EP0928396B1 - Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente - Google Patents

Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente Download PDF

Info

Publication number
EP0928396B1
EP0928396B1 EP97944734A EP97944734A EP0928396B1 EP 0928396 B1 EP0928396 B1 EP 0928396B1 EP 97944734 A EP97944734 A EP 97944734A EP 97944734 A EP97944734 A EP 97944734A EP 0928396 B1 EP0928396 B1 EP 0928396B1
Authority
EP
European Patent Office
Prior art keywords
heat
component
wall
heat shield
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97944734A
Other languages
English (en)
French (fr)
Other versions
EP0928396A1 (de
Inventor
Heinz-Jürgen GROSS
Wilhelm Schulten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0928396A1 publication Critical patent/EP0928396A1/de
Application granted granted Critical
Publication of EP0928396B1 publication Critical patent/EP0928396B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/908Fluid jets

Definitions

  • the invention relates to a heat shield component with a hot gas wall to be cooled and a heat shield arrangement which a hot gas-carrying component, in particular a combustion chamber a gas turbine plant, and a plurality of Has heat shield components.
  • EP 0 224 817 B1 describes a heat shield arrangement, in particular for structural parts of gas turbine systems.
  • the heat shield arrangement serves to protect a supporting structure against a hot fluid, especially for Protection of a hot gas duct wall in gas turbine plants.
  • the Heat shield assembly has an inner liner made of heat resistant Material, which is assembled across the board is made of heat shield elements anchored to the supporting structure. These heat shield elements are left with Columns for the flow of cooling fluid arranged side by side and heat-mobile.
  • Each of these heat shield elements has a hat part and a shaft part in the manner of a mushroom on.
  • the hat part is a flat or spatial, polygonal Panel body with straight or curved edge lines.
  • the shaft part connects the central area of the plate body with the support structure.
  • the hat part preferably has a triangular shape, which creates an inner lining thanks to identical hat parts almost any geometry can be produced
  • the hat parts and possibly other parts of the heat shield elements are made of a heat-resistant material, especially a steel.
  • the supporting structure has holes through which a cooling fluid, in particular air, into a Flow in the space between the hat part and the supporting structure can uno from there through the column to flow through the Cooling fluids in one surrounded by the heat shield elements Area, for example a combustion chamber of a gas turbine system, can flow in. This cooling fluid flow diminishes the penetration of hot gas into the gap.
  • U.S. Patent 5,216,886 is a metallic liner for described a combustion chamber. This lining is made from a large number of cubes arranged side by side Hollow components (cells) on a common metal plate are attached. The common metal plate faces an opening is assigned to each cube-shaped cell for the inflow of cooling fluid. The cube-shaped cells are arranged side by side, leaving a gap. They included on each side wall near the common metal plate a respective opening for the outflow of cooling fluid. The cooling fluid therefore enters the column between neighboring cube-shaped cells, flows through them Column through and forms at a hot gas exposed surface parallel to the metallic plate of the cells from a cooling film.
  • Cooling system defines, in which cooling air over a wall structure through the cells into the interior of the combustion chamber. The cooling air is therefore for further cooling purposes lost.
  • DE 35 42 532 A1 describes a wall, in particular for gas turbine systems, described, which has cooling fluid channels.
  • the wall is preferably between one in gas turbine plants Hot room and a cooling fluid room arranged. she is off individual wall elements put together, each of the wall elements a plate body made of heat-resistant material is. Each plate body has its base distributed, parallel cooling channels on one End with the cooling fluid space and at the other end with the Communicate the hot room. The flowing into the hot room Cooling fluid guided through the cooling fluid channels forms on the the surface of the wall element facing the hot room and / or adjacent wall elements a cooling fluid film.
  • GB-A-849 255 there is a cooling system for cooling one Combustion chamber wall shown.
  • the combustion chamber wall is through Wall elements formed.
  • Each wall element has one Hot gas wall with a hot gas and outside with an inside on. Nozzles are perpendicular to the inside arranged. Cooling fluid comes out of these nozzles in the form of a concentrated electricity and hits the inside. This cools the hot gas wall.
  • the cooling fluid is in collected in a collecting chamber and out of the collecting chamber dissipated.
  • the object of the invention is a heat shield component that is coolable with cooling fluid, and a heat shield arrangement specify with heat shield components so that when cooling a small loss at most of a heat shield component of cooling fluid and / or a slight pressure drop occurs.
  • a heat shield component Task solved by one that has an interior, a hot gas wall to be cooled, adjacent to the interior, an inlet channel and an outlet channel for cooling fluid has, the inlet channel facing the hot gas wall is and widens towards the hot gas wall, and that Outlet channel for a return of the cooling fluid with a Discharge channel is connectable.
  • Inlet duct, outlet duct and the closed hot gas wall cause a complete Cooling fluid return, so that by cooling the heat shield component no loss of cooling fluid occurs.
  • the inlet duct is preferably provided with a cover wall, e.g. a baffle cooling plate, which is adjacent to the hot gas wall and passages for the flow guidance of the cooling fluid having.
  • a cover wall e.g. a baffle cooling plate
  • An expansion of the inlet channel through a cover wall with openings is closed, causes an impact cooling of the hot gas wall over its entire Inner surface.
  • the heat shield component is preferably made made of a heat-resistant material, a metal or one Metal alloy, which is especially cast with high precision (Investment casting).
  • Hot gas wall has cooling fins on its inner surface. This flows through the cover plate along these cooling fins cooling fluid reached the hot gas wall.
  • the cooling fins can be connected to the cover plate, the baffle cooling plate.
  • the inlet duct is preferably air from a compressor can be fed to a gas turbine system. That through the heat shield component led air preferably passes through the outlet duct into a combustion chamber, into one or more burners and / or a compressor of the gas turbine system.
  • the supply of the heat shield component with cooling air and the Return of the heated cooling air to a burner of the gas turbine system preferably takes place via axially parallel supply channels.
  • the channels can be set in the radial direction expand as required and their cross sections of the required Adjust the cooling air volume. All heat shield components therefore have essentially identical cooling air entry conditions.
  • the flow path to the heat shield components or the heated ones Cooling air to the burner is due to its brevity only low pressure losses.
  • the supply the one on the outside of a rotationally symmetrical hot gas Component, in particular a combustion chamber Gas turbine system, arranged heat shield components takes place preferably over the guide vanes of the first row of guide vanes the gas turbine. If through the guide vanes feasible amount of cooling air is not sufficient Cooling the heat shield components is sufficient, it goes without saying possible, supply channels on the hot gas Component, especially the combustion chamber, past their Outside.
  • the return of the heated cooling air is preferably done via separate discharge channels that lead directly to a burner a gas turbine plant. It is also possible to use the Outlet duct of the heat shield components directly into one Main duct in which the compressor air is fed to the burner will let out. This can cause the heat shield components absorbed heat again particularly cheap be fed to the gas turbine process.
  • the one extending from the hot gas wall in the direction of the support structure Outer wall of the heat shield component can in the Surrounding the hot gas wall, at least in regions, undulating be trained. This allows the transition of the outer wall from the hot gas area to that of the Support structure adjacent cold area to reduce stress be formed.
  • the inlet duct is preferably inside the heat shield component is surrounded by the outlet duct. He can expand in a funnel shape towards the cover plate.
  • the heat shield component Fastener On which the inlet channel and the outlet channel surrounds.
  • This fastening part preferably has one Foot area, which runs parallel to the support structure and is fastened there for example by screws.
  • the heat shield component preferably has one that conforms to the Hot gas wall adjoining outer wall, which at least in some areas has a holding level.
  • a fastening component for example with a Head part, can be arranged, with the fastening component with a support structure of a combustion chamber can be connected.
  • the fastening component thus causes the heat shield component to be held on the support structure and allows that the heat shield component due to the thermal load can expand freely.
  • the fastening component a cooled screw, which is cast with high precision, his.
  • the hot gas wall preferably has a wall thickness of below 10 mm on.
  • the wall thickness is preferably in a range between 3 to 5 mm, due to a small temperature difference between inside and outside surface high load change resistance of the heat shield components achievable is.
  • the on a heat shield arrangement for lining a hot gas Component, in particular a combustion chamber Gas turbine plant, task directed through a heat shield arrangement solved that a plurality of heat shield components with cooling fluid return.
  • a heat shield component each has a hot gas wall to be cooled, the its outer surface one that can be guided through the combustion chamber Hot gas is facing.
  • the heat shield component enables closed routing of cooling air without loss of cooling air, wherein the cooling air through an inlet duct that extended to the hot gas wall, feedable and via one Exhaust duct is removable.
