WO2005010540A1 - 二次電池の充放電電気量推定方法及び装置 - Google Patents

二次電池の充放電電気量推定方法及び装置 Download PDF

Info

Publication number
WO2005010540A1
WO2005010540A1 PCT/JP2004/010983 JP2004010983W WO2005010540A1 WO 2005010540 A1 WO2005010540 A1 WO 2005010540A1 JP 2004010983 W JP2004010983 W JP 2004010983W WO 2005010540 A1 WO2005010540 A1 WO 2005010540A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charge
amount
secondary battery
discharge
Prior art date
Application number
PCT/JP2004/010983
Other languages
English (en)
French (fr)
Inventor
Yusai Murakami
Norito Yamabe
Original Assignee
Panasonic Ev Energy Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ev Energy Co., Ltd. filed Critical Panasonic Ev Energy Co., Ltd.
Priority to US10/565,956 priority Critical patent/US7557584B2/en
Publication of WO2005010540A1 publication Critical patent/WO2005010540A1/ja
Priority to US12/478,221 priority patent/US7728598B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present invention relates to a residual battery such as a nickel-hydrogen (Ni-MH) battery mounted on an electric vehicle (PEV) or a hybrid vehicle (HEV) as a power source of a motor and a drive source of various loads. It relates to technology for estimating the state of charge (SOC).
  • a residual battery such as a nickel-hydrogen (Ni-MH) battery mounted on an electric vehicle (PEV) or a hybrid vehicle (HEV) as a power source of a motor and a drive source of various loads. It relates to technology for estimating the state of charge (SOC).
  • HEVs detect the voltage, current, temperature, etc. of a secondary battery and estimate the remaining capacity (hereinafter abbreviated as SOC) of the secondary battery by calculation, thereby maximizing the fuel consumption efficiency of the vehicle.
  • SOC remaining capacity
  • a battery voltage V and a charged / discharged current I are measured for a predetermined period, an integrated value I of the current is calculated, and a temperature T, a battery voltage V, and a current integrated value are calculated.
  • find the correction voltage V '( V-V c (t))
  • correct Obtain and store multiple pairs of voltage V 'and current I, and obtain a first-order approximation line (voltage V'—current I approximation line) from the pair data by regression analysis.
  • V intercept of the I approximate line is estimated as the electromotive force E
  • S OC is estimated from the function of the previously estimated S ⁇ C, electromotive force E, temperature T, and current integrated value 5 I (for example, 200 1 -2 230 33 reference).
  • the current sensor measures the charge / discharge current flowing through the secondary battery.
  • this current sensor is used in HEVs, etc., it is necessary to measure a large current, and if a high-precision sensor is used, the cost will increase, so a low-cost and inaccurate sensor must be used. That is the fact. Therefore, the current value detected by the current sensor includes a measurement error, and this current error becomes an error in estimating S ⁇ C.
  • the charge / discharge rate is smaller than the current error (for example, when there is a current error of ⁇ 2 A for a charge / discharge rate of 1 A), the behavior of the estimated SOC significantly increases over time. It gets weird.
  • the previously estimated polarization voltage V c (t ⁇ 1) of the battery is updated as V c (t) as a function of the integrated value of the current measured by the current sensor, and the polarization voltage
  • the current polarization voltage calculation includes a current error, and this current error becomes the polarization voltage estimation error.
  • the problem is that the error between the true value of SOC and the estimated value increases. Disclosure of the invention
  • the present invention has been made in view of the above problems, and has as its object to provide a method and apparatus capable of estimating a charge / discharge electricity amount and a polarization voltage without being affected by a current measurement error. It is an object of the present invention to provide a method and a device capable of estimating SOC with high accuracy even when a current value includes a measurement error. In order to achieve the above object, the charge and discharge electricity quantity of the secondary battery according to the present invention is estimated.
  • the method of determining is to measure a set data of a current flowing through the secondary battery and a terminal voltage of the secondary battery corresponding to the current, obtain a plurality of the set data, and a specific sorting condition (for example, The value is within the specified range on the charging and discharging sides (for example, ⁇ 5 OA), and the number of sets of data is more than the specified number on the charging and discharging sides (eg, 10 out of 60 samples each) If the amount of charge / discharge during the acquisition of a plurality of sets of data is within a predetermined range (for example, the condition that 0.3 Ah) is satisfied, Calculating the no-load voltage (V sep), which is the voltage intercept when the current on the approximate straight line is zero, obtained by statistical processing such as regression analysis using a method such as the least squares method; The absolute value of the current must be less than 10 amps) Voltage conditions (for example, the change amount of the voltage
  • AVb no-load voltage or open-circuit voltage
  • AQ estimated amount of charge / discharge electricity
  • the method for estimating the amount of charge / discharge electricity of a secondary battery further includes the step of determining a voltage determined depending on physical properties and a charge / discharge state of the secondary battery with respect to a no-load voltage or a change in open circuit voltage (AVb).
  • Ke Q electromotive force change constant
  • Kp o 1 polarization voltage generation constant
  • the method for estimating the charge / discharge electricity amount of a secondary battery further comprises: calculating a measured charge / discharge electricity amount (AQm) in a predetermined period from a current flowing through the secondary battery; Calculating the polarization voltage (VP o 1) of the secondary battery, calculating the electromotive force (Ve q) of the secondary battery based on the measured charge / discharge electricity amount, and changing the polarization voltage during a predetermined period.
  • AQm measured charge / discharge electricity amount
  • VP o 1 the polarization voltage
  • Ve q electromotive force
  • the calculation process of the estimated charge / discharge electricity amount calculates the correction coefficient (a) for the measured charge / discharge electricity amount based on the polarization voltage change amount, the electromotive force change amount, and the no-load voltage or open circuit voltage change amount.
  • the estimated charge / discharge electricity (AQe) is calculated by multiplying the measured charge / discharge electricity (AQm) by the correction coefficient.
  • the polarization voltage change is ⁇ V po 1
  • the electromotive force change is ⁇ V e Q
  • the no-load voltage or open-circuit voltage change is AVb
  • the polarization voltage calculation step based on the polarization voltage (Vp pre) calculated based on the estimated charge / discharge amount (AQ e) calculated before a predetermined period and the measured charge / discharge amount (AQm). Then, the polarization voltage (Vp o1) is calculated.
  • the electromotive force (Ve pre) calculated based on the estimated charge / discharge electric energy (AQe) calculated before a predetermined period is measured.
  • the electromotive force (Ve q) is calculated based on the constant charge and discharge electricity (AQm).
  • the polarization voltage is calculated with reference to the polarization voltage-charge / discharge electric quantity characteristic prepared in advance with the temperature as a parameter.
  • the electromotive force calculation process based on the sum of the remaining capacity calculated before a predetermined period and the measured charge / discharge electricity amount, reference is made to the electromotive force-remaining capacity characteristics prepared in advance with temperature as a parameter. Thus, the electromotive force is calculated.
  • the method for estimating the polarization voltage of a secondary battery according to the present invention includes the method of estimating the charge / discharge electric quantity (AQ e) using the method for estimating the charge / discharge electric quantity of a secondary battery according to the present invention. And a step of recalculating the polarization voltage (Vpe) of the secondary battery based on the estimated charge / discharge electricity amount.
  • the method for estimating the state of charge of a secondary battery according to the present invention includes the method of estimating the amount of charge / discharge electricity (AQ e) using the method for estimating the amount of charge / discharge of secondary battery according to the present invention.
  • an apparatus for estimating the amount of charge and discharge of a secondary battery includes: a current measuring unit that measures a current flowing through the secondary battery as current data (I (n)); Combined data of a voltage measurement unit that measures the terminal voltage of the secondary battery as voltage data (V (n)), current data from the current measurement unit, and voltage data from the voltage measurement unit corresponding to the current data A plurality of data are acquired, and specific sorting conditions (for example, the current value is within a predetermined range on the charging side and the discharging side (for example, ⁇ 5 OA), and the number of sets of multiple data is on the charging side and the discharging side.
  • specific sorting conditions for example, the current value is within a predetermined range on the charging side and the discharging side (for example, ⁇ 5 OA), and the number of sets of multiple data is on the charging side and the discharging side.
  • a no-load voltage calculation unit that calculates a no-load voltage (V se P), which is a voltage intercept when the current in the approximate straight line is zero, and a specific current condition (for example, the absolute value of the current is less than 10 amperes).
  • V se P a no-load voltage
  • a specific current condition for example, the absolute value of the current is less than 10 amperes.
  • Condition or the voltage condition (for example, the condition that the amount of change in voltage is less than 1 port) is satisfied for a certain period of time (for example, 10 seconds), the open-circuit voltage is calculated from the terminal voltage of the secondary battery.
  • an open-circuit voltage calculator an open-circuit voltage calculator, a non-load voltage or a change in open-circuit voltage (AVb) during a predetermined period (for example, 1 minute), a voltage change calculator, and an unload voltage or open circuit It is provided with an estimated charge / discharge electric energy calculation unit that calculates an estimated charge / discharge electric energy (AQ e) for the secondary battery based on the amount of change in the voltage.
  • the apparatus for estimating the amount of charge / discharge electricity of a secondary battery further includes a voltage determined depending on physical properties and a charge / discharge state of the secondary battery with respect to the no-load voltage or the amount of change in open circuit voltage (AVb).
  • An electromotive force change constant setting unit that presets an electromotive force change constant (Ke q), which is the amount of change in electromotive force with respect to the amount of charge and discharge electricity in the usage area of the remaining capacity, and the physical properties and charge / discharge status of the secondary battery
  • Ke q electromotive force change constant
  • Kp 0 1 polarization voltage generation constant
  • the estimated charge / discharge electricity amount ⁇ ⁇ 3 e is calculated as a function of the no-load voltage or the change amount AVb of the open circuit voltage by using the equation represented by + Kp o 1).
  • the charge / discharge electricity amount estimating device for a secondary battery according to the present invention further includes a measurement charge / discharge for calculating a measured charge / discharge electricity amount (AQm) in a predetermined period (for example, 1 minute) from a current flowing through the secondary battery.
  • AQm measured charge / discharge electricity amount
  • Electricity quantity calculation unit, measurement charge / discharge A polarization voltage calculation unit that calculates the polarization voltage (Vp o 1) of the secondary battery based on the amount of electricity, and an electromotive force calculation unit that calculates the electromotive force (Ve q) of the secondary battery based on the measured charge / discharge amount of electricity
  • a polarization voltage change amount calculation unit that calculates a change amount ( ⁇ 1) of the polarization voltage during a predetermined period (for example, one minute); and a change amount (AVe) of the electromotive force during a predetermined period (for example, one minute).
  • the estimated charge / discharge electric quantity calculation section calculates the amount of change in the polarization voltage, the change in the electromotive force, and the change in the no-load voltage or the open-circuit voltage. Calculate the estimated charge / discharge electricity (AQ e).
  • the estimated charge / discharge electricity amount calculation unit calculates a correction coefficient ( ⁇ ) for the measured charge / discharge electricity amount based on the polarization voltage change amount, the electromotive force change amount, and the change amount of the no-load voltage or open circuit voltage.
  • a correction coefficient calculator is provided, and the estimated charge / discharge electricity (AQ e) is calculated by multiplying the measured charge / discharge electricity (AQm) by the compensation coefficient.
  • the polarization voltage calculator calculates the polarization based on the polarization voltage (Vp pre) calculated based on the estimated charge / discharge electricity (AQ e) calculated before a predetermined period and the measured charge / discharge electricity (AQm). Calculate the voltage (Vpol).
  • the electromotive force calculation unit calculates an electromotive force (V epre) calculated based on the estimated charge / discharge electricity amount ( ⁇ Q e) calculated before a predetermined period and a measured charge / discharge electricity amount (AQm). To calculate the electromotive force (V e Q).
  • the device for estimating the amount of charge and discharge of a secondary battery further includes a temperature measurement unit that measures the temperature of the secondary battery as temperature data, and the polarization voltage calculation unit includes a temperature data (T ( n)) is calculated as a parameter, and the polarization voltage is calculated with reference to the polarization voltage-charge / discharge quantity characteristic prepared in advance. Further, the electromotive force calculation unit is prepared in advance using the temperature data (T (n)) from the temperature measurement unit as a parameter based on the sum of the remaining capacity calculated before the predetermined period and the measured charge / discharge electricity amount. The electromotive force is calculated by referring to the remaining electromotive force-remaining capacity characteristics.
  • a device for estimating the polarization voltage of a secondary battery according to the present invention includes an estimated charge / discharge electric amount (AQ e) calculated by the charge / discharge electric amount estimating device for a secondary battery according to the present invention. It is equipped with a polarization voltage recalculation unit that recalculates the polarization voltage (Vpe) of the secondary battery based on.
  • the apparatus for estimating the state of charge of a secondary battery according to the present invention includes an estimated amount of charge / discharge (AQ e) calculated by the apparatus for estimating the amount of charge / discharge of a secondary battery according to the present invention. Is provided with a remaining capacity calculation unit that calculates the remaining capacity (SOC) of the secondary battery based on
  • the estimated charge / discharge electric quantity not including the current measurement error is obtained from the measured voltage (no-load voltage or open-circuit voltage) which is less affected by the current measurement error or from the measured charge / discharge electric quantity including the current measurement error.
  • the estimated charge / discharge electricity amount it is possible to calculate the polarization voltage and s ⁇ c independent of the current measurement error. Therefore, s o
  • FIG. 1 is a block diagram showing one configuration example of the battery pack system according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a processing procedure in the remaining capacity estimation method and the polarization voltage estimation method including the method of estimating the amount of charge and discharge of the secondary battery according to the first embodiment of the present invention.
  • Fig. 3 shows the estimated charge / discharge electricity AQ e calculated based on the flowchart in Fig. 2 and the constants and coefficients such as ⁇ V bc, K b, K eq, and K po 1 in the flowchart in Fig. 2.
  • 9 is a graph showing a temporal change of the calculated estimated charge / discharge electricity amount c and the true charge / discharge electricity amount t calculated based on the integrated value of the current measured using the high-precision current sensor.
  • FIG. 4 is a block diagram showing one configuration example of the battery pack system according to the second embodiment of the present invention.
  • FIG. 5 is a flowchart showing a processing procedure in a remaining capacity estimation method and a polarization voltage estimation method including a method of estimating the amount of charge and discharge of a secondary battery according to the second embodiment of the present invention.
  • Fig. 6 shows the estimated charge / discharge electricity amount AQ e calculated based on the flowchart of Fig. 5, the estimated charge / discharge electricity amount c calculated by the method without using the correction coefficient ⁇ in the flowchart of Fig. 5, and the high-precision current.
  • 6 is a graph showing a time change of a true charge / discharge electric quantity t calculated based on an integrated value of a current measured using a sensor.
  • FIG. 1 is a block diagram showing one configuration example of the battery pack system according to the first embodiment of the present invention.
  • a battery pack system 1A includes a battery pack 100 and a battery ECU 101A that includes the remaining capacity estimation device according to the present invention as a part of the microcomputer system.
  • a plurality of single cells or unit cells for example, nickel-hydrogen batteries, are further electrically connected in series to a battery block, and a plurality of unit cells are electrically connected in series.
  • 102 measures the terminal voltage of each battery block in the battery pack 100 detected by a voltage sensor (not shown) as voltage data V (n) at a predetermined sampling cycle.
  • Reference numeral 103 denotes current data I (n) at a predetermined sampling period for charging / discharging current of the battery pack 100 detected by a current sensor (not shown).
  • I a current measuring unit that measures the temperature of each battery block in the battery pack 100 detected by a temperature sensor (not shown) as temperature data T (n). .
  • the voltage data V (n) from the voltage measurement unit 102 and the current data I (n) from the current measurement unit 103 are input to the no-load voltage calculation unit 105 as set data.
  • the no-load voltage calculation unit 105 first determines that the value of the current data I (n) in the charging direction (1) and the discharging direction (+) is within a predetermined range (for example, ⁇ 5 OA) as a specific selection condition. ),
  • the number of current data I (n) in the charging direction and the discharging direction is a predetermined number or more (for example, 10 out of 60 samples each), and the amount of charge / discharge electricity during acquisition of the set data is predetermined. If it is within the range (for example, 0.3 Ah), it is determined that the set data of the voltage data V (n) and the current data I (n) is valid.
  • the no-load voltage calculation unit 105 obtains a first-order voltage-current straight line (approximate straight line) from the valid set data by statistical processing such as regression analysis using a method such as the least squares method. Calculate the no-load voltage V sep, which is the voltage value (voltage intercept) when the current is zero.
  • the voltage data V (n) and the current data I (n) are also Entered in 06.
  • the no-load voltage V sep from the no-load voltage calculation unit 105 and the open-circuit voltage Voc from the open-circuit voltage calculation unit 106 are input to the measurement voltage selection unit 107, where the above selection conditions are satisfied. In this case, the no-load voltage V sep is selected, and the selection condition is not satisfied. If the current or voltage condition is satisfied for a certain period of time, the open-circuit voltage Voc is selected, and the measurement voltage Vb is selected. Is output as If neither condition is satisfied, the set data of voltage data V (n) and current data I (n) is obtained again.
  • the measurement voltage Vb from the measurement voltage selection unit 107 is input to the measurement voltage change amount calculation unit 108, where the change amount (measurement voltage change amount) of the measurement voltage Vb during a predetermined period (for example, 1 minute) AVb Is calculated.
  • the setting unit 1 17 adjusts the change in the measured voltage Vb, AVb, to the polarization characteristics determined by the physical properties of the secondary battery, Depending on the voltage attenuating characteristics determined by the charge / discharge (use) state, etc., an adjustment constant for the amount of voltage change using temperature as a parameter, which is stored in advance in a look-up table (LUT) 1171, AVb c
  • LUT look-up table
  • AVbc of the voltage change amount and the adjustment coefficient Kb are set in advance from the adjustment coefficient Kb. For example, at a temperature of 25, 0.01 port (V) is stored in the LUT 1171 as an adjustment constant ⁇ Vbc of the voltage change.
  • the adjustment coefficient Kb is a coefficient appropriately set according to the actual system.
  • the electromotive force change constant (Ke Q) setting section 118 sets the temperature stored in the lookup table (LUT) 1181 in advance, depending on the physical property of the secondary battery and the charge / discharge (use) state.
  • the temperature measurement unit 104 measures the slope of the characteristic curve of the electromotive force change constant Ke Q with respect to the amount of charge (or discharge) in the SOC usage area (for example, the SOC is in the range of 20% to 80%).
  • the electromotive force change constant Ke q is set in advance based on the determined temperature data T (n). For example, at a temperature of 25 ° C., 0.1 volt Z amp hour (VZAh) is stored in the LUT 1181 as an electromotive force change constant K eq.
  • the polarization voltage generation constant (Kp o 1) setting unit 119 stores the temperature stored in the lookup table (LUT) 1191 in advance, depending on the physical property of the secondary battery and the charge / discharge (use) state.
  • the polarization voltage generation constant ⁇ pol based on the temperature data ⁇ ( ⁇ ) measured by the temperature measurement unit 104 from the slope of the characteristic curve of the charge (or discharge) electric quantity ⁇ ⁇ ⁇ ⁇ 1 Is set in advance. For example, a temperature of 25 ° (:, SOC is 60%, and a polarization voltage generation constant Kp01 of 0.1 Port / ampere hour (V / Ah) is stored in the LUT1191.
  • the electromotive force change constant Ke q from 118 and the polarization voltage generation constant K po 1 from the polarization voltage generation constant setting unit 119 are input to the estimated charge / discharge electricity amount calculation unit 114 A.
  • the estimated amount of charge / discharge electricity AQ e is input to the remaining capacity calculator 115, where the remaining capacity SO in each battery block in the battery pack 100 is calculated based on the estimated amount of charge / discharge AQ e. C is calculated. Further, the estimated charge / discharge electric quantity AQ e is input to the polarization voltage recalculation unit 1 16.
  • the polarization voltage recalculation unit 1 16 calculates the characteristic curve or the expression of the polarization voltage V pe with respect to the estimated charge / discharge electricity amount e with temperature as a parameter, which is stored in advance in a lookup table (LUT) 1 16 1. Then, the polarization voltage Vpe is recalculated based on the temperature data T (n) measured by the temperature measurement unit 104.
  • FIG. 2 is a flowchart showing a processing procedure in the remaining capacity estimation method and the polarization voltage estimation method including the method of estimating the amount of charge and discharge of the secondary battery according to the first embodiment of the present invention.
  • voltage data V (n) and current data I (n) are measured as a set of data (S201).
  • S201 set data of the voltage data V (n) and the current data I (n) measured in step S201 is a valid set data. It is determined whether a specific selection condition is satisfied (S202).
  • step S202 If it is determined in step S202 that the specific sorting condition is satisfied (Yes), the process proceeds to step S203, and a plurality of pieces (for example, 10 pieces in each of the charge and discharge directions in 60 samples) are used.
  • the first set of approximate straight lines (V-I straight lines) are obtained from the effective set data by statistical processing such as regression analysis using a method such as the least squares method. Calculate the no-load voltage V sep as the no-load voltage V sep and store the calculated no-load voltage V sep as the measured voltage Vb (Vb-V sep).
  • step S202 determines whether the specific sorting condition is satisfied (No). If it is determined in step S202 that the specific sorting condition is not satisfied (No), the process proceeds to step S20, where the current data I (n) continues the specific current condition or voltage condition as described above for a certain time. To determine if they are satisfied.
  • step S204 if a specific current condition is satisfied (for example, the absolute value of the current data I (n) is less than 1 OA for 10 seconds continuously) (Yes) or the voltage condition is satisfied ( For example, if the change in voltage V (n) is less than 1 V continuously for 10 seconds (Yes), the process proceeds to step S205, and the voltage data V ( The open circuit voltage Voc is calculated by taking the average of n), and the calculated open circuit voltage Voc is stored as the measured voltage Vb (Vb-Voc).
  • a specific current condition for example, the absolute value of the current data I (n) is less than 1 OA for 10 seconds continuously
  • the voltage condition For example, if the change in voltage V (n) is less than 1 V continuously for 10 seconds (Yes), the process proceeds to step S205, and the voltage data V ( The open circuit voltage Voc is calculated by taking the average of n), and the calculated open circuit voltage Voc is stored as the measured voltage Vb (Vb-Voc).
  • step S204 determines whether the specific current condition or voltage condition is not satisfied (No). If it is determined in step S204 that the specific current condition or voltage condition is not satisfied (No), the process returns to step S201, and the set data of the voltage data V (n) and the current data I (n) is Measure again.
  • step S206 the amount of change (measured voltage change) AVb of the measured voltage Vb obtained in step S203 or S205 during a predetermined period (for example, one minute) is calculated (S206).
  • the estimated charge / discharge amount e is calculated as a function of the change amount AVb of the measured voltage Vb (S 2 1 0).
  • the polarization voltage Vpe is recalculated (S211) and the remaining capacity SOC is calculated (S212) based on the estimated charge / discharge electricity amount e calculated in this way.
  • the remaining capacity SOC and the polarization voltage Vpe of each battery block in the battery pack 100 are estimated.
  • the linear function formula of the change amount ⁇ b of the no-load voltage or the open-circuit voltage is used, but N (N is a natural number) function formula or An exponential function expression may be used.
  • FIG. 3 does not use constants and coefficients such as AVb c, Kb, Ke Q, and Kpo 1 in the flowchart of FIG. 2, which are estimated charge / discharge electric energy e calculated based on the flowchart of FIG.
  • the estimated charge / discharge electricity amount AQ e could be approximated to the true charge / discharge electricity amount ⁇ (3 t).
  • FIG. 4 is a block diagram showing one configuration example of the battery pack system according to the second embodiment of the present invention. Note that, in FIG. 4, portions having the same configurations and functions as those in FIG. 1 referred to in the description of the first embodiment are given the same reference numerals, and descriptions thereof will be omitted.
  • the current data I (n) measured by the current measuring section 103 is input to the measurement charge / discharge electric capacity calculating section 109.
  • the measured charge / discharge electricity amount calculation unit 109 calculates the measured charge / discharge electricity amount AQm in a predetermined period (for example, 1 minute) from the current data I (n) in the charge direction and the discharge direction.
  • the measured charge / discharge electricity quantity AQm from the measured charge / discharge electricity quantity calculation unit 109 is then input to the polarization voltage calculation unit 110.
  • the polarization voltage calculation section 110 is a characteristic curve of the polarization voltage Vp o 1 with respect to the measured charge / discharge electricity amount AQm with temperature as a parameter stored in advance in a reference table (LUT) 110 1. Or from the equation, based on the temperature data T (n) measured by the temperature Then, the polarization voltage Vp o 1 is calculated.
  • the polarization voltage Vp o'l from the polarization voltage calculator 110 is then input to the polarization voltage change calculator 111, where the polarization voltage Vp for a predetermined period (for example, one minute) is obtained.
  • o 1 change (polarization voltage change) ⁇ 1 is calculated.
  • the amount of change in polarization voltage ⁇ Vp o 1 is calculated from the polarization voltage V p o 1 calculated based on the measured charge / discharge electric quantity AQm, as will be described later. It is calculated by subtracting the polarization voltage V ppre calculated based on the electric quantity ⁇ (3 e).
  • the measured charge / discharge electricity amount AQm from the measured charge / discharge electricity amount calculation unit 109 is also input to the electromotive force calculation unit 112.
  • the electromotive force calculation unit 112 calculates the temperature from the characteristic curve or the expression of the electromotive force V e Q with respect to the remaining capacity S OC stored in the lookup table (LUT) 111 in advance.
  • An electromotive force V eq is calculated based on the temperature data T (n) measured by the measurement unit 104.
  • the electromotive force Ve Q from the electromotive force calculation unit 112 is then input to the electromotive force change amount calculation unit 113 where the change amount of the electromotive force Ve q during a predetermined period (for example, 1 minute) (Electromotive force change amount) AVe ci is calculated.
  • the amount of change in electromotive force ⁇ e Q is calculated from the electromotive force Vp o1 calculated based on the measured charge / discharge electricity amount AQm, as described later, and is estimated charge / discharge electricity calculated before a predetermined period (for example, 1 minute). It is calculated by subtracting the electromotive force Ve pre calculated based on the quantity AQe.
  • the amount of change in electromotive force AVe Q from the amount calculator 113 is input to the estimated charge / discharge amount calculator 114B.
  • the estimated amount of charge / discharge electricity AQ e calculated in this way is supplied to the polarization voltage calculation unit 110 and the electromotive force calculation unit 112, and the polarization voltage before the predetermined period (for example, one minute) is respectively supplied.
  • Vp pre and electromotive force Ve pre are calculated.
  • FIG. 5 is a flowchart showing a processing procedure in a remaining capacity estimation method and a polarization voltage estimation method including the method of estimating the amount of charge / discharge of the secondary battery according to the second embodiment of the present invention. 5, the same processing steps as those in FIG. 2 referred to in the description of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • step S401 a measured charge / discharge electricity amount AQ m in a predetermined period (for example, 1 minute) is calculated from the current data I (n) in the charge direction and the discharge direction.
  • the polarization voltage V ppre and the polarization voltage V ppre calculated based on the calculated measured charge / discharge electricity amount AQm and the estimated charge / discharge electricity amount ⁇ Q e calculated a predetermined period (for example, 1 minute) before in step S406.
  • a polarization voltage V po 1 and an electromotive force V e Q are calculated (S 402).
  • the polarization voltage change amount ⁇ V po 1 and the electromotive force change amount AVeq are calculated from the polarization voltage Vp 01 and the electromotive force V e thus calculated (S 403).
  • a correction coefficient ⁇ is calculated using the measured voltage change amount AVb calculated in step S206, the polarization voltage change amount ⁇ 011 calculated in step S403, and the electromotive force change amount VeQ.
  • Q! AVbZ (AVpo1 + AVeq) is calculated (S404).
  • the estimated charge / discharge electricity amount e is calculated by multiplying the measured charge / discharge electricity amount AQm calculated in step S401 by the correction coefficient H thus calculated (S405).
  • the polarization voltage Vpe is recalculated (S211), and the remaining capacity SOC is calculated (S212).
  • the remaining capacity S OC and the polarization voltage V pe in each battery block in the battery pack 100 are estimated.
  • FIG. 6 shows the estimated charge / discharge electricity amount e calculated based on the flowchart of FIG. 5 in the present embodiment, the estimated charge / discharge electricity amount ⁇ Q c calculated by the method without using the correction coefficient in the flowchart of FIG. 5,
  • the charge / discharge electric quantity t (referred to as a true charge / discharge electric quantity in this specification) calculated based on the integrated value of the current measured using a high-precision (no current error) current sensor. It is a graph which shows a time change.
  • the estimated charge / discharge electricity amount AQ e could be made closer to the true charge / discharge electricity amount t.
  • the method and apparatus for estimating the amount of charge / discharge of the secondary battery according to the present invention can be performed from a measurement voltage (no-load voltage or open-circuit voltage) that is less affected by a current measurement error, or a measurement charge including a current measurement error.
  • An estimated charging / discharging amount of electricity including no current measurement error is calculated from the amount of discharged electricity, and the method and apparatus for estimating the polarization voltage of the secondary battery and the method and apparatus for estimating the remaining capacity of the secondary battery according to the present invention. Is calculated by using the estimated charge / discharge electricity amount that does not include the current measurement error.
  • Estimating polarization voltage and remaining capacity independent of current measurement error electric vehicles (PEV), eight-hybrid vehicles (HEV;), fuel cells and secondary batteries require high estimation accuracy of remaining capacity. This is useful for applications such as electric vehicles such as hybrid vehicles having the following.

Description

明 細 書 二次電池の充放電電気量推定方法及ぴ装置
技術分野
本発明は、 電気自動車(PEV)やハイプリッド車両(HEV)等に、 モータの動力源および各種負荷の駆動源として搭載されるニッケル—水 素 (N i— MH) バッテリなどの二次電池の残存容量 (S O C: State of Charge) を推定する技術に関する。 背景技術
従来より、 HEVでは、 二次電池の電圧、 電流、 温度等を検出して二 次電池の残存容量 (以下、 SOCと略称する) を演算により推定し、 車 両の燃料消費効率が最も良くなるように S 0 C制御を行っている。 SO C制御を正確に行うためには、 充放電を行っている二次電池の S O Cを 正確に推定することが必要になる。
かかる従来の S〇C推定方法として、 まず、 所定期間に電池電圧 Vと 充放電された電流 Iを測定し、 その電流の積算値 Iを計算し、 また温 度 T、 電池電圧 V、 電流積算値 Iの関数から、 前回推定した電池の分 極電圧 V c ( t - 1) を V c ( t ) として更新して、 補正電圧 V' ( = V - V c ( t )) を求め、 補正電圧 V' と電流 Iとのペアデータを複数個取 得して記憶し、そのペアデータから、回帰分析により 1次の近似直線(電 圧 V' —電流 I近似直線) を求め、 V' — I近似直線の V切片を起電力 Eとして推定し、 前回推定した S〇C、 起電力 E、 温度 T、 電流積算値 5 Iの関数から、 S OCを推定するものがある (例えば、 特開 200 1 - 2 2 3 0 3 3号公報参照)。
しかしな ら、 上記従来の S〇C推定方法では、 以下のような問題点 がある。
まず、 S O Cを推定するために、 二次電池に流れる充放電電流を電流 センサによって測定している。 この電流センサは、 H E V等に用いられ る場合、 大電流を測定する必要があり、 高精度のものを用いるとコスト アップとなるため、 低コストで精度のあまり良くないものを使わざるを えないというのが実情である。 そのため、 電流センサにより検出した電 流値には測定誤差が含まれ、 この電流誤差が S〇Cの推定誤差となって しまう。 特に、 充放電レートが電流誤差よりも小さい場合 (例えば、 1 Aの充放電レートに対して ± 2 Aの電流誤差がある塲合など)、時間の経 過とともに、 推定した S O Cの挙動が著しくおかしくなる。
また、 上記従来例のように、 かかる電流センサによって測定した電流 の積算値の関数として、 前回推定した電池の分極電圧 V c ( t— 1 ) を V c ( t ) として更新し、 分極電圧の影響を考慮した S O Cの推定を行 う方法では、 過去の分極電圧の演算に電流誤差が含まれ、 この電流誤差 が分極電圧の推定誤差となり、 これが累積されていくため、 時間の経過 ととともに、 S O Cの真の値と推定値との誤差が大きくなつてしまう、 という問題がある。 発明の開示
本発明は、 上記の問題点に鑑みてなされたものであり、 その目的は、 電流測定誤差の影響を受けずに充放電電気量、 分極電圧を推定できる方 法および装置を提供し、 それにより電流値に測定誤差を含む場合でも、 S O Cを高精度に推定できる方法および装置を提供することにある。 前記の目的を達成するため、 本発明に係る二次電池の充放電電気量推 定方法は、 二次電池に流れる電流と、 該電流に対応した二次電池の端子 電圧との組データを測定し、 組データを複数個取得する工程と、 特定の 選別条件 (例えば、 電流の値が充電側および放電側で所定の範囲内 (例 えば、 ± 5 OA) にあり、 複数の組データ数が充電側と放電側で所定数 (例えば、 60サンプル中の各 1 0個) 以上であり、 複数個の組データ の取得中における充放電電気量が所定の範囲内 (例えば、 0. 3 Ah) にあるという条件) が満たされた場合に、 複数個の組データに対して、 最小二乗法などの手法を用いた回帰分析等の統計処理により求めた近似 直線における電流がゼロの時の電圧切片である無負荷電圧 (V s e p) を算出する工程と、 特定の電流条件 (例えば、 電流の絶対値が 1 0アン ペア未満であるという条件) または電圧条件 (例えば、 電圧の変化量が
1ポルト未満であるという条件) がある時間継続して (例えば、 1 0秒 間) 満たされた場合に、 二次電池の端子電圧から開放電圧 (Vo c) を 算出する工程と、 所定期間 (例えば、 1分間) における無負荷電圧また は開放電圧の変化量 (AVb) を算出する工程と、 無負荷電圧または開 放電圧の変化量に基づいて、 二次電池に対する推定充放電電気量 (AQ e) を算出する工程とを含むものである。
本発明に係る二次電池の充放電電気量推定方法はさらに、 無負荷電圧 または開放電圧の変化量 (AVb) に対して、 二次電池の物性および充 放電状態に依存して決定される電圧変化量の調整定数 (AVb c) およ び調整係数 (Kb) を予め設定する工程と、 二次電池の物性および充放 電状態に依存して決定される、 残存容量の使用領域での充放電電気量に 対する起電力の変化量である起電力変化定数 (Ke Q) を予め設定する 工程と、 二次電池の物性および充放電状態に依存して決定される、 残存 容量の使用領域での充放電電気量に対する分極電圧の変化量である分極 電圧発生定数 (Kp o 1 ) を予め設定する工程とを含み、 推定充放電電 気量 AQeは、 AQe=KbX (AVb + AVb c) / (K e q +K p o 1) で表される式を用いて、 無負荷電圧または開放電圧の変化量 Δν bの関数として算出される。
または、 本発明に係る二次電池の充放電電気量推定方法はさらに、 二 次電池に流れる電流から所定期間における測定充放電電気量 (AQm) を算出する工程と、測定充放電電気量に基づいて二次電池の分極電圧(V P o 1 ) を算出する工程と、 測定充放電電気量に基づいて二次電池の起 電力 (Ve q) を算出する工程と、 所定期間における分極電圧の変化量 (Δ Vp o 1 ) および起電力の変化量 (AVe Q) を算出する工程とを 含み、 推定充放電電気量の算出工程において、 分極電圧変化量、 起電力 変化量、 および無負荷電圧または開放電圧の変化量に基づいて、 推定充 放電電気量 (AQe) が算出される。
この場合、 推定充放電電気量の算出工程は、 分極電圧変化量、 起電力 変化量、 および無負荷電圧または開放電圧の変化量に基づいて、 測定充 放電電気量に対する補正係数 (a) を算出する工程を含み、 測定充放電 電気量 (AQm) に補正係数を乗算して推定充放電電気量 (AQe) が 算出される。
ここで、 分極電圧変化量を△ V p o 1、 起電力変化量を△ V e Q、 無 負荷電圧または開放電圧の変化量を AVb、 補正係数をひとした場合、 補正係数ひは、 Q! = AVbZ (Δ V p o 1 + Δ V e q) で表される。 分極電圧の算出工程において、 所定期間前に算出された推定充放電電 気量 (AQ e) に基づいて算出された分極電圧 (Vp p r e) と、 測定 充放電電気量 (AQm) とに基づいて、 分極電圧 (Vp o 1) が算出さ れる。
また、 起電力の算出工程において、 所定期間前に算出された推定充放 電電気量 (AQe) に基づいて算出された起電力 (Ve p r e) と、 測 定充放電電気量 (AQm) とに基づいて、 起電力 (Ve q) が算出され る。
分極電圧の算出工程において、 温度をパラメ一夕として予め準備され ている分極電圧一充放電電気量特性を参照して、分極電圧が算出される。 起電力の算出工程において、 所定期間前に算出した残存容量と測定充 放電電気量との加算値に基づいて、 温度をパラメ一夕として予め準備さ れている起電力一残存容量特性を参照して、 起電力が算出される。
前記の目的を達成するため、 本発明に係る二次電池の分極電圧推定方 法は、 本発明に係る二次電池の充放電電気量推定方法を用いて推定充放 電電気量 (AQ e) を算出する工程と、 推定充放電電気量に基づいて、 二次電池の分極電圧 (Vp e) を再計算する工程とを含むものである。 前記の目的を達成するため、 本発明に係る二次電池の残存容量推定方 法は、 本発明に係る二次電池の充放電電気量推定方法を用いて推定充放 電電気量 (AQ e) を算出する工程と、 推定充放電電気量に基づいて、 二次電池の残存容量 (SOC) を算出する工程とを含むものである。 前記の目的を達成するため、 本発明に係る二次電池の充放電電気量推 定装置は、 二次電池に流れる電流を電流データ ( I (n)) として測定す る電流測定部と、 二次電池の端子電圧を電圧データ (V (n)) として測 定する電圧測定部と、 電流測定部からの電流データと、 該電流データに 対応した電圧測定部からの電圧データとの組データを複数個取得し、 特 定の選別条件 (例えば、 電流の値が充電側および放電側で所定の範囲内 (例えば、 ± 5 OA) にあり、 複数の組データ数が充電側と放電側で所 定数 (例えば、 60サンプル中の各 1 0個) 以上であり、 複数個の組デ 一夕の取得中における充放電電気量が所定の範囲内 (例えば、 0. 3 A h) にあるという条件) が満たされた場合に、 複数個の組データに対し て、 最小二乗法などの手法を用いた回帰分析等の統計処理により求めた 近似直線における電流がゼロの時の電圧切片である無負荷電圧 (V s e P) を算出する無負荷電圧演算部と、 特定の電流条件 (例えば、 電流の 絶対値が 1 0アンペア未満であるという条件)または電圧条件(例えば、 電圧の変化量が 1ポルト未満であるという条件)がある時間継続して(例 えば、 1 0秒間) 満たされた場合に、 二次電池の端子電圧から開放電圧 (Vo c) を算出する開放電圧算出部と、 所定期間 (例えば、 1分間) における無負荷電圧または開放電圧の変化量 (AVb) を算出する測定 電圧変化量算出部と、 無負荷電圧または開放電圧の変化量に基づいて、 二次電池に対する推定充放電電気量 (AQ e) を算出する推定充放電電 気量演算部とを備えたものである。
本発明に係る二次電池の充放電電気量推定装置はさらに、 無負荷電圧 または開放電圧の変化量 (AVb) に対して、 二次電池の物性および充 放電状態に依存して決定される電圧変化量の調整定数 (AVb c) およ び調整係数 (Kb) を予め設定する電圧変化量調整定数/調整係数設定 部と、 二次電池の物性および充放電状態に依存して決定される、 残存容 量の使用領域での充放電電気量に対する起電力の変化量である起電力変 化定数 (Ke q) を予め設定する起電力変化定数設定部と、 二次電池の 物性および充放電状態に依存して決定される、 残存容量の使用領域での 充放電電気量に対する分極電圧の変化量である分極電圧発生定数 (Kp 0 1 ) を予め設定する分極電圧発生定数設定部とを備え、 推定充放電電 気量演算部は、 AQ e =Kb X (AVb + AVb c) Z (K e q +Kp o 1 ) で表される式を用いて、 無負荷電圧または開放電圧の変化量 AV bの関数として推定充放電電気量 Δ<3 eを算出する。
または、 本発明に係る二次電池の充放電電気量推定装置はさらに、 二 次電池に流れる電流から所定期間 (例えば、 1分間) における測定充放 電電気量 (AQm) を算出する測定充放電電気量算出部と、 測定充放電 電気量に基づいて二次電池の分極電圧 (Vp o 1 ) を算出する分極電圧 演算部と、 測定充放電電気量に基づいて二次電池の起電力 (Ve q) を 算出する起電力演算部と、 所定期間 (例えば、 1分間) における分極電 圧の変化量 (Δνρ ο 1 ) を算出する分極電圧変化量演算部と、 所定期 間 (例えば、 1分間) における起電力の変化量 (AVe q) を算出する 起電力変化量演算部とを備え、 推定充放電電気量演算部は、 分極電圧変 化量、 起電力変化量、 および無負荷電圧または開放電圧の変化量に基づ いて、 推定充放電電気量 (AQ e) を算出する。
この場合、 推定充放電電気量演算部は、 分極電圧変化量、 起電力変化 量、 および無負荷電圧または開放電圧の変化量に基づいて、 測定充放電 電気量に対する補正係数 (α) を算出する補正係数演算部を備え、 測定 充放電電気量 (AQm) に補正係数を乗算して推定充放電電気量 (AQ e) を算出する。
ここで、 分極電圧変化量を AVp ο 1、 起電力変化量を AVe Q、 無 負荷電圧または開放電圧の変化量を AVb、 補正係数を とした場合、 補正係数ひは、 Q! = AVbZ (AVp o l +AV e q) で表される。 分極電圧演算部は、 所定期間前に算出された推定充放電電気量 (AQ e) に基づいて算出された分極電圧 (Vp p r e) と、 測定充放電電気 量 (AQm) とに基づいて、 分極電圧 (Vp o l ) を算出する。
また、起電力演算部は、所定期間前に算出された推定充放電電気量(△ Q e) に基づいて算出された起電力 (V e p r e) と、 測定充放電電気 量 (AQm) とに基づいて、 起電力 (V e Q) を算出する。
本発明に係る二次電池の充放電電気量推定装置はさらに、 二次電池の 温度を温度データとして測定する温度測定部を備え、分極電圧演算部は、 温度測定部からの温度データ (T (n)) をパラメ一夕として予め準備さ れている分極電圧一充放電電気量特性を参照して、分極電圧を算出する。 また、 起電力演算部は、 所定期間前に算出した残存容量と測定充放電 電気量との加算値に基づいて、 温度測定部からの温度データ (T ( n ) ) をパラメータとして予め準備されている起電力一残存容量特性を参照し て、 起電力を算出する。
前記の目的を達成するため、 本発明に係る二次電池の分極電圧推定装 置は、 本発明に係る二次電池の充放電電気量推定装置により算出された 推定充放電電気量 (A Q e ) に基づいて、 二次電池の分極電圧 (V p e ) を再計算する分極電圧再計算部を備えたものである。
前記の目的を達成するため、 本発明に係る二次電池の残存容量推定装 置は、 本発明に係る二次電池の充放電電気量推定装置により算出された 推定充放電電気量 (A Q e ) に基づいて、 二次電池の残存容量 (S O C ) を算出する残存容量演算部を備えたものである。
本発明によれば、 電流測定誤差の影響が少ない測定電圧 (無負荷電圧 または開放電圧) から、 または電流測定誤差を含む測定充放電電気量か ら、 電流測定誤差を含まない推定充放電電気量を算出することができ、 この推定充放電電気量を用いることにより、 電流測定誤差に依存しない 分極電圧および s〇cを算出することが可能となる。 したがって、 s o
C推定精度が向上し、 S O C管理による電池の保護制御や長寿命化が可 能となる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る電池パックシステムの一構成 例を示すブロック図である。
図 2は、 本発明の第 1の実施形態に係る二次電池の充放電電気量推定 方法を含む残存容量推定方法および分極電圧推定方法における処理手順 を示すフローチヤ一トである。 図 3は、 図 2のフローチャートに基づいて算出された推定充放電電気 量 A Q e、 図 2のフローチャートにおける△ V b c、 K b、 K e q、 K p o 1などの定数、 係数を使用しない方法により算出された推定充放電 電気量 c、 および高精度の電流センサを用いて測定された電流の積 算値に基づいて算出された真の充放電電気量 tの時間変化を示すグ ラフである。
図 4は、 本発明の第 2の実施形態に係る電池パックシステムの一構成 例を示すブロック図である。
図 5は、 本発明の第 2の実施形態に係る二次電池の充放電電気量推定 方法を含む残存容量推定方法および分極電圧推定方法における処理手順 を示すフローチヤ一トである。
図 6は、 図 5のフローチャートに基づいて算出された推定充放電電気 量 A Q e、 図 5のフローチャートにおける補正係数 αを使用しない方法 により算出された推定充放電電気量 c、 および高精度の電流センサ を用いて測定された電流の積算値に基づいて算出された真の充放電電気 量 tの時間変化を示すグラフである。 発明を実施するための最良の形態
以下、本発明の好適な実施の形態について、図面を参照して説明する。
(第 1の実施形態)
図 1は、 本発明の第 1の実施形態に係る電池パックシステムの一構成 例を示すブロック図である。図 1において、電池パックシステム 1 Aは、 電池パック 1 0 0と、 マイクロコンピュータシステムの一部として本発 明に係る残存容量推定装置が含まれる電池 E C U 1 0 1 Aとで構成され る。
電池パック 1 0 0は、 H E V等に搭載された場合、 通常、 モ一夕に対 する所定の出力を得るため、 例えばニッケル—水素バッテリである複数 の単電池または単位電池が電気的に直列接続された電池ブロックをさら に複数個電気的に直列接続されて構成される。
電池 E CU 1 0 1 Aにおいて、 1 02は電圧センサ (不図示) により 検出された電池パック 1 0 0内の各電池ブロックにおける端子電圧を所 定のサンプリング周期で電圧データ V (n) として測定する電圧測定部 で、 1 0 3は電流センサ (不図示) により検出された電池パック 1 00 の充放電電流を所定のサンプリング周期で電流データ I (n) (その符号 は充電方向か放電方向かを表す) として測定する電流測定部で、 1 04 は温度センサ (不図示) により検出された電池パック 1 00内の各電池 ブロックにおける温度を温度データ T (n) として測定する温度測定部 である。
電圧測定部 1 02からの電圧データ V (n) と、 電流測定部 1 03か らの電流デ一夕 I (n) は、 組データとして、 無負荷電圧演算部 1 0 5 に入力される。 無負荷電圧演算部 1 0 5は、 まず、 特定の選別条件とし て、 充電方向 (一) と放電方向 (+ ) における電流データ I (n) の値 が所定の範囲内 (例えば、 ± 5 O A) にあり、 充電方向と放電方向にお ける電流データ I (n) の個数が所定数以上 (例えば、 60サンプル中 の各 1 0個) あり、 また組データ取得中の充放電電気量が所定の範囲内 (例えば、 0. 3Ah) にある場合に、 電圧データ V (n) と電流デー 夕 I (n) の組データが有効であると判断する。
次に、 無負荷電圧演算部 1 0 5は、 有効な組データから、 最小二乗法 などの手法を用いた回帰分析等の統計処理により、 1次の電圧一電流直 線 (近似直線) を求め、 電流がゼロの時の電圧値 (電圧切片) である無 負荷電圧 V s e pを算出する。
電圧データ V (n) と電流デ一夕 I (n) はまた、 開放電圧演算部 1 06に入力される。開放電圧演算部 1 0 6は、特定の電流条件(例えば、 電流データ I (n) の絶対値が 1 OA未満である) または電圧条件 (例 えば、 電圧デ一夕 V (n) の変化量が 1 V未満である) がある時間継続 して (例えば、 1 0秒間) 満たされた場合、 各電池ブロックにおける電 圧データ V (n) の平均値 V a v eに、 電流データ I (n) の平均値 I a V eを部品抵抗値 R c omに乗算したものを加えて、 部品抵抗による 電圧降下分を補正し開放電圧 V o cを算出する (Vo c =V a v e +R c omX I a v e)。
無負荷電圧演算部 1 0 5からの無負荷電圧 V s e pと、 開放電圧演算 部 1 06からの開放電圧 Vo cは、 測定電圧選択部 1 0 7に入力され、 ここで上記選別条件を満たした場合には、 無負荷電圧 V s e pが選択さ れ、 選別条件を満たさず、 上記電流条件または電圧条件がある時間継続 して満たされた場合には、 開放電圧 Vo cが選択され、 測定電圧 Vbと して出力される。 なお、 いずれの条件も満たさない場合は、 電圧データ V (n) と電流データ I (n) の組データが再度取得される。
測定電圧選択部 1 07からの測定電圧 Vbは、 測定電圧変化量演算部 1 08に入力され、 ここで所定期間 (例えば、 1分間) における測定電 圧 Vbの変化量 (測定電圧変化量) AVbが算出される。
電圧変化量調整定数 (AVb c) ·調整係数 (Kb) 設定部 1 1 7は、 測定電圧 Vbの変化量 AVbに対して、 二次電池の物性により決定され る分極特性や、 二次電池の充放電 (使用) 状態により決定される電圧減 衰特性などに依存して、 参照テーブル (LUT) 1 1 7 1に予め記憶さ れている、 温度をパラメータとした電圧変化量の調整定数 AVb cおよ び調整係数 Kbから、 電圧変化量の調整定数 AVb cおよび調整係数 K bを予め設定する。 例えば、 温度が 25 で、 電圧変化量の調整定数 Δ Vb cとして 0. 0 1ポルト(V)が LUT 1 1 7 1に記憶されている。 調整係数 Kbは、実際のシステムに合わせて適宜設定される係数である。 起電力変化定数 (Ke Q) 設定部 1 1 8は、 二次電池の物性ゃ充放電 (使用) 状態に依存して、 参照テーブル (LUT) 1181に予め記憶 されている、 温度をパラメ一夕とした SOC使用領域 (例えば、 SOC が 20 %から 80 %までの範囲) での充電 (または放電) 電気量に対す る起電力変化定数 Ke Qの特性曲線の傾きから、 温度測定部 104で測 定された温度データ T (n) に基づいて、 起電力変化定数 Ke qを予め 設定する。 例えば、 温度が 25 °Cで、 起電力変化定数 K e qとして 0. 1ボルト Zアンペア ·アワー (VZAh) が LUT 1 181に記憶され ている。
分極電圧発生定数 (Kp o 1) 設定部 1 19は、 二次電池の物性ゃ充 放電 (使用) 状態に依存して、 参照テーブル (LUT) 1191に予め 記憶されている、 温度をパラメ一夕とした充電 (または放電) 電気量に 対する分極電圧発生定数 Κρ ο 1の特性曲線の傾きから、 温度測定部 1 04で測定された温度データ Τ (η) に基づいて、 分極電圧発生定数 Κ p o lを予め設定する。 例えば、 温度が 25° (:、 SOCが 60%で、 分 極電圧発生定数 K p 0 1として 0. 1ポルト/アンペア ·アワー (V/ Ah) が LUT 1 191に記憶されている。
測定電圧変化量演算部 108からの測定電圧変化量 AVbと、 電圧変 化量調整定数 ·調整係数設定部 1 17からの電圧変化量調整定数 AVb c、 調整係数 Kbと、 起電力変化定数設定部 1 18からの起電力変化定 数 Ke qと、 分極電圧発生定数設定部 119からの分極電圧発生定数 K p o 1は、 推定充放電電気量演算部 1 14 Aに入力される。 推定充放電 電気量演算部 1 14 Aは、
AQ e =Kb X (AVb + AVb c) / (K e q + K p o 1 ) で表 される式を用いて、 測定電圧 V bの変化量△ V bの関数として推定充放 電電気量 AQ eを算出する。
推定充放電電気量 AQ eは、 残存容量演算部 1 1 5に入力されて、 こ こで、 推定充放電電気量 AQ eに基づいて、 電池パック 1 00内の各電 池ブロックにおける残存容量 SO Cが算出される。 さらに、 推定充放電 電気量 AQ eは、 分極電圧再計算部 1 1 6に入力される。 分極電圧再計 算部 1 1 6は、参照テーブル(LUT) 1 1 6 1に予め記憶されている、 温度をパラメ一夕とした推定充放電電気量 eに対する分極電圧 V p eの特性曲線または式から、 温度測定部 1 04で測定された温度データ T (n) に基づいて、 分極電圧 Vp eを再計算する。
次に、 以上のように構成された本実施形態による電池パックシステム における残存容量推定および分極電圧推定の処理手順について、 図 2を 参照して説明する。
図 2は、 本発明の第 1の実施形態に係る二次電池の充放電電気量推定 方法を含む残存容量推定方法および分極電圧推定方法における処理手順 を示すフローチャートである。 図 2において、 まず、 電圧デ一夕 V (n) と電流データ I (n) を組データとして測定する (S 20 1)。 次に、 ス テツプ S 20 1で測定された電圧データ V (n) と電流データ I (n) の組データが、 有効な組データであるか否かを調べるために、 それらが 上記したような特定の選別条件を満たすか否かを判断する (S 202 )。 ステップ S 202の判断で、 特定の選別条件を満たす場合 (Y e s )、 ス テツプ S 20 3に進んで、 複数個 (例えば、 6 0サンプル中の充電およ び放電方向で各 1 0個) の有効な組データを取得し、 有効な組データか ら、 最小二乗法などの手法を用いた回帰分析等の統計処理により、 1次 の近似直線 (V— I直線) を求め、 その近似直線の V切片を無負荷電圧 V s e pとして算出し、 算出した無負荷電圧 V s e pを測定電圧 Vbと して格納する (Vb— V s e p)。 一方、 ステップ S 202の判断で、 特定の選別条件を満たさない場合 (No), ステップ S 20 に進んで、 電流データ I (n) が上記したよ うな特定の電流条件または電圧条件をある時間継続して満たすか否かを 判断する。 ステップ S 204の判断で、 特定の電流条件を満たす (例え ば、 電流データ I (n) の絶対値が 1 0秒間継続して 1 OA未満である) 場合 (Ye s) または電圧条件を満たす (例えば、 電圧デ一夕 V (n) の変化量が 1 0秒間継続して 1 V未満である) 場合 (Ye s )、 ステップ S 20 5に進んで、その時の各電池ブロックにおける電圧データ V (n) の平均をとつて開放電圧 Vo cを算出し、 算出した開放電圧 Vo cを測 定電圧 Vbとして格納する (Vb— Vo c)。
一方、 ステップ S 204の判断で、 特定の電流条件または電圧条件を 満たさない場合(No)、ステップ S 2 0 1に戻って、電圧データ V (n) と電流データ I (n) の組データを再度測定する。
次に、 ステップ S 20 3または S 20 5で得られた測定電圧 V bの所 定期間 (例えば、 1分間) における変化量 (測定電圧変化量) AVbを 算出する (S 2 0 6)。
次に、 電圧変化量調整定数 Δ Vb c ·調整係数 Kb、 起電力変化定数 K e q、 および分極電圧発生定数 Kp ο 1を予め設定し (S 20 7、 S 208、 S 20 9)、 Δ Q e =K b X (AVb + AVb c) / (Ke q + Kp o 1 ) で表される式を用いて、 測定電圧 Vbの変化量 AVbの関数 として推定充放電電気量 eを算出する (S 2 1 0)。
このようにして算出された推定充放電電気量 eに基づいて、 分極 電圧 Vp eを再計算する (S 2 1 1) とともに、 残存容量 SO Cを算出 する (S 2 1 2 )。
以上のようにして、 電池パック 1 00内の各電池ブロックにおける残 存容量 S O Cおよび分極電圧 V p eが推定される。 なお、 本実施形態では、 推定充放電電気量 eを算出するために、 無負荷電圧または開放電圧の変化量 Δν bの 1次関数式を用いたが、 N (Nは自然数) 次関数式または指数関数式を用いても良い。
図 3は、 本実施形態における図 2のフローチャートに基づいて算出さ れた推定充放電電気量 e、図 2のフローチャートにおける AVb c、 Kb、 Ke Q、 Kp o 1などの定数、 係数を使用しない方法により算出 された推定充放電電気量 AQ c、 および高精度 (電流誤差の無い) の電 流センサを用いて測定された電流の積算値に基づいて算出された充放電 電気量 AQ t (本明細書では、 真の充放電電気量と称する) の時間変化 を示すグラフである。
図 3に示すように、 本実施形態によれば、 推定充放電電気量 AQ eを 真の充放電電気量 Δ(3 tに近づけることができた。
(第 2の実施形態)
図 4は、 本発明の第 2の実施形態に係る電池パックシステムの一構成 例を示すブロック図である。 なお、 図 4において、 第 1の実施形態の説 明で参照した図 1と同様の構成および機能を有する部分については、 同 一の符号を付して説明を省略する。
電流測定部 1 0 3で測定された電流データ I (n) は、 測定充放電電 気量演算部 1 09に入力される。 測定充放電電気量演算部 1 09は、 充 電方向および放電方向の電流データ I (n) から所定期間 (例えば、 1 分間) における測定充放電電気量 AQmを算出する。
測定充放電電気量演算部 1 0 9からの測定充放電電気量 AQmは、 次 に、 分極電圧演算部 1 1 0に入力される。 分極電圧演算部 1 1 0は、 参 照テ一ブル (LUT) 1 1 0 1に予め記憶されている、 温度をパラメ一 夕とした測定充放電電気量 AQmに対する分極電圧 Vp o 1の特性曲線 または式から、 温度測定部 1 04で測定された温度データ T (n) に基 づいて、 分極電圧 Vp o 1を算出する。
分極電圧演算部 1 1 0からの分極電圧 Vp o'lは、 次に、 分極電圧変 化量演算部 1 1 1に入力され、 ここで、 所定期間 (例えば、 1分間) に おける分極電圧 Vp o 1の変化量 (分極電圧変化量) Δνρ ο 1が算出 される。 分極電圧変化量△ Vp o 1は、 測定充放電電気量 AQmに基づ いて算出された分極電圧 Vp o 1から、後述するが、所定期間(例えば、 1分) 前に算出された推定充放電電気量 Δ(3 eに基づいて算出された分 極電圧 V p p r eを減算して算出される。
また、 測定充放電電気量演算部 109からの測定充放電電気量 AQm は、 起電力演算部 1 1 2にも入力される。 起電力演算部 1 1 2は、 参照 テーブル (LUT) 1 1 2 1に予め記憶されている、 温度をパラメ一夕 とした残存容量 S OCに対する起電力 V e Qの特性曲線または式から、 温度測定部 104で測定された温度データ T (n) に基づいて、 起電力 V e qを算出する。
起電力演算部 1 1 2からの起電力 Ve Qは、 次に、 起電力変化量演算 部 1 1 3に入力され、 ここで、 所定期間 (例えば、 1分間) における起 電力 Ve qの変化量 (起電力変化量) AVe ciが算出される。 起電力変 化量 ΔΥ e Qは、 測定充放電電気量 AQmに基づいて算出された起電力 Vp o 1から、 後述するが、 所定期間 (例えば、 1分) 前に算出された 推定充放電電気量 AQeに基づいて算出された起電力 Ve p r eを減算 して算出される。
第 1の実施形態で述べた測定電圧変化量演算部 1 0 8からの測定電圧 変化量 AVbと、 分極電圧変化量演算部 1 1 1からの分極電圧変化量 Δ Vp o 1 と、起電力変化量演算部 1 1 3からの起電力変化量 AVe Qは、 推定充放電電気量演算部 1 1 4 Bに入力される。 推定充放電電気量演算 部 1 1 4 Bでは、 まず、 補正係数演算部 1 14 1により、 測定電圧変化 量 AVb、 分極電圧変化量△ V p o 1、 および起電力変化量△ V e qか ら、 補正係数ひが α = Δ V b/ (AVp o l +AV e q) として算出さ れる。 この補正係数ひは、 測定充放電電気量 AQmに乗算されて、 推定 充放電電気量 Δ Q eが算出される。
このようにして算出された推定充放電電気量 AQ eは、 分極電圧演算 部 1 1 0および起電力演算部 1 1 2に供給されて、 それぞれ、 所定期間 (例えば、 1分) 前の分極電圧 Vp p r eおよび起電力 Ve p r eが算 出される。
以降の構成および機能は、 第 1の実施形態と同様である。
次に、 以上のように構成された本実施形態による電池パックシステム における残存容量推定および分極電圧推定の処理手順について、 図 5を 参照して説明する。
図 5は、 本発明の第 2の実施形態に係る二次電池の充放電電気量推定 方法を含む残存容量推定方法および分極電圧推定方法における処理手順 を示すフローチャートである。 なお、 図 5において、 第 1の実施形態の 説明で参照した図 2と同様の処理工程については、 同一の符号を付して 説明を省略する。
ステップ S 40 1において、 充電方向および放電方向の電流データ I (n) から所定期間 (例えば、 1分間) における測定充放電電気量 AQ mを算出する。 次に、 算出された測定充放電電気量 AQmと、 ステップ S 406で所定期間 (例えば、 1分) 前に算出された推定充放電電気量 Δ Q eに基づいて算出された分極電圧 V p p r eおよび起電力 V e p r eとに基づいて、 それぞれ、 分極電圧 V p o 1および起電力 V e Qを算 出する (S 402)。 そして、 このようにして算出された分極電圧 Vp 0 1および起電力 V e から、 分極電圧変化量 Δ V p o 1および起電力変 化量 AVe qを算出する (S 40 3)。 次に、 ステップ S 2 0 6で算出された測定電圧変化量 AVb、 ステツ プ S 40 3で算出された分極電圧変化量 Δνρ 0 1および起電力変化量 V e Qを用いて、 補正係数 αを Q! = AVbZ (AVp o 1 +AVe q) として算出する (S 404)。 このようにして算出された補正係数ひを、 ステップ S 40 1で算出された測定充放電電気量 AQmに乗算して、 推 定充放電電気量 eを算出する (S 40 5)。算出された推定充放電電 気量 eに基づいて、 分極電圧 Vp eを再計算する (S 2 1 1 ) とと もに、 残存容量 SOCを算出する (S 2 1 2)。
以上のようにして、 電池パック 1 00内の各電池ブロックにおける残 存容量 S O Cおよび分極電圧 V p eが推定される。
図 6は、 本実施形態における図 5のフローチャートに基づいて算出さ れた推定充放電電気量 e、 図 5のフローチャートにおける補正係数 を使用しない方法により算出された推定充放電電気量△ Q c、 および 高精度 (電流誤差の無い) の電流センサを用いて測定された電流の積算 値に基づいて算出された充放電電気量 t (本明細書では、 真の充放 電電気量と称する) の時間変化を示すグラフである。
図 6に示すように、 本実施形態によれば、 推定充放電電気量 AQ eを 真の充放電電気量 tに近づけることができた。 産業上の利用可能性
以上のように、 本発明に係る二次電池の充放電電気量推定方法および 装置は、 電流測定誤差の影響が少ない測定電圧 (無負荷電圧または開放 電圧) から、 または電流測定誤差を含む測定充放電電気量から、 電流測 定誤差を含まない推定充放電電気量を算出し、 また、 本発明に係る二次 電池の分極電圧推定方法および装置、 二次電池の残存容量推定方法およ び装置は、 電流測定誤差を含まない推定充放電電気量を用いることによ り、 電流測定誤差に依存しない分極電圧、 残存容量を推定することで、 残存容量の高い推定精度が必要な、 電気自動車 (PEV)、 八イブリッド 車両(HE V;)、燃料電池と二次電池とを有するハイプリッド車両等の電 動車両等の用途に有用である。

Claims

請求の範囲
1. 二次電池に流れる電流と、 前記電流に対応した前記二次電池の 端子電圧との組データを測定し、前記組データを複数個取得する工程と、 特定の選別条件が満たされた場合に、前記複数個の組デ一夕に対して、 統計処理により求めた近似直線における電流がゼロの時の電圧切片であ る無負荷電圧を算出する工程と、
特定の電流条件または電圧条件がある時間継続して満たされた場合に、 前記二次電池の端子電圧から開放電圧算出する工程と、
所定期間における前記無負荷電圧または前記開放電圧の変化量 (Δν b) を算出する工程と、
前記無負荷電圧または前記開放電圧の変化量に基づいて、 前記二次電 池に対する推定充放電電気量 (AQ e) を算出する工程とを含む二次電 池の充放電電気量推定方法。
2. 前記方法はさらに、
前記無負荷電圧または前記開放電圧の変化量 (AVb) に対して、 前 記二次電池の物性および充放電状態に依存して決定される電圧変化量の 調整定数 (AVb c) および調整係数 (Kb) を予め設定する工程と、 前記二次電池の物性および充放電状態に依存して決定される、 残存容 量の使用領域での充放電電気量に対する起電力の変化量である起電力変 化定数 (Ke q) を予め設定する工程と、
前記二次電池の物性および充放電状態に依存して決定される、 残存容 量の使用領域での充放電電気量に対する分極電圧の変化量である分極電 圧発生定数 (Kp o 1 ) を予め設定する工程とを含み、
前記推定充放電電気量 Δ Q eは、 AQ e =Kb X (AVb + AVb c) / (K e q +K p o 1 ) で表される式を用いて、 前記無負荷電圧または前記開放電圧の変化量△ V bの関数として算出される請求項 1記載の二次電池の充放電電気量推 定方法。
3. 前記方法はさらに、
前記二次電池に流れる電流から前記所定期間における測定充放電電気 量を算出する工程と、
前記測定充放電電気量に基づいて前記二次電池の分極電圧を算出する 工程と、
前記測定充放電電気量に基づいて前記二次電池の起電力を算出するェ 程と、
前記所定期間における前記分極電圧の変化量および前記起電力の変化 量を算出する工程とを含み、
前記推定充放電電気量の算出工程において、 前記分極電圧変化量、 前 記起電力変化量、 および前記無負荷電圧または前記開放電圧の変化量に 基づいて、 推定充放電電気量が算出される請求項 1記載の二次電池の充 放電電気量推定方法。
4. 前記推定充放電電気量の算出工程は、 前記分極電圧変化量、 前 記起電力変化量、 および前記無負荷電圧または開放電圧の変化量に基づ いて、 前記測定充放電電気量に対する補正係数を算出する工程を含み、 前記測定充放電電気量に前記補正係数を乗算して前記推定充放電電気量 が算出される請求項 3記載の二次電池の充放電電気量推定方法。
5. 前記分極電圧変化量を Δ Vp o 1、 前記起電力変化量を AVe q、 前記無負荷電圧または前記開放電圧の変化量を AVb、 前記補正係 数を αとした場合、 前記補正係数ひは、 a = AVbZ (AVp o l +A Ve q) で表される請求項 4記載の二次電池の充放電電気量推定方法。
6. 前記分極電圧の算出工程において、 前記所定期間前に算出され た前記推定充放電電気量に基づいて算出された分極電圧と、 前記測定充 放電電気量とに基づいて、 前記分極電圧が算出される請求項 3記載の二 次電池の充放電電気量推定方法。
7. 前記起電力の算出工程において、 前記所定期間前に算出された 前記推定充放電電気量に基づいて算出された起電力と、 前記測定充放電 電気量とに基づいて、 前記起電力が算出される請求項 3記載の二次電池 の充放電電気量推定方法。
8. 前記分極電圧の算出工程において、 温度をパラメ一夕として予 め準備されている分極電圧一充放電電気量特性を参照して、 前記分極電 圧が算出される請求項 3記載の二次電池の充放電電気量推定方法。
9. 前記起電力の算出工程において、 前記所定期間前に算出した残 存容量と前記測定充放電電気量との加算値に基づいて、 温度をパラメ一 夕として予め準備されている起電力一残存容量特性を参照して、 前記起 電力が算出される請求項 3記載の二次電池の充放電電気量推定方法。
10. 請求項 1記載の二次電池の充放電電気量推定方法を用いて推定 充放電電気量を算出する工程と、
前記推定充放電電気量に基づいて、 前記二次電池の分極電圧を再計算 する工程とを含む二次電池の分極電圧推定方法
1 1 . 請求項 1記載の二次電池の充放電電気量推定方法を用いて推定 充放電電気量を算出する工程と、
前記推定充放電電気量に基づいて、 前記二次電池の残存容量を算出す る工程とを含む二次電池の残存容量推定方法。
1 2 . 二次電池に流れる電流を電流データとして測定する電流測定部 と、
前記二次電池の端子電圧を電圧データとして測定する電圧測定部と、 前記電流測定部からの電流データと、 該電流データに対応した前記電 圧測定部からの電圧データとの組データを複数個取得し、 特定の選別条 件が満たされた場合に、 前記複数個の組データに対して、 統計処理によ り求めた近似直線における電流がゼロの時の電圧切片である無負荷電圧 を算出する無負荷電圧演算部と、
特定の電流条件または電圧条件がある時間継続して満たされた場合に、 前記二次電池の端子電圧から開放電圧を算出する開放電圧演算部と、 所定期間における前記無負荷電圧または前記開放電圧の変化量 (Δ V b ) を算出する測定電圧変化量演算部と、
前記無負荷電圧または前記開放電圧の変化量に基づいて、 前記二次電 池に対する推定充放電電気量 (A Q e ) を算出する推定充放電電気量演 算部とを備えた二次電池の充放電電気量推定装置。
1 3 . 前記装置はさらに、
前記無負荷電圧または前記開放電圧の変化量 (A V b ) に対して、 前 記二次電池の物性および充放電状態に依存して決定される電圧変化量の 調整定数 (AVb c) および調整係数 (Kb) を予め設定する電圧変化 量調整定数 ·調整係数設定部と、
前記二次電池の物性および充放電状態に依存して決定される、 残存容 量の使用領域での充放電電気量に対する起電力の変化量である起電力変 化定数 (Ke d) を予め設定する起電力変化定数設定部と、
前記二次電池の物性および充放電状態に依存して決定される、 残存容 量の使用領域での充放電電気量の変化量に対する分極電圧の変化量であ る分極電圧発生定数 (Kp o l ) を予め設定する分極電圧発生定数設定 部とを備え、
前記推定充放電電気量演算部は、
△ Q e =Kb X (AVb + AVb c) / (K e q +K p o 1 ) で表される式を用いて、 前記無負荷電圧または前記開放電圧の変化量△ Vbの関数として前記推定充放電電気量 eを算出する請求項 1 2記 載の二次電池の充放電電気量推定装置。
14. 前記装置はさらに、
前記二次電池に流れる電流から前記所定期間における測定充放電電気 量を算出する測定充放電電気量演算部と、
前記測定充放電電気量に基づいて前記二次電池の分極電圧を算出する 分極電圧演算部と、
前記測定充放電電気量に基づいて前記二次電池の起電力を算出する起 電力演算部と、
前記所定期間における前記分極電圧の変化量を算出する分極電圧変化 量演算部と、
前記所定期間における前記起電力の変化量を算出する起電力変化量演 算部とを備え、 前記推定充放電電気量演算部は、 前記分極電圧変化量、 前記起電力変 化量、 および前記無負荷電圧または前記開放電圧の変化量に基づいて、 前記推定充放電電気量を算出する請求項 1 2記載の二次電池の充放電電 気量推定装置。
15. 前記推定充放電電気量演算部は、 前記分極電圧変化量、 前記起 電力変化量、 および前記無負荷電圧または前記開放電圧の変化量に基づ いて、 前記測定充放電電気量に対する補正係数を算出する補正係数演算 部を備え、 前記測定充放電電気量に前記補正係数を乗算して前記推定充 放電電気量を算出する請求項 14記載の二次電池の充放電電気量推定装 置。
16. 前記分極電圧変化量を Δνρ o 1、 前記起電力変化量を AVe Q、 前記無負荷電圧または前記開放電圧の変化量を AVb、 前記補正係 数を αとした場合、 前記補正係数ひは、 o; = AVb/ (AVp o l +A Ve q)で表される請求項 1 5記載の二次電池の充放電電気量推定装置。
17. 前記分極電圧演算部は、 前記所定期間前に算出された前記推定 充放電電気量に基づいて算出された分極電圧と、 前記測定充放電電気量 とに基づいて、 前記分極電圧を算出する請求項 14記載の二次電池の充 放電電気量推定装置。
18. 前記起電力演算部は、 前記所定期間前に算出された前記推定充 放電電気量に基づいて算出された起電力と、 前記測定充放電電気量とに 基づいて、 前記起電力を算出する請求項 14記載の二次電池の充放電電 気量推定装置。
1 9 . 前記装置はさらに、 前記二次電池の温度を温度データとして測 定する温度測定部を備え、 前記分極電圧演算部は、 前記温度測定部から の温度デ一夕をパラメータとして予め準備されている分極電圧一充放電 電気量特性を参照して、 前記分極電圧を算出する請求項 1 4記載の二次 電池の充放電電気量推定装置。 .
2 0 . 前記装置はさらに、 前記二次電池の温度を温度データとして測 定する温度測定部を備え、 前記起電力演算部は、 前記所定期間前に算出 した残存容量と前記測定充放電電気量との加算値に基づいて、 前記温度 測定部からの温度デ一夕をパラメ一夕として予め準備されている起電力 一残存容量特性を参照して、 前記起電力を算出する請求項 1 4記載の二 次電池の充放電電気量推定装置。
2 1 . 請求項 1 2記載の二次電池の充放電電気量推定装置により算出 された推定充放電電気量に基づいて、 前記二次電池の分極電圧を再計算 する分極電圧再計算部を備えた二次電池の分極電圧推定装置。
2 2 . 請求項 1 2記載の二次電池の充放電電気量推定装置により推定 された充放電電気量に基づいて、 前記二次電池の残存容量を算出する残 存容量演算部を備えた二次電池の残存容量推定装置。
PCT/JP2004/010983 2003-07-29 2004-07-26 二次電池の充放電電気量推定方法及び装置 WO2005010540A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/565,956 US7557584B2 (en) 2003-07-29 2004-07-26 Method and device for estimating charge/discharge electricity amount of secondary cell
US12/478,221 US7728598B2 (en) 2003-07-29 2009-06-04 Method and apparatus for estimating the charge/discharge electricity amount of secondary batteries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003282037 2003-07-29
JP2003-282037 2003-07-29
JP2004202931A JP4130425B2 (ja) 2003-07-29 2004-07-09 二次電池の充放電電気量推定方法および装置、二次電池の分極電圧推定方法および装置、並びに二次電池の残存容量推定方法および装置
JP2004-202931 2004-07-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/565,956 A-371-Of-International US7557584B2 (en) 2003-07-29 2004-07-26 Method and device for estimating charge/discharge electricity amount of secondary cell
US12/478,221 Division US7728598B2 (en) 2003-07-29 2009-06-04 Method and apparatus for estimating the charge/discharge electricity amount of secondary batteries

Publications (1)

Publication Number Publication Date
WO2005010540A1 true WO2005010540A1 (ja) 2005-02-03

Family

ID=34106924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010983 WO2005010540A1 (ja) 2003-07-29 2004-07-26 二次電池の充放電電気量推定方法及び装置

Country Status (4)

Country Link
US (2) US7557584B2 (ja)
JP (1) JP4130425B2 (ja)
KR (1) KR101070339B1 (ja)
WO (1) WO2005010540A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012401A (ja) * 2016-07-20 2018-01-25 公益財団法人鉄道総合技術研究所 電圧推定装置、電圧推定方法及びプログラム

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG120181A1 (en) * 2004-08-18 2006-03-28 Gp Batteries Internat Ltd Method and system for determining the SOC of a rechargeable battery
JP4690223B2 (ja) 2006-02-24 2011-06-01 株式会社デンソー バッテリの状態量演算装置
JP5102483B2 (ja) * 2006-11-29 2012-12-19 プライムアースEvエナジー株式会社 異常検出装置、異常検出方法、及び異常検出プログラム
US7750640B2 (en) 2006-12-27 2010-07-06 Panasonic Ev Energy Co., Ltd. Electromotive force computing device and state of charge estimating device
JP4997994B2 (ja) * 2007-01-31 2012-08-15 富士通株式会社 電池の残量予測装置
JP4274382B2 (ja) * 2007-03-02 2009-06-03 株式会社日本自動車部品総合研究所 車両用二次電池の内部抵抗算出方法
JP4811301B2 (ja) * 2007-03-06 2011-11-09 トヨタ自動車株式会社 二次電池の入出力制御装置、および車両
US8290648B2 (en) * 2007-06-20 2012-10-16 Denso Corporation Charge-discharge management apparatus and computer readable medium comprising instructions for achieving the apparatus
JP4793335B2 (ja) * 2007-06-20 2011-10-12 株式会社デンソー 充放電管理装置および充放電管理装置用のプログラム
KR20100072237A (ko) * 2007-09-20 2010-06-30 유티씨 파워 코포레이션 전지 밸런싱을 갖춘 다중-전지 에너지 저장 시스템용 충전 상태 계산기
US8358227B2 (en) * 2007-11-06 2013-01-22 GM Global Technology Operations LLC Multi-cell voltage secure data encoding in hybrid vehicles
EP2351184A4 (en) * 2008-10-10 2014-07-09 Deeya Energy Technologies Inc METHOD AND APPARATUS FOR ESTABLISHING BATTERY CHARGE STATUS
FR2942882A1 (fr) * 2009-03-09 2010-09-10 Peugeot Citroen Automobiles Sa Procede pour determiner l'etat de charge d'une source electrochimique pour la traction electrique de vehicules
US8004243B2 (en) * 2009-04-08 2011-08-23 Tesla Motors, Inc. Battery capacity estimating method and apparatus
US8994334B2 (en) 2009-06-03 2015-03-31 Mitsubishi Heavy Industries, Ltd. Battery state-of-charge calculation device
US9172118B2 (en) * 2009-06-17 2015-10-27 Gm Global Technology Operations, Llc. Method and system for estimating battery life
JP4966998B2 (ja) * 2009-06-18 2012-07-04 パナソニック株式会社 充電制御回路、電池パック、及び充電システム
JP5519665B2 (ja) * 2009-06-24 2014-06-11 日本碍子株式会社 電池制御装置及び電池制御方法
US20120109248A1 (en) * 2009-07-10 2012-05-03 Therese Danielsson Battery discharge measurement device and method
JP2011142720A (ja) * 2010-01-06 2011-07-21 Sony Corp バッテリーパック、充電装置及び充電システム
JP2013544205A (ja) 2010-11-17 2013-12-12 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 内燃機関の始動能力を求める装置および方法
JP5786324B2 (ja) 2010-11-17 2015-09-30 日産自動車株式会社 組電池の制御装置
EP2613423B1 (en) * 2011-01-27 2014-11-12 BlackBerry Limited Power pack partial failure detection and remedial charging control
EP2857854B1 (en) * 2012-05-24 2019-05-08 Hitachi Automotive Systems, Ltd. Cell control device
EP2894487A4 (en) * 2012-12-03 2016-04-13 Lg Chemical Ltd METHOD AND DEVICE FOR ESTIMATING PARAMETERS FOR SECONDARY BATTERY
JP2016508214A (ja) * 2012-12-04 2016-03-17 エルジー・ケム・リミテッド 二次電池のパラメーター推定装置及び方法
CN103018680B (zh) 2012-12-11 2014-07-16 矽力杰半导体技术(杭州)有限公司 一种电池电量计量方法、计量装置以及电池供电设备
US9128159B2 (en) * 2012-12-12 2015-09-08 GM Global Technology Operations LLC Plug-in charge capacity estimation method for lithium iron-phosphate batteries
TWI496338B (zh) * 2013-07-23 2015-08-11 Univ Nat Sun Yat Sen 汰換電池組再利用之充放電方法
JP2015155859A (ja) * 2014-02-21 2015-08-27 ソニー株式会社 電池残量推定装置、電池パック、蓄電装置、電動車両および電池残量推定方法
KR101558780B1 (ko) * 2014-06-10 2015-10-12 현대자동차주식회사 배터리 잔존에너지 추정방법
US9533598B2 (en) * 2014-08-29 2017-01-03 Ford Global Technologies, Llc Method for battery state of charge estimation
WO2016038873A1 (ja) * 2014-09-12 2016-03-17 日本電気株式会社 制御装置、制御方法、及び記録媒体
CN105891729B (zh) * 2016-06-23 2019-08-13 矽力杰半导体技术(杭州)有限公司 电池及电池组的状态检测方法及装置
KR102561574B1 (ko) * 2018-06-11 2023-07-31 삼성전자주식회사 충전 중 배터리의 전압 변화량에 기반하여 배터리의 상태에 대한 정보를 획득하기 위한 방법 및 이를 지원하는 전자 장치
JP2020016582A (ja) * 2018-07-26 2020-01-30 ラピスセミコンダクタ株式会社 半導体装置、およびバッテリの残量の検出方法
ES2900698A1 (es) * 2020-09-17 2022-03-17 Cecotec Res And Development Sl Sistema de estimacion del soc de la bateria y metodo asociado
WO2022075655A1 (en) * 2020-10-06 2022-04-14 Samsung Electronics Co., Ltd. Methods and systems for detecting faulty behavior in a battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336202A (ja) * 1995-06-05 1996-12-17 Honda Motor Co Ltd 電池状態判別装置
JP2000014019A (ja) * 1998-06-22 2000-01-14 Nissan Motor Co Ltd バッテリの放電量測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160380A (en) 1997-02-13 2000-12-12 Nissan Motor Co., Ltd. Method and apparatus of correcting battery characteristic and of estimating residual capacity of battery
JP2001223033A (ja) 2000-02-07 2001-08-17 Hitachi Ltd 電池システム及び電池の状態検出方法
JP4092904B2 (ja) * 2001-11-09 2008-05-28 トヨタ自動車株式会社 組電池の状態判定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336202A (ja) * 1995-06-05 1996-12-17 Honda Motor Co Ltd 電池状態判別装置
JP2000014019A (ja) * 1998-06-22 2000-01-14 Nissan Motor Co Ltd バッテリの放電量測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012401A (ja) * 2016-07-20 2018-01-25 公益財団法人鉄道総合技術研究所 電圧推定装置、電圧推定方法及びプログラム

Also Published As

Publication number Publication date
JP2005065482A (ja) 2005-03-10
KR20060039445A (ko) 2006-05-08
US20060232277A1 (en) 2006-10-19
JP4130425B2 (ja) 2008-08-06
KR101070339B1 (ko) 2011-10-06
US7728598B2 (en) 2010-06-01
US7557584B2 (en) 2009-07-07
US20090261836A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
WO2005010540A1 (ja) 二次電池の充放電電気量推定方法及び装置
JP4560540B2 (ja) 二次電池の充放電電気量推定方法および装置、二次電池の分極電圧推定方法および装置、並びに二次電池の残存容量推定方法および装置
US10312699B2 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
KR100606878B1 (ko) 이차 전지의 분극 전압 추정 방법, 이차 전지의 잔존 용량추정 방법 및 장치, 전지 팩 시스템, 및 전동 차량
US7202632B2 (en) Battery management apparatus
US9071072B2 (en) Available charging/discharging current calculation method and power supply device
JP4283615B2 (ja) 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置
EP1555537B1 (en) Battery remaining capacity measuring apparatus
KR100606876B1 (ko) 이차 전지의 잔존 용량 추정 방법 및 장치, 전지 팩시스템, 및 전동 차량
WO2006052043A1 (en) State and parameter estimation for an electrochemical cell
JP2006098135A (ja) バッテリの劣化度推定装置
CN116113837A (zh) 用于估计电池的荷电状态的方法
WO2005093446A1 (ja) 蓄電体の残存容量を推定する方法及び装置
CN100520431C (zh) 二次电池的充放电电量推定方法及装置
JP2002236157A (ja) バッテリの端子電圧推定方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ容量演算方法及びその装置
JP2002186103A (ja) バッテリ容量演算方法及びその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021723.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067001645

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006232277

Country of ref document: US

Ref document number: 10565956

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067001645

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10565956

Country of ref document: US