WO2005014743A1 - コーティング組成物、およびそれを用いて製造した低誘電シリカ質材料 - Google Patents

コーティング組成物、およびそれを用いて製造した低誘電シリカ質材料 Download PDF

Info

Publication number
WO2005014743A1
WO2005014743A1 PCT/JP2004/011135 JP2004011135W WO2005014743A1 WO 2005014743 A1 WO2005014743 A1 WO 2005014743A1 JP 2004011135 W JP2004011135 W JP 2004011135W WO 2005014743 A1 WO2005014743 A1 WO 2005014743A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating composition
siliceous
compound
absorption
Prior art date
Application number
PCT/JP2004/011135
Other languages
English (en)
French (fr)
Inventor
Tomoko Aoki
Hiroyuki Aoki
Original Assignee
Az Electronic Materials (Japan) K.K.
Az Electronic Materials Usa Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Az Electronic Materials (Japan) K.K., Az Electronic Materials Usa Corp. filed Critical Az Electronic Materials (Japan) K.K.
Priority to CN2004800229744A priority Critical patent/CN1836017B/zh
Priority to US10/565,429 priority patent/US7754003B2/en
Priority to EP20040771176 priority patent/EP1661960B1/en
Publication of WO2005014743A1 publication Critical patent/WO2005014743A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3125Layers comprising organo-silicon compounds layers comprising silazane compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a coating composition and a low dielectric siliceous material produced using the same.
  • the present invention relates to a coating composition. Furthermore, the present invention relates to a method for producing a low dielectric siliceous material using the same, and a low dielectric siliceous material produced using the same. Further, the present invention also relates to a semiconductor device provided with the low dielectric siliceous material thus manufactured. Background art
  • an interlayer insulating film existing between wirings is required to have a lower dielectric constant, and a mechanical method capable of withstanding a wiring material removing step by a CMP method.
  • a CMP method In addition to the chemicals required for CMP and the chemicals used in the CMP method, it is necessary to remove the photoresist by wet stripping. It is also required to have chemical resistance to various chemicals, such as chemicals for removing residues after asshing.
  • IMD interlayer insulating film
  • PMD metal film
  • an organic siliceous film obtained by firing polyorganosilazane can be considered. Since the organic siliceous film thus obtained has a structure in which an organic group is bonded to the silicon atom of silica, the water repellency of the film itself is high. It is possible to obtain a siliceous film having a suppressed rise and having heat resistance and environmental resistance required as an insulating film for a semiconductor.
  • Patent Document 1 JP 2002-75982A
  • Patent Document 1 The porous siliceous film described in Patent Document 1 has an effect that a rise in relative dielectric constant over time due to moisture absorption can be suppressed.
  • the porous silica film generally has an elastic modulus of 3 GPa or less when the relative dielectric constant is about 2.2, and the film strength is high. It turns out that there is room for improvement in terms of
  • the treatment in this humidification step is a treatment for promoting the conversion of alkylsilazane to alkylsilanol, and if the humidification step is omitted in the conventional method, it is difficult to obtain a high quality porous siliceous membrane.
  • the addition of this humidification step lowers the efficiency of production and requires capital investment for the addition of a humidification device. Therefore, a method for obtaining a high-quality silica-based film that does not require this humidification step is required. Development was desired. [0009]
  • the coating film is treated at a high temperature to form the siliceous film.
  • this high temperature treatment was generally performed at 400 ° C or higher.
  • the high-temperature processing amount thermal budget
  • the thermal budget of about 400 ° C for 1 hour has conventionally been within the allowable range.In recent years, it has been desired to reduce this temperature to 375 ° C, and in some cases, 350 ° C. ing.
  • a multilayer wiring structure is formed by using a siliceous film as an interlayer insulating film
  • a low density and a low dielectric constant can be realized by forming a large number of fine holes in the siliceous film.
  • the stress and heat applied when forming metal wiring and other thin films on the porous film trigger the expansion of the hole, and furthermore, the local force of the hole becomes S leak purse, and the porous film is insulated. It may not function as a film. From such a viewpoint, it has been found that the pore diameter of the pores of the porous membrane is desirably 2 nm or less. However, it has been difficult to form a porous film having pores having a uniform diameter of 2 nm or less by the conventional method.
  • the present invention relates to a coating composition characterized by comprising a polyalkylsilazane conjugate, an aceethoxysilane compound, and an organic solvent.
  • the siliceous material of the present invention is characterized in that the coating composition is formed by applying the coating composition on a substrate or filling a groove, and then firing.
  • a semiconductor device is characterized in that the above-mentioned siliceous material is included as an interlayer insulating film.
  • the method for producing a siliceous material according to the present invention is characterized in that the coating composition is heated at a temperature of 350 ° C or less for 1 to 160 minutes.
  • the invention's effect [0015]
  • the present invention solves a problem in the production of a conventional siliceous material as described above, and provides an excellent mechanical strength that can withstand the latest high integration process such as the damascene method.
  • An object of the present invention is to provide a coating composition capable of easily producing a siliceous material having a low dielectric constant and having chemical resistance to various chemicals.
  • the present invention makes it possible to omit the humidification step required when forming a siliceous film using a silazane compound, thereby achieving simplification of the production step.
  • the present invention can reduce the firing temperature as compared with the conventional method for producing a siliceous film, thereby reducing the thermal budget and reducing the electronic material. In addition to improving the stability of the metal wiring inside, it can also reduce energy consumption and reduce manufacturing costs.
  • FIG. 1 is an IR spectrum of a siliceous film of Reference Example 2 using only polymethylsilazane.
  • FIG. 2 is an enlarged view of an IR spectrum of a siliceous film using only polymethylsilazane of Reference Example 2.
  • the polyalkylsilazane conjugate in the present invention has an alkyl-substituted silazane bond.
  • a preferred polyalkylsilazane compound preferably contains a repeating unit represented by the following general formula (1).
  • R 1 represents a hydrogen atom or an alkyl group having 13 to 13 carbon atoms, but it is not always possible for all R 1 of the whole compound to be hydrogen at the same time.
  • R 2 R 4 is a force independently representing a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 2 — R 4 cannot be all hydrogen at the same time.
  • p, q, and r are each 0 or 1, and 0 ⁇ p + q + r ⁇ 3.
  • R 1 is a methyl group and R 2 —R 4 are present, it is preferable that all of them are hydrogen.
  • the polyalkylsilazane compound of the present invention can include any of the following (2) or (3) or both in the structure.
  • R ° - R 11 are each independently a hydrogen atom or an alkyl group having a carbon number 1 one 3 Table, but it R 5 and R 6 are hydrogen at the same time Nag R 9 - R Not all 11 can be hydrogen at the same time.
  • R 5 and R 6 is a hydrogen atom
  • the rest is a methyl group
  • R 7 is a hydrogen atom
  • R 8 is preferably a hydrogen atom
  • all of R 9 and R 11 are preferably S methyl groups.
  • a polyalkylsilazane coating composition containing the above general formula (1) and any one of (2) or (3), or (1) all units of (3) It is particularly useful in that it can prevent gelation during storage of the product.
  • the number of the repeating units represented by the general formula (1) is 50 mol% or more of the total number of the units represented by the general formulas (1) to (3).
  • the repeating unit of the general formula (1) accounts for 50% or more of the total number of the repeating units of the general formulas (1) and (3), problems such as repelling and uneven coating during film formation hardly occur. It is.
  • the polysilazane compound according to the present invention preferably has a number average molecular weight of 100 or more in order to improve the coating properties of the coating composition, particularly, the coating properties when applying by a spin coating method.
  • the polysilazane conjugate according to the present invention preferably has a number average molecular weight of 50,000 or less in order to control the number of crosslinking groups and suppress gelation of the composition.
  • a particularly preferred polyalkylsilazane conjugate comprises a repeating unit of the general formula (1) and at least one unit of the general formula (2) or (3). is there.
  • the number average molecular weight of the polyalkylsilazane compound is preferably from 100 to 50,000, more preferably from 1,000 to 20,000.
  • polyalkylsilazanes can be used as an alkyltrichlorosilane (R SiCl) in the case of a polyalkylsilazane containing a repeating unit of the general formula (1) in ammonolysis when synthesizing ordinary polysilazane, which is obvious to those skilled in the art.
  • R SiCl alkyltrichlorosilane
  • the coating composition according to the invention comprises an acetooxysilane conjugate.
  • This acetoxysilane conjugate has one to fourteen acetoxy groups bonded to a silicon atom.
  • a silicon-containing substituent such as an alkyl group or an alkoxy group may be bonded. If necessary, it may be substituted with another substituent.
  • the acetoxysilane conjugate is thermally decomposed at a relatively low temperature, for example, at about 200 ° C. during firing, and the generated acetoxy group cures the polyalkylsilazane compound. It is thought to act like a catalyst to promote the reaction when forming a siliceous film. Therefore, it is considered that the firing temperature at the time of curing can be lowered, and the pore diameter of the micropores in the porous film can be reduced. Furthermore, it is considered that the decomposition product containing the silicon of the ethoxysilane compound remains in the thin film, strengthens the cross-linking structure formed at the time of curing, and increases the film strength.
  • Acetoethoxysilane compound if a compound having an alkyl group bonded to silicon is used as the acetoethoxysilane compound, the alkyl group tends to remain in the final porous film, and as a result, the film strength tends to decrease.
  • Acetoxysilane compounds should be appropriately selected according to the intended use of the siliceous material.
  • a humidification step has been essential as described above.
  • the purpose of this humidification step was to convert a part of the polyalkylsilazane into a silanol compound.
  • the presence of the acetoxysilane conjugate allows the polyalkylsilazane to be converted into a silanol even without the humidification step. It is converted to lanol in a short time. Therefore, when the coating composition according to the present invention is used, a humidification step is not essential for forming the siliceous material.
  • a porous material described later is used, a micro phase separation state between the porous material and the matrix can be realized in a short time.
  • a silica component is formed only by a dehydration reaction by heating the alkylsilanol body. Heating It was necessary to heat (pre-beta) at a high temperature of 280 ° C or higher to form a silica component sufficient to control the flowability of the alkylsilanol. At this time, if the porous material is burned off, the alkylsilanol body flows in after that, and pores are not formed.Therefore, a heat-resistant porous material that does not burn off at that temperature becomes indispensable. There was also a problem that materials were limited.
  • the microphase separation between the matrix and the porous material has already been almost completed, and the porous material is subsequently subjected to a high-temperature process. In the process of sublimation, the microphase separated state is maintained. Therefore, a porous material that sublimates at a relatively low temperature can be used, and a material having a molecular weight lower than that of a conventionally used porous material can be used.
  • acetooxysilane conjugate examples include tetraacetoxysilane, methyltriacetoxylan, ethyltriacetoxylan, ethoxytriacetoxylan, and isoethoxysilane.
  • the coating composition according to the present invention is obtained by dissolving or dispersing the above-mentioned polyalkylsilazane conjugate and acetylethoxysilane conjugate, and, if necessary, other additives described later in an organic solvent.
  • organic solvents include aromatic hydrocarbon solvents such as benzene, tolylene, xylene, ethylbenzene, getylbenzene, trimethylbenzene, and triethylbenzene; cyclohexane, cyclohexene, decahydrobenzene and the like.
  • Alicyclic hydrocarbon solvents such as naphthalene, ethylcyclohexane, methylcyclohexane, p-menthine, dipentene (limonene); ether solvents such as dipropyl ether and dibutenyl ether; ketone solvents such as methyl isobutyl ketone Solvents: ester solvents such as propylene glycol monomethyl ether acetate and the like.
  • the coating composition according to the present invention can include a porosifying agent to make the pores formed in the siliceous material after curing more or less uniform.
  • a porosifying agent to make the pores formed in the siliceous material after curing more or less uniform.
  • the dielectric constant of the siliceous material formed using the coating composition according to the present invention can be further reduced.
  • a porous material a polyalkylene oxide, an acrylic polymer, or a metharyl polymer can be used.
  • And (mouth) homopolymers and copolymers of acrylates or methacrylates which preferably contain a carboxyl group, a hydroxyl group or a siloxy group in a part of their side groups.
  • polymers of acrylate or methacrylic acid containing a carboxyl group or a hydroxyl group allow the porous material to bind to the polyalkylsilazane compound via these groups, and separate the porous material. , Resulting in a composition that remains in microphase separation without macrophase separation.
  • a particularly preferable porous material is a siloxy group-containing polyethylene oxide compound or a copolymer containing the same as a monomer unit.
  • This is a compound containing polyethylene oxide and further having a group containing a siloxy group (Si_ ⁇ bond) in its structure.
  • the siloxy group-containing group include a trimethylsiloxy group, a dimethylbutylsiloxy group, a methionolehydrosiloxy group, a dimethylsiloxy group, a phenylmethylsiloxy group, a diphenylsiloxy group, a methylvinylsiloxy group, and a phenylvinyl group.
  • siloxy group-containing polyethylene oxide compound is represented by the following general formula.