  • the inlet channel becomes cooling fluid via a feed channel which, for example, with the compressor is connected to a gas turbine system.
  • the heated cooling fluid flowing out of the outlet channel becomes one Discharge channel fed and from there into the burner a gas turbine plant.
  • Each heat shield component has one for guiding the Hot gas designed flow area with its outer Surface facing hot gas wall, to which via an inlet channel Cooling fluid can be supplied according to the principle of impingement cooling and the cooling fluid bouncing off the hot gas wall via a Outlet channel can be brought out of this again.
  • Cooling fluid flowing in a heat shield component in particular Air, thus completely comes out of it out and is thus available for feeding into the thermodynamic Cyclic process available in the gas turbine plant.
  • the heat shield component preferably faces an outer wall a holding step on which a fastening component with a head part.
  • the fastening component is via a shaft part connected to the head part on a Support structure attached, creating the heat shield component is arranged movably on the support structure.
  • the shaft part is preferably elastic, for example over a spring assembly attached to the support structure so that a heat-mobile yet firm connection between given the fastening component and the heat shield component is.
  • the fastening component preferably has one of cooling fluid through which the cooling channel flows and is thus also sufficiently coolable.
  • the cooling duct can be in the interior be open to the hot gas-carrying component, so that cooling fluid flows into this interior in small quantities. Even in this case, the loss of cooling fluid extremely low.
  • FIG. 1 shows a gas turbine system 10, which is partially longitudinal is shown cut open.
  • the gas turbine system 10 has a shaft 26 and is connected in series in the axial direction a compressor 9, an annular combustion chamber 11 and the blading (guide vanes 18, moving blades 27).
  • Combustion air is compressed and heated in the compressor 9, which partially as a cooling fluid 4 (see FIG. 2, 3, 4)
  • Heat shield assembly 20 is supplied.
  • the compressed air is supplied to a plurality of burners 25 which are circular are arranged around the annular combustion chamber 11.
  • One in the Burners 25 not shown burned with the compressor air Fuel forms a hot gas in the combustion chamber 11 29, which from the combustion chamber 11 in the blading of the Gas turbine system 10 (guide blade 18, blade 27) flows in and thus causes rotation of the shaft 26.
  • Combustion chamber 11 shown has a heat shield arrangement 20, which consists of a multiplicity of heat shield components 1 is constructed.
  • the compressor air compressed in the compressor 9 is in a feed channel 12 along the combustion chamber 11 led to each heat shield component 1.
  • a part of Compressor air is used as cooling air 4 in each heat shield component 1 introduced.
  • a partial flow of the compressor air is through the guide vanes 18 of the first row of guide vanes Gas turbine system 10 out.
  • the compressor air as well as the in the heat shield components 1 are heated cooling air 4 Burner 25 supplied in the fuel, not shown is burned. By burning the fuel in the Burner 25 creates a hot gas 29 which passes through the combustion chamber 11 flows to the guide vane 18. Any heat shield component 1 is acted upon by the hot gas 29 on a hot gas wall 2.
  • the interior 6 of each heat shield component 1 is from the hot gas wall 2 and an adjoining one to the supply duct 12 directed outer wall 14 limited.
  • FIG 3 is a longitudinal section through a section Combustion chamber 11 shown in the area of a support structure 17.
  • a heat shield arrangement 20 is provided on the support structure 17 a plurality of heat shield components 1 arranged.
  • Each Heat shield component 1 is directed along a main axis 32, which are essentially perpendicular to the supporting structure 17 is arranged.
  • the heat shield component 1 essentially has one parallel to the support structure 17, the Hot gas 29 exposed hot gas wall 2 on an interior 2A adjacent.
  • One directed along the major axis 32 Inlet channel 3 for cooling fluid 4 widens in the direction the hot gas wall 2 into the interior 2A. He is with one Cover wall 7 completed, which passages 8 to Has flow of cooling fluid 4.
  • the cover wall 7 is directed and extends substantially parallel to the hot gas wall 2 essentially over their entire extent.
  • the cooling fluid 4 flowing through the passages 8 impacts the inner surface 16 and there causes impingement cooling.
  • the hot gas wall 2 has cooling fins on the inner surface 16 15 on which an increase in heat transfer from the Condition hot gas wall 2 on the cooling fluid 4. From the inside surface 16, the heated cooling fluid 4 passes through an outlet channel running essentially parallel to the main axis 32 5 out of the interior 2A of the heat shield component 1. That used to cool the heat shield component 1 Cooling fluid 4 thus comes completely out of the heat shield component 1 out again.
  • the outlet duct 5 closes a discharge duct 13, which is designed, for example, as a pipe can be and is welded to the support structure 17.
  • the Discharge channel 13 preferably leads to a burner 25 Gas turbine plant 10 are supply duct 14 and discharge duct 13 directed parallel to the shaft 26.
  • the outer wall 14 is at least in some areas in an environment the hot gas wall 2 is wavy, which makes a Voltage reduction between heated by the hot gas 29 Areas and cooled areas of the heat shield component 1 is reached.
  • the outer wall 14 goes into a fastening part 19 above, which is at least partially parallel to the support structure 17 is directed and directed parallel to this Area with the support structure 17, for example not over shown screws is attached.
  • the feed channel 12 tapers in the transition to the inlet duct 3, accordingly the discharge duct 13 widens when it exits the outlet duct 5 out.
  • FIG 4 is a section through a Combustion chamber 11 shown in the area of a support structure 17.
  • a heat shield arrangement 20 is provided on the support structure 17 a plurality of heat shield components 1 and the heat shield components 1 fastening fastening components 21, in the form of chilled screws.
  • the heat shield component 1 is directed along a major axis 32 which is substantially perpendicular to the support structure 17.
  • the heat shield component 1 has a substantially parallel to Support structure 17 extending hot gas wall exposed to the hot gas 29 2, which has an interior 2A at least in regions limited.
  • An inlet duct directed along the main axis 32 3 for cooling fluid 4 widens in the interior 2A in Direction of the hot gas wall 2. It is closed with a cover wall 7, which passages 8 for the flow of cooling fluid 4 has.
  • the cover wall 7 is essentially parallel directed to the hot gas wall 2 and extends substantially over their entire extent. That through the culverts 8 flowing cooling fluid 4 bounces on the inner surface 16 of the hot gas wall 2 and causes impingement cooling there.
  • the hot gas wall 2 has cooling fins on the inner surface 16 15 or similar elements that improve heat transfer on which is an increase in heat transfer from the hot gas wall 2 condition on the cooling fluid 4. From the inner surface 16 the heated cooling fluid 4 passes through an essentially Exhaust duct 5 running parallel to the main axis 32 from the Interior 2A of the heat shield component 1 out. That for cooling of the heat shield component 1 used cooling fluid 4 arrives thus complete, i.e. without loss, from the heat shield component 1 out again.
  • the outlet duct 5 is preferably executed concentrically.
  • the hot gas wall 2 has one Wall thickness between 3 mm to 5 mm, so that due to less Temperature differences in it from the heat shield components 1 constructed heat shield arrangement 20 a high load cycle resistance having.
  • the heat shield components 1 can also be attached individually due to the simple attachment assemble and disassemble from the combustion chamber 11. Because of their simple geometry also makes them easy to use coat.
  • a discharge duct is connected to the outlet duct 5 13, which can be designed, for example, as a tube and is welded to the support structure 17.
  • the discharge channel 13 preferably leads to a burner 25 of the gas turbine system 10.
  • the discharge channel 13 can also be a cast component the support structure 17.
  • the heat shield component has for attachment to the support structure 17 1 on a substantially parallel to the main axis 32 extending outer wall 14 a holding stage 19A. At this Holding stage 19A is located along a main axis 33 Fastening component 21 with a head part 22. A head part 23 adjoins the head part 22, which the support structure 17 penetrates and on this with disc springs 31 is elastically attached.
  • the fastening component 21, which is preferably produced as an investment casting, has a cooling channel 24 which extends along the main axis 33 extends and leads into the combustion chamber 11. The cooling channel 24 becomes from a running along the support structure 17 Supply channel 12 fed with cooling fluid 4. That through the Fastening component 21 flowing cooling fluid 4 cools it and thus offers adequate protection against the Hot gas 29.
  • the invention is characterized by a heat shield component , which is preferably designed as a precise casting (investment casting) and a complete return of cooling fluid guaranteed. Bounces inside the heat shield component Cooling fluid on the entire inner surface of the hot gas exposed hot gas wall, making this an effective Experiences cooling.
  • the heated cooling fluid in particular compressor air, is through an outlet channel from the heat shield component led out and preferably a burner fed to the gas turbine plant.
  • the heat shield element is complete Return of cooling fluid diverted from the compressor air back into the main stream of compressor air. this leads to a significant increase in the efficiency of the gas turbine system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Hitzeschildkomponente (1) mit Kühlfluidrückführung mit einer zu kühlenden Heißgaswand (2), einem Einlaßkanal (3) für Kühlfluid (4) und einem Auslaßkanal (5) für das Kühlfluid (4), wobei der Einlaßkanal (3) zur Heißgaswand (2) hin gerichtet ist und sich in Richtung zur Heißgaswand (2) erweitert. Die Erfindung betrifft weiterhin eine Hitzeschildanordnung (20), die eine heißgasführende Komponente (11), insbesondere eine Brennkammer (11) einer Gasturbinenanlage (10) auskleidet und eine Mehrzahl von Hitzeschildkomponenten (1) mit Kühlfluidrückführung aufweist.

