WO2005017261A1 - Structure d'isolement antisismique - Google Patents

Structure d'isolement antisismique Download PDF

Info

Publication number
WO2005017261A1
WO2005017261A1 PCT/CN2004/000633 CN2004000633W WO2005017261A1 WO 2005017261 A1 WO2005017261 A1 WO 2005017261A1 CN 2004000633 W CN2004000633 W CN 2004000633W WO 2005017261 A1 WO2005017261 A1 WO 2005017261A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
damping material
vibration
support according
solid
Prior art date
Application number
PCT/CN2004/000633
Other languages
English (en)
French (fr)
Inventor
Xuejun Yin
Original Assignee
Gerb (Qingdao) Vibration Control Systems Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerb (Qingdao) Vibration Control Systems Co., Ltd filed Critical Gerb (Qingdao) Vibration Control Systems Co., Ltd
Priority to JP2006515634A priority Critical patent/JP4834543B2/ja
Publication of WO2005017261A1 publication Critical patent/WO2005017261A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/022Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers

Definitions

  • the present invention relates to an isolation support, especially an isolation support used in the field of buildings, engineering structures and bridge structures. Background technique
  • the traditional anti-seismic measure is to strengthen the strength of the structural system. This not only increases the engineering cost, but also the anti-seismic effect is not ideal.
  • Basic isolation technology is a reasonable and effective engineering seismic method that has been rapidly developed in recent years. By setting various isolation supports such as sliding and rolling isolation devices between buildings and foundations, Isolate the transmission of seismic force to the upper structure.
  • the 96219636.3 utility model patent published on 1998.01.14 discloses a lead-core rubber bearing, which is composed of rubber, thin steel plate, upper bearing plate and lower bearing plate. Its structural feature is that the rubber and the thin steel plate are spaced apart from each other. The lead core is pressed tightly into the reserved hole in the center of the seat. Such a structure allows the rubber bearing to have a high level of rigidity and a low load while having a low horizontal stiffness. The upper and lower surfaces of the bearing can be relatively displaced during an earthquake, that is, the building is allowed to move relative to the ground.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings, and provide a vibration-isolating support suitable for various vibration environments, environmental protection and pollution-free, stable damping effect, and low price.
  • a seismic isolation support which is composed of multiple layers
  • the elastic body and the multilayer metal plates are alternately stacked and combined, and at the same time, it also integrates a damping body composed of a non-metallic damping material designed to increase the damping of the support.
  • At least one continuous cavity is provided in the arrangement direction of the layered elastic body and the metal plate, and the damping body is disposed in the cavity.
  • the damping body is a non-metallic damping material, which may be a solid damping material or a liquid damping material, wherein the solid high damping material is bonded by self-adhesion, adhesive bonding, hot-melt bonding, petrification, pouring curing, pressing Connected to the chamber by way of entering.
  • the damping material referred to in the present invention is different from a lead core that provides damping by plastic deformation. It includes any non-metallic material that has a high material damping ratio and can provide sufficient damping.
  • solid damping materials include viscoelastic and viscoplastic polymer materials, such as high-damping rubber, superplastic silicone rubber, asphalt rubber, high-damping polyurethane, and modified asphalt that is solid at operating temperature.
  • Liquid damping materials include High viscosity viscous liquids, such as silicone oil, and modified asphalt that is viscous at operating temperatures.
  • the damping material of the present invention also includes the above-mentioned damping material as a matrix and other materials such as carbon fiber, glass fiber, mica powder, etc., which can increase the inherent damping of the damping material, and the addition of rubber powder can increase the damping material. Of flexibility.
  • the damping body may also be composed of a non-metallic damping material and a filler added therein.
  • the non-metallic damping material may be a solid damping material or a liquid damping material, and the filler is used to increase the damping loss in the damping body, which may be Particles, fibrous clusters, spaced-apart multilayer plates, rod bundles consisting of multiple rods, rolled grids or porous elastic materials, and non-metallic damping materials are fully or at least partially filled with the filler Space between.
  • the seismic isolation support is provided with upper and lower sealing plates, or only one side sealing plate, of course, this structure is not necessary.
  • a chamber it has at least one port, and an end cap or sealing plate is provided at the port for sealing and protecting.