  • R ′ is an arbitrary substituent such as hydrogen, an alkyl group, an alkoxy group and the like, and R ′ in one molecule may be a mixture of a plurality of types.
  • R ′ is a polymerizable group, and can be polymerized with another monomer unit.
  • L is a linking group, for example, a single bond, an alkylene group, or the like.
  • n and n are numbers representing the degree of polymerization.
  • the molecular weight of the siloxy group-containing polyethylene oxide compound used in the present invention is not particularly limited, and the force S is preferably 100 to 10,000, more preferably 350 to 1,000.
  • the structure of the polyethylene oxide is not particularly limited, but from the viewpoint of appropriately maintaining the viscosity, the weight of the ethyleneoxy moiety is 30 to 90% based on the weight of the molecule.
  • the weight of the siloxy group in the polysiloxy structure is preferably 10 to 40%.
  • siloxy group-containing polyethylene oxide compound examples include:
  • a material selected from the group consisting of a homopolymer and a copolymer of (meth) acrylic acid ester and having a carboxy group or a hydroxyl group in a part of its side groups is also used as the porous material in the present invention.
  • a porous material include acrylate homopolymers, for example, polymethyl acrylate, polyethyl acrylate, and methacrylate.
  • Ter homopolymers for example, polymethyl methacrylate, polyethyl methacrylate; copolymers of atalinoleate, for example, poly (methyl acrylate-co-ethyl acrylate); copolymers of methacrylate, for example, poly (Methyl methacrylate-co-methacrylate); Copolymers of acrylates and methacrylates, for example, poly (methyl acrylate-co-ethyl methacrylate) and the like.
  • the porosifying material is a copolymer, a random copolymer, a block copolymer, or any other sequence having no restriction on the monomer sequence can be used.
  • the monomers constituting the homopolymer and copolymer of the (meth) acrylate include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, Forces include, but are not limited to, methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, and the like.
  • methyl methacrylate and n-butyl methacrylate and n-butyl acrylate and i-butyl acrylate are more preferred from the viewpoint of compatibility with polyalkylsilazane.
  • the (meth) acrylic acid ester polymer that can be used as the porous material has a carboxy group and / or a hydroxyl group in at least a part of the side groups contained in at least one of the polymer structures. included.
  • This carboxy group and / or hydroxyl group can be contained in advance in the monomers constituting the polymer.
  • the monomer having a carboxy group or a hydroxyl group include acrylic acid, methacrylic acid, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, and the like.
  • acrylic acid, methacrylic acid, and 2-hydroxyethyl methacrylate are preferred from the viewpoint of easy reaction with a polyacrylsilazane compound.
  • a carboxyl group and / or a hydroxyl group can be introduced later into the side chain of the homopolymer or copolymer.
  • a carboxyl group can be introduced into a side chain by at least partially hydrolyzing a polymethacrylate.
  • polymer component When two or more polymer components are present, at least one of them may contain a carboxy group and / or a hydroxyl group. Therefore, as a polymer component, one containing neither a hydroxyl group nor a hydroxyl group, for example, a polyacrylate ester and a carboxyl group A mixture containing a boxyl group and / or a hydroxyl group, for example, a mixture with poly (methacrylic acid ester-co-methacrylic acid) may be used.
  • the carboxy group and the hydroxyl group contained in the (meth) acrylate polymer that can be used as the porous material form a cross-link with the polyalkylsilazane compound. Since the crosslinking reaction affects the strength and structure of the final film, the amount of carboxy and hydroxyl groups is important.
  • the amount of the carboxyl group and the hydroxyl group is preferably at least 0.01 mol%, more preferably at least 0.1 mol%, based on the total number of monomers constituting the polymer component. More preferred. Further, in order to prevent gelation due to excessive crosslinking, the content is preferably 50 mol% or less, more preferably 30 mol% or less.
  • the polymer molecules are sublimated, decomposed, or evaporated at an appropriate temperature so as to form a porous film.
  • the amount is at least 1,000, more preferably at least 10,000.
  • the molecular weight of the polymer is preferably 800,000 or less, more preferably 200,000 or less.
  • crotonic acid and isocrotonic acid which are structural isomers of methacrylic acid, are recognized as equivalents of methacrylic acid. Therefore, embodiments using crotonic acid and isocrotonic acid corresponding to the above-mentioned methacrylic acid and esters thereof and esters thereof are also included in the scope of the present invention.
  • the coating composition according to the present invention can also contain other additive components as required.
  • a component include a viscosity modifier, a crosslinking accelerator, and the like.
  • a phosphorus compound for example, tris (trimethylsilyl) phosphate can be contained for the purpose of gettering effect of sodium when used in a semiconductor device.
  • the coating composition according to the present invention comprises the above-mentioned polyalkylsilazane conjugate, an acetooxysilane compound, and if necessary, the above-mentioned porous material or other additives. It is dissolved or dispersed in the above-mentioned organic solvent, and the components are reacted to obtain a coating composition.
  • the order of dissolving each component in the organic solvent is not particularly limited, but the alkylsilazane ligated product and the acetoxoxysilane compound are mixed in the organic solvent, and the mixture is stirred without force. After that, it is preferable to stir and mix the porous material.
  • the temperature at which the alkylsilazane compound or the acetyloxysilane compound is mixed with the organic solvent is preferably 50 to 200 ° C, more preferably 80 to 180 ° C. This temperature varies depending on the type of component used.
  • the stirring time is a force depending on the type of the reacting components and the temperature.
  • the temperature at which the porous material or other additives is mixed is preferably 30 to 80 ° C. in order to prevent the composition from being gelled by the reaction. At this time, it is more preferable to perform the ultrasonic dispersion treatment for about 5 to 90 minutes because the reaction is accelerated.
  • a solution of a polyalkylsilazane compound and a solution of an acetoxysilane compound may be mixed, but the temperature conditions at that time are preferably as described above.
  • the blending of each component or the subsequent reaction can be carried out under any atmosphere.However, in order to prevent unnecessary oxygen atoms from being incorporated into the formed cross-linking structure, an inert atmosphere such as nitrogen It is preferable to carry out the compounding and the reaction in an atmosphere.
  • the solvent can be replaced after the components are reacted.
  • the acetyloxysilane compound in an amount of 5% by weight or more based on the weight of the polyalkylsilazane compound in order to effectively obtain the catalytic action and the effect of increasing the film strength.
  • the amount of the acetosilane compound is determined based on the weight of the polyalkylsilazane compound in order to prevent the precipitation of the polyalkylsilazane compound, maintain the compatibility of the composition, and prevent film unevenness when forming a film. It is preferable to use it at 40% by weight or less.
  • the amount of the porous material according to the present invention when used, is preferably 5% by weight or more based on the weight of the polyalkylsilazane compound in order to effectively realize the porousness of the film. , More preferably at least 10% by weight, particularly preferably at least 20% by weight. On the other hand, in order to prevent a decrease in film strength due to generation of voids or cracks, it is preferable to use the polyalkylsilazane compound in an amount of preferably 50% by weight or less based on the weight of the polyalkylsilazane compound. [0056] The content of each of the above components varies depending on the intended use of the coating composition.
  • the solid content is not less than 5% by weight.
  • the content is preferably 50% by weight or less. That is, the solid content is generally preferably 5 to 50% by weight, more preferably 10 to 30% by weight, based on the whole coating composition.
  • a generally preferable film thickness for example, 2000 8000 A can be obtained.
  • the coating composition according to the present invention is applied onto a substrate or filled in a mold or groove, and then dried as necessary to remove excess organic solvent, and then calcined to obtain a siliceous material. be able to.
  • the siliceous material according to the present invention is applied to an electronic component such as a semiconductor device, usually, the coating composition applied on the substrate is baked into a siliceous material, so that the silica material is directly formed on the semiconductor device. It is common to form porous materials
  • a conventionally known method for example, a spin coating method, a dip method, a spray method, a transfer method and the like can be mentioned.
  • the firing of the coating film formed on the substrate surface is performed in various atmospheres.
  • the atmosphere in this case includes an atmosphere containing almost no water vapor such as dry air, dry nitrogen, and dry helium, and an atmosphere containing water vapor such as air, humidified atmosphere, and humidified nitrogen.
  • the calcination temperature can be lower than the calcination temperature generally performed by the action of the acetoxysilane compound contained in the coating composition according to the present invention, and is generally 380 ° C or less, more preferably 350 ° C or less, At the temperature of On the other hand, the firing temperature is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, in order to sufficiently perform firing in a short time.
  • the sintering time varies depending on the sintering temperature and the components, but is generally one minute to one hour.
  • the humidification step which was essential in the conventional method for forming a siliceous material using an alkylsilazane compound, can be omitted when the coating composition of the present invention is used, thereby simplifying the step. , Or reduction of manufacturing cost.
  • the humidification step can be combined if necessary.
  • the siliceous material according to the invention When a humidification process is combined with the manufacturing method, after a coating film is formed on the substrate surface, the film is pre-heated in an atmosphere containing water vapor, and then briefly (for example, 3 to 30 minutes) in a humid atmosphere. Alternatively, it is preferable to leave in an air atmosphere for a long time (for example, 24 hours), and then heat and bake in a dry atmosphere.
  • the water vapor content in the water vapor-containing atmosphere is at least 0.1% by volume, preferably at least 1% by volume.
  • examples of such an atmosphere include air, humidified air, and humidified nitrogen gas.
  • the water vapor content in a dry atmosphere is 0.5% by volume or less, preferably 0.05% by volume or less.
  • examples of the dry atmosphere include dry air, nitrogen gas, argon gas, and helium gas.
  • the preheating temperature is generally 50-300 ° C.
  • the SiN bonds among the bonds of SiH, SiR (R: hydrocarbon group) and SiN in the polyalkylsilazane are oxidized and converted into SiO bonds, and the unoxidized SiH and SiR bonds Is formed.
  • the SiO bond formed by selectively oxidizing the SiN bond and the unoxidized SiH and SiR bonds can be present.
  • a siliceous film can be obtained.
  • the dielectric constant of a siliceous film decreases as its film density decreases, but when the film density decreases, water, which is a high-dielectric substance, is adsorbed. If left in the air, the dielectric constant of the film may increase.
  • the silica material according to the present invention has a great advantage that the dielectric constant of the film hardly increases even when left in the atmosphere containing water vapor. Further, in the siliceous material of the present invention, the density is further reduced due to the decomposition of the acetooxysilane conjugate and the decomposition or evaporation of the decomposed product, and as a result, the relative dielectric constant of the siliceous material is reduced. It will be further reduced. In addition, since the film has a low density, there is an advantage that the internal stress of the film is small and a crack is hardly generated.
  • the density is 0.5 to 1.6 g / cm 3 , preferably 0.8 to 1.4 g / cm 3
  • the crack limit film thickness is It is at least 1.0 xm, preferably at least 5 zm
  • its internal stress is at most 100 MPa, preferably at most 80 MPa.
  • SiH or SiR (R represents a hydrocarbon group) bond contained in the siliceous material is used.
  • the Si-containing group present in the material is 10 to 100 atomic%, preferably 25 to 75 atomic%, based on the number of S ⁇ atoms contained in the material.
  • the content of Si present as SiN bonds is 5 atomic% or less.
  • the thickness of the siliceous film obtained after firing varies depending on the use of the substrate surface, but is usually 0.01 to 5 zm, preferably 0.12 m. In particular, when it is used as an interlayer insulating film of a semiconductor, it is preferably 0.12 xm.
  • the porous siliceous material according to the present invention has excellent mechanical strength because the pores formed when the porous material is used are extremely fine. Specifically, the porous siliceous material according to the present invention exhibits a remarkably high mechanical strength as a porous siliceous material having an elastic modulus of 3 GPa or more, and in some cases, 5 GPa or more by a nanoindentation method described later. is there.
  • the siliceous material according to the present invention has a water-repellent group derived from the polyalkylsilazane compound, which is a matrix component thereof, sufficiently remaining after calcination. The rate hardly rises.
  • low density and water repellency are achieved by the binding components (SiH, SiR) of the siliceous material, and when a porous material is used, the film is formed by micropores.
  • a porous siliceous material that can stably maintain an extremely low relative dielectric constant of less than 2.5, preferably 2.0 or less, and in some cases about 1.6 can be obtained.
  • the siliceous material according to the present invention has a low density as described above, and its crack limit film thickness, that is, the maximum film thickness that can be formed without causing film cracking, is as high as 5 xm or more. It also has the advantage of showing numerical values. In the case of the conventional siliceous film, the crack limit film thickness is about 0.5 to 1.5 zm.
  • the siliceous material according to the present invention has a low dielectric constant, a low density, a high water repellency, a high chemical resistance, and a high mechanical strength, compared to the conventional siliceous material. Is the thing Further, it can stably maintain a low dielectric constant, and is particularly preferable to be applied to an interlayer insulating film or an insulating film under a metal film, particularly an interlayer insulating film in a semiconductor device.