Description

Die Erfindung betrifft eine Hitzeschildkomponente mit einer zu kühlenden Heißgaswand sowie eine Hitzeschildanordnung, die eine heißgasführende Komponente, insbesondere eine Brennkammer einer Gasturbinenanlage auskleidet, und eine Mehrzahl von Hitzeschildkomponenten aufweist.
In der EP 0 224 817 B1 ist eine Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen, beschrieben. Die Hitzeschildanordnung dient dem Schutz einer Tragstruktur gegenüber einem heißen Fluid, insbesondere zum Schutz einer Heißgaskanalwand bei Gasturbinenanlagen. Die Hitzeschildanordnung weist eine Innenauskleidung aus hitzebeständigem Material auf, welche flächendeckend zusammengesetzt ist aus an der Tragstruktur verankerten Hitzeschild-Elementen. Diese Hitzeschild-Elemente sind unter Belassung von Spalten zur Durchströmung von Kühlfluid nebeneinander angeordnet und wärmebeweglich. Jedes dieser Hitzeschild-Elemente weist nach Art eines Pilzes einen Hutteil und einen Schaftteil auf. Der Hutteil ist ein ebener oder räumlicher, polygonaler Plattenkörper mit geraden oder gekrümmten Berandungslinien. Der Schaftteil verbindet den Zentralbereich des Plattenkörpers mit der Tragstruktur. Der Hutteil hat vorzugsweise eine Dreiecksform, wodurch durch identische Hutteile eine Innenauskleidung nahezu beliebiger Geometrie herstellbar ist Die Hutteile sowie gegebenenfalls sonstige Teile der Hitzeschild-Elemente bestehen aus einem hochwarmfesten Werkstoff, insbesondere einem Stahl. Die Tragstruktur weist Bohrungen auf, durch welche ein Kühlfluid, insbesondere Luft, in einen Zwischenraum zwischen Hutteil und Tragstruktur einströmen kann uno von dort durch die Spalte zur Durchströmung des Kühlfluids in einen von den Hitzeschild-Elementen umgebenen Raumbereich, beispielsweise eine Brennkammer einer Gasturbinenanlage, einströmen kann. Diese Kühlfluidströmung vermindert das Eindringen von heißem Gas in den Zwischenraum.
In der US-PS 5,216,886 ist eine metallische Auskleidung für eine Verbrennungskammer beschrieben. Diese Auskleidung besteht aus einer Vielzahl nebeneinander angeordneter würfelförmiger Hohlbauteile (Zellen), die an einer gemeinsamen Metallplatte befestigt sind. Die gemeinsame Metallplatte weist jeweils jeder würfelförmigen Zelle zugeordnet eine Öffnung zur Einströmung von Kühlfluid auf. Die würfelförmigen Zellen sind jeweils unter Belassung eines Spaltes nebeneinander angeordnet. Sie enthalten an jeder Seitenwand in der Nähe der gemeinsamen Metallplatte eine jeweilige Öffnung zum Ausströmen von Kühlfluid. Das Kühlfluid gelangt mithin in die Spalte zwischen benachbarte würfelförmige Zellen, strömt durch diese Spalte hindurch und bildet an einer einem Heißgas aussetzbaren parallel der metallischen Platte gerichteten Oberfläche der Zellen einen Kühlfilm aus. Bei dem in der US-PS 5,216,886 beschriebenen Aufbau einer Wandstruktur wird ein offenes Kühlsystem definiert, bei dem Kühlluft über eine Wandstruktur durch die Zellen hindurch in das Innere der Brennkammer hineingelangt. Die Kühlluft ist mithin für weitere Kühlzwecke verloren.
In der DE 35 42 532 A1 ist eine Wand, insbesondere für Gasturbinenanlagen, beschrieben, die Kühlfluidkanäle aufweist. Die Wand ist vorzugsweise bei Gasturbinenanlagen zwischen einem Heißraum und einem Kühlfluidraum angeordnet. Sie ist aus einzelnen Wandelementen zusammengefügt, wobei jedes der Wandelemente ein aus hochwarmfestem Material gefertigter Plattenkörper ist. Jeder Plattenkörper weist über seine Grundfläche verteilte, einander parallele Kühlkanäle auf, die an einem Ende mit dem Kühlfluidraum und an dem anderen Ende mit dem Heißraum kommunizieren. Das in den Heißraum einströmende, durch die Kühlfluidkanäle geführte Kühlfluid bildet auf der dem Heißraum zugewandten Oberfläche des Wandelementes und/oder benachbarter Wandelemente einen Kühlfluidfilm.
In der GB-A-849 255 ist ein Kühlsystem zur Kühlung einer Brennkammerwand gezeigt. Die Brennkammerwand ist durch Wandelemente gebildet. Jedes Wandelement weist eine Heißgaswand mit einer Heißgas-beaufschlagbaren Außenseite und mit einer Innenseite auf. Senkrecht zur Innenseite sind Düsen angeordnet. Aus diesen Düsen tritt Kühlfluid in Form eines konzentrierten Stroms aus und trifft auf die Innenseite. Dadurch wird die Heißgaswand gekühlt. Das Kühlfluid wird in einer Sammelkammer gesammelt und aus der Sammelkammer abgeführt.
Aufgabe der Erfindung ist es, eine Hitzeschildkomponente, die mit Kühlfluid kühlbar ist, sowie eine Hitzeschildanordnung mit Hitzeschildkomponenten anzugeben, so daß bei einer Kühlung einer Hitzeschildkomponente allenfalls ein geringer Verlust an Kühlfluid und/oder ein geringer Druckverlust auftritt.
Erfindungsgemäß wird die auf eine Hitzeschildkomponente gerichtete Aufgabe durch eine solche gelöst, die einen Innenraum, eine zu kühlende, an den Innenraum angrenzende Heißgaswand, einen Einlaßkanal und einen Auslaßkanal für Kühlfluid aufweist, wobei der Einlaßkanal zur Heißgaswand hin gerichtet ist und sich in Richtung zur Heißgaswand erweitert, und der Auslaßkanal für eine Rückführung des Kühlfluides mit einem Abfuhrkanal verbindbar ist. Einlaßkanal, Auslaßkanal und die geschlossene Heißgaswand bewirken eine vollständige Kühlfluidrückführung, so daß durch eine Kühlung der Hitzeschildkomponente keinerlei Verlust an Kühlfluid auftritt.
Der Einlaßkanal ist vorzugsweise mit einer Abdeckwand, z.B. einem Prallkühlblech, abgedeckt, welche der Heißgaswand benachbart ist und zur Strömungsführung des Kühlfluids Durchlässe aufweist. Eine Erweiterung des Einlaßkanals, die durch eine mit Durchlässen versehene Abdeckwand abgeschlossen ist, bewirkt eine Prallkühlung der Heißgaswand über ihre gesamte Innenoberfläche. Die Hitzeschildkomponente besteht vorzugsweise aus einem warmfesten Material, einem Metall oder einer Metallegierung, die insbesondere hochpräzise gegossen ist (Feinguß).