  • the filler When the filler is a rod bundle or a narrow sheet bundle that can be bent or tilted, set it to two groups of upper and lower staggered according to the arrangement direction of the metal plates, and the previous group of fillers is fixed to the upper end cover or support of the chamber. On the upper sealing plate of the seat, the next group of fillers is fixed on the lower end cover of the chamber or the lower sealing plate of the support.
  • the damping body is a solid damping material or a liquid damping material, which is located in the plurality of chambers, wherein the solid high damping material It is connected to the chamber by means of self-adhesion, adhesive bonding, hot-melt bonding, hardening, pouring curing, and pressing.
  • At least one string of chambers separated by a layered metal plate is provided on the layered elastic body, adjacent Small holes are provided on the metal plates between the chambers, and the damping body is a solid damping material or a liquid damping material, which is located in the plurality of chambers penetrated by the small holes.
  • a filler for increasing the damping loss in the damping body can also be added to the damping material, which can be particles, fiber webs, spaced-apart multilayer plates, rod bundles composed of multiple rods, A rolled grid or porous elastic material, and the non-metallic damping material completely or at least partially fills the space between the fillers.
  • the damping material can be particles, fiber webs, spaced-apart multilayer plates, rod bundles composed of multiple rods, A rolled grid or porous elastic material, and the non-metallic damping material completely or at least partially fills the space between the fillers.
  • the elastic body of the seismic isolation support of the present invention may be a traditional rubber material, or a solid damping material or an elastic polyurethane.
  • the damping effect is stable, and it can isolate the horizontal vibration components in different directions.
  • the present invention can be made into different forms of cuboids, cylinders and other structures according to different places of use and requirements. It can be used for the isolation of buildings, engineering structures and bridges, and can also be used for the isolation of mechanical equipment.
  • FIG. 1 is one of the structural schematic diagrams of the present invention
  • FIG. 2 is the second schematic structural diagram of the present invention.
  • FIG. 3 is the third structural diagram of the present invention.
  • FIG. 4 is a fourth structural diagram of the present invention.
  • FIG. 6 is a sixth schematic diagram of the structure of the present invention.
  • FIG. 8 is the eighth schematic diagram of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the present invention.
  • the seismic isolation support is cylindrical or square in shape, and its axial cross section is rectangular, and the elastic body 2 is a high-quality rubber, and a cavity is opened in the center of the elastic body 2 and the metal plate 1 along the arrangement direction of the metal plate 1.
  • a non-metallic damping body is placed in the cavity. Mount.
  • the non-metallic damping body is a solid damping material 31. This example is a modified asphalt mat with short fibers added. It is solid at normal temperature, and the damping ratio of the material can reach 30-50%. This damping material is embedded in the cavity by hot-melt and then sealed with a seal 6.
  • a filling material that can increase the damping loss in the damping body when the support is deformed is embedded in the solid damping material 31.
  • This example is a thin aluminum plate 41, and the solid damping material is filled in the aluminum plate 41. between.
  • the solid damping material 31 Because the solid damping material 31 has high damping, it will generate a resistance opposite to the direction of movement, convert external energy into heat energy, and absorb consumption. This reduces the seismic energy, reduces the seismic response displacement of the building, and protects the life of the building and its residents.
  • the filler aluminum plate is provided in the damping body 31, which increases the internal resistance when the damping body is deformed and the internal loss during deformation.
  • the damping ratio has increased.
  • Embodiment 2 there are at least two chambers.
  • a solid damping material 31 is placed in the chamber, and a filler that can increase the loss of damping in the damping body when the support is deformed is embedded in the solid damping material 31.
  • This example is a rod bundle 42 composed of aluminum rods, and a solid damping material is filled between the rod bundles 42.
  • Embodiment 1 Compared with Embodiment 1, because the rod bundle is provided, the shearing effect of the rod bundle on the damping body is increased, thereby increasing the deformation resistance and internal friction of the damping body. The damping ratio has increased.
  • the rod embedded in the damping body can be a metal with greater stiffness, or a soft metal with better plastic deformation resistance but no pollution, such as aluminum, or a polymer elastic material with a stiffness greater than that of the damping material. Or viscoelastic materials, such as nylon, polyethylene, PVC, etc.