  • the siliceous material according to the present invention can have a high silicon content. This is due to the formulation of the acetoxylsilane conjugate. Due to such a high silicon content, the siliceous material according to the present invention is characterized by having higher strength than the siliceous material obtained by a conventional method using polyalkylsilazane.
  • a stainless steel tank for supplying raw materials was mounted on a stainless steel tank reactor with an internal volume of 5 liters. After the inside of the reactor was replaced with dry nitrogen, 780 g of methyltrichlorosilane was put into the stainless steel for raw material supply, and this was pressure-fed into the reaction tank with nitrogen and introduced. Next, a raw material supply tank containing pyridine was connected to the reactor, and 4 kg of pyridine was similarly pumped and introduced with nitrogen. The pressure of the reactor was adjusted to 1.0 kg / cm 2 , and the temperature of the mixture in the reactor was adjusted to 14 ° C. Ammonia was blown into the reactor with stirring, and when the pressure in the reactor reached 2.0 kg / cm 2 , the supply of ammonia was stopped.
  • the reactor pressure was lowered by opening an exhaust line, and then dry nitrogen was blown into the liquid phase for 1 hour to remove excess ammonia.
  • the obtained product was subjected to pressure filtration under a dry nitrogen atmosphere using a pressure filter to obtain 3200 ml of a filtrate.
  • pyridine was distilled off using an evaporator, about 340 g of polymethylsilazane was obtained.
  • the number average molecular weight of the obtained polymethylsilazane was measured by gas chromatography using a chromate form as a developing solution, and was 1800 in terms of polystyrene.
  • Infrared absorption scan Bae spectrum (hereinafter, referred to as IR spectrum) was measured, 3350Cm- 1 and 1200cm- 1 NH bonded to based absorption around, 2900Cm- 1 and 1250Cm- 1 of Si- C bond to based absorption, and An absorption based on the Si—N—Si bond of 1020—820 cm— 1 was observed.
  • the filtrate was applied to a silicon wafer having a diameter of 10.2 cm (4 inches) and a thickness of 0.5 mm using a spin coater at 1500 rpm for 20 seconds, and further dried at room temperature for 3 minutes.
  • the silicon wafer is heated in an air atmosphere (relative humidity of 40% at 23 ° C) at 150 ° C for 3 minutes, then on a hot plate at 250 ° C for 3 minutes, and further in a clean room for 24 hours to absorb moisture ( (23 ° C relative humidity 40%). After standing, it was baked at 350 ° C / 30 minutes in a dry nitrogen atmosphere to obtain a siliceous film.
  • the IR spectrum of the obtained siliceous film is as shown in FIG. 1050—1200cm— 1 and 450cm— 1 absorption based on Si—O bond, 1280cm— 1 and 750cm— 1 absorption based on Si_C bond, 2950cm— 1 absorption based on C_H bond, 3350cm_1 And the absorption due to the NH bond at 1200 cm- 1 had been destroyed. And an IR scan Bae Kutonore based, peak division method as shown in FIG.
  • the relative dielectric constant was 2.90
  • the density was 1.41 g / cm 3
  • the internal stress was 50 MPa
  • the crack limit film thickness was 3 / m or more.
  • the filtrate is 10.2 cm (4 inches) in diameter and 0.5 mm thick It was applied on a silicon wafer at 1500 rpm / 20 seconds using a spin coater, and dried at room temperature for 3 minutes.
  • the silicon wafer is heated at 100 ° C for 3 minutes in an air atmosphere (relative humidity 40% at 23 ° C), and then for 3 minutes on a 190 ° C hot plate, and then heated at 350 ° C / 30 in a dry nitrogen atmosphere. After baking for a minute, a siliceous film was obtained.
  • the IR spectrum of the obtained siliceous film shows absorption near 1050 lSOOcm- 1 and absorption based on Si_ ⁇ bond of 450cm, absorption based on Si_C bond of 1280cm- 1 and 780cm- 1 and C of SSSOcm- 1 .
  • the relative dielectric constant was 2.81
  • the density was 1.39 g / cm 3
  • the internal stress was 64 MPa
  • the critical crack thickness was 2 / m or more.
  • the silicon wafer is heated at 100 ° C for 3 minutes in an air atmosphere (relative humidity of 40% at 23 ° C), then on a hot plate at 190 ° C for 3 minutes, and then at 350 ° C in a dry nitrogen atmosphere. / 30 minutes baking to obtain a siliceous film.
  • the relative dielectric constant was 2.24
  • the density was 1.29 g / cm 3
  • the internal stress was 51 MPa
  • the critical crack thickness was 3 / m or more.
  • the relative permittivity was measured again after the obtained film was left in the air at a temperature of 23 ° C and a relative humidity of 50% for one week, and it was found that the relative permittivity was 2.27. There was no level.
  • Example 3 In the same manner as in Example 2, a siliceous film was obtained. When the IR spectrum of the obtained film was measured, the position of the peak was exactly the same as in the example.
  • the relative dielectric constant was 2.30
  • the density was 1.21 g / cm 3
  • the internal stress was 46 MPa
  • the crack limit film thickness was 3 zm or more.
  • the relative permittivity was measured again after the obtained film was left in the air at a temperature of 23 ° C and a relative humidity of 50% for one week, and it was found that the relative permittivity was 2.22. There was no level.
  • the elastic modulus by nanoindentation of this film was 5. lGPa. Further, when the pore size of the siliceous membrane was measured by the X-ray diffuse scattering method, the average pore size was 19A.
  • a siliceous film was obtained in the same manner as in Example 2, except that polyethylene glycol methyl ether having a number average molecular weight of 550 was used instead of the hydroxy (polyethyleneoxy) propyl-terminated silicone.
  • polyethylene glycol methyl ether having a number average molecular weight of 550 was used instead of the hydroxy (polyethyleneoxy) propyl-terminated silicone.
  • IR spectrum of the film 1030-1200Cm ⁇ around, and 450Cm- 1 of Si- O bond to based absorption 1270Cm- 1 and 780Cm- 1 of Si _C based binding absorption of 2980Cm- 1
  • Absorptions based on C—H bonds were observed, and absorptions based on N—H bonds at 3350 cm_1 and 1200 cm ⁇ 1 , absorption based on polyethylene glycol methyl ether, and absorption based on tetraacetoxysilane had been destroyed.
  • the relative dielectric constant was 2.35
  • the density was 1.30 g / cm 3
  • the internal stress was 59 MPa
  • the crack limit film thickness was 3 zm or more.
  • the relative permittivity was measured again after the obtained film was left in the air at a temperature of 23 ° C and a relative humidity of 50% for one week, and it was found that the relative permittivity was 2.38. There was no level.
  • Example 5 The same procedures as in Example 1 were carried out except that the amount of tetraacetoxysilane added was changed to 1.65 g, and the amount of hydroxy (polyethyleneoxy) propyl-terminated silicone was changed to 1.65 g. Thus, a siliceous film was obtained.
  • the relative dielectric constant was 2.52
  • the density was 1.37 g / cm 3
  • the internal stress was 62 MPa
  • the crack limit film thickness was 3 zm or more.
  • the modulus of elasticity of this film by the nanoindentation method was 5.5 GPa.
  • a siliceous film was obtained in the same manner as in Example 1, except that the temperature for firing the composition was changed from 350 ° C to 400 ° C.
  • the peak position of the IR spectrum of the obtained film is almost the same as that of the siliceous film obtained in Example 1, and the area of the absorption (P1) based on the Si—O bond near 1050 l SOOcnT 1
  • P1 area area of absorption (P2) based on the Si—C bond of 1280 cm- 1
  • the relative dielectric constant was 2.21
  • the density was 1.31 g / cm 3
  • the internal stress was 54 MPa
  • the critical crack thickness was 3 zm or more.
  • the modulus of elasticity of this film by the nanoindentation method was 5. OGPa. Further, when the pore size of the siliceous membrane was measured by the X-ray diffuse scattering method, the average pore size was 18A.
  • Example 1 A comparison between this example and Example 1 shows that the use of the composition according to the present invention makes it possible to achieve a temperature of 400 ° C or higher. It is possible to obtain a siliceous film with physical properties that remain almost the same even if the firing temperature used in the above procedure is lowered to 350 ° C. That is, by lowering the temperature at which the coating composition is heated, the thermal budget can be reduced, and the same performance as that obtained by the conventional method can be achieved. Furthermore, energy consumption can be suppressed and manufacturing costs can be reduced.
  • the mixture was concentrated using an evaporator, and about 10 g of PGMEA as a solvent was evaporated to obtain a PGMEA solution having a solid content of about 15%. Subsequently, the solution was filtered with a PTFE syringe filter (manufactured by Advantech) having a filtration accuracy of 0.2 micron. The filtrate was applied on a silicon wafer of 10.2 cm (4 inches) in diameter and 0.5 mm in thickness using a spin coater at 1500 rpm / 20 seconds, and in a clean room (23 ° C (Humidification step).
  • the silicon wafer is heated at 100 ° C for 3 minutes in an air atmosphere (relative humidity of 40% at 23 ° C), then on a hot plate at 190 ° C for 3 minutes, and then at 350 ° C in a dry nitrogen atmosphere. / 30 minutes baking to obtain a siliceous film.
  • the relative dielectric constant was 2.64
  • the density was 1.15 g / cm 3
  • the internal stress was 38 MPa
  • the critical crack thickness was 3 / m or more.
  • the modulus of elasticity of this film by the nanoindentation method was 4.2 GPa.
  • the silicon wafer was heated at 100 ° C for 3 minutes in an air atmosphere (relative humidity 40% at 23 ° C), then for 3 minutes on a hot plate at 190 ° C, and then heated at 350 ° C / It was baked for 30 minutes to obtain a siliceous film.
  • Pyrex (registered trademark: Dow's Kojung Co.) glass plate (thickness lmm, size 50mm X 50mm) is thoroughly washed with a neutral detergent, dilute NaOH aqueous solution and dilute HHO aqueous solution in this order, and dried
  • An aluminum film is formed on the entire surface of the glass plate by a vacuum evaporation method (thickness: 0.2 / m). After applying the sample composition solution to this glass plate by spin coating to form a film, the four corners of the glass plate are rubbed with a cotton swab to remove signals (3 mm X 3 mm). Subsequently, it is converted into a siliceous film according to the method of each example. The obtained siliceous film is covered with a stainless steel mask, and an aluminum film is formed by vacuum evaporation.
  • the number of patterns shall be 18 squares of 2 mm X 2 mm with a thickness of 2 ⁇ .
  • the capacitance is measured at 100 kHz using a 4192ALF impedance analyzer (Yokogawa 'Curet' Packard).
  • an M-44 type spectroscopic ellipsometer manufactured by JA Woolam is used for measuring the film thickness.
  • the relative permittivity is the average of the values calculated by the following formula for all 18 patterns.
  • a silicon wafer with a diameter of 10.16 cm (4 inches) and a thickness of 0.5 mm is weighed with an electronic balance.
  • the sample composition solution is applied by spin coating to form a film, converted into a siliceous film according to the method of each example, and the weight of the silicon wafer with the film is measured again with an electronic balance.
  • the film weight is the difference between the weight of the wafer before and after the film formation.
  • the film thickness is measured with an M-44 spectroscopic ellipsometer (A. Woolam).
  • the sled of a silicon wafer with a diameter of 20 cm and 32 cm (8 inches) and a thickness of lmm is input to a FLX-2320 laser-internal stress measuring instrument (Tencor). Further, the sample composition solution was applied to the silicon wafer by spin coating to form a film, converted into a siliceous film according to the method of each example, and returned to room temperature (23 ° C.). Measure the internal stress with an internal stress meter. The film thickness is measured with an M-44 type spectroscopic ellipsometer (IA Woolam).
  • a sample composition solution is applied to a silicon wafer having a diameter of 10.16 cm (4 inches) and a thickness of 0.5 mm by a spin coating method to form a film, which is converted into a siliceous film according to the method of each example. Adjust the solid content concentration of the sample composition solution or the number of revolutions of the spin coater at the time of coating to prepare a sample whose film thickness is varied from about 0.5 zm to about 5 zm. The film surface after baking is observed under a microscope (120x), and the presence or absence of cracks in each sample is examined. Let the film thickness be the crack limit film thickness.
  • a sample composition solution is applied to a silicon wafer having a diameter of 20.32 cm (8 inches) and a thickness of lmm by spin coating to form a film, which is converted into a siliceous film according to the method of each example.
  • the elastic modulus is measured using a mechanical property evaluation system for thin films (Nano Indenter DCM manufactured by MTS Systems, USA).
  • a sample composition solution is applied to a silicon wafer having a diameter of 20.32 cm (8 inches) and a thickness of lmm by spin coating to form a film, which is converted into a siliceous film according to the method of each example.
  • the pore size of the obtained siliceous film is measured by an X-ray diffuse scattering method using a multifunctional X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.) for evaluating the surface structure of ATX-G.
  • the present invention is to provide a siliceous material having a stable balance between low dielectric constant, mechanical strength capable of withstanding the latest fine wiring process, and various chemical resistances in a well-balanced manner.
  • the siliceous material according to the present invention as an interlayer insulating film or an insulating film below a metal film of a semiconductor device, it is possible to further increase the degree of integration and multilayering of an integrated circuit.
  • the siliceous material according to the present invention can be used for both an interlayer insulating film and an insulating film below a metal film.
  • a porous material is included in the coating composition according to the present invention. In this case, the number of micropores formed in the obtained siliceous material is increased and the dielectric constant is further lowered, and the siliceous material is particularly preferable for the interlayer insulating film.
  • a siliceous film can be formed on a solid surface of various materials such as metal, ceramics, and wood.
  • a metal substrate (silicon, sus, tantalum, iron, copper, zinc, brass, aluminum, etc.) having a siliceous film formed on the surface thereof, or a ceramic substrate having a siliceous film formed on the surface is provided.
  • metal oxides such as silica, alumina, magnesium oxide, titanium oxide, zinc oxide, and tantalum oxide
  • metal nitrides such as silicon nitride, boron nitride, and titanium nitride, and silicon carbide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