Eine Verbesserung der Kühlung ist dadurch erreichbar, daß die Heißgaswand an ihrer Innenoberfläche Kühlrippen aufweist. Entlang dieser Kühlrippen strömt das durch die Abdeckplatte an die Heißgaswand gelangte Kühlfluid. Die Kühlrippen können mit der Abdeckplatte, dem Prallkühlblech, verbunden sein.
Dem Einlaßkanal ist vorzugsweise Luft aus einem Verdichter einer Gasturbinenanlage zuführbar. Die durch die Hitzeschildkomponente geführte Luft tritt über den Auslaßkanal vorzugsweise in eine Brennkammer, in einen oder mehrere Brenner und/oder einen Verdichter der Gasturbinenanlage ein.
Bei einer vollständigen Rückführung der Kühlluft aus dem Innenraum der Hitzeschildkomponente heraus fällt eine Mischung von Heißgas und Kühlfluid, insbesondere Kühlluft, weg, so daß in einer Gasturbinenanlage gegebenenfalls eine niedrige Heißgastemperatur einstellbar ist. Dies ist mit einer Reduzierung der Stickoxidbildung verbunden. Durch die geschlossene Kühlluftrückführung tritt ebenfalls keine Kantenumströmung einer Hitzeschildkomponente auf, so daß in deren Material, dem Metall, eine harmonische Temperaturverteilung mit geringen thermischen Spannungen einstellbar ist.
Die Versorgung der Hitzeschildkomponente mit Kühlluft und die Rückführung der erwärmten Kühlluft zu einem Brenner der Gasturbinenanlage erfolgt vorzugsweise über achsparallele Versorgungskanäle. Die Kanäle lassen sich in radialer Richtung beliebig erweitern und ihre Querschnitte der erforderlichen Kühlluftmenge anpassen. Alle Hitzeschildkomponenten haben somit im wesentlichen identische Kühllufteintrittsbedingungen. Der Strömungsweg zu den Hitzeschildkomponenten bzw. der erwärmten Kühlluft zu dem Brenner ist aufgrund seiner Kürze mit lediglich geringen Druckverlusten behaftet. Die Versorgung der an einer Außenseite einer rotationssymmetrischen heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, angeordneten Hitzeschildkomponenten, erfolgt vorzugsweise über die Leitschaufeln der ersten Leitschaufelreihe der Gasturbine. Falls die durch die Leitschaufeln führbare Menge an Kühlluft nicht für eine ausreichende Kühlung der Hitzeschildkomponenten ausreicht, ist es selbstverständlich möglich, Versorgungskanäle an der heißgasführenden Komponente, insbesondere der Brennkammer, vorbei an deren Außenseite zu führen.
Die Rückführung der erwärmten Kühlluft erfolgt vorzugsweise über separate Abfuhrkanäle, die unmittelbar zu einem Brenner einer Gasturbinenanlage führen. Es ist ebenfalls möglich, den Auslaßkanal der Hitzeschildkomponenten unmittelbar in einen Hauptkanal, in welchem die Verdichterluft dem Brenner zugeführt wird, münden zu lassen. Hierdurch kann die in den Hitzeschildkomponenten aufgenommene Wärme wieder besonders günstig dem Gasturbinenprozeß zugeführt werden.
Die von der Heißgaswand in Richtung der Tragstruktur sich erstreckende Außenwand der Hitzeschildkomponente kann in der Umgebung der Heißgaswand zumindest bereichsweise wellenförmig ausgebildet sein. Hierdurch kann der Übergang der Außenwand von dem mit Heißgas beaufschlagten Bereich hin zu dem der Tragstruktur benachbarten kalten Bereich spannungsmindernd ausgebildet werden. Der Einlaßkanal ist vorzugsweise im Inneren der Hitzeschildkomponente von dem Auslaßkanal umgeben. Er kann sich trichterförmig zu der Abdeckplatte hin erweitern.
Für eine Befestigung an einer Tragstruktur der heißgasführenden Komponente, insbesondere der Brennkammer einer Gasturbinenanlage, weist die Hitzeschildkomponente vorzugsweise ein Befestigungsteil auf, welches den Einlaßkanal und den Auslaßkanal umgibt. Dieses Befestigungsteil hat vorzugsweise einen Fußbereich, welcher parallel zu der Tragstruktur verläuft und dort beispielsweise durch Schrauben befestigt ist.
Die Hitzeschildkomponente hat vorzugsweise eine sich an die Heißgaswand anschließende Außenwand, welche zumindest bereichsweise eine Haltestufe aufweist. An dieser Haltestufe ist eine Befestigungskomponente, beispielsweise mit einem Kopfteil, anordenbar, wobei die Befestigungskomponente mit einer Tragstruktur einer Brennkammer verbindbar ist. Die Befestigungskomponente bewirkt somit eine Halterung der Hitzeschildkomponente an der Tragstruktur und ermöglicht es, daß sich die Hitzeschildkomponente aufgrund der thermischen Belastung ungehindert ausdehnen kann. Die Befestigungskomponente kann eine gekühlte Schraube, welche hochpräzise gegossen ist, sein.
Die Heißgaswand weist vorzugsweise eine Wandstärke von unter 10 mm auf. Die Wandstärke liegt vorzugsweise in einem Bereich zwischen 3 bis 5 mm, wodurch aufgrund eines kleinen Temperaturunterschiedes zwischen Innen- und Außenoberfläche eine hohe Lastwechselbeständigkeit der Hitzeschildkomponenten erreichbar ist.
Die auf eine Hitzeschildanordnung zur Auskleidung einer heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, gerichtete Aufgabe wird durch eine Hitzeschildanordnung gelöst, die eine Mehrzahl Hitzeschildkomponenten mit Kühlfluidrückführung aufweist. Eine Hitzeschildkomponente hat jeweils eine zu kühlende Heißgaswand, die an ihrer äußeren Oberfläche einem durch die Brennkammer führbaren Heißgas zugewandt ist. Die Hitzeschildkomponente ermöglicht eine geschlossene Führung von Kühlluft ohne Kühlluftverlust, wobei die Kühlluft durch einen Einlaßkanal, der sich hin zu der Heißgaswand erweitert, zuführbar und über einen Auslaßkanal abführbar ist. Dem Einlaßkanal wird Kühlfluid über einen Zufuhrkanal, welcher beispielsweise mit dem Verdichter einer Gasturbinenanlage verbunden ist, zugeführt. Das aus dem Auslaßkanal ausströmende erwärmte Kühlfluid wird einem Abfuhrkanal zugeführt und gelangt von dort in den Brenner einer Gasturbinenanlage. Vorzugsweise ist zumindest ein Zufuhrkanal durch eine Leitschaufel der Gasturbinenanlage geführt.