  • the rod bundles 42 are arranged in two mutually staggered upper and lower groups according to the arrangement direction of the metal plates, and the upper group of fillers is fixed on the upper cover plate 5 of the support, and the next group of fillers is fixed on the lower end cover or the support of the chamber. Under cover. In this way, during the earthquake, the upper and lower rod bundles are bent horizontally and moved axially relative to each other, shearing the surrounding damping material, and plastic bending will also occur when the deformation is large. This dual effect will significantly increase the damping of the isolated support.
  • the vibration-isolating support is cylindrical or square, and its axial cross-section is rectangular, as shown in FIG. 5, except that the center chamber is filled with a liquid damping material 32.
  • the short-fiber high-viscosity silicone oil is sealed at the upper and lower ports of the chamber by an upper and lower sealing plate 5, wherein a filling hole and a sealing plug 6 are provided on the upper sealing plate.
  • liquid damping material has higher requirements for sealing, but the damping hysteresis curve of the isolated bearing using liquid damping material is relatively soft, the damping force is proportional to the relative speed of movement, and the damping force is almost zero at low speeds, so it can Fully automatic reset and stable damping performance.
  • the difference is that the liquid damping material 32 is a modified asphalt that is in a liquid-plastic state at normal temperature, and the liquid damping material 32 is filled with a granular filler 43.
  • the particles increase the internal deformation resistance and internal friction of the liquid damping, and improve the damping of the isolation support.
  • the filling added by the liquid damping material 32 The filling is a metal wire mass 44.
  • the metal wire cluster 44 increases the deformation resistance and deformation internal friction of the liquid damping material during an earthquake, and improves the damping of the isolation support.
  • the wire embedded in the damping body is not limited to a wire group, but may also be a grid or a porous elastic material.
  • the seismic isolation support is a hexagonal prism, whose axial cross-section is rectangular, the elastic body 2 is cast by elastic polyurethane, and a plurality of chambers spaced by the metal plate 1 in the arrangement direction are arranged in the central part.
  • a solid damping material 31 is set in the chamber, and this example is a modified asphalt damping pad.
  • the damping pad 31 and the metal plate 1 are placed at intervals, and then the elastic polyurethane is poured to fill the preset space of the elastomer, and then it is molded after curing.
  • the use of elastic polyurethane does not require high temperature and high pressure dredging and vulcanizing equipment, and the production process is simple.
  • the upper and lower sealing plates are omitted.
  • Non-slip mats with high friction coefficients are used on the upper and lower surfaces of the support to prevent mutual sliding between the upper and lower surfaces of the vibration-isolating support and the unevenness of the upper and lower structure surfaces.
  • the elastic body 2 undergoes horizontal shear deformation, and the metal plate 1 undergoes relative translation.
  • the damping body Forcing the damping body located between the metal plates to undergo shear deformation, the damping body generates a resistance opposite to the direction of movement, generates heat by doing work, converts external energy (ground motion energy) into thermal energy, absorbs and consumes seismic energy, and reduces construction
  • the seismic response amplitude of the objects protects the building and the people inside the building.
  • the damping body is a liquid damping material 32, which is located in the In this cavity that is penetrated by small holes, this example is modified asphalt that is in a liquid-plastic state at normal temperature.
  • the damping body is heated to increase the fluidity.
  • the top of the support is provided with a process hole for filling the damping liquid and a sealing plug 6, which is sealed after being filled.
  • the elastic body overlapped with the metal plate 1 is a solid damping material 31, which is a damping rubber in this example, and the upper and lower sealing plates are omitted.
  • the structure of this example is the simplest, but the quality of the material is required to be good. While ensuring the elasticity and horizontal deformation capacity of the seismic isolation support, it must also ensure its high vertical stiffness and bearing capacity, as well as the seismic isolation support. Damping performance.
  • the shape of the elastic body is not limited to only square cylinders, cylinders, and cones, and various shapes can be made according to the needs of actual buildings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Bridges Or Land Bridges (AREA)
  • Springs (AREA)