 本発明は優れた機械的強度を備え、かつ非常に低い誘電率を安定的に示し、各種の薬剤に対する耐薬品性を兼ね備えた多孔質シリカ質膜を簡便に製造することができるコーティング組成物とそれを用いたシリカ質材料の製造法を提供するものである。本発明によるコーティング組成物は、ポリアルキルシラザン化合物、アセトキシシラン化合物、有機溶媒、および必要に応じて多孔質化材、を含んでなる。本発明はそのコーティング組成物を焼成することにより得られたシリカ質材料、ならびにその製造法にも関する。

Description

明 細 書
コーティング組成物、およびそれを用いて製造した低誘電シリカ質材料 技術分野
[0001] 本発明は、コーティング組成物に関するものである。さらに、本発明はそれを用いた 低誘電シリカ質材料の製造法、およびそれを用いて製造された低誘電シリカ質材料 に関するものである。さらに、本発明は、そのようにして製造された低誘電シリカ質材 料を具備してなる半導体装置にも関するものである。 背景技術
[0002] 昨今、半導体装置における集積回路のさらなる高速化および高集積化の必要性が 高まっている。それに応じて、半導体装置における内部配線の微細化および多層化 をより効率的に実現するための多層配線工程技術の開発をも要求されている。このよ うな技術は、例えばスパッタリフロー法または CVD法により溝内部に Cu等の配線材 料を埋め込み、さらに CMP (Chmeical Mechanical Polishing)法等により溝外 に堆積した配線材料を除去することにより溝配線を形成するものがあげられる。この ような溝配線技術の進歩により、半導体装置は、内部配線の微細化が可能になると 共に、 CMP法による表面平坦化と相まってさらなる多層化が可能となる。
[0003] このような集積回路の高集積化により、配線間に存在する層間絶縁膜に対して、一 層の低誘電率化が要求され、 CMP法による配線材料の除去工程に耐えうる機械的 強度が要求され、さらに CMP法に用いられる薬剤のほか、ウエットストリッピングによ るフォトレジスト除去をする場合にぉレ、てはその薬剤、アツシングによるフォトレジスト 除去をする場合にぉレ、てはアツシング後の残渣を除去するための薬剤等、各種薬品 に対する耐薬品性をも要求されている。
[0004] このように、半導体に用いられる層間絶縁膜 (IMD)や金属膜下絶縁膜 (PMD)の ような電子材料には、さらなる低誘電率化、機械的強度の強化、耐薬品性の向上な ど、品質の向上が求められている。このような要請に対応すベぐ絶縁材料に対して 各種の検討がなされてレ、る。
[0005] その中で、各種のシリカ質材料を用いることも検討されてきた力 シリカ質材料は一 般に吸湿性を有しているため、周囲の環境によっては時間とともに比誘電率が上昇 してしまうという問題があった。
[0006] このような比誘電率の経時上昇を防止する方法として、ポリ有機シラザンの焼成に より得られる有機シリカ質膜が考えられる。このようにして得られた有機シリカ質膜は、 シリカのケィ素原子に有機基が結合している構造を有しているため、膜自体の撥水 性が高ぐ吸湿による比誘電率の経時上昇が抑えられているとともに、半導体用の絶 縁膜として要求される耐熱性、耐環境性を具備したシリカ質膜を得ることができる。 特許文献 1 :特開 2002 - 75982号公報
発明の開示
発明が解決しょうとする課題
[0007] 上記したようなシリカ質材料に対する要求に応えるベぐレ、くつかの方法が検討され ている。例えば、本発明者らは、ポリアルキルシラザンとポリアクリル酸エステルまたは ポリメタクリル酸エステルとを含んでなる組成物の膜を焼成することにより、高強度の 多孔質シリカ質膜が得られること見出した (特許文献 1)。この特許文献 1に記載され た多孔質シリカ質膜は、吸湿による比誘電率の経時上昇が抑えられるという効果を奏 するものである。し力 ながら、本発明者らのさらなる検討の結果、その多孔質シリカ 質膜は、比誘電率が 2. 2程度の場合には弾性率が 3GPa以下に留まるのが一般的 であり、膜強度の点で改良の余地があることがわかった。
[0008] また、この特許文献 1に記載された方法では、ポリアルキルシラザンを誘電率の低 い膜に転換させ、膜質の良好なシリカ質膜を有利に製造するために製造過程におい て「加湿工程」が不可欠であった。この加湿工程は、ポリシラザン膜を基板上に塗布 した後、乾燥雰囲気中で加熱焼成する前に、大気雰囲気中で長時間、例えば 24時 間、もしくは加湿雰囲気下で、例えば 50°C80%RHで 30分間、処理するものである 。この加湿工程における処理は、アルキルシラザンからアルキルシラノールへの転換 を促進させる処理であり、従来の方法において、この加湿工程を省略すると良質な多 孔質シリカ質膜を得ることが困難である。しかし、この加湿工程の追加は、製造の効 率を落とし、また加湿装置の追加のための設備投資も必要になるため、この加湿ェ 程を必要としない良質なシリカ質膜が得られる方法の開発が望まれていた。 [0009] また、特許文献 1の方法に限らず、一般的なシリカ質膜の製造では、塗膜を高温処 理することでシリカ質膜を形成させる。この高温処理は、従来 400°C以上で行うことが 一般的であった。例えば、銅を配線金属として使用する場合、銅の電気的安定性を 確保するためには、成膜時の高温処理量 (サーマルバジェット)を従来よりも小さくす ることが好ましい。また、アルミニウムを配線材料とする場合には、従来、 400°C1時間 程度のサーマルバジェットが許容範囲であった力 昨今ではこの温度を 375°C、場合 によっては 350°Cに下げることが望まれている。
[0010] 一方、シリカ質膜を層間絶縁膜に用いて多層配線構造を形成させるとき、シリカ質 膜に多数の微細孔を形成させることで、低密度化および低誘電率化が実現できるこ とがわかっている。しかし、シリカ質膜に形成される孔の孔径がより小さいこと、および 孔径が揃っていることが重要である。すなわち、多層配線構造を形成させる際に使用 されるエッチングガスや剥離液等に多孔質絶縁膜が曝されると、大きな孔にガスや剥 離液が入り込み、侵食することがあるためである。また、多孔質膜上に金属配線やそ の他の薄膜形成を行う際にかかる応力や熱が引き金となって、孔が拡大され、さらに はその部位力 Sリークパースとなり、多孔質膜が絶縁膜として機能しない場合もある。こ のような観点から、多孔質膜の孔の孔径は 2nm以下であることが望ましいことがわか つている。しかし、従来の方法では、 2nm以下の、孔径が揃った孔を有する多孔質膜 を形成させることは困難であった。
課題を解決するための手段
[0011] 本発明は、ポリアルキルシラザンィ匕合物、ァセトキシシラン化合物、および有機溶媒 を含んでなること、を特徴とするコーティング組成物に関するものである。
[0012] また、本発明のシリカ質材料は、前記コーティング組成物を、基板上に塗布し、また は溝に充填し、さらに焼成することにより形成されたこと、を特徴とするものである。
[0013] また、本発明による半導体装置は、前記のシリカ質材料を層間絶縁膜として含むこ とを特徴とするものである。
[0014] さらに本発明によるシリカ質材料の製造法は、前記のコーティング組成物を 350°C 以下の温度で、 1一 60分間加熱することを特徴とするものである。
発明の効果 [0015] 本発明は、上記したような従来のシリカ質材料の製造において問題であった点を解 決し、ダマシン法をはじめとする最新の高集積化プロセスに耐えうる優れた機械的強 度を備え、低い誘電率を示し、各種の薬剤に対する耐薬品性を兼ね備えたシリカ質 材料を簡便に製造することができるコーティング組成物を提供するものである。
[0016] さらには、本発明はシラザン化合物を用いてシリカ質膜を形成させるときに必要で あった加湿工程を省略することを可能とし、製造工程の簡略化を達成し得るものであ る。
[0017] さらには、本発明は従来のシリカ質膜の製造法に比べて、焼成温度を低くすること ができるものであり、これによつて、サーマルバジェットを小さくすることができて、電子 材料中の金属配線の安定性を向上させることができるとともに、エネルギー消費量を 抑えて製造コストの低減を図ることもできるものである。
[0018] また、本発明によるコーティング組成物において多孔質化材を用いた場合には、非 常に低い誘電率を安定的に得ることができる。
図面の簡単な説明
[0019] [図 1]参考例 2の、ポリメチルシラザンのみを用いたシリカ質膜の IRスペクトル。
[図 2]参考例 2の、ポリメチルシラザンのみを用いたシリカ質膜の IRスペクトルの拡大 図。
発明を実施するための最良の形態
[0020] ポリアルキルシラザン化合物
本発明におけるポリアルキルシラザンィ匕合物は、アルキル置換されたシラザン結合 を有するものである。その構造は限定されるものではないが、好ましいポリアルキルシ ラザン化合物は、好ましくは下記一般式(1)で表される繰り返し単位を含むものであ る。
[化 1]
Figure imgf000006_0001
[0021] 上記式中、 R1は、水素原子または炭素数 1一 3のアルキル基を表すが、化合物全 体のすべての R1が同時に水素であることはなぐ
R2 R4は、各々独立に水素原子または炭素数 1一 3のアルキル基を表す力 R2— R4のすべてが同時に水素であることはなぐ
p、 q、および rは、それぞれ 0または 1であり、 0≤p + q + r≤3である。
[0022] ここで、一般式(1)において R1がメチル基であり、 R2— R4が存在する場合には、そ れらがすべて水素であることが好ましレ、。
[0023] また、本発明におけるポリアルキルシラザン化合物は、下記(2)または(3)のいずれ 力、またはその両方を構造中に含むことができる。
[化 2]
Figure imgf000006_0002
R8 R9
N— Si—Rェ0 ( 3 )
R11
[0024] 上記式中、 R°— R11は、各々独立に水素原子または炭素数 1一 3のアルキル基を表 すが、 R5と R6が同時に水素であることはなぐ R9— R11のすべてが同時に水素である ことはない。
[0025] ここで、一般式(2)において、 R5および R6のいずれかが水素原子であり、残りがメチ ル基であり、 R7が水素原子であることが好ましいさらに一般式(3)において、 R8が水 素原子であり、 R9 R11のすベて力 Sメチル基であることが好ましレ、。 [0026] 本発明においては、上記一般式(1)と、(2)または(3)のいずれか、あるいは(1)一 (3)の全ての単位を含むポリアルキルシラザンィヒ合物力 コーティング組成物の保存 時のゲル化を防止することができる点で特に有用である。その場合、一般式(1)で表 される繰返し単位の数が一般式(1)から(3)で表される単位の総数の 50モル%以上 であることが好ましぐ 80モル%以上であることがより好ましぐ 90モル%以上である ことが特に好ましい。一般式(1)の繰り返し単位が、一般式(1)一(3)の繰り返し単位 の総数に対して 50%以上であると、成膜時にハジキゃ塗布ムラなどの問題が生じに くくなるためである。
[0027] 本発明によるポリシラザン化合物は、コーティング組成物の塗布性、特にスピンコー ティング法により塗布をする際の塗布性、をよくするために、数平均分子量が 100以 上であることが好ましい。また、本発明によるポリシラザンィ匕合物は、架橋基の数を適 当にして、組成物のゲル化を抑制するために数平均分子量が 50, 000以下であるこ とが好ましい。本発明において、特に好ましいポリアルキルシラザンィ匕合物は、上記 一般式(1)の繰り返し単位、および上記一般式(2)または(3)のうちの少なくとも 1種 の単位を含んでなるものである。また、本発明においてポリアルキルシラザン化合物 の、数平均分子量は 100— 50, 000であること力 S好ましく、 1 , 000— 20, 000である ことがより好ましい。
[0028] これらのポリアルキルシラザンは、当業者に自明の通常のポリシラザンを合成する 際のアンモノリシスにおいて、一般式(1)の繰返し単位を含むポリアルキルシラザン の場合にはアルキルトリクロロシラン (R SiCl )を、一般式(2)の繰返し単位を含むポ
3
リアルキルシラザンの場合にはジアルキルジクロロシラン (R5R6SiCl )を、一般式(3)
2
の単位を含むポリアルキルシラザンの場合にはトリアルキルクロロシラン
Figure imgf000007_0001
C1)を、そしてこれら両方の繰返し単位を含むポリアルキルシラザンの場合にはこれら の混合物を出発原料とすることにより得られる。それらのクロロシラン類の混合比が各 単位の存在比を決める。
[0029] ァセトキシシラン化合物
本発明によるコーティング組成物は、ァセトキシシランィ匕合物を含んでなる。このァ セトキシシランィ匕合物は、ケィ素原子にァセトキシ基が 1一 4個結合したものであり、ァ セトキシ基が 3個以下結合している場合は、ケィ素にアルキル基、アルコキシ基など の置換基が結合したものであってもよい。必要に応じて、その他の置換基で置換され ていてもよい。
[0030] 本発明において、ァセトキシシランィ匕合物は、焼成の際に比較的低温、例えば 200 °c程度、で熱分解し、生成するァセトキシ基が前記のポリアルキルシラザン化合物が 硬化してシリカ質膜になるときの反応を促進させる、触媒のような作用をするものと考 えられる。このため硬化させる際の焼成温度を低くすることができ、さらに多孔質膜に おける微細孔の孔径を小さくすることができるものと考えられる。さらには、このァセト キシシラン化合物のケィ素を含む分解物自体が薄膜中に残存し、硬化の際に形成さ れる架橋構造を強化し、膜強度を増大させるものと考えられる。このとき、ァセトキシシ ラン化合物として、ケィ素にアルキル基が結合したものを用いると、そのアルキル基が 最終的な多孔質膜に残存する傾向があり、その結果、膜強度が低下する傾向がある ので、 目的とするシリカ質材料の用途に応じて、ァセトキシシラン化合物を適切に選 ぶべきである。
[0031] 従来、ポリアルキルシラザン化合物を用いてシリカ質材料を形成させようとする場合 には、前記したとおり、加湿工程が必須であった。この加湿工程は、ポリアルキルシラ ザンの一部をシラノール体に転換させることが目的であつたが、本発明においてはァ セトキシシランィ匕合物の存在によって、加湿工程がなくてもポリアルキルシラザンがシ ラノール体に短時間で転換される。このため、本願発明によるコーティング組成物を 用いた場合、シリカ質材料を形成させるのに加湿工程が必須ではなくなる。さらには 、後述する多孔質化材を用いる場合には、多孔質化材とマトリックスとのミクロな相分 離状態を短時間で実現することができる。
[0032] 従来の方法においては、ポリアルキルシラザンに対する加湿を過剰に行うとシラノ ール体が過剰になったり、長時間にわたる加湿を行った場合にはマトリックスとなるァ ルキルシラノール体の流動性のために多孔質化材との相分離が過剰に進んでマクロ 相分離を引き起こし、多孔質化材の昇華により形成される孔の孔径が大きくなるとレ、 う問題があった。これに対して、本発明においては、短時間で最適なミクロ相分離状 態を実現できるばかりか、生成するアルキルシラノール体が長時間放置しても多孔質 化材との過剰な相分離(マクロ相分離)を起こしにくいという特徴を有する。これは、ァ セトキシシランィ匕合物に由来するシリカ成分がアルキルシラノール体の流動性を阻害 し、マクロ相分離を抑制するためと考えられる。