Jede Hitzeschildkomponente weist eine dem zur Führung des Heißgases ausgelegten Strömungsbereich mit ihrer äußeren Oberfläche zugewandte Heißgaswand auf, an die über einen Einlaßkanal Kühlfluid nach dem Prinzip der Prallkühlung zuführbar und das an der Heißgaswand abgeprallte Kühlfluid über einen Auslaßkanal wieder aus dieser herausführbar ist. Das in eine Hitzeschildkomponente hereingeströmte Kühlfluid, insbesondere Luft, gelangt somit vollständig wieder aus dieser heraus und steht somit zur Einspeisung in den thermodynamischen Kreisprozeß in der Gasturbinenanlage zur Verfügung.
Die Hitzeschildkomponente weist vorzugsweise an einer Außenwand eine Haltestufe auf, an der eine Befestigungskomponente mit einem Kopfteil anliegt. Die Befestigungskomponente ist über einen mit dem Kopfteil verbundenen Schaftteil an einer Tragstruktur befestigt, wodurch die Hitzeschildkomponente wärmebeweglich an der Tragstruktur angeordnet ist. Der Schaftteil ist vorzugsweise elastisch, beispielsweise über eine Federanordnung, an der Tragstruktur befestigt, so daß eine wärmebewegliche und trotzdem feste Verbindung zwischen der Befestigungskomponente und der Hitzeschildkomponente gegeben ist. Die Befestigungskomponente weist vorzugsweise einen von Kühlfluid durchströmbaren Kühlkanal auf und ist somit ebenfalls hinreichend kühlbar. Der Kühlkanal kann in den Innenraum der heißgasführenden Komponente hin geöffnet sein, so daß in geringen Mengen Kühlfluid in diesen Innenraum einströmt. Selbst in diesem Fall ist der Verlust an Kühlfluid äußerst gering.
Anhand des in der Zeichnung dargestellten Ausführungsbeispiels werden ein Hitzeschildelement sowie eine Hitzeschildanordnung näher erläutert. Es zeigen in teilweise schematisierter und nicht maßstäblicher Darstellung:
FIG 1
eine teilweise in Längsrichtung aufgeschnittene Gasturbinenanlage mit einer Ringbrennkammer,
FIG 2
eine vergrößerte Darstellung der Ringbrennkammer in einem Längsschnitt und
FIG 3 und 4
jeweils einen Längsschnitt durch eine Hitzeschildanordnung der Ringbrennkammer
FIG 1 zeigt eine Gasturbinenanlage 10, die teilweise längs aufgeschnitten dargestellt ist. Die Gasturbinenanlage 10 hat eine Welle 26 und weist in axialer Richtung hintereinandergeschaltet einen Verdichter 9, eine Ringbrennkammer 11 sowie die Beschaufelung (Leitschaufeln 18, Laufschaufeln 27) auf. In dem Verdichter 9 wird Verbrennungsluft verdichtet und erwärmt, die teilweise als Kühlfluid 4 (s. FIG 2, 3, 4) einer Hitzeschildanordnung 20 zugeführt wird. Die verdichtete Luft wird einer Mehrzahl von Brennern 25 zugeführt, die kreisringförmig um die Ringbrennkammer 11 angeordnet sind. Ein in den Brennern 25 nicht dargestellter mit der Verdichterluft verbrannter Brennstoff bildet in der Brennkammer 11 ein Heißgas 29, welches aus der Brennkammer 11 in die Beschaufelung der Gasturbinenanlage 10 (Leitschaufel 18, Laufschaufel 27) einströmt und damit eine Rotation der Welle 26 hervorruft.
Die in FIG 2 in vergrößertem Maßstab in einem Längsschnitt dargestellte Brennkammer 11 weist eine Hitzeschildanordnung 20 auf, die aus einer Vielzahl von Hitzeschildkomponenten 1 aufgebaut ist. Die in dem Verdichter 9 komprimierte Verdichterluft wird in einem Zufuhrkanal 12 entlang der Brennkammer 11 zu jeder Hitzeschildkomponente 1 geführt. Ein Teil der Verdichterluft wird als Kühlluft 4 in jede Hitzeschildkomponente 1 eingeführt. Ein Teilstrom der Verdichterluft wird durch die Leitschaufeln 18 der ersten Leitschaufelreihe der Gasturbinenanlage 10 geführt. Die Verdichterluft sowie die in den Hitzeschildkomponenten 1 erwärmte Kühlluft 4 werden einem Brenner 25 zugeführt, in dem nicht dargestellter Brennstoff verbrannt wird. Durch Verbrennung des Brennstoffes in dem Brenner 25 entsteht ein Heißgas 29, welches durch die Brennkammer 11 zu der Leitschaufel 18 strömt. Jede Hitzeschildkomponente 1 wird an einer Heißgaswand 2 mit dem Heißgas 29 beaufschlagt. Das Innere 6 jeder Hitzeschildkomponente 1 wird von der Heißgaswand 2 und einer daran angrenzenden zu dem Zufuhrkanal 12 gerichteten Außenwand 14 begrenzt.
In FIG 3 ist in einem Längsschnitt ein Ausschnitt durch die Brennkammer 11 im Bereich einer Tragstruktur 17 dargestellt. An der Tragstruktur 17 ist eine Hitzeschildanordnung 20 mit einer Mehrzahl von Hitzeschildkomponenten 1 angeordnet. Jede Hitzeschildkomponente 1 ist entlang einer Hauptachse 32 gerichtet, die im wesentlichen senkrecht zur Tragstruktur 17 angeordnet ist. Die Hitzeschildkomponente 1 weist eine im wesentlichen parallel zur Tragstruktur 17 verlaufende, dem Heißgas 29 ausgesetzte Heißgaswand 2 auf, die an einen Innenraum 2A angrenzt. Ein entlang der Hauptachse 32 gerichteter Einlaßkanal 3 für Kühlfluid 4 verbreitert sich in Richtung der Heißgaswand 2 in den Innenraum 2A hinein. Er ist mit einer Abdeckwand 7 abgeschlossen, welche Durchlässe 8 zur Durchströmung von Kühlfluid 4 aufweist. Die Abdeckwand 7 ist im wesentlichen parallel zur Heißgaswand 2 gerichtet und erstreckt sich im wesentlichen über deren gesamte Ausdehnung. Das durch die Durchlässe 8 strömende Kühlfluid 4 prallt auf der Innenoberfläche 16 auf und bewirkt dort eine Prallkühlung. Die Heißgaswand 2 weist an der Innenoberfläche 16 Kühlrippen 15 auf, die eine Erhöhung des Wärmeübertrags von der Heißgaswand 2 auf das Kühlfluid 4 bedingen. Von der Innenoberfläche 16 gelangt das erwärmte Kühlfluid 4 durch einen im wesentlichen parallel zur Hauptachse 32 verlaufenden Auslaßkanal 5 aus dem Innenraum 2A der Hitzeschildkomponente 1 heraus. Das zur Kühlung der Hitzeschildkomponente 1 verwendete Kühlfluid 4 gelangt somit vollständig aus der Hitzeschildkomponente 1 wieder heraus. An den Auslaßkanal 5 schließt sich ein Abfuhrkanal 13 an, der beispielsweise als Rohr ausgeführt sein kann und mit der Tragstruktur 17 verschweißt ist. Der Abfuhrkanal 13 führt vorzugsweise zu einem Brenner 25 der Gasturbinenanlage 10. Zufuhrkanal 14 und Abfuhrkanal 13 sind parallel zur Welle 26 gerichtet.
