EP1250555B1 - Hitzeschildanordnung für eine heissgas führende komponente, insbesondere für strukturteile von gasturbinen - Google Patents

Hitzeschildanordnung für eine heissgas führende komponente, insbesondere für strukturteile von gasturbinen Download PDF

Info

Publication number
EP1250555B1
EP1250555B1 EP01914999A EP01914999A EP1250555B1 EP 1250555 B1 EP1250555 B1 EP 1250555B1 EP 01914999 A EP01914999 A EP 01914999A EP 01914999 A EP01914999 A EP 01914999A EP 1250555 B1 EP1250555 B1 EP 1250555B1
Authority
EP
European Patent Office
Prior art keywords
thermal shield
elements
heat shield
cooling
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01914999A
Other languages
English (en)
French (fr)
Other versions
EP1250555A2 (de
Inventor
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1250555A2 publication Critical patent/EP1250555A2/de
Application granted granted Critical
Publication of EP1250555B1 publication Critical patent/EP1250555B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/04Supports for linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to an arrangement of heat shield elements for a hot gas leading structure, in particular a metallic component of a gas turbine plant or combustion chamber.
  • the arrangement consists of a plurality of heat shield elements, which are arranged side by side on a supporting structure and anchored with this area.
  • Such an arrangement is for example from the WO 98/13645 known.
  • the heat shield component consists of a hollow arrangement with an outer shell and a small, hollow insert. Between the insert and the outer shell there is a gap which can be flowed through by the cooling fluid.
  • the insert has on the bottom side passage openings for the cooling fluid.
  • a closed cooling fluid guide is achieved in that the cooling fluid flows through channels in the support structure into the insert, flows from there through passage openings into the outer shell - the cooling takes place by impingement cooling and convection cooling - and from there flows back through separate outlet channels in the support structure.
  • the multi-shell construction of the heat shield element ensures the closed cooling fluid flow. However, such a multi-shell construction is very complicated.
  • the support structure of the combustion chamber consists of inner, intermediate and outer wall.
  • the cooling fluid in particular cooling steam, flows through an inlet into an external cooling space, from there through openings in the intermediate wall into an internal cooling space and from there to the outlet.
  • the cooling of the inner wall takes place by impingement cooling when the cooling fluid passes through the openings of the intermediate wall from the outer to the inner cooling chamber, whose wall facing the hot gas represents the inner wall to be cooled, and by convection cooling through the fluid flowing in the direction of the outlet.
  • a cooling fluid circuit is constructed by the multi-shell structure of the outer wall. Such a multi-shell combustion chamber housing construction is complicated.
  • the use of steam as the cooling fluid requires that the cooling steam already be generated at the start of the turbine and must be fed back into the process.
  • the invention has for its object to provide a heat shield assembly, which allows an economical operation of the system. As needed, economical operation may require primarily low coolant losses, low noise, high efficiency, or a simple and easy to assemble design.
  • a heat shield element in a heat shield arrangement of the type specified at the outset, is a single-shell hollow body which has a cooling air supply channel and at least one opening for discharging the cooling air into a tile interspace which is located between the individual heat shield elements.
  • a single-shell construction is structurally much simpler than the construction of already known multi-shell heat shield elements.
  • a closed cooling fluid guide is achieved in this arrangement in that the cooling air through the cooling air supply channel in the support structure in the interior of the hollow body flows, where, for example, by means of an impingement cooling plate, the hot gas facing surface of the hollow body is cooled. After flowing out of the cooling air into the tile interspace, the air collected there can be used for combustion.
  • a further minimization of the cooling air consumption can be achieved by finding expansion gaps between the heat shield elements in which sealing elements, preferably corrugated sheets, are seated.
  • the outflow of the cooling air from the hollow body through the at least one opening, in addition to the cooling of the lateral edges of the hollow body itself and the cooling of the adjacent heat shield element also ensures the cooling of the sealing element.
  • a heat shield element of the arrangement is anchored to the support structure under prestress.
  • Such anchoring ensures the position of the heat shield element against rotation, especially in the hot-cold transitions which frequently occur during operation and the associated expansion and contraction processes of the components of the arrangement involved.
  • the sealing elements sit in grooves of the heat shield elements, a game is left in the groove transverse direction.
  • adjacent heat shield elements can be displaced against one another in the direction of the sealing elements after release of the anchoring between the heat shield element and the supporting structure, ie in the transverse direction of the groove. It is possible to disassemble and remove a heat shield element from the hot gas side by releasing its anchorage with the support structure and that of the adjacent heat shield elements, pushing the adjacent heat shield elements away from the heat shield element to be removed by utilizing the aforementioned game and removing the heat shield element to be disassembled.
  • FIG. 1 shows a heat shield element 1, which is shown cut longitudinally in the middle.
  • the Switzerlandverschraubung advantageously consists of a central fastening bolt 3a, which has an external thread, one or more disc springs 3b and a nut 3c.
  • the Switzerlandverschraubung spans the heat shield element 1 against the support structure 2 and is held by means of one or more disc springs 3b train. By thus achieved bias the heat shield element 1 is secured in its position. Sealing elements 4 prevent the inflow of cooling air from the tile clearance 5 through the expansion gap 6 in the combustion chamber 7.
  • An opening 8 for the exit of the cooling air from the hollow body 1 in the tile space 5 is preferably realized by all around the side wall of the heat shield element attached partial openings.
  • these partial openings are provided near the hot gas side, so that the cooling of the lateral edges of the heat shield element itself, as well as the cooling of the sealing elements 4 and the cooling of the adjacent heat shield elements is ensured.
  • Such an arrangement of the opening 8 or partial openings also improves the cooling of the side edges of adjacent heat shield elements, which virtually no cooling air leaks have to be accepted.
  • Adjacent heatshield elements 1 separated by an expansion gap 6 may be grouted together in various ways (e.g., by a tongue and groove joint).
  • FIG. 2 shows a sealing element 4 between two adjacent heat shield elements.
  • the sealing element 4 is preferably designed as checker plate.
  • the sealing element 4 is seated in grooves 9 of the heat shield elements, leaving a game 10th
  • FIG. 3 shows the juxtaposed on a support structure 2 heat shield elements seen from the hot gas side.
  • the areas exposed to the hot gas surfaces of the heat shield elements are omitted in the drawing to allow a view into the interior of the hollow body.
  • the cooling air supply channel 11 is performed, for example, as four sub-channels.
  • An anchoring of a heat shield element with the support structure 2 can be produced for example by a guided through the opening 12 screw.
  • the arrows indicate the direction of displaceability of the heat shield elements after their anchoring to the support structure 2 has been solved. In doing so, the in FIG. 2 exploited game 10 shown for the displacement of the heat shield elements. After the anchoring of the four adjacent to a heat shield element 13 heat shield elements has been solved with the support structure, this heat shield element 13 can be dismantled from the hot gas side and removed. During maintenance, such accessibility of the heat shield elements from the hot gas side is advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Ein Heißgasraum, z.B. eine Brennkammer (7) einer Gasturbinenanlage, ist durch Hitzeschildelemente (1) ausgekleidet. Eine geschlossene Kühlluftführung wird dadurch erreicht, dass ein Hitzeschildelement (1) als Hohlkörper ausgeführt wird, in den durch einen Kühlluftzufuhrkanal Kühlluft strömt. Nach Austritt der Kühlluft aus dem Hitzeschildelement (1) durch mindestens eine Öffnung (8) wird die Kühlluft in einem Kachelzwischenraum (5) gesammelt und anschließend für die Verbrennung genutzt.

Description

  • Die Erfindung betrifft eine Anordnung von Hitzeschildelementen für eine Heißgas führende Struktur, insbesondere ein metallisches Bauteil einer Gasturbinenanlage oder Brennkammer. Die Anordnung besteht aus einer Mehrzahl von Hitzeschildelementen, die flächendeckend nebeneinander auf einer Tragstruktur angeordnet und mit dieser verankert sind. Eine solche Anordnung ist beispielsweise aus der WO 98/13645 bekannt.
  • Aufgrund der in Heißgasräumen herrschenden hohen Temperaturen besteht die Notwendigkeit, eine Tragstruktur, die heißem Gas ausgesetzt ist, zu schützen. Hierzu ist es beispielsweise möglich, den Heißgasraum mit Hitzeschildelementen auszukleiden, deren dem Heißgas zugewandte Fläche gekühlt wird.
  • In DE-U-297 14 742.0 wird eine Hitzeschildkomponente mit Kühlfluidrückführung und Hitzeschildanordnung für eine Heißgas führende Komponente beschrieben. Die Hitzeschildkomponente besteht aus einer hohlen Anordnung mit einer äußeren Schale und einem kleinen, hohlen Einsatz. Zwischen dem Einsatz und der äußeren Schale liegt ein Zwischenraum vor, der mit dem Kühlfluid durchströmbar ist. Der Einsatz besitzt auf der Bodenseite Durchlassöffnungen für das Kühlfluid. Eine geschlossene Kühlfluidführung wird dadurch erreicht, daß das Kühlfluid durch Kanäle in der Tragstruktur in den Einsatz strömt, von dort durch Durchlassöffnungen in die äußere Schale strömt - die Kühlung erfolgt dabei durch Prallkühlung und Konvektionskühlung - und von dort durch separate Auslasskanäle in der Tragstruktur zurückströmt. Der mehrschalige Aufbau des Hitzeschildelements gewährleistet die geschlossene Kühlfluidführung. Ein derartiger mehrschaliger Aufbau jedoch ist sehr aufwändig.
  • In DE 197 51 299 C2 wird eine Brennkammer sowie ein Verfahren zur Dampfkühlung einer Brennkammer vorgeschlagen. Dabei besteht die Tragstruktur der Brennkammer aus Innen-, Zwischen- und Außenwand. Das Kühlfluid, insbesondere Kühldampf, strömt durch einen Einlass in einen Außenkühlraum, von dort aus durch Öffnungen in der Zwischenwand in einen Innenkühlraum und von dort zum Auslass. Die Kühlung der Innenwand erfolgt durch Prallkühlung beim Übertritt des Kühlfluids durch die Öffnungen der Zwischenwand vom Außen- in den Innenkühlraum, dessen dem Heißgas zugewandte Wand die zu kühlende Innenwand darstellt, und durch Konvektionskühlung durch das in Richtung Auslass strömende Fluid. Ein Kühlfluidkreislauf wird dabei durch den mehrschaligen Aufbau der Außenwand aufgebaut. Eine derartige mehrschalige Brennkammergehäusekonstruktion ist aufwändig. Außerdem erfordert die Verwendung von Dampf als Kühlfluid, dass der Kühldampf bereits beim Start der Turbine erzeugt sein und in den Prozess rückgespeist werden muss.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Hitzeschildanordnung anzugeben, die einen ökonomischen Betrieb der Anlage ermöglicht. Je nach Bedarf kann ein ökonomischer Betrieb in erster Linie geringe Kühlmittelverluste, eine niedrige Geräuschentwicklung, einen hohen Wirkungsgrad oder eine einfache und montagefreundliche Konstruktion erfordern.
  • Erfindungsgemäß ist bei einer Hitzeschildanordnung der eingangs angegebenen Art ein Hitzeschildelement ein einschaliger Hohlkörper, der einen Kühlluftzufuhrkanal und mindestens eine Öffnung zum Austritt der Kühlluft in einen Kachelzwischenraum, der sich zwischen den einzelnen Hitzeschildelementen befindet, besitzt. Ein derartiger einschaliger Aufbau ist konstruktiv wesentlich einfacher als der Aufbau bereits bekannter mehrschaliger Hitzeschildelemente.
  • Eine geschlossene Kühlfluidführung wird in dieser Anordnung dadurch erreicht, dass die Kühlluft durch den Kühlluftzufuhrkanal in der Tragstruktur in das Innere des Hohlkörpers strömt, wo beispielsweise mittels eines Prallkühlbleches die dem Heißgas zugewandte Fläche des Hohlkörpers gekühlt wird. Nach Ausströmen der Kühlluft in den Kachelzwischenraum kann die dort gesammelte Luft zur Verbrennung genutzt werden.
  • Eine weitere Minimierung des Kühlluftverbrauchs kann man dadurch erreichen, dass sich zwischen den Hitzeschildelementen Dehnungsspalten finden, in denen Dichtelemente, bevorzugt Riffelbleche, sitzen. Das Ausströmen der Kühlluft aus dem Hohlkörper durch die mindestens eine Öffnung stellt neben der Kühlung der seitlichen Kanten des Hohlkörpers selbst und der Kühlung des benachbarten Hitzeschildelements auch die Kühlung des Dichtelements sicher.
  • Zweckmäßig wird ein Hitzeschildelement der Anordnung mit der Tragstruktur unter Vorspannung verankert. Eine derartige Verankerung sichert die Lage des Hitzeschildelements gegen Verdrehung, besonders bei den häufig im Betrieb auftretenden Heiß-Kalt-Übergängen und den damit verbundenen Ausdehnungs- und Kontraktionsvorgängen der beteiligten Komponenten der Anordnung.
  • Vorteilhaft sitzen die Dichtelemente in Nuten der Hitzeschildelemente, wobei ein Spiel in Nutenquerrichtung belassen wird. Dadurch können benachbarte Hitzeschildelemente nach Lösen der Verankerung zwischen Hitzeschildelement und Tragstruktur gegeneinander in Richtung der Dichtelemente - d.h. im Nutenquerrichtung - verschoben werden. Man kann ein Hitzeschildelement von der Heißgasseite aus demontieren und entnehmen, indem man seine Verankerung mit der Tragstruktur und diejenige der benachbarten Hitzeschildelemente löst, die benachbarten Hitzeschildelemente vom zu entnehmenden Hitzeschildelement unter Ausnutzung des vorher genannten Spiels wegschiebt und das zu demontierende Hitzeschildelement entnimmt.
  • Im Folgenden wird ein Ausführungsbeispiel einer Hitzeschildanordnung angegeben. Dabei zeigen:
  • FIG 1
    einen Längsschnitt durch die Mitte eines Hitzeschildelements mit Tragstruktur einschließlich der Verankerung des Hitzeschildelements mit der Tragstruktur,
    FIG 2
    einen Längsschnitt durch zwei benachbarte Hitzeschildelemente im Bereich des Dichtelements zwischen den Hitzeschildelementen, und
    FIG 3
    eine Draufsicht von der Heißgasseite aus auf mehrere nebeneinander angeordnete Hitzeschildelemente.
  • FIG 1 zeigt ein Hitzeschildelement 1, das in der Mitte längs aufgeschnitten dargestellt ist. Die Verankerung des Hitzeschildelements 1 mit der Tragstruktur 2 erfolgt beispielsweise durch eine Zugverschraubung. Die Zugverschraubung besteht vorteilhaft aus einem zentralen Befestigungsbolzen 3a, der ein Außengewinde besitzt, einer oder mehreren Tellerfedern 3b sowie einer Mutter 3c. Die Zugverschraubung spannt das Hitzeschildelement 1 gegen die Tragstruktur 2 vor und wird mittels einer oder mehrerer Tellerfedern 3b auf Zug gehalten. Durch die so erreichte Vorspannung wird das Hitzeschildelement 1 in seiner Lage gesichert. Dichtelemente 4 verhindern das Einströmen von Kühlluft aus dem Kachelzwischenraum 5 durch den Dehnungsspalt 6 in die Brennkammer 7. Eine Öffnung 8 zum Austritt der Kühlluft aus dem Hohlkörper 1 in den Kachelzwischenraum 5 wird vorzugsweise durch ringsum an der Seitenwand des Hitzeschildelements angebrachte Teilöffnungen realisiert. Vorteilhaft werden diese Teilöffnungen nahe der Heißgasseite angebracht, so dass die Kühlung der seitlichen Ränder des Hitzeschildelements selbst, sowie die Kühlung der Dichtelemente 4 und die Kühlung der benachbarten Hitzeschildelemente sichergestellt wird. Eine derartige Anordnung der Öffnung 8 bzw. Teilöffnungen verbessert außerdem die Kühlung der Seitenränder benachbarter Hitzeschildelemente, wobei hierfür praktisch keine Kühlluftleckagen hingenommen werden müssen.
  • Nebeneinander liegende, von einem Dehnungsspalt 6 getrennte Hitzeschildelemente 1 können auf verschiedene Weise (z.B. mittels einer Nut- und Feder-Verbindung) miteinander verfugt sein.
  • FIG 2 zeigt ein Dichtelement 4 zwischen zwei benachbarten Hitzeschildelementen. Das Dichtelement 4 wird vorzugsweise als Riffelblech ausgeführt. Das Dichtelement 4 sitzt in Nuten 9 der Hitzeschildelemente unter Belassung eines Spiels 10.
  • FIG 3 zeigt die nebeneinander auf einer Tragstruktur 2 angeordneten Hitzeschildelemente von der Heißgasseite aus gesehen. Die dem Heißgas ausgesetzten Flächen der Hitzeschildelemente sind in der Zeichnung weggelassen, um einen Blick in das Innere der Hohlkörper zu ermöglichen.
  • Der Kühlluftzufuhrkanal 11 wird beispielsweise als vier Teilkanäle ausgeführt. Eine Verankerung eines Hitzeschildelements mit der Tragstruktur 2 kann beispielsweise durch eine durch die Öffnung 12 hindurchgeführte Schraubverbindung hergestellt werden.
  • Die Pfeile deuten die Richtung der Verschiebbarkeit der Hitzeschildelemente an, nachdem deren Verankerung mit der Tragstruktur 2 gelöst wurde. Dabei wird das in FIG 2 gezeigte Spiel 10 für die Verschiebung der Hitzeschildelemente ausgenutzt. Nachdem die Verankerung der vier zu einem Hitzeschildelement 13 benachbarten Hitzeschildelemente mit der Tragstruktur gelöst wurde, kann dieses Hitzeschildelement 13 von der Heißgasseite aus demontiert und entnommen werden. Bei Wartungsarbeiten ist eine derartige Zugänglichkeit der Hitzeschildelemente von der Heißgasseite aus vorteilhaft.

Claims (5)

  1. Hitzeschildanordnung mit geschlossener Kühlluftführung für eine Heißgas führende Struktur,
    insbesondere ein metallisches Bauteil einer Gasturbinenanlage oder Brennkammer,
    mit flächendeckend nebeneinander auf einer Tragstruktur (2) verankerten Hitzeschildelementen (1),
    dadurch gekennzeichnet,
    dass die Hitzeschildelemente (1) einschalige Hohlkörper sind, und einen Kühlluftzufuhrkanal und
    mindestens eine Öffnung zum Austritt der Kühlluft in einen Kachelzwischenraum (5), der sich zwischen den einzelnen Hitzeschildelementen (1) befindet,
    besitzen, und
    dass Dehnungsspalte (6) zwischen den Hitzeschildelementen (1) vorhanden sind,
    wobei in den Dehnungsspalten (6) Dichtelemente (4), bevorzugt Riffelbleche, angeordnet sind,
    die durch die Kühlluft gekühlt werden.
  2. Hitzeschildanordnung nach Anspruch 1,
    dadurch gekennzeichnet, dass die Hitzeschildelemente (1) mit der Tragstruktur (2) unter Vorspannung verankert sind.
  3. Hitzeschildanordnung nach Anspruch 2,
    dadurch gekennzeichnet, dass die Dichtelemente (4) in Nuten (9) der Hitzeschildelemente (1) sitzen, unter Belassung eines Spiels (10) in Nuten-Querrichtung.
  4. Hitzeschildanordnung nach Anspruch 3,
    dadurch gekennzeichnet, dass die Dichtelemente (4) so gestaltet sind, dass nach dem Lösen der Verankerung zwischen einem ersten Hitzeschildelement (1) und der Tragstruktur (2) benachbarte Hitzeschildelemente gegeneinander in Richtung der Dichtelemente derart verschiebbar sind, dass das erste Hitzeschildelement von der Heißgasseite aus entnehmbar ist.
  5. Hitzeschildanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Öffnung 8 zum Austritt der Kühlluft aus dem Hitzeschildelement (1) in am heißgasseitigen seitlichen Rand des Hitzeschildelements (1) umlaufend angeordneten Teilöffnungen (9) besteht.
EP01914999A 2000-01-28 2001-01-25 Hitzeschildanordnung für eine heissgas führende komponente, insbesondere für strukturteile von gasturbinen Expired - Lifetime EP1250555B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10003728 2000-01-28
DE10003728A DE10003728A1 (de) 2000-01-28 2000-01-28 Hitzeschildanordnung für eine Heißgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
PCT/DE2001/000300 WO2001055273A2 (de) 2000-01-28 2001-01-25 Hitzeschildanordnung für eine heissgas führende komponente, insbesondere für strukturteile von gasturbinen

Publications (2)

Publication Number Publication Date
EP1250555A2 EP1250555A2 (de) 2002-10-23
EP1250555B1 true EP1250555B1 (de) 2008-11-26

Family

ID=7629046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01914999A Expired - Lifetime EP1250555B1 (de) 2000-01-28 2001-01-25 Hitzeschildanordnung für eine heissgas führende komponente, insbesondere für strukturteile von gasturbinen

Country Status (6)

Country Link
US (1) US6786048B2 (de)
EP (1) EP1250555B1 (de)
JP (1) JP2003524733A (de)
CN (1) CN1311195C (de)
DE (2) DE10003728A1 (de)
WO (1) WO2001055273A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10155420A1 (de) 2001-11-12 2003-05-22 Rolls Royce Deutschland Hitzeschildanordnung mit Dichtungselement
EP1533574A1 (de) * 2003-11-24 2005-05-25 Siemens Aktiengesellschaft Gasturbinenbrennkammer mit Verkleidungselementen und Verfahren zum Anbringen und/oder Entfernen dieser Verkleidungselemente
EP1862740B1 (de) * 2006-05-31 2015-09-16 Siemens Aktiengesellschaft Brennkammerwand
WO2009007283A2 (de) * 2007-07-09 2009-01-15 Siemens Aktiengesellschaft Gasturbinenbrenner
DE102007061995B4 (de) * 2007-12-21 2012-03-01 Airbus Operations Gmbh Vorrichtung zum mechanisch entkoppelten Befestigen einer von Heißgas durchströmten Flugzeugkomponente
DE102007062699A1 (de) * 2007-12-27 2009-07-02 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerauskleidung
EP2236928A1 (de) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Hitzeschildelement eines Hitzeschildes
EP2407641A1 (de) * 2010-07-13 2012-01-18 Siemens Aktiengesellschaft Dichtelement zur Dichtung eines Spalts sowie Dichtungsanordnung
EP2423596A1 (de) * 2010-08-27 2012-02-29 Siemens Aktiengesellschaft Hitzeschildelement
US9353635B2 (en) * 2011-08-16 2016-05-31 General Electric Company Seal end attachment
EP2591881A1 (de) * 2011-11-09 2013-05-15 Siemens Aktiengesellschaft Vorrichtung, Verfahren und Gussschraube zum sicheren Austauschen von Hitzeschildplatten von Gasturbinen
ITMI20131115A1 (it) * 2013-07-03 2015-01-04 Ansaldo Energia Spa Piastrella per il rivestimento di camere di combustione, in particolare di impianti per la produzione di energia elettrica a turbina a gas, e camera di combustione comprendente detta piastrella
US9416675B2 (en) * 2014-01-27 2016-08-16 General Electric Company Sealing device for providing a seal in a turbomachine
DE102016114177B4 (de) * 2016-04-15 2023-11-23 Jünger+Gräter GmbH Feuerfestschutzsegment
CN109630270B (zh) * 2018-12-14 2021-03-30 中国航发沈阳发动机研究所 航空发动机用油气混合物热防护结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1756031A (en) * 1926-05-29 1930-04-29 Vernon G Leach Air-cooled furnace block
US2348833A (en) * 1942-12-22 1944-05-16 Westinghouse Electric & Mfg Co Expansion joint construction
US2955415A (en) * 1957-11-27 1960-10-11 Theodore M Long Cooled combustion chamber liner and nozzle supported in buckling modes
US5265411A (en) * 1992-10-05 1993-11-30 United Technologies Corporation Attachment clip
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
GB2298267B (en) * 1995-02-23 1999-01-13 Rolls Royce Plc An arrangement of heat resistant tiles for a gas turbine engine combustor
EP0928396B1 (de) 1996-09-26 2001-11-21 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
GB9623615D0 (en) 1996-11-13 1997-07-09 Rolls Royce Plc Jet pipe liner
DE29714742U1 (de) 1997-08-18 1998-12-17 Siemens AG, 80333 München Hitzeschildkomponente mit Kühlfluidrückführung und Hitzeschildanordnung für eine heißgasführende Komponente
DE19751299C2 (de) 1997-11-19 1999-09-09 Siemens Ag Brennkammer sowie Verfahren zur Dampfkühlung einer Brennkammer
DE59903399D1 (de) * 1998-03-19 2002-12-19 Siemens Ag Wandsegment für einen brennraum sowie brennraum
US6450762B1 (en) * 2001-01-31 2002-09-17 General Electric Company Integral aft seal for turbine applications
US6530225B1 (en) * 2001-09-21 2003-03-11 Honeywell International, Inc. Waffle cooling
EP1302723A1 (de) * 2001-10-15 2003-04-16 Siemens Aktiengesellschaft Auskleidung für Innenwände von Brennkammern
DE10155420A1 (de) * 2001-11-12 2003-05-22 Rolls Royce Deutschland Hitzeschildanordnung mit Dichtungselement

Also Published As

Publication number Publication date
JP2003524733A (ja) 2003-08-19
WO2001055273A2 (de) 2001-08-02
DE50114520D1 (de) 2009-01-08
US6786048B2 (en) 2004-09-07
WO2001055273A3 (de) 2002-02-07
EP1250555A2 (de) 2002-10-23
CN1395667A (zh) 2003-02-05
CN1311195C (zh) 2007-04-18
DE10003728A1 (de) 2001-08-09
US20030021675A1 (en) 2003-01-30

Similar Documents

Publication Publication Date Title
EP1250555B1 (de) Hitzeschildanordnung für eine heissgas führende komponente, insbesondere für strukturteile von gasturbinen
EP1005620B1 (de) Hitzeschildkomponente mit kühlfluidrückführung
EP0928396B1 (de) Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
DE3200972C2 (de)
DE3113379C2 (de)
DE2550100C2 (de) Einrichtung zur Kühlung einer durch Verbrennungsgasebeaufschlagten Strömungskanalwand von Gasturbinentriebwerken
EP1443275B1 (de) Brennkammer
EP1451450B1 (de) Gasturbogruppe
EP1284390A1 (de) Hitzeschildanordnung für eine Heissgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
EP2049840B1 (de) Brennkammer einer verbrennungsanlage
WO2006064038A1 (de) Hitzeschildelement
DE3508976C2 (de) Gekühlte Turbinenleitschaufel
DE4223733A1 (de) Wärmeelastische Verbindung von Misch- und Flammrohr einer Gasturbine
EP1431662B1 (de) Geschlossen gekühlte Brennkammer für eine Turbine
EP1165942B1 (de) Strömungsmaschine mit einer kühlbaren anordnung von wandelementen und verfahren zur kühlung einer anordnung von wandelementen
EP0328043B1 (de) Wärmetauscher
EP2711634A1 (de) Hitzeschild mit einer Tragstruktur und Verfahren zum Kühlen der Tragstruktur
DE69200622T2 (de) Mantelturbinenleitapparat.
DE2913748C2 (de) Rohrbündelwärmetauscher zum Kühlen schlackenhaltiger Heißgase der Kohlevergasung
EP1422479B1 (de) Brennkammer zur Verbrennung eines brennbaren Fluidgemisches
EP1384950B1 (de) Ringförmige Brennkammer für eine Gasturbine
EP1507117A1 (de) Brennkammer, insbesondere Gasturbinenbrennkammer
EP0539359B1 (de) Rohrstück, insbesondere Flammrohr, mit gekühltem Stützrahmen für eine hitzefeste Auskleidung
DE2441706A1 (de) Heizkessel mit gusseisernen gerippten rohren
EP0994322A2 (de) Wärmetauscher mit einem Verbindungsstück

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020617

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50114520

Country of ref document: DE

Date of ref document: 20090108

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090127

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

26N No opposition filed

Effective date: 20090827

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150114

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160321

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114520

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801