[0033] また、従来の方法において、アルキルシラザン化合物と多孔質化材とを組み合わせ てシリカ質材料を形成させようとした場合、アルキルシラノール体の加熱により脱水反 応によってのみシリカ成分が形成される力 アルキルシラノールの流動性を制御する のに十分なシリカ成分を形成させるためには 280°C以上の高温で加熱 (プリベータ) する必要があった。このとき、多孔質化材が焼失してしまうと、そのあとにアルキルシラ ノール体が流入し、孔が形成されないので、その温度で焼失しない耐熱性を有する 多孔質化材が必須となり、多孔質化材が限定されてしまうという問題もあった。これに 対して、本発明においては、ァセトキシシラン化合物の分解温度(190°C付近)では、 すでにマトリックスと多孔質化材とのミクロ相分離がほぼ完了し、その後の高温プロセ スで多孔質化材を昇華させる過程にぉレ、てもそのミクロ相分離状態が維持される。従 つて、比較的低温で昇華する多孔質化材を用いることができ、従来用いられていた 多孔質化材よりも低い分子量のものを用いることができる。
[0034] このようなァセトキシシランィ匕合物の好ましい具体例としては、テトラァセトキシシラン 、メチルトリァセトキシラン、ェチルトリァセトキシラン、エトキシトリァセトキシラン、イソ
[0035] ^mm
本発明によるコーティング組成物は、前記のポリアルキルシラザンィ匕合物およびァ セトキシシランィ匕合物、さらに必要に応じて後述するその他の添加物、を有機溶媒中 に溶解または分散させたものである。このとき、有機溶媒としては、活性水素を有しな い不活性有機溶媒を用いることが好ましい。このような有機溶媒として、ベンセン、ト ノレェン、キシレン、ェチルベンゼン、ジェチルベンゼン、トリメチルベンゼン、トリェチ ルベンゼン等の芳香族炭化水素系溶媒;シクロへキサン、シクロへキセン、デカヒドロ ナフタレン、ェチルシクロへキサン、メチルシクロへキサン、 p—メンチン、ジペンテン( リモネン)等の脂環族炭化水素系溶媒;ジプロピルエーテル、ジブチェルエーテル等 のエーテル系系溶媒;メチルイソプチルケトン等のケトン系溶媒;プロピレングリコール モノメチルエーテルアセテート等のエステル系溶媒等が挙げられる。
[0036] 多孔晳化材
本発明によるコーティング組成物は、硬化後に得られるシリカ質材料に形成される 微細孔をより多ぐまたはより小さく均一にするために、多孔質化材を含むことができ る。このような多孔質化材を用いることで、本発明によるコーティング組成物を用いて 形成させたシリカ質材料の誘電率をさらに低くすることができる。このような多孔質化 材としては、ポリアルキレンオキサイド類、アクリルポリマー類、またはメタタリルポリマ 一類を用いることができる力 (ィ)シロキシ基含有ポリエチレンオキサイド化合物、ま たはそれをモノマー単位として含む共重合体、および(口)アクリル酸エステルまたは メタクリル酸エステルの単独重合体および共重合体であって、その側基の一部に力 ルボキシル基、水酸基、またはシロキシ基を含むものが好ましレ、。これらのうち、カル ボキシル基または水酸基を含むアクリル酸エステルまたはメタクリル酸の重合体はこ れらの基を介して多孔質化材が前記のポリアルキルシラザン化合物と結合し、多孔 質化材の分離が制限され、その結果マクロ相分離を起こさずにミクロ相分離に留まる 組成物が得られる。また、シロキシ基を含むアクリル酸エステルまたはメタクリル酸の 重合体は、加熱によって昇華する際に、その一部であるシロキシ基がマトリックスであ るポリアルキルシラザンの焼成膜中に残存し、より強度の高いシリカ質材料を生成さ せる効果を奏する。
[0037] 本発明において特に好ましい多孔質化材は、シロキシ基含有ポリエチレンォキサイ ド化合物、またはそれをモノマー単位として含む共重合体である。これは、ポリエチレ ンオキサイドを含む化合物であって、さらにその構造中にシロキシ基(Si_〇結合)を 含む基を有するものをいう。シロキシ基含有基としては、具体的にはトリメチルシロキ シ基、ジメチルブチルシロキシ基、メチノレヒドロシロキシ基、ジメチルシロキシ基、フエ ニルメチルシロキシ基、ジフエ二ルシロキシ基、メチルビニルシロキシ基、フエ二ルビ ニルシロキシ基、 2—(トリメトキシシリル)ェチル (メタ)アクリル基、 γ _ (トリメトキシシリ ノレ)プロピル (メタ)アクリル基、 2- (トリメチルシロキシ)ェチル (メタ)アクリル基、 γ - (ト シリルォキシシロキサニル基等が挙げられる。ここで、 (メタ)アクリル基とは、アタリノレ 基またはメタクリル基のレ、ずれかを示すものである。
[0038] このようなシロキシ基含有ポリエチレンオキサイド化合物の一例を一般式として示す と以下の通りである。
HO- (CH CH O) -L- (SiR' _〇)一SiR' (A)
2 2 m 2 n 3
ここで、 R'は水素、アルキル基、アルコキシ基等の任意の置換基であり、一分子中 の R'は複数種が混合していてもよレ、。また、 R'が重合可能な基であり、ほかのモノマ 一単位と重合することもできる。
Lは連結基であり、例えば単結合、アルキレン基等である。
mおよび nは重合度を表す数である。
[0039] 本発明に用いられるシロキシ基含有ポリエチレンオキサイド化合物の分子量は特に 限定されなレヽ力 100— 10, 000であること力 S好ましく、 350— 1, 000であること力 Sよ り好ましい。
[0040] このようなシロキシ基含有ポリエチレンオキサイド化合物において、ポリエチレンォ キサイドの構造は特に限定されないが、粘度を適切に保つというの観点から、分子の 重量に対するエチレンォキシ部分の重量が 30— 90%であることが好ましぐまたポリ シロキシ構造におけるシロキシ基部分の重量が 10— 40%であることが好ましい。
[0041] このようなシロキシ基含有ポリエチレンオキサイド化合物として、好ましい具体例は、
α -[3-[1, 1 , 3, 3—テトラメチルー 1_ [ (トリメチルシリル)ォキシ]ジシロキサニル]プ 口ピル]— ω—ヒドロキシ—ポリ(ォキシ— 2, 3—エタネジル)、ヒドロキシ(ポリエチレンォ キシ)プロピルポリジメチルシリコーン、 Gelest社(米国ペンシルバニア州)製 MCR— C13等が挙げられる。
[0042] また、 (メタ)アクリル酸エステルの単独重合体および共重合体からなる群より選ばれ 、その側基の一部にカルボキシノレ基または水酸基を含むものも本発明における多孔 質化材として用いることができる。このような多孔質化材としては、アクリル酸エステル の単独重合体、例えば、ポリアクリル酸メチル、ポリアクリル酸ェチル;メタクリル酸エス テルの単独重合体、例えば、ポリメタクリル酸メチル、ポリメタクリル酸ェチル;アタリノレ 酸エステルの共重合体、例えば、ポリ(アクリル酸メチルーコ アクリル酸ェチル);メタ クリル酸エステルの共重合体、例えば、ポリ(メタクリル酸メチルーコーメタクリル酸ェチ ノレ);アクリル酸エステルとメタクリル酸エステルとの共重合体、例えば、ポリ(アタリノレ 酸メチルーコーメタクリル酸ェチル)、等が挙げられる。
[0043] 多孔質化材が共重合体である場合、そのモノマー配列に制限はなぐランダムコポ リマー、ブロックコポリマーその他の任意の配列を使用することができる。
[0044] (メタ)アクリル酸エステルの単独重合体および共重合体を構成するモノマーとして は、メタクリル酸メチル、メタクリル酸ェチル、メタクリル酸 n—ブチル、メタクリル酸 iーブ チル、メタクリル酸 tーブチル、アクリル酸メチル、アクリル酸ェチル、アクリル酸 n—ブチ ノレ、アクリル酸 iーブチル、アクリル酸 t一ブチル等が挙げられる力 これらに限定はされ なレ、。特に、メタクリル酸メチルとメタクリル酸 n—ブチルおよびアクリル酸 n—ブチルと アクリル酸 i ブチルは、ポリアルキルシラザンとの相溶性の観点からより好ましレ、。
[0045] 本発明において、多孔質化材として用いることのできる(メタ)アクリル酸エステル重 合体は、重合体構造の少なくとも一種に含まれる側基の少なくとも一部にカルボキシ ル基および/または水酸基が含まれる。このカルボキシノレ基および/または水酸基 は当該重合体を構成するモノマーに予め含有させておくことができる。カルボキシノレ 基または水酸基を含有するモノマーとしては、アクリル酸、メタクリル酸、 2—ヒドロキシ ェチルメタタリレート、 2—ヒドロキシプロピルメタタリレート、 2—ヒドロキシブチルメタタリ レート等が挙げられる力 これらに限定はされなレ、.特に、アクリル酸、メタクリル酸、 2 ーヒドロキシェチルメタタリレートは、ポリアクリルシラザン化合物との反応が容易である という観点から好ましい。
[0046] 別法として、カルボキシル基および/または水酸基を、単独重合体または共重合体 の側鎖に後から導入することもできる。例えば、ポリメタクリル酸エステルを少なくとも 部分的に加水分解することにより、側鎖にカルボキシル基を導入することもできる。
[0047] 重合体成分が 2種以上存在する場合には、それらの少なくとも一種がカルボキシノレ 基および/または水酸基を含有していればよい。したがって、重合体成分として、力 ルポキシル基も水酸基も一切含まないもの、例えば、ポリアクリル酸エステルと、カル ボキシル基および/または水酸基を含むもの、例えば、ポリ(メタクリル酸エステルーコ ーメタクリル酸)との混合物を使用してもよい。
[0048] 多孔質化材として用いることのできる、(メタ)アクリル酸エステル重合体に含まれる カルボキシノレ基および水酸基は、前記のポリアルキルシラザン化合物と架橋結合を 形成する。この架橋反応は、最終的な膜の強度や構造に影響するので、カルボキシ ル基および水酸基の量は重要である。カルボキシル基および水酸基の量は、十分な 架橋構造を得るために、重合体成分を構成する全モノマー数に対して 0. 01モル% 以上であることが好ましく 0. 1モル%以上であることがより好ましい。また、過度の架 橋によるゲル化を防止するために 50モル%以下であることが好ましぐ 30モル%以 下であることがより好ましい。
[0049] 多孔質化材として (メタ)アクリル酸エステル重合体を用いる場合、その重合体が適 当な温度で昇華、分解、または蒸発して多孔質膜を形成するように、重合体の分子 量が 1, 000以上であることが好ましぐ 10, 000以上であることがより好ましい。一方
、ボイドの発生、およびそれによる膜強度の低下を防ぐという観点から、重合体の分 子量は 800, 000以下であることが好ましぐ 200, 000以下であることがより好ましい
[0050] 本発明において、メタクリル酸の構造異性体であるクロトン酸およびイソクロトン酸は 、メタクリル酸の均等物であると認識される。したがって、上記したメタクリル酸および そのエステルに対応するクロトン酸およびイソクロトン酸並びにそれらのエステルを使 用する態様も、本発明の範囲に包含される。
[0051] その他の添加物
本発明によるコーティング組成物は、必要に応じてその他の添加剤成分を含有す ることもできる。そのような成分として、例えば粘度調整剤、架橋促進剤等が挙げられ る。また、半導体装置に用いられたときにナトリウムのゲッタリング効果などを目的に、 リン化合物、例えばトリス(トリメチルシリル)フォスフェート等、を含有することもできる。
[0052] コーティング組成物
本発明によるコーティング組成物は、前記のポリアルキルシラザンィ匕合物、ァセトキ シシラン化合物、および必要に応じて前記した多孔質化材またはその他の添加物を 前記の有機溶媒に溶解または分散させ、配合成分を反応させてコーティング組成物 とする。ここで、有機溶媒に対して各成分を溶解させる順番は特に限定されないが、 有機溶媒にアルキルシラザンィ匕合物とァセトキシシラン化合物とを混合し、撹拌しな 力 ¾加熱し、必要に応じて冷却した後、多孔質化材を撹拌混合することが好ましい。 アルキルシラザン化合物またはァセトキシシラン化合物を有機溶媒に混合する場合 の温度は、 50— 200°Cであること力 S好ましく、 80 180°Cであることがより好ましい。 この温度は用いる成分の種類によって変化する。撹拌時間は反応する成分の種類 や温度にもよる力 一般に 1一 24時間程度である。また、多孔質化材またはその他の 添加物を混合するときの温度は、反応によって組成物がゲルィ匕するのを防ぐために、 30— 80°Cであることが好ましい。このとき 5— 90分間程度の超音波分散処理を行うこ とは、反応を促進させるのでより好ましい。 2種以上の溶液、例えばポリアルキルシラ ザン化合物の溶液とァセトキシシラン化合物の溶液と、を混合してもよいが、そのとき の温度条件は前記したとおりとすることが好ましい。各成分の配合、またはそれに引 き続く反応は、任意の雰囲気下で行うことができるが、形成される架橋構造中に不要 な酸素原子が取り込まれることを防ぐために、不活性雰囲気中、例えば窒素雰囲気 中、で配合および反応を行うことが好ましい。
[0053] また、配合成分を反応をさせた上で、溶媒を置換することもできる。
[0054] ァセトキシシラン化合物の配合量は、その触媒作用や膜強度増大の効果を効果的 に得るために、前記ポリアルキルシラザン化合物の重量に対して、 5重量%以上の量 で用いることが好ましい。また、ァセトキシシラン化合物の配合量は、ポリアルキルシラ ザン化合物の析出を防ぎ、組成物の相溶性を維持し、成膜したときの膜ムラを防ぐた めに、ポリアルキルシラザン化合物の重量に対して 40重量%以下で用いることが好 ましい。
[0055] 本発明による多孔質化材の添加量は、使用する場合には、膜の多孔質化を効果的 に実現するために、ポリアルキルシラザン化合物の重量に対して好ましくは 5重量% 以上、より好ましくは 10重量%以上、特に好ましくは 20重量%以上の添加量で用い る。一方、ボイドまたはクラックの発生による膜強度の低下を防ぐために、ポリアルキ ルシラザン化合物の重量に対して好ましくは 50重量%以下で用いることが好ましい。 [0056] また、前記の各成分の含有量は、 目的とするコーティング組成物の用途によって変 化するが、十分な膜厚のシリカ質材料を形成させるために固形分重量が 5重量%以 上であることが好ましぐコーティング組成物の保存安定性を確保し、粘度を適切に 保っために 50重量%以下であることが好ましい。すなわち、一般にコーティング組成 物全体に対して、固形分重量が 5— 50重量%にすることが好ましぐ 10— 30重量% にすることがより好ましい。通常、固形分重量を 10 30重量%とすることで、一般的 に好ましい膜厚、例えば 2000 8000 A、を得ることができる。
[0057] シリカ誓材料の製造法
本発明によるコーティング組成物を、基板上に塗布し、または型枠や溝に充填した 上で、必要に応じて乾燥させて過剰の有機溶媒を除去し、焼成することでシリカ質材 料を得ることができる。本発明によるシリカ質材料を半導体装置などの電子部品に適 用する場合には、通常、基板上に塗布したコーティング組成物を焼成してシリカ質材 料とすることで、半導体装置上に直接シリカ質材料を形成させることが一般的である
[0058] 基板表面に対するコーティング組成物の塗布方法としては、従来公知の方法、例 えば、スピンコート法、ディップ法、スプレー法、転写法等が挙げられる。
[0059] 基板表面に形成された塗布膜の焼成は、各種の雰囲気中で実施される。この場合 の雰囲気には、乾燥空気、乾燥窒素、乾燥ヘリウム等の水蒸気を殆ど含まない雰囲 気や、大気、加湿大気、加湿窒素等の水蒸気を含む雰囲気が包含される。焼成温度 は、本発明によるコーティング組成物が含有するァセトキシシラン化合物の作用によ つて、一般に行われる焼成温度よりも低くすることができ、一般に 380°C以下、より好 ましくは 350°C以下、の温度で焼成される。一方、焼成を短時間で十分に行うために 、焼成温度は 250°C以上であることが好ましぐ 300°C以上であることがより好ましい。 焼成時間は焼成温度や配合成分によって変化するが、一般に 1分一 1時間である。
[0060] 従来のアルキルシラザン化合物を用いたシリカ質材料の形成方法で必須であった 、加湿工程は、本発明のコーティング組成物を用いた場合、省略することができ、そ れによって工程の簡略化あるいは製造コストの削減を図ることができる。しかしながら 、必要に応じて加湿工程を組み合わせることもできる。本発明によるシリカ質材料の 製造法に加湿工程を組み合わせる場合には、塗布膜を基板表面に形成させた後、 その膜を水蒸気含有雰囲気中で予備加熱し、次いで加湿雰囲気下で短時間(例え ば 3— 30分)、または大気雰囲気中で長時間(例えば、 24時間)放置し、その後乾燥 雰囲気中で加熱焼成することが望ましい。この場合、水蒸気含有雰囲気における水 蒸気含有量は、 0. 1体積%以上、好ましくは 1体積%以上である。このような雰囲気 には、大気や、加湿大気、加湿窒素ガス等が挙げられる。一方、乾燥雰囲気におけ る水蒸気含有量は、 0. 5体積%以下、好ましくは 0. 05体積%以下である。乾燥雰 囲気としては、乾燥した空気、窒素ガス、アルゴンガス、ヘリウムガス等が挙げられる。 予備加熱温度は一般に 50— 300°Cである。
[0061] 上記焼成工程により、ポリアルキルシラザン中の SiH、 SiR (R :炭化水素基)および SiNの各結合のうち SiN結合のみが酸化されて SiO結合に転換され、未酸化の SiH および SiR結合を有するシリカ質膜が形成される。このように、形成されるシリカ質膜 中には、 SiN結合が選択的に酸化されてできた SiO結合と、未酸化の SiHおよび Si R結合を存在させることができ、これにより、低密度のシリカ質膜を得ることができる。 一般的に、シリカ質膜の誘電率は、その膜密度の低下に応じて低下するが、一方、 膜密度が低下すると、高誘電質物質である水の吸着が起るため、シリカ質膜を大気 中に放置すると膜の誘電率が上昇するという問題を生じることがある。一方、 SiHや S iR結合を含む本発明のシリカ質膜の場合には、それらの結合が撥水性を有すること から、低密度でありながら水の吸着を防止することができる。従って、本発明によるシ リカ質材料は水蒸気を含む大気中に放置しても、その膜の誘電率は殆んど上昇しな レ、という大きな利点を有する。さらに、本発明のシリカ質材料は、ァセトキシシランィ匕 合物が分解し、その分解物が蒸発または昇華することにより、その密度が一段と低下 し、その結果シリカ質材料の比誘電率がさらに低下することとなる。また、低密度であ ることから、膜の内部応力が小さぐクラックを生じにくいという利点もある。
[0062] 本発明によるシリカ質材料の他の性状を示すと、その密度は 0. 5-1. 6g/cm3、 好ましくは 0. 8-1. 4g/cm3、そのクラック限界膜厚は 1. 0 x m以上、好ましくは 5 z m以上、及びその内部応力は lOOMPa以下、好ましくは 80MPa以下、である。ま た、このシリカ質材料中に含まれる SiHまたは SiR (Rは炭化水素基を表す)結合とし て存在する Si含有基は、材料中に含まれる S ^子数に対して 10— 100原子%、好 ましくは 25— 75原子%、である。また、 SiN結合として存在する Si含有量は 5原子% 以下である。焼成後得られるシリカ質膜の厚さは、その基体表面の用途によっても異 なるが、通常、 0. 01— 5 z m、好ましくは 0. 1 2 m、である。特に、半導体の層間 絶縁膜として用いる場合には 0. 1 2 x mとすることが好ましい。
[0063] 本発明によるコーティング組成物の焼成においては、特に多孔質化材を用いた場 合に、シリカ質膜の内部に主に孔径 0. 5 3nmの微細孔が形成される。このため、 非常に低い比誘電率を示す。このように本発明による多孔質シリカ質材料は、多孔 質化材を用いた場合に形成される孔が極めて微細なために、優れた機械強度を有 するものである。具体的には、本発明による多孔質シリカ質材料は、後述するナノィ ンデンテーシヨン法による弾性率として 3GPa以上、場合によっては 5GPa以上という 多孔質シリカ質材料としては顕著に高い機械的強度を示すものである。
[0064] 従って、 CMP法による配線材料の除去工程に耐えうる機械的強度と各種耐薬品性 を兼ね備えるため、ダマシン法をはじめとする最新の高集積化プロセスに適合する層 間絶縁膜として使用することが可能である。
[0065] さらに、本発明によるシリカ質材料は、そのマトリックス成分であるポリアルキルシラ ザン化合物に由来する撥水基が焼成後に十分残存するため、水蒸気を含む大気中 に放置しても、比誘電率は殆ど上昇しない。このように、本発明によれば、シリカ質材 料の結合成分 (SiH、 SiR)による低密度化 ·撥水性化が達成され、さらに多孔質化 材を用いた場合には、微細孔による膜全体の低密度化とが相まって 2. 5未満、好ま しくは 2. 0以下、場合によっては 1. 6程度という極めて低い比誘電率を安定的に保 持できる多孔質シリカ質材料が得られる。
[0066] 本発明によるシリカ質材料は、前記したように低密度のものであり、そのクラック限界 膜厚、即ち、膜割れを起さないで製膜可能な最大膜厚が 5 x m以上という高い数値 を示すという利点をも有する。従来のシリカ質膜の場合、そのクラック限界膜厚は 0. 5 一 1. 5 z m程度である。
[0067] このように、本発明によるシリカ質材料は従来のシリカ質材料に比べて、誘電率が 低ぐ密度が低ぐ撥水性が高ぐ耐薬品性に優れ、機械的強度が高レ、ものであり、さ らに低誘電率を安定に保つことができるものであり、特に半導体装置における層間絶 縁膜や金属膜下絶縁膜、とりわけ層間絶縁膜、に適用するのに好ましいものである。
[0068] また、本発明によるシリカ質材料は、ケィ素含有率を高くすることができる。これはァ セトキシシランィ匕合物の配合によるものである。このようにケィ素含有率が高いことに よって、本発明によるシリカ質材料はポリアルキルシラザンを用いて従来の方法により 得られたシリカ質材料よりも高強度であるという特徴を有するものである。
[0069] 本発明を例を用レ、て説明すると以下の通りである。なお、シリカ質膜に関する諸物 性の評価は最後にまとめて記載する。
参考例 1
[0070] (ポリメチルシラザンの合成)
内容積 5リットルのステンレス製タンク反応器に原料供給用のステンレスタンクを装 着した。反応器内部を乾燥窒素で置換した後、原料供給用ステンレスにメチルトリク ロロシラン 780gを入れ、これを窒素によって反応タンクに圧送して導入した。次に、ピ リジン入りの原料供給タンクを反応器に接続し、ピリジン 4kgを窒素で同様に圧送し 導入した。反応器の圧力を 1. Okg/cm2に調整し、反応機内の混合液温が一 4°Cに なるように温度調節を行った。そこに、撹拌しながらアンモニアを吹き込み、反応器の 圧力が 2. Okg/cm2になった時点でアンモニア供給を停止した。排気ラインをあけて 反応器圧力を下げ、引き続き乾燥窒素を液相に 1時間吹き込み、余剰のアンモニア を除去した。得られた生成物を加圧濾過器を用いて乾燥窒素雰囲気下で加圧濾過 し、濾液 3200mlを得た。エバポレーターを用いてピリジンを留去したところ、約 340g のポリメチルシラザンを得た。
[0071] 得られたポリメチルシラザンの数平均分子量をクロ口ホルムを展開液としたガスクロ マトグラフィ一により測定したところ、ポリスチレン換算で 1800であった。赤外吸収ス ぺクトル(以下、 IRスペクトルという)を測定したところ、 3350cm— 1および 1200cm— 1 付近の N-H結合に基づく吸収、 2900cm— 1および 1250cm— 1の Si— C結合に基づく 吸収、および 1020— 820cm— 1の Si— N-Si結合に基づく吸収が認められた。
参考例 2
[0072] (ポリメチルシラザンのみを用いたシリカ誓膜の作製) 参考例 1で合成したポリメチルシラザン 5gを、プロピレングリコールモノメチルエーテ ルアセテート(以下、 PGMEAという) 15gに導入し、乾燥窒素雰囲気下でスターラー を用いて室温で十分に溶解させた。続いてその溶液を濾過精度 0. 2 β mc PTFE^ リンジフィルター(アドバンテック社製)で濾過した。その濾液を直径 10. 2cm (4イン チ)、厚さ 0. 5mmのシリコンウェハー上にスピンコーターを用いて、 1500rpm/20 秒の条件で塗布し、さらに室温で 3分間乾燥させた。そのシリコンウェハーを大気雰 囲気中(23°Cにおける相対湿度 40%) 150°Cで 3分間、ついで 250°Cのホットプレー ト上で 3分間加熱し、さらに吸湿のために 24時間クリーンルーム内(23°C相対湿度 4 0%)に放置した。放置後、乾燥窒素雰囲気中 350°C/30分間焼成し、シリカ質膜を 得た。
[0073] 得られたシリカ質膜の IRスペクトルは図 1に示すとおりである。 1050— 1200cm— 1 付近、および 450cm— 1の Si—O結合に基づく吸収、 1280cm— 1および 750cm— 1の Si _C結合に基づく吸収、 2950cm— 1の C_H結合に基づく吸収が認められ、 3350cm_ 1および 1200cm— 1の N-H結合に基づく吸収は焼失していた。 IRスぺクトノレをもとに して、図 2に示すようなピーク分割法で、 1050— 1200cm— 1付近の Si—〇結合に基づ く吸収(P1)の面積と、 1280cm— 1の Si— C結合に基づく吸収(P2)の面積の比を算出 したところ、(P1面積) / (P2面積)は 17· 0であった。
[0074] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 90、密度 1. 41g/cm3、 内部応力は 50MPa、クラック限界膜厚は 3 / m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ 2. 90であり、変化は認められな力 た。この膜のナノインデンテーション法による 弾性率は 4. 9GPaであった。
実施例 1
[0075] 参考例 1で合成したポリメチルシラザンの 5%キシレン溶液 100gに、テトラァセトキ シシラン 1. 65gを添カ卩し、窒素雰囲気下で 150°C30分間加熱した。この溶液をエバ ポレーターを用いて濃縮し、溶媒を PGMEAで置換した。このときの PGMEA量は 2 5gであった。続いてその溶液を濾過精度 0. 2ミクロンの PTFEシリンジフィルター(ァ ドバンテック社製)で濾過した。その濾液を直径 10. 2cm (4インチ)、厚さ 0. 5mmの シリコンウェハー上にスピンコーターを用いて、 1500rpm/20秒の条件で塗布し、さ らに室温で 3分間乾燥させた。そのシリコンウェハーを大気雰囲気中(23°Cにおける 相対湿度 40%) 100°Cで 3分間、ついで 190°Cのホットプレート上で 3分間加熱し、 続いて、乾燥窒素雰囲気中 350°C/30分間焼成し、シリカ質膜を得た。
[0076] 得られたシリカ質膜の IRスペクトルは、 1050 lSOOcm—1付近、および 450cm の Si_〇結合に基づく吸収、 1280cm— 1および 780cm— 1の Si_C結合に基づく吸収、 SSSOcm—1の C— H結合に基づく吸収が認められ、 SSSOcnT1および lSOOcm—1の N —H結合に基づく吸収、およびテトラァセトキシシランのァセトキシ基に基づく吸収は 焼失していた。 IRスペクトルをもとにして、 1050 lSOOcnT1付近の Si_〇結合に基 づく吸収(P1)の面積と、 1280cm— 1の Si— C結合に基づく吸収(P2)の面積の比を算 出したところ、(P1面積) / (P2面積)は 22. 4であった。
[0077] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 81、密度 1. 39g/cm3、 内部応力は 64MPa、クラック限界膜厚は 2 / m以上であった。本例では多孔質化材 を用いていないにも関わらず膜密度が低くなつている力 S、添加したテトラァセトキシシ ランのァセトキシ基ゃシリカ成分の一部が焼成中に飛散して、わずかに低密度化した ためと予想される。
[0078] また、得られた膜を温度 23°C相対湿度 50%の大気中に 1週間放置した後、再度比 誘電率を測定したところ 2. 86であり、わずかに上昇したが、実用上問題のないレべ ノレであった。この膜のナノインデンテーション法による弾性率は 6. 2GPaであった。 実施例 2
[0079] 参考例 1で合成したポリメチルシラザンの 5%キシレン溶液 100gに、テトラァセトキ シシラン 1. 25gを添カ卩し、窒素雰囲気下で 150°C30分間加熱した。この溶液をエバ ポレーターを用いて濃縮し、溶媒を PGMEAで置換した。このときの PGMEA量は 9 5gであった。さらにヒドロキシ(ポリエチレンォキシ)プロピル末端シリコーン(Gelest 社製 MCR-C13 (商品名))を 3. 2g投入し、窒素雰囲気下で 80°C3時間加熱した。 この混合物の質量を測定したところ 98gであったので、エバポレーターを用いて濃縮 し、溶媒である PGMEAを約 31 g蒸発させて固形分約 15 %の PGMEA溶液を得た 。続いてその溶液を濾過精度 0. 2ミクロンの PTFEシリンジフィルター(アドバンテック 社製)で濾過した。その濾液を直径 10. 2cm (4インチ)、厚さ 0. 5mmのシリコンゥェ ハー上にスピンコーターを用いて、 1500rpm/20秒の条件で塗布し、さらに室温で 3分間乾燥させた。そのシリコンウェハーを大気雰囲気中(23°Cにおける相対湿度 4 0%) 100°Cで 3分間、ついで 190°Cのホットプレート上で 3分間加熱し、続いて、乾 燥窒素雰囲気中 350°C/30分間焼成し、シリカ質膜を得た。
[0080] 得られたシリカ質膜の IRスペクトルは、 1020 lSOOcm—1付近、および 450cm の Si_〇結合に基づく吸収、 1280cm— 1および 780cm— 1の Si_C結合に基づく吸収、 SSSOcm—1の C— H結合に基づく吸収が認められ、 SSSOcnT1および lSOOcm—1の N —H結合に基づく吸収、およびヒドロキシ(ポリエチレンォキシ)プロピル末端シリコー ンに基づく吸収、テトラァセトキシシランに基づく吸収は焼失していた。 IRスペクトルを もとにして、 1020 1200cm— 1付近の Si_〇結合に基づく吸収(P1)の面積と、 128 Ocm— 1の Si C結合に基づく吸収(P2)の面積の比を算出したところ、(P1面積) / (P 2面積)は 22. 7であり、参考例 2で得られたシリカ質膜と比較して、 Si— O結合による 吸収が大きかった。これはテトラァセトキシシランの分解物による Si 〇結合が生成し た膜中に組み込まれたためと考えられる。
[0081] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 24、密度 1. 29g/cm3、 内部応力は 51MPa、クラック限界膜厚は 3 / m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ 2. 27であり、わずかに上昇した力 実用上問題のないレベルであった。
[0082] この膜のナノインデンテーション法による弾性率は 5. 2GPaであった。さらにシリカ 質膜の孔径を X線散漫散乱法により測定したところ、平均孔径は 18Aであった。 実施例 3 例 2と同様にして、シリカ質膜を得た。得られた膜の IRスぺ外ルを測定したところ、ピ ークの位置は実施例と全く同じであった。すなわち、 1020— 1200cm— 1付近、およ び 450cm— 1の Si 〇結合に基づく吸収、 1280cm— 1および 780cm— 1の Si— C結合に 基づく吸収、 2980cm— 1の C—H結合に基づく吸収が認められ、 3350cm— 1および 12 00cm— 1の N—H結合に基づく吸収、およびヒドロキシ(ポリエチレンォキシ)プロピル 末端シリコーンに基づく吸収、メチルトリァセトキシシランに基づく吸収は焼失してい た。 IRスペクトルをもとにして、 1020— OOcnT1付近の Si-Ο結合に基づく吸収(P 1)の面積と、 SOcnT1の Si— C結合に基づく吸収(P2)の面積の比を算出したとこ ろ、(P1面積) / (P2面積)は 20. 6であった。
[0084] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 30、密度 1. 21g/cm3、 内部応力は 46MPa、クラック限界膜厚は 3 z m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ 2. 22であり、わずかに上昇した力 実用上問題のないレベルであった。
[0085] この膜のナノインデンテーション法による弾性率は 5. lGPaであった。さらにシリカ 質膜の孔径を X線散漫散乱法により測定したところ、平均孔径は 19Aであった。 実施例 4
[0086] ヒドロキシ(ポリエチレンォキシ)プロピル末端シリコーンの代わりに数平均分子量が 550のポリエチレングリコールメチルエーテルを用いた以外は、実施例 2と同様にして 、シリカ質膜を得た。得られた膜の IRスペクトルを測定したところ、 1030-1200cm 付近、および 450cm— 1の Si— O結合に基づく吸収、 1270cm— 1および 780cm— 1の Si _C結合に基づく吸収、 2980cm— 1の C—H結合に基づく吸収が認められ、 3350cm_ 1および 1200cm— 1の N—H結合に基づく吸収、およびポリエチレングリコールメチル エーテルに基づく吸収、テトラァセトキシシランに基づく吸収は焼失していた。 IRスぺ タトルをもとにして、 1030— l SOOcnT1付近の Si— O結合に基づく吸収(P1)の面積 と、 lSSOcnT1の Si— C結合に基づく吸収(P2)の面積の比を算出したところ、(P1面 積) / (P2面積)は 21. 9であった。
[0087] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 35、密度 1. 30g/cm3、 内部応力は 59MPa、クラック限界膜厚は 3 z m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ 2. 38であり、わずかに上昇した力 実用上問題のないレベルであった。
[0088] この膜のナノインデンテーション法による弾性率は 5. 3GPaであった。さらにシリカ 質膜の孔径を X線散漫散乱法により測定したところ、平均孔径は 19Aであった。 実施例 5 [0089] テトラァセトキシシランの添加量を 1 · 65gに、ヒドロキシ(ポリエチレンォキシ)プロピ ル末端シリコーンの添力卩量を 1. 65gに、それぞれ変更したほかは実施例 1と同様に してシリカ質膜を得た。得られた膜の IRスペクトルを測定したところ、 1040— 1200c π 1付近、および 460cm— 1の Si_〇結合に基づく吸収、 1250cm— 1および YSOcm—1 の Si— C結合に基づく吸収、 2980cm— 1の C—H結合に基づく吸収が認められ、 3350 cm—1および 1200cm— 1の N—H結合に基づく吸収、およびヒドロキシ(ポリエチレンォ キシ)プロピル末端シリコーンに基づく吸収、メチルトリァセトキシシランに基づく吸収 は焼失していた。 IRスペクトルをもとにして、 1040— l SOOcnT1付近の Si_〇結合に 基づく吸収(P1)の面積と、 1280cm— 1の Si— C結合に基づく吸収(P2)の面積の比を 算出したところ、(P1面積) / (P2面積)は 23. 1であった。
[0090] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 52、密度 1. 37g/cm3、 内部応力は 62MPa、クラック限界膜厚は 3 z m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ 2. 53であり、わずかに上昇した力 実用上問題のないレベルであった。
[0091] この膜のナノインデンテーション法による弾性率は 5. 5GPaであった。
実施例 6
[0092] 組成物を焼成する際の温度を 350°Cから 400°Cに変更した以外は、実施例 1と同 様にしてシリカ質膜を得た。得られた膜の IRスペクトルのピーク位置は実施例 1で得 られたシリカ質膜とほとんど変化が無ぐ 1050— l SOOcnT1付近の Si— O結合に基づ く吸収(P1)の面積と、 1280cm— 1の Si— C結合に基づく吸収(P2)の面積の比を算出 したところ、(P1面積) / (P2面積)は 17. 0であった。
[0093] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 21、密度 1. 31g/cm3、 内部応力は 54MPa、クラック限界膜厚は 3 z m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ 2. 25であり、わずかに上昇した力 実用上問題のないレベルであった。
[0094] この膜のナノインデンテーション法による弾性率は 5. OGPaであった。さらにシリカ 質膜の孔径を X線散漫散乱法により測定したところ、平均孔径は 18Aであった。
[0095] 本例と実施例 1とを比較すると、本発明による組成物を用いれば、従来 400°C以上 で行っていた焼成温度を 350°Cに下げてもほとんど変わらない物性のシリカ質膜を 得ること力 Sできる。すなわち、コーティング組成物を加熱する温度を下げることによつ て、サーマルバジェットを下げたうえで、従来の方法によるものと同等の性能を達成 すること力 Sできる。さらには、エネルギー消費を抑えて製造コストの低減を図ることもで きる。
比較例 1
[0096] ァセトキシシラン化合物を添加しない場合について調べた。すなわち、参考例 1で 合成したポリメチルシラザンの 5%キシレン溶液 lOOgを、窒素雰囲気下で 150°C30 分間加熱した。この溶液をエバポレーターを用いて濃縮し、溶媒を PGMEAで置換 した。このときの PGMEA量は 95gであった。さらにヒドロキシ(ポリエチレンォキシ)プ 口ピル末端シリコーン (Gelest社製 MCR_C13 (商品名))を 3. 2g投入し、窒素雰囲 気下で 80°C3時間加熱した。この混合物の質量を測定したところ 95gであったので、 エバポレーターを用いて濃縮し、溶媒である PGMEAを約 10g蒸発させて固形分約 15%の PGMEA溶液を得た。続いてその溶液を濾過精度 0. 2ミクロンの PTFEシリ ンジフィルター(アドバンテック社製)で濾過した。その濾液を直径 10· 2cm (4インチ )、厚さ 0. 5mmのシリコンウェハー上にスピンコーターを用いて、 1500rpm/20秒 の条件で塗布し、吸湿のために 24時間クリーンルーム内(23°C相対湿度 40%)に放 置した (加湿工程)。そのシリコンウェハーを大気雰囲気中(23°Cにおける相対湿度 4 0%) 100°Cで 3分間、ついで 190°Cのホットプレート上で 3分間加熱し、続いて、乾 燥窒素雰囲気中 350°C/30分間焼成し、シリカ質膜を得た。
[0097] 得られたシリカ質膜の IRスペクトルは、 1020 lSOOcnT1付近、および 450cm の Si_〇結合に基づく吸収、 1280cm— 1および 780cm— 1の Si_C結合に基づく吸収、 2980cm— 1の C—H結合に基づく吸収が認められ、 3350cm— 1および 1200cm— 1の N —H結合に基づく吸収、およびヒドロキシ(ポリエチレンォキシ)プロピル末端シリコー ンに基づく吸収は焼失していた。 IRスペクトルをもとにして、 1020— 1200cm— 1付近 の Si 〇結合に基づく吸収(P1)の面積と、 1280cm— 1の Si— C結合に基づく吸収(P 1)の面積の比を算出したところ、 (P1面積) / (P2面積)は 17· 4であった。
[0098] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 64、密度 1. 15g/cm3、 内部応力は 38MPa、クラック限界膜厚は 3 / m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ 2. 64であり、変化がなかった。
[0099] この膜のナノインデンテーション法による弾性率は 4. 2GPaであった。
比較例 2
[0100] ァセトキシシラン化合物を添加せず、かつ加湿工程を省略した場合について調べ た。すなわち、比較例 1と同様にして溶液を調製し、濾過した後、その濾液を直径 10 . 2cm (4インチ)、厚さ 0· 5mmのシリコンウェハー上にスピンコーターを用いて、 15 00rpm/20秒の条件で塗布し、さらに室温で 3分間乾燥させた。そのシリコンウェハ 一を大気雰囲気中(23°Cにおける相対湿度 40%) 100°Cで 3分間、ついで 190°Cの ホットプレート上で 3分間加熱し、続いて、乾燥窒素雰囲気中 350°C/30分間焼成 し、シリカ質膜を得た。
[0101] 得られたシリカ質膜の IRスペクトルは、 1020— 1200cm— 1付近、および 450cm— 1 の Si—〇結合に基づく吸収、 1280cm— 1および 780cm— 1の Si— C結合に基づく吸収、 2980cm— 1の C—H結合に基づく吸収、 3350cm— 1および 1200cm— 1の N—H結合に 基づく吸収、 920cm— 1および 3700cm— 1付近のブロードな Si— OH結合に基づく吸 収が認められ、ヒドロキシ (ポリエチレンォキシ)プロピル末端シリコーンに基づく吸収 は焼失していた。
[0102] 得られたシリカ質膜の評価を行ったところ、焼成直後の比誘電率は 3. 65であった が、大気雰囲気中(温度 25°C相対湿度 40%)で 3時間放置後には 4. 5を越え、著し い吸湿が起こっていることがわかった。
[0103] [シリカ質膜物性の評価方法]
^mmm
パイレックス(登録商標:ダウ 'コーユング社製)ガラス板 (厚さ lmm、大きさ 50mm X 50mm)を中性洗剤、希 NaOH水溶液、希 H HO水溶液の順番でよく洗浄し、乾
2 4
燥させる。このガラス板の全面に真空蒸着法でアルミニウム膜を形成させる(厚さ: 0. 2 / m)。このガラス板に試料組成物溶液をスピンコート法で塗布して成膜した後、電 極を信号取り出すためにガラス板の四隅を綿棒でこすって膜を除去する(3mm X 3 mm)。続いて、各例の方法に従ってシリカ質膜に転化させる。得られるシリカ質膜に ステンレス製のマスクを被せて真空蒸着法でアルミニウム膜を形成させる。パターン は、 2mm X 2mmの正方形で厚さを 2 μ ΐηとしたものを 18個とする。キャパシタンス測 定は、 4192ALFインピーダンスアナライザー(横河'キューレット'パッカード社製)を 用いて、 100kHzで測定する。また、膜厚の測定には M-44型分光エリプソメーター (J. A. Woolam社製)を用いる。比誘電率は 18個のパターンすべてについて、下式 により計算した値を平均したものを採用する。
(比誘電率) = (キャパシタンス [pF] ) X (膜厚 [ z m] ) Z35. 4
[0104] 随度
直径 10. 16cm (4インチ)、厚さ 0. 5mmのシリコンウェハーの重量を電子天秤で測 定する。これに試料組成物溶液をスピンコート法で塗布して成膜し、各例の方法に従 つてシリカ質膜に転化させ、再び膜付きのシリコンゥヱハーの重量を電子天秤で測定 する。膜重量は、成膜前後のウェハーの重量差とする。膜厚は、 M - 44型分光エリプ ソメーターひ. A. Woolam社製)で測定する。膜密度は下式に従って計算する。 (膜密度 [g/cm3] ) = (膜重量 [g] ) / (膜厚 [ /i m] ) /0. 008
[0105] 内部応力
直径 20· 32cm (8インチ)、厚さ lmmのシリコンウェハーのそりを FLX— 2320型レ 一ザ一内部応力測定器 (Tencor社製)に入力する。さらに、このシリコンウェハーに 試料組成物溶液をスピンコート法で塗布して成膜し、各例の方法に従つてシリカ質膜 に転化させ、室温(23°C)に戻した後、再び前記レーザー内部応力測定器で内部応 力を測定する。なお、膜厚は、 M-44型分光エリプソメーター I. A. Woolam社製) で測定する。
[0106] クラック限界蹬厚
直径 10. 16cm (4インチ)、厚さ 0. 5mmのシリコンウェハーに試料組成物溶液をス ピンコート法で塗布して成膜し、各例の方法に従ってシリカ質膜に転化させる。塗布 の際に試料組成物溶液の固形分濃度またはスピンコーターの回転数を調整して、膜 厚を約 0. 5 z mから約 5 z mの範囲で変化させた試料を作製する。焼成後の膜表面 を顕微鏡観察(120倍)し、各試料のクラックの有無を調べ、クラック発生のない最大 膜厚をクラック限界膜厚とする。
[0107] 弾性率(ナノインデンテーション法)
直径 20. 32cm (8インチ)、厚さ lmmのシリコンウェハーに試料組成物溶液をスピ ンコート法で塗布して成膜し、各例の方法に従ってシリカ質膜に転化させる。得られ るシリカ質膜にっレ、て、薄膜用機械的特性評価システム (米国 MTSシステムズ社製 Nano Indenter DCM)により弾性率を測定する。
[0108] 孔择測定
直径 20. 32cm (8インチ)、厚さ lmmのシリコンウェハーに試料組成物溶液をスピ ンコート法で塗布して成膜し、各例の方法に従ってシリカ質膜に転化させる。得られ るシリカ質膜について、 ATX - G型表面構造評価用多機能 X線回折装置 (理学電気 株式会社製)を用いて、 X線散漫散乱法によって孔径を測定する。
産業上の利用可能性
[0109] 本発明は、安定した低誘電率と、最新の微細配線プロセスに耐えうる機械的強度 及び各種の耐薬品性とをバランスよく兼ね備えたシリカ質材料を提供するものである 。本発明によるシリカ質材料を半導体装置の層間絶縁膜または金属膜下絶縁膜とし て使用することにより、集積回路のさらなる高集積化、多層化が可能となる。
[0110] 本発明によるシリカ質材料は、上記したように、層間絶縁膜にも金属膜下絶縁膜に も用いることができるが、本発明によるコーティング組成物に多孔質化材を含ませた 場合には、得られるシリカ質材料に形成される微細孔が増加してさらに誘電率が低く なるのり、層間絶縁膜に特に好ましいシリカ質材料となる。
[0111] また、電子材料の他、本発明のコーティング組成物を用いることにより、金属やセラ ミックス、木材等の各種の材料の固体表面に対してシリカ質膜を形成することもできる
。本発明によれば、シリカ質膜を表面に形成した金属基板(シリコン、 sus、タンダス テン、鉄、銅、亜鉛、真ちゆう、アルミニウム等)や、シリカ質膜を表面に形成したセラミ ックス基板(シリカ、アルミナ、酸化マグネシウム、酸化チタン、酸化亜鉛、酸化タンタ ル等の金属酸化物の他、窒化珪素、窒化ホウ素、窒化チタン等の金属窒化物、炭化 珪素等)が提供される。