Die Außenwand 14 ist zumindest bereichsweise in einer Umgebung der Heißgaswand 2 wellenförmig ausgeführt, wodurch eine Spannungsminderung zwischen durch das Heißgas 29 aufgeheizten Bereichen und gekühlten Bereichen der Hitzeschildkomponente 1 erreicht ist. Die Außenwand 14 geht in ein Befestigungsteil 19 über, welches zumindest teilweise parallel zu der Tragstruktur 17 gerichtet ist und an diesem parallel gerichteten Bereich mit der Tragstruktur 17, beispielsweise über nicht dargestellte Schrauben, befestigt ist. Der Zufuhrkanal 12 verjüngt sich im Übergang zu dem Einlaßkanal 3, entsprechend erweitert sich der Abfuhrkanal 13 bei Übergang aus dem Auslaßkanal 5 heraus.
In FIG 4 ist in einem Längsschnitt ein Ausschnitt durch die Brennkammer 11 im Bereich einer Tragstruktur 17 dargestellt. An der Tragstruktur 17 ist eine Hitzeschildanordnung 20 mit einer Mehrzahl von Hitzeschildkomponenten 1 sowie die Hitzeschildkomponenten 1 befestigende Befestigungskomponenten 21, in Form von gekühlten Schrauben, angeordnet. Die Hitzeschildkomponente 1 ist entlang einer Hauptachse 32 gerichtet, die im wesentlichen senkrecht zur Tragstruktur 17 ist. Die Hitzeschildkomponente 1 weist eine im wesentlichen parallel zur Tragstruktur 17 verlaufende, dem Heißgas 29 ausgesetzte Heißgaswand 2 auf, die zumindest bereichsweise einen Innenraum 2A begrenzt. Ein entlang der Hauptachse 32 gerichteter Einlaßkanal 3 für Kühlfluid 4 verbreitert sich in dem Innenraum 2A in Richtung der Heißgaswand 2. Er ist mit einer Abdeckwand 7 abgeschlossen, welche Durchlässe 8 zur Durchströmung von Kühlfluid 4 aufweist. Die Abdeckwand 7 ist im wesentlichen parallel zur Heißgaswand 2 gerichtet und erstreckt sich im wesentlichen über deren gesamte Ausdehnung. Das durch die Durchlässe 8 strömende Kühlfluid 4 prallt auf der Innenoberfläche 16 der Heißgaswand 2 auf und bewirkt dort eine Prallkühlung. Die Heißgaswand 2 weist an der Innenoberfläche 16 Kühlrippen 15 oder ähnliche, den Wärmeübertrag verbessernde Elemente auf, die eine Erhöhung des Wärmeübertrags von der Heißgaswand 2 auf das Kühlfluid 4 bedingen. Von der Innenoberfläche 16 gelangt das erwärmte Kühlfluid 4 durch einen im wesentlichen parallel zur Hauptachse 32 verlaufenden Auslaßkanal 5 aus dem Innenraum 2A der Hitzeschildkomponente 1 heraus. Das zur Kühlung der Hitzeschildkomponente 1 verwendete Kühlfluid 4 gelangt somit vollständig, d.h. ohne Verlust, aus der Hitzeschildkomponente 1 wieder heraus. Der Auslaßkanal 5 ist vorzugsweise konzentrisch ausgeführt. Die Heißgaswand 2 hat eine Wandstärke zwischen 3 mm bis 5 mm, so daß aufgrund geringer Temperaturunterschiede in ihr die aus den Hitzeschildkomponenten 1 aufgebaute Hitzeschildanordnung 20 eine hohe Lastwechselbeständigkeit aufweist. Die Hitzeschildkomponenten 1 lassen sich aufgrund der einfachen Befestigung auch einzeln von der Brennkammer 11 aus montieren und demontieren. Aufgrund ihrer einfachen Geometrie sind sie ebenfalls einfach zu beschichten. An den Auslaßkanal 5 schließt sich ein Abfuhrkanal 13 an, der beispielsweise als Rohr ausgeführt sein kann und mit der Tragstruktur 17 verschweißt ist. Der Abfuhrkanal 13 führt vorzugsweise zu einem Brenner 25 der Gasturbinenanlage 10. Der Abfuhrkanal 13 kann auch ein gegossener Bestandteil der Tragstruktur 17 sein.
Zur Befestigung an der Tragstruktur 17 weist die Hitzeschildkomponente 1 an einer im wesentlichen parallel zur Hauptachse 32 verlaufenden Außenwand 14 eine Haltestufe 19A auf. An dieser Haltestufe 19A liegt eine entlang einer Hauptachse 33 gerichtete Befestigungskomponente 21 mit einem Kopfteil 22 an. An das Kopfteil 22 schließt sich ein Schaftteil 23 an, welches die Tragstruktur 17 durchdringt und an dieser mit Tellerfedern 31 elastisch befestigt ist. Die Befestigungskomponente 21, welche vorzugsweise als Feinguß hergestellt ist, hat einen Kühlkanal 24, der sich entlang der Hauptachse 33 erstreckt und in die Brennkammer 11 hineinführt. Der Kühlkanal 24 wird aus einem entlang der Tragstruktur 17 verlaufenden Zufuhrkanal 12 mit Kühlfluid 4 gespeist. Das durch die Befestigungskomponente 21 strömende Kühlfluid 4 kühlt diese und bietet somit einen hinreichenden Schutz gegenüber dem Heißgas 29.
Die Erfindung zeichnet sich durch eine Hitzeschildkomponente aus, welche vorzugsweise als präzises Gußteil (Feinguß) ausgebildet ist und eine vollständige Rückführung von Kühlfluid gewährleistet. Im Inneren der Hitzeschildkomponente prallt Kühlfluid auf der gesamten Innenoberfläche einer dem Heißgas ausgesetzten Heißgaswand auf, wodurch diese eine effektive Kühlung erfährt. Das erwärmte Kühlfluid, insbesondere Verdichterluft, wird durch einen Auslaßkanal aus der Hitzeschildkomponente herausgeführt und vorzugsweise einem Brenner der Gasturbinenanlage zugeführt. Je nach Ausführung und Befestigung des Hitzeschildelementes erfolgt eine vollständige Rückführung von aus der Verdichterluft abgezweigtem Kühlfluid in den Hauptstrom der Verdichterluft zurück. Dies führt zu einer deutlichen Wirkungsgradsteigerung der Gasturbinenanlage.

Claims (16)

  1. Hitzeschildkomponente (1) mit einem Innenraum (2A), der bereichsweise von einer zu kühlenden Heißgaswand (2) begrenzt ist, mit einem Einlaßkanal (3) zur Einströmung von Kühlfluid (4) in den Innenraum (2A) und einem Auslaßkanal (5) zur Rückführung des Kühlfluides (4) aus dem Innenraum (2A) heraus, wobei der Auslaßkanal (5) für eine Kühlfluidrückführung mit einem Abfuhrkanal (13) verbindbar ist,
    dadurch gekennzeichnet, daß der Einlaßkanal (3) zur Heißgaswand (2) hin gerichtet ist und sich in Richtung zur Heißgaswand (2) erweitert.
  2. Hitzeschildkomponente (1) nach Anspruch 1, in deren Innerem (6) der Auslaßkanal (5) den Einlaßkanal (3) weitgehend umgibt.
  3. Hitzeschildkomponente (1) nach Anspruch 1 oder 2, bei der der Einlaßkanal (3) mit einer Abdeckwand (7) abgedeckt ist, welche der Heißgaswand (2) benachbart ist und zur Strömungsfürung des Kühlfluids (4) Durchlässe (8) aufweist.
  4. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, die aus einem Metall oder einer Metallegierung hergestellt, insbesondere gegossen, ist.
  5. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, wobei dem Einlaßkanal (3) Luft (4) aus einem Verdichter (9) über den Auslaßkanal (5) der Brennkammer (11) einer Gasturbinenanlage (10) zuführbar ist.
  6. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, mit einer sich an die Heißgaswand (2) anschließenden Außenwand (14), welche Außenwand (14) zumindest bereichweise wellenförmig ausgebildet ist.
  7. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, die zur Befestigung an eine Tragstruktur (17) ein den Einlaßkanal (2) und den Auslaßkanal (4) umgebendes Befestigungsteil (19) aufweist.
  8. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, bei der die Heißgaswand (2) an ihrer Innenoberfläche (16) Kühlrippen (15) aufweist.
  9. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, bei der sich der Einlaßkanal (3) trichterförmig erweitert.
  10. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, mit einer sich an die Heißgaswand (2) anschließenden Außenwand (14), Welche Außenwand (14) zumindest bereichsweise eine Haltestufe (19A) aufweist.
  11. Hitzeschildkomponente (1) nach einem der vorhergehenden Ansprüche, bei der die Heißgaswand (2) zumindest bereichsweise eine Wandstärke von unter 10 mm, insbesondere zwischen 3 mm bis 5 mm, aufweist.
  12. Hitzeschildanordnung (20), die eine heißgasführende Komponente (11), insbesondere eine Brennkammer einer Gasturbinenanlage (10), auskleidet und eine Mehrzahl Hitzeschildkomponenten (1) gemäß Patentanspruch 1 aufweist.
  13. Hitzeschildanordnung (20) nach Anspruch 12, bei der zumindest ein Zufuhrkanal (12) durch eine Leitschaufel (18) einer Gasturbinenanlage (10) geführt ist.
  14. Hitzeschildanordnung (20) nach Anspruch 12 oder 13, bei der der Zufuhrkanal (12) und/oder der Abfuhrkanal (13) im wesentlichen senkrecht zu einer Welle (26) einer Gasturbinenanlage (10) gerichtet ist bzw. sind.
  15. Hitzeschildanordnung (20) nach einem der Ansprüche 12 bis 14, bei der jede Hitzeschildkomponente (1) eine Außenwand (14) mit einer Haltestufe (19A) aufweist und zur Befestigung an eine Tragstruktur (17) Befestigungskomponenten (21) mit jeweils einem Kopfteil (22) und einem Schaftteil (23) vorgesehen sind, wobei der Schaftteil (23) jeder Befestigungskomponente (21) an der Tragstruktur (17) befestigt ist, und jeweils der Kopfteil (22) einer Befestigungskomponente (21) die Hitzeschildkomponente (1) haltend an der Haltestufe (19A) aufliegt.
  16. Hitzeschildanordnung (20) nach Anspruch 15, bei der jede Befestigungskomponente (21) kühlbar ist, insbesondere einen von Kühlfluid (4) durchströmbaren Kühlkanal (24) aufweist.
EP97944734A 1996-09-26 1997-09-24 Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente Expired - Lifetime EP0928396B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19639694 1996-09-26
DE19639630 1996-09-26
DE19639630 1996-09-26
DE19639694 1996-09-26
PCT/DE1997/002168 WO1998013645A1 (de) 1996-09-26 1997-09-24 Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente

Publications (2)

Publication Number Publication Date
EP0928396A1 EP0928396A1 (de) 1999-07-14
EP0928396B1 true EP0928396B1 (de) 2001-11-21

Family

ID=26029819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97944734A Expired - Lifetime EP0928396B1 (de) 1996-09-26 1997-09-24 Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente

Country Status (6)

Country Link
US (1) US6047552A (de)
EP (1) EP0928396B1 (de)
JP (1) JP2001504565A (de)
DE (1) DE59706065D1 (de)
RU (1) RU2190807C2 (de)
WO (1) WO1998013645A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507116A1 (de) 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Hitzeschildanordnung für eine ein Heissgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29714742U1 (de) 1997-08-18 1998-12-17 Siemens AG, 80333 München Hitzeschildkomponente mit Kühlfluidrückführung und Hitzeschildanordnung für eine heißgasführende Komponente
SE9801822L (sv) * 1998-05-25 1999-11-26 Abb Ab Förbränningsanordning
US6142734A (en) * 1999-04-06 2000-11-07 General Electric Company Internally grooved turbine wall
DE10003728A1 (de) * 2000-01-28 2001-08-09 Siemens Ag Hitzeschildanordnung für eine Heißgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
EP1245792A1 (de) * 2001-03-30 2002-10-02 Siemens Aktiengesellschaft Gekühlter Mantelring für eine Turbine und Verfahren zur Herstellung eines Mantelrings
EP1247943A1 (de) * 2001-04-04 2002-10-09 Siemens Aktiengesellschaft Formstück zur Bildung eines kühlbaren Turbinen-Mantelrings
EP1271056A1 (de) 2001-06-20 2003-01-02 Siemens Aktiengesellschaft Gasturbinen-Brennkammer und für diese vorgesehenes Verfahren zur Luftführung
GB0117110D0 (en) 2001-07-13 2001-09-05 Siemens Ag Coolable segment for a turbomachinery and combustion turbine
DE10233805B4 (de) * 2002-07-25 2013-08-22 Alstom Technology Ltd. Ringförmige Brennkammer für eine Gasturbine
DE50209166D1 (de) * 2002-08-16 2007-02-15 Siemens Ag Innenkühlbare Schraube
EP1389692A1 (de) * 2002-08-16 2004-02-18 Siemens Aktiengesellschaft Selbstsichernde Befestigungsvorrichtung
EP1420208A1 (de) * 2002-11-13 2004-05-19 Siemens Aktiengesellschaft Brennkammer
EP1431661A1 (de) * 2002-12-19 2004-06-23 Siemens Aktiengesellschaft Ströhmungsführungskörper
EP1443275B1 (de) * 2003-01-29 2008-08-13 Siemens Aktiengesellschaft Brennkammer
US7093441B2 (en) * 2003-10-09 2006-08-22 United Technologies Corporation Gas turbine annular combustor having a first converging volume and a second converging volume, converging less gradually than the first converging volume
EP1672281A1 (de) * 2004-12-16 2006-06-21 Siemens Aktiengesellschaft Hitzeschildelement
JP4453021B2 (ja) * 2005-04-01 2010-04-21 セイコーエプソン株式会社 半導体装置の製造方法及び半導体製造装置
EP1715271A1 (de) * 2005-04-19 2006-10-25 Siemens Aktiengesellschaft Hitzeschildelement zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine
EP1724526A1 (de) * 2005-05-13 2006-11-22 Siemens Aktiengesellschaft Brennkammerschale, Gasturbinenanlage und Verfahren zum An- oder Abfahren einer Gasturbinenanlage
US20070245710A1 (en) * 2006-04-21 2007-10-25 Honeywell International, Inc. Optimized configuration of a reverse flow combustion system for a gas turbine engine
WO2008017551A2 (de) * 2006-08-07 2008-02-14 Alstom Technology Ltd Brennkammer einer verbrennungsanlage
EP2049840B1 (de) * 2006-08-07 2018-04-11 Ansaldo Energia IP UK Limited Brennkammer einer verbrennungsanlage
JP4407685B2 (ja) 2006-10-11 2010-02-03 セイコーエプソン株式会社 半導体装置の製造方法および電子機器の製造方法
JP4362834B2 (ja) * 2006-10-11 2009-11-11 セイコーエプソン株式会社 半導体装置の製造方法、電子機器の製造方法および半導体製造装置
EP1998115A1 (de) * 2007-05-29 2008-12-03 Siemens Aktiengesellschaft Kühlkanal zum Kühlen einer ein Heißgas führenden Komponente
FR2921463B1 (fr) * 2007-09-26 2013-12-06 Snecma Chambre de combustion d'une turbomachine
DE102007062699A1 (de) * 2007-12-27 2009-07-02 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerauskleidung
US8240988B2 (en) * 2008-03-26 2012-08-14 Siemens Energy, Inc. Fastener assembly with cyclone cooling
DE102008028025B4 (de) * 2008-06-12 2011-05-05 Siemens Aktiengesellschaft Hitzeschildanordnung
EP2591881A1 (de) * 2011-11-09 2013-05-15 Siemens Aktiengesellschaft Vorrichtung, Verfahren und Gussschraube zum sicheren Austauschen von Hitzeschildplatten von Gasturbinen
EP2613080A1 (de) * 2012-01-05 2013-07-10 Siemens Aktiengesellschaft Brennkammer einer Ringbrennkammer für eine Gasturbine
EP2693121B1 (de) * 2012-07-31 2018-04-25 Ansaldo Energia Switzerland AG Rauheit nahe der Wand für Dämpfungsvorrichtungen zur Verringerung von Druckschwankungen in Verbrennungssystemen
US9322334B2 (en) * 2012-10-23 2016-04-26 General Electric Company Deformable mounting assembly
EP2728255A1 (de) * 2012-10-31 2014-05-07 Alstom Technology Ltd Heißgas-Segmentanordnung
US10370981B2 (en) * 2014-02-13 2019-08-06 United Technologies Corporation Gas turbine engine component cooling circuit with respirating pedestal
GB201501971D0 (en) * 2015-02-06 2015-03-25 Rolls Royce Plc A combustion chamber
US10101029B2 (en) 2015-03-30 2018-10-16 United Technologies Corporation Combustor panels and configurations for a gas turbine engine
DE102016211613A1 (de) * 2016-06-28 2017-12-28 Siemens Aktiengesellschaft Hitzeschildanordnung einer Brennkammer mit Tellerfederpaket
RU209216U1 (ru) * 2021-08-30 2022-02-07 Антон Владимирович Новиков Теплозащитный экран для камеры сгорания газовой турбины
RU209161U1 (ru) * 2021-12-01 2022-02-03 Антон Владимирович Новиков Теплозащитный экран для камеры сгорания газовой турбины
CN115962488A (zh) * 2023-01-16 2023-04-14 上海电气燃气轮机有限公司 一种燃气轮机燃烧室的热屏蔽固定结构及其固定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
GB1283953A (en) * 1969-06-19 1972-08-02 Rolls Royce Wall for hot fluid streams
DE3664374D1 (en) * 1985-12-02 1989-08-17 Siemens Ag Heat shield arrangement, especially for the structural components of a gas turbine plant
EP0225527A2 (de) * 1985-12-02 1987-06-16 Siemens Aktiengesellschaft Kühlfluidkanäle aufweisende Wand, insbesondere für Gasturbinenanlagen, und Verfahren zu ihrer Herstellung
US4820097A (en) * 1988-03-18 1989-04-11 United Technologies Corporation Fastener with airflow opening
US5216886A (en) 1991-08-14 1993-06-08 The United States Of America As Represented By The Secretary Of The Air Force Segmented cell wall liner for a combustion chamber
JP2792304B2 (ja) * 1992-01-22 1998-09-03 日本電気株式会社 集積回路用冷却装置
DE59208713D1 (de) * 1992-11-09 1997-08-21 Asea Brown Boveri Gasturbinen-Brennkammer
DE4244302C2 (de) * 1992-12-28 2002-08-29 Alstom Vorrichtung zur Prallkühlung
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
GB2298267B (en) * 1995-02-23 1999-01-13 Rolls Royce Plc An arrangement of heat resistant tiles for a gas turbine engine combustor
US5782294A (en) * 1995-12-18 1998-07-21 United Technologies Corporation Cooled liner apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507116A1 (de) 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Hitzeschildanordnung für eine ein Heissgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine
US7849694B2 (en) 2003-08-13 2010-12-14 Siemens Aktiengesellschaft Heat shield arrangement for a component guiding a hot gas in particular for a combustion chamber in a gas turbine
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component

Also Published As

Publication number Publication date
RU2190807C2 (ru) 2002-10-10
US6047552A (en) 2000-04-11
DE59706065D1 (de) 2002-02-21
WO1998013645A1 (de) 1998-04-02
EP0928396A1 (de) 1999-07-14
JP2001504565A (ja) 2001-04-03

Similar Documents

Publication Publication Date Title
EP0928396B1 (de) Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
EP1005620B1 (de) Hitzeschildkomponente mit kühlfluidrückführung
EP1654495B1 (de) Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine
DE102005025823B4 (de) Verfahren und Vorrichtung zum Kühlen einer Brennkammerauskleidung und eines Übergangsteils einer Gasturbine
DE60224339T2 (de) Kühleinsatz mit tangentialer Ausströmung
DE69102032T2 (de) Gasturbinenbrennkammer.
DE3200972C2 (de)
EP0244693B1 (de) Heissgasüberhitzungsschutzeinrichtung für Gasturbinentriebwerke
EP1443275B1 (de) Brennkammer
CH697920A2 (de) Turbinentriebwerk mit einer Brennkammerauskleidung mit wirbelluftgekühltem hinterem Ende und Kühlverfahren.
EP1482246A1 (de) Brennkammer
EP2275743A2 (de) Gasturbinenbrennkammer mit Starterfilm zur Kühlung der Brennkammerwand
EP2711630A1 (de) Vorrichtung zum Kühlen einer Tragstruktur eines Hitzeschildes und Hitzeschild
WO2008052846A1 (de) Turbinenschaufel
WO2014177371A1 (de) Brennerlanze mit hitzeschild für einen brenner einer gasturbine
EP1250555B1 (de) Hitzeschildanordnung für eine heissgas führende komponente, insbesondere für strukturteile von gasturbinen
EP1409926A1 (de) Prallkühlvorrichtung
DE3248439A1 (de) Gasturbinentriebwerk mit gekuehlten schaufelspitzen
EP1306521A1 (de) Laufschaufel für eine Gasturbine und Gasturbine mit einer Anzahl von Laufschaufeln
EP0835996B1 (de) Gasturbine mit einer sequentiellen Verbrennung
EP1507117A1 (de) Brennkammer, insbesondere Gasturbinenbrennkammer
WO2006072528A1 (de) Gasturbine mit einem vordrallerzeuger sowie ein verfahren zum betreiben einer gasturbine
EP1384950B1 (de) Ringförmige Brennkammer für eine Gasturbine
EP0597137B1 (de) Gasturbinen-Brennkammer
EP1422479B1 (de) Brennkammer zur Verbrennung eines brennbaren Fluidgemisches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19990827

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59706065

Country of ref document: DE

Date of ref document: 20020221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060912

Year of fee payment: 10

Ref country code: FR

Payment date: 20060912

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061120

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070924