Description

隔震支座 技术领域
本发明涉及一种隔震支座, 尤其是建筑物、 工程结构及桥梁结构领域中 使用的隔震支座。 背景技术
建筑物和工程结构, 包括楼房、 桥梁等, 当遭受地震时会产生较大的地 震响应位移, 位移过大时结构就可能被毁坏。
传统的抗震措施是加强结构体系的强度, 这样做既增加了工程造价, 抗 震效果也不理想。 基础隔震技术是近年来迅速发展起来的一种合理、 有效的 工程抗震方法, 通过在建筑物与基础之间设置各种各样的隔震支座, 比如滑 移、 滚动隔震装置, 来隔离地震力向上部结构的传递。
随着抗震技术的研究与发展, 人们又采用了一种铅芯橡胶支座来隔震。
1998.01.14公告的 96219636.3实用新型专利, 公开了一种铅芯橡胶支座, 其 由橡胶、 薄钢板、 上支座板和下支座板组成, 其结构特征是橡胶和薄钢板相 互间隔, 支座中心的预留孔中紧密地压入铅芯。 这样的结构使橡胶支座在具 有很高竖向刚度和承载能力的同时, 具有较低的水平刚度, 地震时支座的上 下表面可以作较大的相对位移, 亦即允许建筑物相对于地面作水平相对运 动, 支座变形强迫铅芯反复塑性变形, 大量地吸收消耗了地震能量, 减轻了 结构共振, 建筑物的加速度和绝对位移相对于刚性基础大幅降低, 可以做到 地震时建筑物不倒, 建筑物内人员少伤无亡。
尽管铅芯橡胶支座的阻尼效果比较理想,但由于铅芯的加工制造和使用 过程中, 以及报废后会产生铅污染、 损害人们的健康, 塑性变形后不能自动 复位等缺点, 另外铅芯成本较高, 阻碍了其大规模推广应用。 发明内容
本发明的目的在于克服上述缺陷, 提供一种适用于各种震动环境, 环保 无污染, 阻尼效果稳定、 且价格低廉的隔震支座。
本发明为解决上述问题所采用的技术方案是: 一种隔震支座, 它由多层 弹性体和多层金属板交替叠置结合而成, 同时它还集成有旨在增大支座阻尼 的由非金属阻尼材料构成的阻尼体。
优选地, 在层状弹性体和金属板的排列方向设置至少一个连续的腔室, 阻尼体设置在该腔室内。
优选地, 阻尼体为非金属阻尼材料, 其可以是固体阻尼材料或者液体阻 尼材料, 其中固体高阻尼材料通过自粘、 粘合剂粘结、 热熔粘结、 石克化、 浇 注固化、 压入等方式与腔室联结。
本发明所说的阻尼材料, 有别于靠塑性变形提供阻尼的铅芯, 它包括任 何具有较高材料阻尼比、 能够提供足够阻尼的非金属材料, 分固体阻尼材料 和液体阻尼材料两大类, 固体阻尼材料有粘弹性和粘塑性的高分子材料, 如 高阻尼的橡胶、 超塑性硅氧橡胶, 沥青橡胶、 高阻尼聚氨酯、 及工作温度下 呈固态的改性沥青等; 液体阻尼材料有高粘度的粘滞液体, 例如硅油、 以及 工作温度下呈粘滞状态的改性沥青等。本发明的阻尼材料还包括以上述阻尼 材料为基体、 添加有其它物质的阻尼材料, 如添加碳纤维、 玻璃纤维, 云母 粉等可增大阻尼材料的内在阻尼, 而添加橡胶粉可增大阻尼材料的弹性。
优选地, 阻尼体也可以是由非金属阻尼材料和添加在其中的填充物构 成, 非金属阻尼材料可以是固体阻尼材料或者液体阻尼材料, 填充物用于增 大阻尼体内耗阻尼, 其可以是颗粒物、 纤维丝团、 间隔设置的多层板状物、 由多根棒状物组成的棒束、 呈卷状的网格或多孔弹性材料, 而且非金属阻尼 材料全部充满或至少部分地充满填充物之间的空间。
优选地, 隔震支座设有上下封板, 或只有一面封板, 当然该结构并不是 必备的。 作为腔室, 其至少有一个端口, 在端口处设置起密封和保护作用的 端盖或者封板。
当填充物为可以弯曲或者可以倾斜的棒束或者窄片束时, 将其按照金属板 的排列方向设置为相互交错的上下两组, 而且上一组填充物固定在腔室的上端 盖或者支座的上封板上,下一组填充物固定在腔室下端盖或者支座的下封板上。
优选地,在层状弹性体上设置由层状金属板间隔的至少一串相互独立的 腔室, 阻尼体为固体阻尼材料或者液体阻尼材料, 其位于该多个腔室内, 其 中固体高阻尼材料通过自粘、 粘合剂粘结、 热熔粘结、 ^i 匕、 浇注固化、 压 入等方式与腔室联结。
优选地, 在层状弹性体上设置由层状金属板间隔的至少一串腔室, 相邻 腔室之间的金属板上设置起贯通作用的小孔, 阻尼体为固体阻尼材料或者液 体阻尼材料, 其位于该多个由小孔贯通的腔室内。