Claims

請求の範囲
[1] ポリアルキルシラザン化合物、ァセトキシシラン化合物、および有機溶媒を含んでな ることを特徴とする、コーティング組成物。
[2] 多孔質化剤をさらに含んでなる、請求項 1に記載のコーティング組成物。
[3] 前記多孔質化剤が、シロキシ含有ポリエチレンオキサイド化合物、またはシロキシ 含有ポリエチレンオキサイド化合物をモノマー単位として含む共重合体である、請求 項 2に記載のコーティング組成物。
[4] 前記ポリアルキルシラザン化合物が、下記一般式(1)で表される繰り返し単位を含 んでなる、請求項 1一 3のレ、ずれか 1項に記載のコーティング組成物。
[化 1]
Figure imgf000028_0001
(上記式中、 R1は、水素原子または炭素数 1一 3のアルキル基を表すが、化合物全 体のすべての R1が同時に水素であることはなぐ
R2 R4は、各々独立に水素原子または炭素数 1一 3のアルキル基を表す力 R2 R 4のすべてが同時に水素であることはなぐ
p、 q、および rは、それぞれ 0または 1であり、 0≤p + q + r≤3である。)
[5] 請求項 1一 4のいずれ力 4項に記載のコーティング組成物を、基板上に塗布し、ある いは型枠または溝に充填し、さらに焼成することにより形成されたことを特徴とする、 シリカ質材料。
[6] 請求項 5に記載のシリカ質材料を層間絶縁膜として含むことを特徴とする、半導体 装置。
[7] 請求項 1一 4のいずれ力 1項に記載のコーティング組成物を 350°C以下の温度で、 1一 60分間加熱することを特徴とする、シリカ質材料の製造法。
PCT/JP2004/011135 2003-08-12 2004-08-04 コーティング組成物、およびそれを用いて製造した低誘電シリカ質材料 WO2005014743A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2004800229744A CN1836017B (zh) 2003-08-12 2004-08-04 涂料组合物和通过使用该涂料组合物制得的低介电硅质材料
US10/565,429 US7754003B2 (en) 2003-08-12 2004-08-04 Coating composition and low dielectric siliceous material produced by using same
EP20040771176 EP1661960B1 (en) 2003-08-12 2004-08-04 Coating composition and low dielectric siliceous material produced by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-292529 2003-08-12
JP2003292529A JP4588304B2 (ja) 2003-08-12 2003-08-12 コーティング組成物、およびそれを用いて製造した低誘電シリカ質材料

Publications (1)

Publication Number Publication Date
WO2005014743A1 true WO2005014743A1 (ja) 2005-02-17

Family

ID=34131728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011135 WO2005014743A1 (ja) 2003-08-12 2004-08-04 コーティング組成物、およびそれを用いて製造した低誘電シリカ質材料

Country Status (7)

Country Link
US (1) US7754003B2 (ja)
EP (1) EP1661960B1 (ja)
JP (1) JP4588304B2 (ja)
KR (1) KR101097713B1 (ja)
CN (1) CN1836017B (ja)
TW (1) TWI332520B (ja)
WO (1) WO2005014743A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305237B2 (ja) * 2009-04-23 2013-10-02 ダイソー株式会社 有機−無機ハイブリッドシリカゲルの製造方法
JP5405437B2 (ja) 2010-11-05 2014-02-05 AzエレクトロニックマテリアルズIp株式会社 アイソレーション構造の形成方法
US8541301B2 (en) * 2011-07-12 2013-09-24 International Business Machines Corporation Reduction of pore fill material dewetting
US8927430B2 (en) 2011-07-12 2015-01-06 International Business Machines Corporation Overburden removal for pore fill integration approach
US8895379B2 (en) 2012-01-06 2014-11-25 International Business Machines Corporation Integrated circuit having raised source drains devices with reduced silicide contact resistance and methods to fabricate same
WO2014014542A2 (en) 2012-04-27 2014-01-23 Burning Bush Group High performance silicon based coating compositions
US10138381B2 (en) 2012-05-10 2018-11-27 Burning Bush Group, Llc High performance silicon based thermal coating compositions
CN104812543B (zh) 2012-07-03 2017-06-13 伯宁布什集团有限公司 硅基高性能涂料组合物
CN103950940B (zh) * 2014-04-10 2015-11-18 周雨 低介电常数硅微粉的制备方法
KR101833800B1 (ko) * 2014-12-19 2018-03-02 삼성에스디아이 주식회사 실리카계 막 형성용 조성물, 실리카계 막의 제조방법 및 상기 실리카계 막을 포함하는 전자 소자
KR101940171B1 (ko) * 2015-10-29 2019-01-18 삼성에스디아이 주식회사 실리카 막의 제조방법, 실리카 막 및 전자소자
US10468244B2 (en) * 2016-08-30 2019-11-05 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
US11017998B2 (en) 2016-08-30 2021-05-25 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
CN107144483B (zh) * 2017-05-11 2023-10-03 兰州大学 一种基于液氮制冷的纳米压痕多场测试系统
WO2020180837A1 (en) 2019-03-07 2020-09-10 Liquid X Printed Metals, Inc. Thermal cure dielectric ink
US11724963B2 (en) 2019-05-01 2023-08-15 Corning Incorporated Pharmaceutical packages with coatings comprising polysilazane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138107A (ja) * 1987-08-13 1989-05-31 Sekiyu Sangyo Katsuseika Center 改質ポリシラザン、その製造方法及びその用途
JPH0851271A (ja) * 1994-04-01 1996-02-20 Dow Corning Corp エレクトロニクス基材上に保護被覆を形成する方法
JPH09107171A (ja) * 1995-06-16 1997-04-22 Dow Corning Corp コーティング形成方法
JP2002075982A (ja) * 2000-08-29 2002-03-15 Clariant (Japan) Kk 低誘電率多孔質シリカ質膜、半導体装置およびコーティング組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3400860A1 (de) * 1984-01-12 1985-07-18 Henkel KGaA, 4000 Düsseldorf Glasprimer
US4975512A (en) 1987-08-13 1990-12-04 Petroleum Energy Center Reformed polysilazane and method of producing same
JPH0766287A (ja) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US5436084A (en) * 1994-04-05 1995-07-25 Dow Corning Corporation Electronic coatings using filled borosilazanes
KR100600631B1 (ko) * 1998-04-24 2006-07-13 쇼쿠바이가세고교 가부시키가이샤 저유전율 실리카계 피막 형성용 도포액 및 저유전율피막으로 도포된 기재

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138107A (ja) * 1987-08-13 1989-05-31 Sekiyu Sangyo Katsuseika Center 改質ポリシラザン、その製造方法及びその用途
JPH0851271A (ja) * 1994-04-01 1996-02-20 Dow Corning Corp エレクトロニクス基材上に保護被覆を形成する方法
JPH09107171A (ja) * 1995-06-16 1997-04-22 Dow Corning Corp コーティング形成方法
JP2002075982A (ja) * 2000-08-29 2002-03-15 Clariant (Japan) Kk 低誘電率多孔質シリカ質膜、半導体装置およびコーティング組成物

Also Published As

Publication number Publication date
KR101097713B1 (ko) 2011-12-23
TW200523332A (en) 2005-07-16
KR20060066087A (ko) 2006-06-15
US20060246303A1 (en) 2006-11-02
JP4588304B2 (ja) 2010-12-01
JP2006316077A (ja) 2006-11-24
EP1661960A4 (en) 2011-05-11
CN1836017B (zh) 2011-11-02
US7754003B2 (en) 2010-07-13
TWI332520B (en) 2010-11-01
CN1836017A (zh) 2006-09-20
EP1661960A1 (en) 2006-05-31
EP1661960B1 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4722269B2 (ja) 低誘電率多孔質シリカ質膜、半導体装置およびコーティング組成物、ならびに低誘電率多孔質シリカ質膜の製造方法
WO2005014743A1 (ja) コーティング組成物、およびそれを用いて製造した低誘電シリカ質材料
JP4408994B2 (ja) 低誘電率多孔質シリカ質膜、半導体装置およびコーティング組成物
KR101596358B1 (ko) 폴리머층을 구비한 반도체 광전자 디바이스
KR20010074860A (ko) 실란계 나노다공성 실리카 박막 및 그 제조방법
US20040109950A1 (en) Dielectric materials
JP4574124B2 (ja) コーティング組成物、多孔質シリカ質膜、多孔質シリカ質膜の製造方法及び半導体装置
JP2002212503A (ja) 膜形成用組成物及びその製造方法、並びに多孔質膜の形成方法及び多孔質膜
TW593548B (en) Siloxane resins
JP3939408B2 (ja) 低誘電率シリカ質膜
JP2001287910A (ja) 多孔質ケイ素酸化物塗膜の製造方法
JP4920252B2 (ja) リン含有シラザン組成物、リン含有シリカ質膜、リン含有シリカ質充填材、リン含有シリカ質膜の製造方法及び半導体装置
JP2006188547A (ja) コーティング組成物、およびそれを用いて製造した低誘電多孔質シリカ質材料
JPH11105187A (ja) 高純度シリカ質膜の形成方法及び高純度シリカ質膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022974.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006246303

Country of ref document: US

Ref document number: 10565429

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067002892

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004771176

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004771176

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067002892

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10565429

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP