei geströmt wäre. Auf diese Weise kann die Kühlung lokal verstärkt werden, ohne dass sich durch eine Erhöhung der Anzahl der Effusionslöcher oder des Durchmessers der Effusionslöcher das Risiko von Rissbildung erhöht.
  • Die Umlenkelemente haben insgesamt folgende Charakteristika:
    • die Form ist die einer halben Kugelhalbschale, wobei Höhe und Breite als Funktion von Durchmesser und Abstand der Effusionslöcher verändert werden können;
    • die Anzahl und Platzierung der Umlenkelemente hängt von der Form des Brenners ab;
    • die Ausrichtung der Umlenkelemente kann so gewählt werden, dass ein maximaler Kühlluftstrom in die Effusionslöcher eingebracht wird;
    • Umlenkelemente überdecken entweder ein einzelnes Effusionsloch oder gleichzeitig mehrere Effusionslöcher;
    • die Umlenkelemente können entweder einzeln hergestellt und angebracht werden, oder gleichzeitig in Form eines geprägten und/oder gestanzten Bleches;
    • die Umlenkelemente können am Brenner angeschweisst oder angegossen sein;
    • die Anzahl und der Durchmesser der Effusionslöcher kann in Abhängigkeit von der Platzierung der Umlenkelemente variiert werden.
    BEZUGSZEICHENLISTE
  • 10
    SEV-Brenner (Brenneranordnung)
    11
    Einlass
    12
    Mischraum
    13
    Verbrennungsraum
    14
    Brennstofflanze
    15
    Brennerwand
    16
    Effusionsloch
    17
    Flammengrenze
    18
    Verbrennungsgas
    19
    Brennstoff
    20
    Kühlluft
    21,22
    Umlenkelement
    23
    Lochblech
    24
    Zwischenraum
    25
    Loch
    α
    Winkel

Claims (15)

  1. Verfahren zum Betrieb einer Brenneranordnung (10), in welcher Brenneranordnung (10) ein Verbrennungsluft enthaltende, heißes Verbrennungsgas (18) im wesentlichen parallel zu einer Brennerwand (15) durch einen von dieser Brennerwand (15) begrenzten Mischraum (12) zu einem Verbrennungsraum (13) strömt und im Mischraum (12) mit einem eingedüsten Brennstoff (19) vermischt wird, wobei im Rahmen einer Effusionskühlung Kühlluft (20) von der Außenseite der Brennerwand (15) her durch Effusionslöcher (16) in der Brennerwand (15) in das Innere des Mischraums (12) einströmt, dadurch gekennzeichnet, dass die Kühlluft (20) auf der Außenseite der Brennerwand (15) in ihrer Strömungsrichtung durch Umlenkelemente (21, 22) in Richtung auf die Brennerwand (15) umgelenkt wird, dass die Kühlluft (20) auf der Außenseite der Brennerwand (15) eine zur Brennerwand (15) parallele Geschwindigkeitskomponente aufweist, und dass der statische Druck der Kühlluft (20) stromauf der Umlenkelemente (21, 22) erhöht wird, um den Einspeisedruck für die Effusionskühlung anzuheben.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlluft (20) auf der Außenseite der Brennerwand (15) eine zur Brennerwand (15) parallele Geschwindigkeitskomponente aufweist, und dass die Kühlluft (20) in Richtung auf die Brennerwand (15) umgelenkt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Kühlluft (20) durch ein Umlenkelement (21, 22) jeweils in eines der Effusionslöcher (16) umgelenkt wird.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Kühlluft (20) durch ein Umlenkelement (21, 22) jeweils in mehrere Effusionslöcher (16) umgelenkt wird.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Effusionslöcher (16) mit ihren Achsen gegenüber der Brennerwand (15) geneigt sind, und dass die Kühlluft (20) durch die Umlenkelemente (22) derart umgelenkt wird, dass sie beim Eintritt in die Effusionslöcher (16) im Wesentlichen parallel zu den Achsen der Effusionslöcher (16) strömt.
  6. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Effusionslöcher (16) mit ihren Achsen gegenüber der Brennerwand (15) geneigt sind, und dass die Kühlluft (20) durch die Umlenkelemente (21) derart umgelenkt wird, dass sie beim Eintritt in die Effusionslöcher (16) im Wesentlichen senkrecht zur Brennerwand (15) strömt.
  7. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass auf der Außenseite der Brennerwand (15) und mit Abstand zur Brennerwand (15) ein Lochblech (23) mit Löchern (25) angeordnet ist, und dass die Kühlluft (20) auf der der Brennerwand (15) abgewandten Seite des Lochblechs (23) herangeführt und durch die Umlenkelemente (21, 22) in die Löcher (25) des Lochblechs (23) umgelenkt wird und zur Brennerwand (15) strömt.
  8. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass als Umlenkelemente (21, 22) löffelartige Schalen verwendet werden, welche die zugehörigen Effusionslöcher (16) von einer Seite her abschirmen und in Richtung der heranströmenden Kühlluft (20) offen sind.
  9. Brenneranordnung (10) zur Durchführung des Verfahrens nach einem der Ansprüche 1-8, welche Brenneranordnung (10) einen sich in einer Strömungsrichtung erstreckenden Mischraum (12) umfasst, der außen durch eine Brennerwand (15) begrenzt ist und stromaufwärts einen Einlass (11) für ein Verbrennungsluft enthaltendes, heißes Verbrennungsgas (18) aufweist, und an den sich stromabwärts ein Verbrennungsraum (13) anschließt, wobei in den Mischraum (12) eine Brennstofflanze (14) zum Eindüsen eines Brennstoffs (19) hineinragt und die Brennerwand (15) mit Effusionslöchern (16) versehen ist, durch die auf der Außenseite der Brennerwand (15) herangeführte Kühlluft (20) in den Mischraum (12) einströmen kann, dadurch gekennzeichnet, dass auf der Außenseite der Brennerwand (15) Umlenkelemente (21, 22) angeordnet sind, welche die herangeführte Kühlluft (20) in Richtung auf die Brennerwand (15) umlenken, um den Einspeisedruck für die Effusionskühlung anzuheben.
  10. Brenneranordnung nach Anspruch 9, dadurch gekennzeichnet, dass jeweils ein Umlenkelement (21, 22) einem der Effusionslöcher (16) zugeordnet ist.
  11. Brenneranordnung nach Anspruch 9, dadurch gekennzeichnet, dass ein Umlenkelemente (21, 22) jeweils mehreren Effusionslöchern (16) zugeordnet ist.
  12. Brenneranordnung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Effusionslöcher (16) mit ihren Achsen gegenüber der Brennerwand (15) geneigt sind, und dass die Umlenkelemente (22) derart ausgebildet sind, dass die Kühlluft (20) beim Eintritt in die Effusionslöcher (16) im Wesentlichen parallel zu den Achsen der Effusionslöcher (16) strömt.
  13. Brenneranordnung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Effusionslöcher (16) mit ihren Achsen gegenüber der Brennerwand (15) geneigt sind, und dass die Umlenkelemente (21) derart ausgebildet sind dass die Kühlluft (20) beim Eintritt in die Effusionslöcher (16) im Wesentlichen senkrecht zur Brennerwand (15) strömt.
  14. Brenneranordnung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass auf der Außenseite der Brennerwand (15) und mit Abstand zur Brennerwand (15) ein Lochblech (23) mit Löchern (25) angeordnet ist, und dass die Umlenkelemente (21) auf der der Brennerwand (15) abgewandten Seite des Lochblechs (23) derart angeordnet sind, dass Kahlluft (20) durch die Umlenkelemente (21) in die Löcher (25) des Lochblechs (23) umgelenkt wird und zur Brennerwand (15) strömt.
  15. Brenneranordnung nach einem der Ansprüche 9-13, dadurch gekennzeichnet, dass die Umlenkelemente (21, 22) als löffelartige Schalen ausgebildet sind, welche die zugehörigen Effusionslöcher (16) von einer Seite her abschirmen und in Richtung der heranströmenden Kühlluft (20) offen sind.
EP11177535.9A 2010-08-27 2011-08-15 Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens Active EP2423599B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01388/10A CH703657A1 (de) 2010-08-27 2010-08-27 Verfahren zum betrieb einer brenneranordnung sowie brenneranordnung zur durchführung des verfahrens.

Publications (3)

Publication Number Publication Date
EP2423599A2 EP2423599A2 (de) 2012-02-29
EP2423599A3 EP2423599A3 (de) 2013-07-31
EP2423599B1 true EP2423599B1 (de) 2017-05-17

Family

ID=43355541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11177535.9A Active EP2423599B1 (de) 2010-08-27 2011-08-15 Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens

Country Status (5)

Country Link
US (1) US9157637B2 (de)
EP (1) EP2423599B1 (de)
JP (1) JP5896644B2 (de)
CH (1) CH703657A1 (de)
ES (1) ES2632755T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788726B2 (en) 2021-12-06 2023-10-17 General Electric Company Varying dilution hole design for combustor liners

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728258A1 (de) 2012-11-02 2014-05-07 Alstom Technology Ltd Gasturbine
EP2735796B1 (de) 2012-11-23 2020-01-01 Ansaldo Energia IP UK Limited WAND EINER HEIßGASDURCHGANGSKOMPONENTE EINER GASTURBINE UND VERFAHREN ZUM VERSTÄRKEN DES BETRIEBSVERHALTENS EINER GASTURBINE
US9765968B2 (en) * 2013-01-23 2017-09-19 Honeywell International Inc. Combustors with complex shaped effusion holes
US9228747B2 (en) * 2013-03-12 2016-01-05 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
DE102013221286B4 (de) 2013-10-21 2021-07-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammer, insbesondere Gasturbinenbrennkammer, z. B. für ein Luftfahrttriebwerk
FR3035481B1 (fr) * 2015-04-23 2017-05-05 Snecma Chambre de combustion de turbomachine comportant un dispositif de guidage de flux d'air de forme specifique
US10260751B2 (en) 2015-09-28 2019-04-16 Pratt & Whitney Canada Corp. Single skin combustor with heat transfer enhancement
KR101766449B1 (ko) * 2016-06-16 2017-08-08 두산중공업 주식회사 공기유도 캡 및 이를 구비하는 연소 덕트
US20190024895A1 (en) * 2017-07-18 2019-01-24 General Electric Company Combustor dilution structure for gas turbine engine
KR101812225B1 (ko) * 2017-08-02 2017-12-27 두산중공업 주식회사 공기유도 캡 및 이를 구비하는 연소 덕트
KR101986729B1 (ko) 2017-08-22 2019-06-07 두산중공업 주식회사 실 영역 집중냉각을 위한 냉각유로 구조 및 이를 포함하는 가스 터빈용 연소기
US11268438B2 (en) * 2017-09-15 2022-03-08 General Electric Company Combustor liner dilution opening
KR102099300B1 (ko) 2017-10-11 2020-04-09 두산중공업 주식회사 스워즐 유동을 개선하는 슈라우드 구조 및 이를 적용한 연소기 버너
US10995635B2 (en) * 2017-11-30 2021-05-04 Raytheon Technologies Corporation Apparatus and method for mitigating particulate accumulation on a component of a gas turbine engine
US11098653B2 (en) * 2018-01-12 2021-08-24 Raytheon Technologies Corporation Apparatus and method for mitigating particulate accumulation on a component of a gas turbine
US11988145B2 (en) * 2018-01-12 2024-05-21 Rtx Corporation Apparatus and method for mitigating airflow separation around engine combustor
US11098899B2 (en) * 2018-01-18 2021-08-24 Raytheon Technologies Corporation Panel burn through tolerant shell design
GB2596305A (en) * 2020-06-23 2021-12-29 Ansaldo Energia Switzerland AG Burner of a reheat gas turbine engine
US11603799B2 (en) * 2020-12-22 2023-03-14 General Electric Company Combustor for a gas turbine engine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589128A (en) * 1970-02-02 1971-06-29 Avco Corp Cooling arrangement for a reverse flow gas turbine combustor
JPS5872822A (ja) * 1981-10-26 1983-04-30 Hitachi Ltd ガスタ−ビン燃焼器の冷却構造
US5435139A (en) * 1991-03-22 1995-07-25 Rolls-Royce Plc Removable combustor liner for gas turbine engine combustor
GB9106085D0 (en) * 1991-03-22 1991-05-08 Rolls Royce Plc Gas turbine engine combustor
IT1255613B (it) * 1992-09-24 1995-11-09 Eniricerche Spa Sistema di combustione a basse emissioni inquinanti per turbine a gas
CA2141066A1 (en) * 1994-02-18 1995-08-19 Urs Benz Process for the cooling of an auto-ignition combustion chamber
EP0918190A1 (de) * 1997-11-21 1999-05-26 Abb Research Ltd. Brenner für den Betrieb eines Wärmeerzeugers
AU9326498A (en) 1997-11-24 1999-06-10 Johnson & Johnson Research Pty. Limited Biopsy instrument with continuous tissue receiving chamber
US6494044B1 (en) * 1999-11-19 2002-12-17 General Electric Company Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
GB2390150A (en) * 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen
US7146815B2 (en) * 2003-07-31 2006-12-12 United Technologies Corporation Combustor
US7010921B2 (en) 2004-06-01 2006-03-14 General Electric Company Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US7464554B2 (en) * 2004-09-09 2008-12-16 United Technologies Corporation Gas turbine combustor heat shield panel or exhaust panel including a cooling device
US7827801B2 (en) * 2006-02-09 2010-11-09 Siemens Energy, Inc. Gas turbine engine transitions comprising closed cooled transition cooling channels
FR2899315B1 (fr) * 2006-03-30 2012-09-28 Snecma Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine
DE102007018061A1 (de) * 2007-04-17 2008-10-23 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammerwand
US9046269B2 (en) * 2008-07-03 2015-06-02 Pw Power Systems, Inc. Impingement cooling device
US8511059B2 (en) * 2008-09-30 2013-08-20 Alstom Technology Ltd. Methods of reducing emissions for a sequential combustion gas turbine and combustor for a gas turbine
US8312722B2 (en) 2008-10-23 2012-11-20 General Electric Company Flame holding tolerant fuel and air premixer for a gas turbine combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788726B2 (en) 2021-12-06 2023-10-17 General Electric Company Varying dilution hole design for combustor liners

Also Published As

Publication number Publication date
EP2423599A2 (de) 2012-02-29
US20120047908A1 (en) 2012-03-01
JP5896644B2 (ja) 2016-03-30
CH703657A1 (de) 2012-02-29
EP2423599A3 (de) 2013-07-31
ES2632755T3 (es) 2017-09-15
JP2012047443A (ja) 2012-03-08
US9157637B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
EP2423599B1 (de) Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens
EP2049841B1 (de) Brennkammer einer verbrennungsanlage
DE102005025823B4 (de) Verfahren und Vorrichtung zum Kühlen einer Brennkammerauskleidung und eines Übergangsteils einer Gasturbine
EP0902167B1 (de) Kühlvorrichtung für Gasturbinenkomponenten
DE60111682T2 (de) Gasturbinenbrennkammer
EP1983265A2 (de) Gasturbinenbrennkammerwand
EP2154431B1 (de) Thermische Maschine
EP0309838B1 (de) Gasbrenner
CH702172A2 (de) Brennkammer für eine Gasturbine ,mit verbesserter Kühlung.
DE19520291A1 (de) Brennkammer
EP1865259A2 (de) Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
DE102014103083A1 (de) System und Verfahren zur Luftkonditionierung auf Rohrniveau
EP2275743A2 (de) Gasturbinenbrennkammer mit Starterfilm zur Kühlung der Brennkammerwand
DE2147135A1 (de) Brennkammermantel insbesondere für Gasturbinentriebwerke
DE2630629B2 (de) Doppelwandiger Flammrohrabschnitt einer Brennkammer für Gasturbinentriebwerke
DE10064264B4 (de) Anordnung zur Kühlung eines Bauteils
DE1108516B (de) Brenneinrichtung
DE4446611A1 (de) Brennkammer
EP0718561A2 (de) Brennkammer
DE102016104957A1 (de) Kühleinrichtung zur Kühlung von Plattformen eines Leitschaufelkranzes einer Gasturbine
WO2012048913A1 (de) Prallgekühlte kopfplatte mit thermischer entkopplung für einen strahlpiloten
DE102015113146A1 (de) Systeme und Vorrichtungen im Zusammenhang mit Gasturbinenbrennkammern
DE102006048842B4 (de) Brennkammer für eine Gasturbine
EP1351021A2 (de) Brennkammer einer Gasturbine mit Starterfilmkühlung
DE2925282C2 (de) Flammenhalter

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/00 20060101ALI20130625BHEP

Ipc: F23R 3/04 20060101ALI20130625BHEP

Ipc: F23R 3/34 20060101AFI20130625BHEP

17P Request for examination filed

Effective date: 20130830

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 894818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012252

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2632755

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170915

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170517

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170818

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170928

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170917

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170817

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012252

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

26N No opposition filed

Effective date: 20180220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 894818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110815

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170517

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 13

Ref country code: DE

Payment date: 20231214

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240430