更优选地, 还可以在阻尼材料内添加用于增大阻尼体内耗阻尼的填充 物, 其可以是颗粒物、 纤维网、 间隔设置的多层板状物、 由多根棒状物组成 的棒束、 呈卷状的网格或多孔弹性材料, 而且非金属阻尼材料全部充满或至 少部分地充满填充物之间的空间。
优选地, 本发明的隔震支座, 其弹性体可以是传统的橡胶材料, 也可以 是固体阻尼材料或者弹性聚氨酯。
本发明所具有的有益效果是:
(1)阻尼效果稳定, 能隔离不同方向的水平震动分量。
(2)避免了铅芯的使用, 不仅价格低廉, 制造简单, 而且有利于环保。
(3)本发明可根据不同的使用场所和使用要求, 制成不同形式的长方体、 圓柱体等结构体, 用于建筑物、 工程结构和桥梁的隔震, 也可用于机械设备 的隔震。 附图说明
图 1是本发明的结构示意图之一;
图 2是本发明的结构示意图之二;
图 3是本发明的结构示意图之三;
图 4是本发明的结构示意图之四;
图 5是本发明的结构示意图之五;
图 6是本发明的结构示意图之六;
图 7是本发明的结构示意图之七;
图 8是本发明的结构示意图之八;
图 9是本发明的结构示意图之九。
图中: 1 : 金属板, 2: 弹性体, 31 : 固体阻尼材料、 32: 液体阻尼材料, 41 : 铝板, 42: 棒束, 43: 颗粒物: 44: 金属丝团 5: 封板, 6: 密封件。 具体实施方式
实施例 1
如图 1所示, 隔震支座为圓柱形或方柱形, 其轴向截面为矩形, 弹性体 2为优质橡胶, 在弹性体 2和金属板 1的中心沿金属板 1的排列方向开设腔 室, 腔室内放置非金属阻尼体, 5为上下封板, 其中上封板开口, 以方便阻 尼体装入。非金属阻尼体为固体阻尼材料 31 ,本例是添有短纤维的改性沥青 垫, 在常温下呈固态, 材料阻尼比可达 30 - 50 %。 这种阻尼材料通过热熔嵌 入腔室内, 然后用密封件 6密封。
采用这种隔震支座的建筑物在地震时, 由于支座的水平刚度很低, 在水 平方向地震力作用下, 建筑物相对地面平移, 弹性体 2发生水平剪切变形, 金属板 1之间发生相对平移, 强迫腔室内的阻尼体发生剪切为主的变形, 由 于阻尼体 31具有很高的阻尼, 会产生一于与运动方向相反的阻力, 将外界 能量转化为热能, 吸收消耗了地震能量, 减少了建筑物的地震响应位移, 做 到大震不倒, 小震不晃, 保护了建筑物及建筑物内居民的生命安全。
实施例 2
如图 2所示, 与实施例 1相比, 在固体阻尼材料 31 内嵌入可增大支座 变形时阻尼体内耗阻尼的填充材料,本例为薄的铝板 41 , 固体阻尼材料填充 在铝板 41之间。 采用这种结构的隔震支座, 当受到水平方向的外力时, 如 地震, 支座上下面发生相对平移, 支座受到水平剪切变形, 强迫支座腔室内 阻尼体发生剪切为主的变形, 同时铝板 41发生相对平移, 位于铝板之间的 阻尼体受到剪切, 由于固体阻尼材料 31 具有很高的阻尼, 会产生一与运动 方向相反的阻力, 将外界能量转化为热能, 吸收消耗了地震能量, 减少了建 筑物的地震响应位移, 保护了建筑物及建筑物内居民的生命安全。
相对实施例 1而言, 本例由于在阻尼体 31 中设置了填充物铝板, 提高 了阻尼体变形时的内部阻力和变形时的内耗,在阻尼芯尺寸不变的情况下隔 震支座的阻尼比有所提高。
实施例 3
如图 3所示, 与实施例 2相比, 腔室至少有两个, 腔室内放置固体阻尼 材料 31, 在固体阻尼材料 31内嵌入可增大支座变形时阻尼体内耗阻尼的填 充物, 本例为由铝棒组成的棒束 42,而且固体阻尼材料填充在棒束 42之间。 采用这种结构的隔震支座, 当受到水平方向的外力时, 支座上下面发生相对 平移,支座受到水平剪切变形,强迫支座腔室内阻尼体发生剪切为主的变形, 同时棒束 42发生倾斜导致各棒之间发生轴向相对位移, 位于棒束周围的阻 尼体受到棒束 42的剪切, 由于固体阻尼材料 31具有很高的阻尼, 会产生一 与运动方向相反的阻力, 将外界能量转化为热能, 吸收消耗了地震能量, 减 少了建筑物的地震响应位移, 保护了建筑物及建筑物内居民的生命安全。
相对实施例 1而言,由于设置了棒束,增加了棒束对阻尼体的剪切作用, 因而提高了阻尼体的变形阻力和内耗,在阻尼芯尺寸不变的情况下隔震支座 的阻尼比有所提高。
实施例 4
参见图 4,与实施例 3相比,腔室有 1个,腔室内放置固体阻尼材料 31 , 在固体阻尼材料 31内嵌入可增大支座变形时阻尼体内耗阻尼的填充物 4,本 例为由铝棒组成的棒束 42, 而且固体阻尼材料填充在棒束 42之间。 在实际 使用中, 嵌入阻尼体中的棒状物, 可以是刚度较大的金属, 或具有较好塑性 变形耐力但无污染的软金属, 如铝, 也可以是大于阻尼材料刚度的高分子弹 性材料或粘弹性材料, 如尼龙、 聚乙烯、 PVC等。
将棒束 42按照金属板的排列方向设置为相互交错的上下两组, 而且上 一组填充物固定在支座的上封板 5上, 下一组填充物固定在腔室下端盖或者 支座的下封板上。这样在地震时,上下棒束发生水平弯曲,且轴向相对运动, 剪切周围的阻尼材料, 变形大时还会发生塑性弯曲, 这种双重效应会显著增 大隔震支座的阻尼。
实施例 5
与实施例 1相类似, 隔震支座为圓柱形或方柱形, 其轴向截面为矩形, 如图 5所示, 不同的是中心的腔室内填充有液体阻尼材料 32,本例为含有短 纤维的高粘度硅油, 腔室的上下端口由上下封板 5密封, 其中上封板上设有 灌注孔和密封塞 6。
采用液体阻尼材料对密封的要求较高,但采用液体阻尼材料的隔震支座 阻尼滞回曲线比较柔和, 阻尼力与相对运动速度成比例, 在低速时阻尼力几 乎为零, 所以地震后能够完全自动复位, 而且阻尼性能比较稳定。
实施例 6
如图 6所示, 与实施例 5相类似, 不同的是液体阻尼材料 32为在常温 下呈液塑状态的改性沥青, 液体阻尼材料 32中填充了颗粒状填充物 43。 颗 粒物增加了液体阻尼内部的变形阻力和变形内耗, 提高了隔震支座的阻尼。
实施例 7
如图 7所示, 与实施例 6相类似, 不同的是液体阻尼材料 32添加的填 充物为金属丝团 44。 金属丝团 44增加了地震时液体阻尼材料内部的变形阻 力和变形内耗, 提高了隔震支座的阻尼。 在实际使用中, 嵌入阻尼体中的不 局限于金属丝团, 也可以是网栅或多孔弹性材料。
实施例 8
如图 8所示, 隔震支座为六棱柱体, 其轴向截面为矩形, 弹性体 2由弹性 聚氨酯浇筑而成, 其中央部位设置由金属板 1沿排列方向间隔的多个腔室, 腔 室内设置固体阻尼材料 31 , 本例为改性沥青阻尼垫。 实际生产时, 先间隔放置 阻尼垫 31和金属板 1, 然后浇注弹性聚氨酯,使之充满弹性体预设空间, 固化 后即成型。 采用弹性聚氨酯不用高温高压疏化和硫化设备, 生产工艺简单。
另外本实施例省去了上下封板,使用时支座上下面采用摩擦系数很高的 防滑垫, 防止隔震支座上下表面与上下结构间的相互滑动, 并且补偿上下结 构表面的不平度。
采用这种结构的隔震支座, 由于弹性支座的水平刚度 4艮低, 地震时建筑 物相对地面作水平方向的相对移动, 弹性体 2发生水平剪切变形, 金属板 1 就发生相对平移, 强迫位于金属板之间的阻尼体发生剪切变形, 阻尼体则产 生一与运动方向相反的阻力, 做功发热, 将外界能量(地震动能)转化为热 能, 吸收消耗了地震能量, 降低了建筑物的地震响应振幅, 保护了建筑物和 建筑物内的人员。
实施例 9
如图 9所示, 与实施例 8相比, 腔室至少有两串, 相邻腔室之间的金属 板上设置起贯通作用的小孔, 阻尼体为液体阻尼材料 32,其位于该多个由小 孔贯通的腔室内, 本例为在常温下呈液塑状态的改性沥青。 灌注时将阻尼体 加热增加流动性, 支座的顶部设有灌注阻尼液体的工艺孔和密封塞 6, 灌注 好后将其密封。
实施例 10
如图 10所示, 与实施例 8相比, 与金属板 1间隔叠合的弹性体采用固 体阻尼材料 31, 本例为阻尼橡胶, 同时省去了上下封板。 本例的结构最为简 单, 但要求材料的质量较好, 在保证隔震支座的弹性和水平方向变形能力的 同时, 还要保证其较高的垂向刚度和承载能力, 以及隔震支座的阻尼性能。
在本发明中, 弹性体的形状并不仅仅限制于方柱体、 圆柱体和圆锥体, 可以根据实际建筑中的需要做成多种形状。

Claims

权利要求
1. 一种隔震支座, 它由多层弹性体和多层金属板交替叠置结合而成,其 特征在于它还集成有旨在增大支座阻尼的由非金属阻尼材料构成的阻尼体。
2. 根据权利要求 1所述的隔震支座,其特征是在层状弹性体和金属板的 排列方向设置至少一个连续的腔室, 阻尼体设置在该腔室内。
3.根据权利要求 2所述的隔震支座,其特征是阻尼体可以是固体阻尼材 料或者液体阻尼材料。
4. 根据权利要求 2所述的隔震支座, 其特征是阻尼体由非金属阻尼材料 和添加在其中的填充物构成, 非金属阻尼材料可以是固体阻尼材料或者液体 阻尼材料, 填充物用于增大阻尼体内耗阻尼, 其可以是颗粒物、 纤维丝团、 间隔设置的多层板状物、 由多根棒状物组成的棒束、 呈卷状的网格或多孔弹 性材料, 而且非金属阻尼材料全部充满或至少部分地充满填充物之间的空间。
5.根据权利要求 3或 4所述的隔震支座,其特征是腔室至少有一个端口, 在端口处设置起密封和保护作用的端盖或者封板。
6.根据权利要求 5所述的隔震支座,其特征是填充物为可以弯曲或者可 以倾斜的棒束或者窄片束,其按照金属板的排列方向设置为相互交错的上下 两组, 而且上一组填充物固定在腔室的上端盖或者支座的上封板上, 下一组 填充物固定在腔室下端盖或者支座的下封板上。
7. 根据权利要求 1所述的隔震支座,其特征是在层状弹性体上设置由层 状金属板间隔的至少一串腔室, 阻尼体为固体阻尼材料或者液体阻尼材料, 其位于该多个腔室内。
8. 根据权利要求 7所述的隔震支座,其特征是在阻尼材料内添加用于增 大阻尼体内耗阻尼的填充物, 其可以是颗粒物、 纤维网、 板状物、 棒状物, 而且非金属阻尼材料全部充满或至少部分地充满填充物之间的空间。
9. 根据上述任一权利要求所述的隔震支座,其特征是弹性体为固体阻尼 材料时, 以自粘、 粘合剂粘结、 热熔粘结、 硫化、 浇注固化、 压入等方式与 周围材料联结。
10.根据上述任一权利要求所述的隔震支座, 其特征是弹性体为固体阻 尼材料或者弹性聚氨酯。
PCT/CN2004/000633 2003-06-11 2004-06-11 Structure d'isolement antisismique WO2005017261A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006515634A JP4834543B2 (ja) 2003-06-11 2004-06-11 免震支承体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN03112549.2 2003-06-11
CN031125492A CN1218105C (zh) 2003-06-11 2003-06-11 隔震支座

Publications (1)

Publication Number Publication Date
WO2005017261A1 true WO2005017261A1 (fr) 2005-02-24

Family

ID=34152492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000633 WO2005017261A1 (fr) 2003-06-11 2004-06-11 Structure d'isolement antisismique

Country Status (3)

Country Link
JP (1) JP4834543B2 (zh)
CN (1) CN1218105C (zh)
WO (1) WO2005017261A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242212A (ja) * 2005-02-28 2006-09-14 Meiji Univ 積層型免震装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121822A (ja) * 2006-11-14 2008-05-29 Bridgestone Corp 免震構造体及びその製造方法
CN102206930B (zh) * 2007-02-15 2013-02-13 尹学军 一种分体式隔振装置的应用
CN101892630A (zh) * 2010-07-26 2010-11-24 深州市工程塑料有限公司 一种桥梁建筑用支座滑板
CN102296703A (zh) * 2011-05-20 2011-12-28 青岛科而泰环境控制技术有限公司 一种水平位移隔震支座
CN105387110A (zh) * 2015-12-08 2016-03-09 无锡亨宇减震器科技有限公司 可拆装式橡胶减震装置
JP6579026B2 (ja) * 2016-04-15 2019-09-25 オイレス工業株式会社 橋梁用の免震支承及びそれを用いた橋梁
CN105839521A (zh) * 2016-05-20 2016-08-10 西安中交土木科技有限公司 桥梁聚氨酯叠层隔震支座及其施工方法
CN106401255B (zh) * 2016-10-09 2019-05-17 中国建筑第八工程局有限公司 组合式铅颗粒橡胶阻尼器
CN106436952B (zh) * 2016-10-18 2018-08-31 中国建筑第八工程局有限公司 角撑型铅颗粒橡胶阻尼器
CN106760842A (zh) * 2016-12-13 2017-05-31 江苏中南建筑产业集团有限责任公司 Frp大底盘隔震支座及施工方法
CN106988212A (zh) * 2017-05-18 2017-07-28 同济大学 复合阻尼橡胶减震支座
CN107191535B (zh) * 2017-07-19 2019-11-22 胡佳威 机电设备减震装置
CN107191537B (zh) * 2017-07-19 2019-08-23 广西赫博教育科技有限公司 用于中小型机电设备的减震装置
CN107165980B (zh) * 2017-07-19 2019-11-15 蒋玉素 中小型机电设备减震装置
WO2019204090A1 (en) * 2018-04-16 2019-10-24 Aujaghian Damir Seismic isolator and damping device
CN108612962A (zh) * 2018-05-20 2018-10-02 苏州固特斯电子科技有限公司 一种精密仪器减震底座
CN109811638B (zh) * 2019-01-21 2020-11-20 江苏大学 一种基于stp的摩擦摆式自复位隔震装置
CN112797957B (zh) * 2020-12-31 2022-08-12 衡阳师范学院 一种用于无人机倾斜摄影的防抖动测量装置
CN113982347A (zh) * 2021-10-19 2022-01-28 东南大学 一种新型拓扑空间金属网格增强粘弹性阻尼器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104305A (zh) * 1985-01-24 1986-09-03 新西兰发展财务公司 能量吸收器的改进
JPS641843A (en) * 1987-06-24 1989-01-06 Bridgestone Corp Base isolation structure
JPH11159573A (ja) * 1997-12-01 1999-06-15 Sumitomo Rubber Ind Ltd 積層ゴム支承体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784815B2 (ja) * 1986-03-11 1995-09-13 株式会社ブリヂストン 免震装置
JP2855605B2 (ja) * 1986-08-04 1999-02-10 株式会社ブリヂストン 免震装置
JP2816344B2 (ja) * 1987-05-26 1998-10-27 株式会社ブリヂストン 積層ゴム支承体
JPH08296342A (ja) * 1995-04-26 1996-11-12 Toyo Tire & Rubber Co Ltd 免震用構造体
JPH1194021A (ja) * 1997-09-18 1999-04-09 Yokohama Rubber Co Ltd:The 免震支承体およびその製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104305A (zh) * 1985-01-24 1986-09-03 新西兰发展财务公司 能量吸收器的改进
JPS641843A (en) * 1987-06-24 1989-01-06 Bridgestone Corp Base isolation structure
JPH11159573A (ja) * 1997-12-01 1999-06-15 Sumitomo Rubber Ind Ltd 積層ゴム支承体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242212A (ja) * 2005-02-28 2006-09-14 Meiji Univ 積層型免震装置

Also Published As

Publication number Publication date
JP4834543B2 (ja) 2011-12-14
CN1472412A (zh) 2004-02-04
CN1218105C (zh) 2005-09-07
JP2006527341A (ja) 2006-11-30

Similar Documents

Publication Publication Date Title
WO2005017261A1 (fr) Structure d'isolement antisismique
AU680854B2 (en) Energy absorbers and methods of manufacture
CN101440639B (zh) 防屈曲耗能支撑
CN201648958U (zh) 预应力厚层橡胶隔震支座
CN202380601U (zh) 变摩擦阻尼器
CN111350291B (zh) 一种变阻尼变刚度粘弹性-摩擦复合阻尼器
CN208039535U (zh) 一种分离式的预制装配式填充墙框架结构
CN110984068B (zh) 一种高桩码头的抗震复合型高度可调钢支座
CN102296703A (zh) 一种水平位移隔震支座
CN208668661U (zh) 一种封板装配式预应力黏弹性阻尼器
CN2346839Y (zh) 自阻尼叠层橡胶隔震装置
CN201033900Y (zh) 铅心型橡胶隔震抗风复合阻尼支座
CN114263290A (zh) 一种三维网状约束隔震减振支座及其制作方法
CN207892075U (zh) 粘弹性阻尼墙
CN108385845A (zh) 一种新型高阻尼变刚度挤压型隔震装置
CN105040852B (zh) 预应力黏弹性阻尼器
CN2763375Y (zh) 内藏x形钢板铅复合耗能器
JPS63293340A (ja) 積層ゴム支承体
CN110259238B (zh) 刚性套筒滑杆外包铅体的缸内流变型复合支座阻尼器
CN210288097U (zh) 梳齿状弹性伸缩构件及填缝模块
CN113236003A (zh) 一种应用于预制墙板结构的多维减震装置及其减震方法
CN107130831B (zh) 一种多维波面厚粘弹性层隔减振/震装置
CN2358116Y (zh) 一种隔振垫
EP0287683A1 (en) Vibration-proof structure
CN219586965U (zh) 一种插销式减振结构、抗风装置和阻尼装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006515634

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase