WO2005007578A2 - 有機性物質を含有する廃水の浄化処理方法 - Google Patents

有機性物質を含有する廃水の浄化処理方法

Info

Publication number
WO2005007578A2
WO2005007578A2 PCT/JP2004/008939 JP2004008939W WO2005007578A2 WO 2005007578 A2 WO2005007578 A2 WO 2005007578A2 JP 2004008939 W JP2004008939 W JP 2004008939W WO 2005007578 A2 WO2005007578 A2 WO 2005007578A2
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
purification
supercritical
subcritical
inorganic substance
Prior art date
Application number
PCT/JP2004/008939
Other languages
English (en)
French (fr)
Other versions
WO2005007578A3 (ja
Inventor
Genji Imai
Naonori Miyata
Takeshi Sako
Izumi Okajima
Original Assignee
Kansai Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co., Ltd. filed Critical Kansai Paint Co., Ltd.
Priority to EP04746408A priority Critical patent/EP1659098A2/en
Priority to US10/561,269 priority patent/US7431850B2/en
Priority to CA002529787A priority patent/CA2529787A1/en
Publication of WO2005007578A2 publication Critical patent/WO2005007578A2/ja
Publication of WO2005007578A3 publication Critical patent/WO2005007578A3/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/302Treatment of water, waste water, or sewage by irradiation with microwaves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • C02F11/086Wet air oxidation in the supercritical state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for purifying wastewater containing organic substances.
  • Patent Document 1 A method is known in which after a paint component contained in a water-based paint washing waste liquid is agglomerated by a flocculant, the agglomerated product is separated by filtration with a nonwoven fabric.
  • a hydrothermal treatment process in which organic waste is liquefied by hydrothermal reaction under subcritical or supercritical water conditions, and an air oxidation process in which liquid hydrothermal reaction products are air-oxidized A method for treating organic waste comprising: Furthermore, a method is known in which methane fermentation is performed in the presence of sludge containing anaerobic microorganisms after the hydrothermal reaction treatment step or the air oxidation treatment step to recover methane gas (Patent Document 2).
  • Patent Document 1
  • Patent Document 2
  • the wastewater filtered by the nonwoven fabric can be discarded at an arbitrary place, and the nonwoven fabric and the aggregate can be discarded as industrial waste, but the wastewater is filtered by the nonwoven fabric.
  • Wastewater contains residual components that could not be coagulated by the coagulant, for example, neutralizer component (amine, acid, etc.), hardener component (melamine hardener, etc.), organic solvent component (alcohol solvent, etc.), resin component (Low molecular weight acrylic resin, low molecular weight polyester resin, etc.) and other additive components. Therefore, such wastewater could not be disposed of because it would cause environmental pollution and other problems if disposed of in rivers.
  • a method of removing organic substances from wastewater containing organic substances that cause environmental pollution as described above by biological treatment with pateria can also be considered.
  • Low molecular weight components such as melamine hardeners (molecular weight approx. It was difficult to separate or decompose the following).
  • An object of the present invention is to provide a method for treating wastewater that efficiently separates and removes low-molecular-weight organic substances that could not be separated and removed by a conventional method, and that has a low harmful substance content. Disclosure of the invention
  • the following wastewater purification treatment method is provided.
  • Wastewater containing organic substances is subjected to supercritical treatment or subcritical treatment, followed by supercritical treatment or subcritical treatment, and then purified by treatment including biological treatment.
  • Law B (Hereinafter, also referred to as Law B).
  • Purification treatment of wastewater containing organic substances characterized by subjecting wastewater containing organic substances to biological treatment and then purifying it by treatment including supercritical or subcritical treatment Method (hereinafter, also referred to as C method).
  • the auxiliary treatment used in the present invention can be at least one kind of physically assisted treatment selected from a coagulant separation treatment, a sedimentation separation treatment, a flotation separation treatment, and a filtration treatment.
  • the auxiliary treatment used in the present invention can be at least one kind of chemical treatment selected from a redox treatment, a microwave treatment, and a treatment with an inorganic substance.
  • the oxidation-reduction treatment used in the present invention can be an electrolysis treatment.
  • supercritical treatment or Subcritical treatment and treatment with an inorganic substance can be performed simultaneously.
  • treatment with an inorganic substance can be performed after supercritical treatment or subcritical treatment.
  • the microwave treatment and the treatment with an inorganic substance can be performed simultaneously.
  • a method in which wastewater containing an organic substance is supplied to an electrolytic cell having an aluminum electrode, and sodium nitrate is used as an electrolyte.
  • the inorganic substance is selected from 1 2 C a O '7 A 1 2 0 3, in the hydroxide oxide ⁇ Pi Al force Li earth metals Al force Li earth metals It can be at least one inorganic compound.
  • heating can be performed in the step of treating with an inorganic substance.
  • microphone mouth wave processing can be performed in the presence of an inorganic substance.
  • wastewater containing an organic substance used in the methods A, B and C of the present invention it is preferable to use various kinds of wastewater, especially wastewater used for painting, and specifically, For example, water from paint booths in various paint lines and sheet metal factories, and water-based paint wash wastewater generated when paint that has adhered to paint manufacturing equipment, paint equipment, jigs, etc. is washed.
  • the auxiliary treatment used in the method A is a treatment for assisting supercritical treatment or subcritical treatment (hereinafter, these treatments are also referred to as U treatment).
  • U treatment a treatment for assisting supercritical treatment or subcritical treatment
  • the auxiliary treatment includes a physical method (Phy method) and a chemical method (Chem method).
  • Examples of the Phy method include a method of solid-liquid separation of solid substances (sludge) contained in wastewater. According to this solid-liquid separation treatment, the amount of wastewater to be treated in the U treatment is reduced. As a result, U processing can be performed in a short time.
  • the Chem method is a method in which a hardly decomposable organic substance that cannot be separated by the U method is decomposed into easily decomposable organic substances.
  • Examples of the Phy method include a flocculant separation treatment, a sedimentation separation treatment, a flotation separation treatment, and a filtration treatment.
  • This treatment usually results in sediment :! ⁇ 100 gZ liter, COD Mn 1,000-8,000 mgZ liter, TOC 1,000-8,000 Omg / liter, BOD 1,000-8,000 Omg / liter, organic solvent :! Processed to about 10,000 Omg / liter g.
  • COD Mn means chemical oxygen demand
  • TOC means total organic carbon
  • BOD means biochemical oxygen demand.
  • the organic solvent include aqueous ether-based or alcohol-based solvents.
  • the coagulant is added to wastewater containing organic substances such as coating wastewater, and the solids such as organic and inorganic substances such as pigments and resins in the wastewater are insolubilized and coagulated. This is a conventionally known process.
  • the suspended or settled sludge is separated and removed.
  • the separated sludge is dewatered to become sludge.
  • the wastewater containing the remaining organic substances from which the sludge has been removed is subjected to the Chem method as necessary, and then subjected to the secondary treatment, ie, supercritical treatment or subcritical treatment.
  • Inorganic salts include PAC (polyaluminum chloride), aluminum sulfate (sulfate band), sodium aluminum oxide, polyaluminum chloride, ferric chloride, ferrous sulfate, and ferric sulfate.
  • polymer flocculant examples include polyacrylate, polyacrylamide, sodium polyacrylate, modified polyacrylamide, polymethacrylate, polyamide, polyamine, amino condensation, and maleic acid.
  • These coagulants can be used alone or in combination of two or more depending on the type of wastewater.
  • the sedimentation treatment described above is a method of separating water by utilizing the density difference between water and organic and / or inorganic suspended substances or solid particles present in the wastewater. Separation treatment by sedimentation and centrifugation.
  • solid-liquid separation is performed in a short time by high centrifugal force because the solid content such as suspended matter and solid particles has a higher density than water.
  • the centrifugation can be performed using a conventionally known centrifugal separator such as a continuous horizontal type or a patch type vertical type. Then, the wastewater containing the remaining organic substances from which the sludge has been removed is subjected to a supercritical treatment or a subcritical treatment after performing a chem method as necessary.
  • the flotation treatment is performed using a conventionally known flotation treatment device such as a full-pressure flotation device, a partial pressure flotation device, a circulating pressure flotation device, and a normal pressure flotation device. Can be.
  • the wastewater containing the remaining organic substances from which the sludge has been removed is subjected to a supercritical treatment or a subcritical treatment after performing the Chem method as necessary.
  • the above-mentioned filtration treatment can be performed under normal pressure or under pressure using, for example, a screen, a cloth, a filter, a sieve, or the like.
  • the treatment can be used alone or in combination of two or more.
  • Examples of the Chem method include oxidation-reduction treatment, microwave treatment, and inorganic substance decomposition treatment.
  • the treatment can be used alone or in combination of two or more. In particular, it is preferable to combine microwave treatment and inorganic substance decomposition treatment.
  • These processes can be repeated as needed.
  • As the process repeated in combination of two or more processes for example, 1 2 C a O ⁇ 7 after microwave treatment in the presence of A 1 2 0 3, oxidation of Al force Li earth metal conducted microwave treatment in the presence of the object, again ⁇ 1 2 C a O ⁇ 7 a 1 microphone port in the presence of microwave processing and Z or Al force Li earth metal oxides in the presence of 2 O 3
  • Examples include a method of performing wave treatment.
  • Oxidation-reduction treatment is to oxidize or reduce organic substances in wastewater to cause some chemical changes to organic substances, thereby efficiently performing decomposition by supercritical treatment or subcritical treatment.
  • the oxidation reduction treatment for example, if an oxidizing agent (eg, H 2 0 2, K 2 C r 2 0 7, KMn 0 4, 0 3, 0., N a OC l, halogen Etc.), a reducing agent (e.g., H 2, S0 2, H 2 S, Na 2 SO 3, Fe S0 4 , etc.) by that process or electrolysis process following the in and the like.
  • an oxidizing agent eg, H 2 0 2, K 2 C r 2 0 7, KMn 0 4, 0 3, 0., N a OC l, halogen Etc.
  • a reducing agent e.g., H 2, S0 2, H 2 S, Na 2 SO 3, Fe S0 4 , etc.
  • the electrolysis treatment is a method in which an electrode is placed in wastewater containing an organic substance such as coating wastewater and a direct current is applied to cause an electrolysis reaction. In this process, electrons are taken in at the anode and an oxidation reaction takes place, and at the cathode, electrons are released and a reduction reaction takes place.
  • fine bubbles of oxygen and hydrogen generated by the electrolysis of water are added to fine particles of organic and inorganic substances such as pigments and resins in wastewater. Can be absorbed and those substances can be collected on the surface of wastewater by the buoyancy of bubbles.
  • the suspended or settled sludge is separated and removed by this electrolysis treatment.
  • the separated sludge is dewatered to sludge.
  • the wastewater containing the remaining organic substances from which the sludge has been removed is subjected to a supercritical treatment or a subcritical treatment as a secondary treatment.
  • an electrolyte is usually charged and dissolved in supplied wastewater to perform electrolysis.
  • a treatment tank in which a plurality of electrodes are arranged at appropriate intervals in a water tank is used. Electrolysis can be performed by applying a current between the electrodes.
  • an aluminum electrode can be used, and as the electrolyte, it is preferable to use sodium nitrate, sodium chloride, or the like.
  • the electrolyte concentration (for example, sodium nitrate concentration) is about 0.01 to 0.05 mol / liter with respect to the solid concentration of 20, OOmg / liter.
  • the above-mentioned microwave treatment is a treatment in which an organic substance in wastewater is irradiated with a microphone mouth wave to cause some chemical change to the organic substance.
  • the organic substance is decomposed itself or is easily decomposed by a supercritical treatment or a subcritical treatment.
  • Microwaves are electromagnetic waves with a wavelength of about 0.1 to 1.00 Omm, and include UHF (decimeter waves), SHF (centimeter waves), EHF (millimeter waves), and submillimeter waves. 2450 MHz, which is internationally allocated for industrial use, is often used, but is not limited to this. Microphone mouth wave processing can be performed using a microwave generator used for a microwave oven or the like.
  • the microwave irradiation time can be appropriately selected depending on the concentration of organic substances in the wastewater, the intensity of irradiation light, and the like, but the irradiation time is usually preferably about 1 minute to 60 minutes.
  • Wastewater generates heat when irradiated with microphone mouth waves, but generally the higher the temperature, the faster the decomposition rate of organic matter increases.Therefore, cooling is particularly necessary in areas where there is no danger of work such as boiling of wastewater and evaporation of organic solvents. There is no.
  • the temperature of the wastewater is preferably higher.
  • the microphone mouth wave treatment can be performed, for example, using a solid catalyst while supplying an oxygen-containing gas.
  • organic substances undergo oxidative decomposition treatment.
  • the solid catalyst conventionally known solid catalysts can be used without any particular limitation.
  • titanium, silicon, zirconium, manganese, iron, cobalt, nickel, tungsten, cerium, copper, silver, gold, platinum, palladium, rhodium Insoluble or sparingly soluble compounds of metal elements selected from the group consisting of ruthenium and iridium, or inorganic carriers (particles such as inorganic oxides, activated carbon and zeolite) carrying these metals can be used.
  • Inorganic material decomposition process 12C a O '7A l 2 0 3, Al force Li earth metal Sani ⁇ , the organic substances in the waste water by using an inorganic compound such as hydroxides of ⁇ alkaline earth metal
  • an inorganic compound such as hydroxides of ⁇ alkaline earth metal
  • 1 2 C a O ⁇ 7 A 1 2 0 3 as described above is a C 12 A7 called 1 2 C a O ⁇ 7 A 1 2 0 3 crystals typically calcium carbonate and mixtures of aluminum oxide It is obtained by heating and firing at 1200 ° C or more and 1400 DC or less. This firing reaction may be performed in a normal atmosphere, but is preferably performed in a pure oxygen atmosphere from the viewpoint of the organic substance decomposition effect.
  • the 7A l 2 0 3, for example, JP 2002- 3 218 JP disclosed active oxygen to inclusion in high concentrations 12CaO' said 12CaO can be used 7Al 2 0 3 compound.
  • the O ⁇ 7 A 1 2 0 3 was added in the waste water, cowpea to stirring with heating if necessary Done. After completion of the treatment is, 1 2 C a O '7 A 1 2 0 3 can filtration (or precipitation) be recovered and reused.
  • the addition amount of 1 2 C a O ⁇ 7 A 1 2 O 3 is selected by connexion appropriate type and concentration of organic substances contained in the waste water, from 0.1 to 4 0% by weight is usually against waste water, preferably Is preferably about 0.5 to 15% by weight. If the addition amount is less than 0.1% by weight, it is difficult to sufficiently decompose organic substances, while if it exceeds 40% by weight, it becomes difficult to sufficiently agitate the inside of the treatment tank, and disadvantageous in cost. Which is not desirable.
  • the organic substance resolution of the inorganic substance can be further increased by heating.
  • a heating means irradiation of a microphone mouth wave is particularly preferable.
  • the above-mentioned oxidized product and / or hydroxide of alkaline earth metal is insoluble in water.
  • the alkaline earth metal calcium is particularly preferred from the viewpoint of cost and organic matter resolution.
  • Alkaline earth metal oxides react with water to form hydroxides. At that time, they react violently with heat generation. Therefore, hydroxides are preferable in terms of handling and stability.
  • a composite metal oxide containing an alkaline earth metal and / or a hydroxide may be used as the oxide and Z or hydroxide of the alkaline earth metal.
  • the decomposition treatment of wastewater containing organic matter using the oxide and / or hydroxide of the alkaline earth metal is performed by adding the oxide and / or hydroxide of the alkaline earth metal to the wastewater, It is performed by stirring while heating as necessary. After the completion of the treatment, the alkaline earth metal oxide and Z or hydroxide can be collected by filtration and reused.
  • the amount of the oxide and Z or hydroxide of the alkaline earth metal is appropriately selected depending on the type and concentration of the organic substances contained in the wastewater, and is usually 0.1 to 50% by weight based on the wastewater. %, Preferably:! About 20% by weight is preferable. If the added amount is less than 0.1% by weight, it is difficult to sufficiently decompose the organic matter, while if it exceeds 50% by weight, it becomes difficult to sufficiently agitate the inside of the treatment tank, and disadvantageous in cost. It is not desirable.
  • the decomposition efficiency of organic substances can be further increased by heating.
  • microwave irradiation is particularly preferable.
  • the above-mentioned Phy method or Chem method can be carried out alone or in combination with the Chem method after carrying out the Phy method. it can. If implemented in combination, especially if the solids content of the wastewater is high, P After removing the solid content by the hy method, it is preferable to perform the Chem method.
  • the U treatment of the method A of the present invention is a treatment of decomposing an organic substance by treating a waste liquid containing an organic substance which has been particularly easily decomposed by the auxiliary treatment with supercritical water or subcritical water.
  • Supercritical water means water that has exceeded the critical conditions of water, that is, the critical temperature is 374.1 ° C and the critical pressure is 22.12 MPa.
  • Subcritical water has the same effect as supercritical water.
  • water whose temperature is 0.65 times or more of the critical temperature in Kelvin and whose pressure is 0.65 times or more of the critical pressure is usually used. means. Under such conditions, it is impossible to liquefy even if pressure is applied any more.
  • supercritical water or subcritical water cannot be called gas or liquid, but has properties intermediate between the two.
  • the boundary between gas and liquid disappears and exists as a single phase as supercritical water or subcritical water. That is, since supercritical water or subcritical water is mixed as a single phase at an arbitrary ratio with respect to oxygen and the like, it is particularly useful as a reaction solvent at the time of oxidative decomposition of an organic substance.
  • oxidizing agents conventionally if necessary (e.g., H 2 0 2, K 2 C r 2 0 7, KMn0 4, 0 3, 0 2, NaOC l , A halogen element, etc.).
  • the proportion is usually in the range of 0.5 to 50 parts by weight, preferably 1 to 20 parts by weight, per 100 parts by weight of wastewater.
  • supercritical treatment or subcritical treatment can be performed while blowing oxygen and air into the wastewater.
  • the conditions of the supercritical treatment or the subcritical treatment are not limited as long as the conditions satisfy the above-mentioned critical conditions, but usually the reaction temperature is 300 to 800 ° C, preferably 400 to 600 ° C, and the pressure is 88 to 800 ° C. 300 atm (8.9 to 30.4 MPa), preferably 100 to: 170 atm (10:! To 17.2 MPa), reaction time 30 to 180 minutes, preferably 5 to 90 minutes Range.
  • the inorganic substance used in the above-mentioned inorganic substance treatment is added to the wastewater, and then the supercritical state or the subcritical state is obtained.
  • the critical treatment or the subcritical treatment can be performed simultaneously.
  • COD Mn l for coating wastewater, COD Mn l, less than 00 OmgZ litre, preferably less than 500 mgZ litre, TOC l, OO Omg no litre, preferably less than 50 OmgZ liter, BOD less than 1,000 mg_ liter , Preferably less than 50 mg / litre, less than lmg / litre of organic solvent, preferably less than 0.5 mg / litre.
  • the wastewater will be discharged as it is. If not, the treated water after the above-mentioned U treatment will be used as return water, and the auxiliary treatment and U treatment will be performed again to purify to the above level. desirable.
  • the above-mentioned inorganic substance treatment can be performed, if necessary.
  • the auxiliary treatment carried out in the method A of the present invention assists the supercritical treatment or the subcritical treatment.
  • the U treatment can be performed in a short time, and the content of the organic substance is reduced. A small amount of wastewater can be obtained.
  • Supercritical water or subcritical water treatment converts most organic substances into gaseous products and volatile substances by hydrolysis and thermal decomposition reactions, and furthermore, converts organic substances in a single hour by the presence of oxygen. It can be decomposed into water and volatile gas.
  • inorganic materials processing using 12CaO '7 A 1 2 0 3 acts as a catalyst for decomposing organic matter by heating, in particular, inorganic materials itself when heated in the presence of oxygen in organic matter generates oxygen Raj Cal Promotes decomposition.
  • heating can be performed in a short time, and it is also effective in generating oxygen radicals.
  • the inorganic substance treatment using an alkaline earth metal is carried out by using a water-soluble curing agent contained in the melamine-curable coating wastewater, which is generally used as a thermosetting paint at present, for example, in the presence of a hydroxyl ion of the inorganic substance.
  • a water-soluble curing agent contained in the melamine-curable coating wastewater which is generally used as a thermosetting paint at present, for example, in the presence of a hydroxyl ion of the inorganic substance.
  • wastewater containing an organic substance is subjected to supercritical treatment or subcritical treatment.
  • This is a method for purifying wastewater containing organic substances, which comprises performing a supercritical or subcritical treatment after performing an auxiliary treatment to assist, and then purifying by a treatment including a biological treatment.
  • the auxiliary treatment can be at least one kind of treatment selected from coagulant separation treatment, sedimentation separation treatment, flotation separation treatment, and filtration treatment.
  • the auxiliary treatment can be at least one kind of treatment selected from a redox treatment, a microwave treatment, and a treatment with an inorganic substance.
  • the oxidation-reduction treatment can be an electrolysis treatment.
  • a treatment with an inorganic substance can be performed between the supercritical treatment or the subcritical treatment and the biological treatment.
  • microwave treatment and treatment with an inorganic substance can be performed simultaneously.
  • Inorganic substances 1 2 C a O '7 A l 2 0 3, Al force of at least one inorganic compound selected from the hydroxides of oxides ⁇ Pi Al force Li earth metals Li earth metal Can be
  • heating can be performed.
  • the microwave treatment can be performed in the presence of an inorganic substance.
  • the auxiliary processing used in Method B is performed in the same manner and under the same conditions as the auxiliary processing shown in Method A. For details, see the description of the auxiliary processing shown in Method A.
  • the waste liquid containing the organic matter which has been particularly easily oxidized and decomposed by the auxiliary treatment, is subjected to the acid treatment using supercritical or subcritical water to remove the organic substance contained in the waste liquid.
  • This U processing can be performed in the same manner as the U processing in the method A. For details, refer to the description of the U processing shown in the method A.
  • a biological treatment is performed after the U treatment.
  • microorganisms are carried on an organic or inorganic carrier, and the microorganisms are used to decompose organic substances in wastewater.
  • the biological treatment is more efficient than the activated sludge method.
  • the material of the organic carrier include photocurable resin, polyurethane, polyvinyl alcohol, polyethylene, polyacrylamide, polyester, polypropylene, agar, alginic acid, carrageenan, cellulose, dextran, agarose, and ion exchange resin.
  • the present invention is not limited to these, and these may be used in combination with an inorganic substance.
  • the microorganism used for the biological treatment may be appropriately selected from conventionally known aerobic bacteria and anaerobic bacteria.
  • the aerobic bacteria include, for example, Pseudomonas spp.
  • Examples of the anaerobic bacteria include methane bacteria and Clostridium bacteria.
  • the biological treatment can be performed, for example, under the conditions of a treatment temperature of 10 to 40 ° C, a pH of 6.0 to 9.0, and a hydraulic retention time (HRT) of 24 to 48 hours.
  • the auxiliary treatment performed in the method B of the present invention chemically or physically assists the supercritical treatment or the subcritical treatment, and the auxiliary treatment enables the treatment to be performed in a short time, and Wastewater having a low content of organic substances can be obtained.
  • organic substances contained in wastewater can be directly decomposed, or hardly decomposable organic substances that cannot be decomposed by U treatment can be preliminarily decomposed into easily decomposable organic substances.
  • supercritical water or subcritical water Since supercritical water or subcritical water has no boundary between water and oxygen (gas and liquid) and exists as single-phase supercritical water or subcritical water, it is particularly useful as a reaction solvent during oxidative decomposition of organic substances. Useful.
  • inorganic material acts as a catalyst for decomposing organic matter by heating, in particular, when heated in the presence of oxygen inorganic
  • the substance itself generates oxygen radicals to accelerate the decomposition of organic substances.
  • microwaves are used as the heating means, heating can be performed in a short time, and the generation of oxygen radicals is promoted.
  • the hydroxyl ions of the inorganic substance may be, for example, water-soluble curing ions contained in melamine-curing coating wastewater generally used as a thermosetting paint. It has an effect by promoting the hydrolysis of the alkyl ether bond of the alkyl etherified melamine curing agent, which is an agent.
  • the method B of the present invention by combining the biological treatment with the supercritical treatment or the subcritical treatment, it is possible to decompose the organic substance which cannot be oxidatively decomposed by the supercritical treatment or the subcritical treatment.
  • the method C of the present invention contains an organic substance characterized in that wastewater containing an organic substance is subjected to a biological treatment and then purified by a treatment including a supercritical treatment or a subcritical treatment. It is a method of purifying wastewater.
  • a solid-liquid separation treatment can be performed before the biological treatment.
  • the solid-liquid separation treatment can be at least one treatment selected from a coagulant separation treatment, a sedimentation separation treatment, a flotation separation treatment, and a filtration treatment.
  • an intermediate treatment which promotes decomposition of the biological treatment and the supercritical treatment or the subcritical water treatment can be performed between the solid-liquid separation treatment and the biological treatment.
  • the intermediate treatment can be at least one kind of treatment selected from redox treatment, microwave treatment, and treatment with an inorganic substance.
  • the oxidation-reduction treatment can be an electrolysis treatment.
  • the treatment with an inorganic substance can be performed between the biological treatment and the supercritical treatment or the subcritical treatment.
  • a method in order to perform the electrolysis treatment, a method may be employed in which wastewater containing an organic substance is supplied to an electrolytic cell having an aluminum electrode, and sodium nitrate is used as an electrolyte.
  • Inorganic substances 1 2 C a O '7 A 1 2 0 3, at least one selected from among Al force Li earth oxides ⁇ Pi Al force Li earth hydroxyl I arsenide of the metal of the metal Being an inorganic compound it can.
  • the treatment with the inorganic substance can be performed while heating.
  • the heating can be performed by microwave treatment.
  • the biological treatment used in the method C of the present invention can be carried out in the same manner as the biological treatment shown in the above method B.
  • the supercritical treatment or subcritical treatment used in the method C of the present invention can be performed in the same manner as the method shown in the method A, and details thereof are described in the method A. See description.
  • an auxiliary treatment for assisting the purification treatment by the biological treatment (primary treatment) or the supercritical treatment or the subcritical treatment (secondary treatment) can be performed.
  • the U treatment can be performed in a short time, and wastewater having a low organic substance content can be obtained.
  • auxiliary processing includes a physical method (Phy method) and a chemical method (Chein method). These auxiliary processing can be performed in the same manner as the auxiliary processing (Phy processing, Chem processing) used in Method A. For details, see the description of the auxiliary processing in Method A.
  • Examples of the Phy treatment include coagulant separation treatment, sedimentation separation treatment, flotation separation treatment, and filtration treatment. These pretreatments can be carried out in the same manner as in the Phy method shown in the above-mentioned method A, and for details, refer to the description of the Phy method.
  • the wastewater containing the remaining organic substances from which the sludge has been removed by the Phy treatment is subjected to a Chem treatment as required, and then subjected to a biological treatment as a primary treatment.
  • the filtration treatment used in the Phy treatment can be performed under normal pressure or under pressure using, for example, a screen, cloth, finoletter, sieve, or the like.
  • the treatment can be used alone or in combination of two or more.
  • the Chem processing can be performed in the same manner as the Chem method shown in the above-mentioned Method A, and for details, refer to the description of the Chem method.
  • the Phy treatment or Chem treatment carried out by the method C of the present invention can be carried out alone or in combination with the Chem treatment after the Phy treatment. Wear. In the case of performing in combination, especially when the solid content of the wastewater is high, it is preferable to remove the solid content by Phy treatment and then perform Chem treatment.
  • the treatment using the inorganic substance can be performed between the biological treatment and the supercritical water treatment or the subcritical water treatment.
  • the inorganic substance is added to the wastewater and then brought into a supercritical state or a subcritical state. In this way, the inorganic substance treatment and the supercritical or subcritical treatment can be performed simultaneously.
  • COD Mn l in coating wastewater, COD Mn l, less than OO OmgZ liter, preferably less than 500 mg Z liter, TOC less than 100 OmgZ liter, preferably less than 50 OmgZ liter, It can be processed to a BOD of less than 1,00 Omg / liter, preferably less than 50 OmgZ liter, less than lmgZ liter of organic solvent, preferably less than 0.5 mg noritr.
  • the wastewater is discharged as it is, otherwise, the treated water after the U treatment described above is used as return water, and the Chem treatment or biological treatment is performed again to the above level. It is desirable to purify.
  • the Phy treatment and the Chem treatment performed as auxiliary treatments in the method C of the present invention chemically or physically support biological treatment, supercritical treatment, or subcritical treatment.
  • the U treatment can be performed in a short time, and wastewater having a low organic substance content can be obtained.
  • An automotive water-based paint (polyester Z melamine-curable, solid content 22.3% by weight) diluted with water to a solid content of 2% by weight was used as a coating wastewater sample (A).
  • COD Mn is 8, 50 OmgZ liters early in the sample (A)
  • TOC is 11, OO Omg / l
  • melamine curing agent amount 3 49 X 10 3 m V ⁇ Byodea ivy.
  • the amount of melamine hardener indicates the product (area) of the detection potential and the detection time indicating the melamine hardener in high performance liquid chromatography (HPLC). Indicate meaning).
  • a sodium nitrate solution was mixed to a concentration of 0.02 mo 1 liter, and the mixed solution was placed in an electrolytic cell and stirred with a stirrer. ) is set up two 35 cm 2 of the aluminum electrode plates such that the distance between electrodes 2 Omm, was subjected to electrolysis treatment under conditions of energization with a voltage 10 V 0. 17 hours.
  • the same coating wastewater as above (A) was stirred with 280 g of Coagulant Cristak B100 (Kurita Kogyo) at 15,000 mg and Cristak B450 (Kurita Kogyo) with 1,500 mg of added P. After one day, the mixture was left to remove aggregates.
  • the COD Mn of the treatment solution (B) after the coagulation treatment was 5,80 Omg / 1 and the TOC was 6,800 mg / l.
  • the treatment liquid (B) was irradiated with a microwave (frequency: 2.45 GHz, output: 500 W) for 5 minutes.
  • the resulting microwave treated water 100 parts by weight with respect to H 2 0 2 to 5 parts by weight of the formulated ones 30 min treatment with supercritical water under 25MP a at 500 ° C was carried out.
  • Table 1 shows the amounts of COD Mn , TOC, and melamine curing agent in the treatment solution.
  • Example 4 An amount of calcium hydroxide corresponding to 10% by weight of the treatment liquid (B) obtained in Example 2 was added to the treatment liquid (B), and the mixture was stirred. The mixture was then microwaved (frequency: 2.45 GHz, output: 500 W ) For 10 minutes. Table 1 shows the amounts of COD Mn , TOC and melamine curing agent in the treatment liquid (C) after the treatment with 12CaO '7A1 2 O 3 .
  • Table 1 shows the amounts of COD Mn , TOC, and melamine curing agent in the treatment solution.
  • Example 1 The processing was performed in the same manner as in Example 1 except that the supercritical water treatment was not performed.
  • Table 1 shows the amounts of COD Mn , TOC, and melamine curing agent in the treatment solution.
  • Table 1 shows the amounts of COD Mn , TOC, and melamine curing agent in the treatment solution.
  • Table 1 shows the amounts of COD Mn , TOC, and melamine curing agent in the treatment solution.
  • Table 1 shows the amounts of COD Mn , TOC, and melamine curing agent in the treatment solution.
  • the unit of 000 ⁇ is ⁇ / liter
  • the unit of TOC is mg / liter
  • the unit of melamine hardener is mV ⁇ sec.
  • the resulting electrolysis treatment water was filtered, processing the filtrate for 30 minutes under supercritical water 25 MP a and H 2 0 2 with respect to 100 parts by weight of those obtained by blending 5 parts by weight 500 ° C Was done.
  • the treatment liquid is put into a biological reaction tank, and activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida, and Fusarium is used at a treatment temperature of 20 to 25.
  • activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida, and Fusarium is used at a treatment temperature of 20 to 25.
  • the biologically treated water was filtered. Table 2 shows the amounts of COD Mn , TOC and melamine hardener.
  • the same coating wastewater (A) as above was added to 280 g of Coagulant Cristak B 100 (Kurita Kogyo), 15,000 mg, and Cristak B450 (Kurita Kogyo), 1,500 mg, and stirred. It was left for one day to remove aggregates.
  • the COD Mn of the treatment solution (B) after the coagulation treatment was 5,80 Omg / 1 and the TOC was 6,800 mg / l.
  • the treatment liquid (B) was irradiated with a microwave (frequency: 2.45 GHz, output: 500 W) for 5 minutes.
  • the obtained microwave-treated water was treated at 500 ° C under supercritical water of 25 MPa for 30 minutes.
  • the treatment liquid is put into a biological reaction tank, and activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Mouth dococcus, Bacillus, Candida and Fusarium is used, at a treatment temperature of 20 to 25 ° C.
  • activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Mouth dococcus, Bacillus, Candida and Fusarium is used, at a treatment temperature of 20 to 25 ° C.
  • the biologically treated water was filtered.
  • COD Mn TO Table 2 shows the amounts of C and melamine curing agents.
  • the treatment liquid is put into a biological reaction tank, and activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida, and Fusarium is used at a treatment temperature of 20 to 25.
  • activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida, and Fusarium is used at a treatment temperature of 20 to 25.
  • the biologically treated water was filtered. Table 2 shows the amounts of COD Mn , TOC and melamine hardener.
  • Example 6 After stirring by adding calcium hydroxide in an amount corresponding to 1 0 weight 0/0 of the treatment liquid obtained in Example 6 (B) in the treatment liquid (B), microwave (frequency 2. 45 GHz, (500W output) for 10 minutes.
  • Table 2 shows the amounts of COD Mn , TOC, and melamine curing agent in the treatment liquid (C) after the treatment with 12C aO '7A l 2 O 3 .
  • the treatment liquid is put into a biological reaction tank, and activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida, and Fusarium is used at a treatment temperature of 20 to 25.
  • activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida, and Fusarium is used at a treatment temperature of 20 to 25.
  • the biologically treated water was filtered. Table 1 shows the amounts of COD Mn , TOC and melamine hardener.
  • Example 6 The processing was performed in the same manner as in Example 5 except that the supercritical water treatment was not performed. Table 2 shows the amounts of COD Mn , TOC and melamine hardener. Comparative Example 6
  • Example 6 The processing was performed in the same manner as in Example 6, except that the supercritical water treatment was not performed.
  • Table 2 shows the amounts of COD Mn , TOC and melamine hardener.
  • Example 7 The processing was performed in the same manner as in Example 7 except that the supercritical water treatment was not performed.
  • Table 2 shows the amounts of COD Mn , TOC and melamine hardener.
  • Example 8 The processing was performed in the same manner as in Example 8 except that the supercritical water treatment was not performed.
  • Table 2 shows the amounts of COD Mn , TOC and melamine hardener.
  • a sodium nitrate solution was mixed with 280 g of the coating wastewater sample (A) shown in Example 1 so as to have a concentration of 0.02 mol / liter, and the mixed solution was placed in an electrolytic cell, and stirred with a stirrer. Two aluminum electrode plates with an electrode area (one side) of 35 cm2 were placed inside the electrode so that the distance between the electrodes was 2 Omm, and electrolysis was carried out under the conditions of 10 V at 0.1 V for 10 hours.
  • the obtained electrolyzed water is filtered, and then the filtrate is put into a biological reaction tank, and has an activity having aerobic bacteria of the genera Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida and Fusarium.
  • the sludge was used for biological treatment under the conditions of a treatment temperature of 20 to 25 ° C, a pH of 7 to 8.5 and a hydraulic residence time of 48 hours, and then the biologically treated water was filtered. Then, the H 2 0 2 to 5 parts by weight of the formulated ones 30 min treatment under supercritical water 25 MP a at 500 ° C was carried out for the filtrate 100 parts by weight.
  • Table 3 shows the amounts of COD Mn , TOC and melamine hardener.
  • the treatment liquid is put into a biological reaction tank, and activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopactor, Rhodococcus, Bacillus, Candida, and Fusarium is used at a treatment temperature of 20 to 25. After biological treatment under the conditions of ° C, pH 7 to 8.5 and a hydraulic retention time of 48 hours, the biologically treated water was filtered.
  • Example 10 An amount of calcium hydroxide equivalent to 10% by weight of the treatment liquid (B) obtained in Example 10 was added to the treatment liquid (B), and the mixture was stirred. The mixture was then microwaved (frequency: 2.45 GHz, output: 500 W). ) For 10 minutes.
  • the treated solution (C) after the treatment is put into a biological reaction tank, and activated sludge having aerobic bacteria of the genus Pseudomonas, Acitopecta, Rhodococcus, Bacillus, Candida and Fusarium is used at a treatment temperature of 20. After biological treatment under conditions of ⁇ 25 ° C., pH 7-8.5 and hydraulic retention time of 48 hours, the biologically treated water was filtered.
  • Example 9 The processing was performed in the same manner as in Example 9 except that the supercritical water treatment was not performed.
  • Table 3 shows the amounts of COD Mn , TOC and melamine hardener.
  • Example 10 The processing was performed in the same manner as in Example 10 except that the supercritical water treatment was not performed.
  • Table 3 shows the amounts of COD Mn , TOC and melamine hardener.
  • Example 12 The processing was performed in the same manner as in Example 11 except that supercritical water treatment was not performed. Table 3 shows the amounts of COD Mn , TOC and melamine hardener. Comparative Example 12
  • Example 12 The processing was performed in the same manner as in Example 12, except that supercritical water treatment was not performed.
  • Table 1 shows the amounts of COD Mn , TOC and melamine hardener.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

明 細 書
有機性物質を含有する廃水の浄化処理方法 技術分野
本発明は、 有機性物質を含有する廃水の浄化処理方法に関する。 背景技術
水系塗料洗浄廃液中に含まれる塗料成分を凝集剤により凝集させた後、 該凝集物 を不織布で濾過分離する方法は公知である (特許文献 1 )。
一方、 有機物廃棄物を、 亜臨界水条件下又は超臨界水条件下の水熱反応により液 状化させる水熱反応処理工程と、 液状水熱反応処理物を空気酸化させる空気酸化処 理工程とを備えてなる有機廃棄物の処理方法は公知である。 更に水熱反応処理工程 あるいは空気酸化処理工程の後に、 嫌気性微生物が含まれる汚泥の存在下でメタン 発酵させ、 メタンガスを回収する方法も公知である (特許文献 2 )。
特許文献 1
特開 2 0 0 1— 1 4 9 9 4 8号参照
特許文献 2
特開 2 0 0 2—1 0 2 8 7 0号参照
特許文献 1に記載の方法の場合には、 不織布により濾過された廃水は任意の場所 に廃棄する事が出来、 かつ不織布及ぴ該凝集物は産業廃棄物として廃棄できるが、 不織布により濾過された廃水には、 凝集剤により凝集できなかった残存成分、 例え ば、 中和剤成分 (ァミン、 酸など)、 硬化剤成分 (メラミン硬化剤など)、 有機溶剤 成分(アルコール系溶剤など)、樹脂成分(低分子量アクリル樹脂、低分子量ポリエ ステル樹脂など)、その他添加剤成分などが含まれている。従って、 このような廃水 は、 河川などに廃棄すると環境汚染などの問題を生じるため、 廃棄することができ なかった。
上記した様な環境汚染の原因となる有機物質を含む廃水を、 パクテリアによる生 物学的処理により該有機物質を除去する方法も考えられるが、 このような生物学的 処理では、 特に、 ァミン、 メラミン硬化剤などの低分子量成分 (分子量約 1 0 0 0 以下) を分離除去あるいは分解することは困難であった。
特許文献 2に記載の方法の場合には、 有機物を直接超臨界条件下で水熱反応処理 するために、 スラッジなどの固形分を含む廃液を処理した際には、 処理効率が悪い こと、 メラミン硬化剤、 ァミン、 有機溶剤などの低分子量有機物に対する分解が劣 ること等の問題がある。 更に超臨界処理において残存した低分子量有機物は、 これ を生物学的処理しても完全に分解し除去することは困難であった。
本発明の目的は、 従来の方法では分離除去できなかった、 低分子量有機物を効率 よく分離除去するとともに、 有害物質の含有量が少ない廃水の処理方法を提供する ことにある。 発明の開示
本発明によれば、 以下に示す廃水の浄化処理方法が提供される。
( 1 ) 有機性物質を含有する廃水を、 超臨界処理又は亜臨界処理を補助する補助処 理をおこなった後に、 超臨界処理又は亜臨界処理を含む処理により浄化処理するこ とを特徴とする有機性物質を含有する廃水の浄化処理方法(以下、 A法とも言う)。
( 2 ) 有機性物質を含有する廃水を、 超臨界処理又は亜臨界処理を補助する補助処 理をおこなった後に、 超臨界処理又は亜臨界処理し、 その後生物学的処理を含む処 理により浄ィヒ処理することを特徴とする有機性物質を含有する廃水の浄化処理方法
(以下、 B法とも言う)。
( 3 ) 有機性物質を含有する廃水を、 生物学的処理をおこなったのち、 超臨界処理 又は亜臨界処理を含む処理により浄化処理することを特徴とする有機性物質を含有 する廃水の浄化処理方法 (以下、 C法とも言う)。
本発明において用いる補助処理は、 凝集剤分離処理、 沈降分離処理、 浮上分離処 理及ぴ、 濾過処理の中から選ばれる少なくとも 1種の物理的に補助する処理である ことができる。
本発明において用いる補助処理は、 酸化還元処理、 マイクロ波処理及ぴ、 無機物 質による処理から選ばれる少なくとも 1種の化学的処理であることができる。 本発明において用いる酸化還元処理は、 電気分解処理であることができる。 本発明の有機性物質を含有する廃水の浄化処理方法においては、 超臨界処理又は 亜臨界処理と無機物質による処理とを同時に行うことができる。
本発明の、 有機性物質を含有する廃水の浄化処理方法においては、 超臨界処理又 は亜臨界処理の後に無機物質による処理を行うことができる。
本発明においては、 マイクロ波処理と無機物質による処理とを同時に行うことが できる。
本発明においては、 電気分解処理を行うために、 有機性物質含有する廃水をアル ミ電極を具備する電解槽に供給し、 電解質として硝酸ナトリゥムを使用する方法を 用いることができる。
本発明においては、 前記無機物質は、 1 2 C a O ' 7 A 1 2 0 3、 アル力リ土類金 属の酸化物及ぴアル力リ土類金属の水酸化物の中から選ばれる少なくとも 1種の無 機化合物であることができる。
本発明においては、 無機物質を用いて処理する工程において、 加熱を行うことが できる。
本発明においては、 無機物質の存在下でマイク口波処理を行うことができる。 発明を実施するための最良の形態
本発明の A法、 B法及び C法において用いられる有機性物質を含有する廃水とし ては、各種の廃水がある力 特に塗装で使用された廃水を使用することが好ましく、 具体的には、 例えば各種塗装ラインや鈑金工場における塗装ブース水、 塗料製造装 置、 塗装機器、 治具等に付着した塗料を洗浄した際に発生する水系塗料洗浄廃水な どが挙げられる。
以下、 A法について詳述する。
A法において用いられる補助処理は、 超臨界処理又は亜臨界処理 (以下、 これら の処理を U処理ともいう) を補助するための処理である。 この補助よりの採用によ り、 U処理を短時間で行うことを可能にするとともに、 有機物質の含有量の少ない 廃水を得ることを可能にする。
補助処理には、 物理的方法 (P h y法) と化学的方法 (C h e m法) がある。 P h y法としては、 例えば排水中に含まれる固体物質 (スラッジ) を固液分離する方 補が挙げられる。 この固液分離処理によると、 U処理での被処理廃水量が少なくな り、 その結果、 短時間での U処理を可能にする。 一方、 Ch em法は、 U法で分離 できない難分解性有機物質を易分解性有機物質にまでィ匕学的に分解する方法である。
Phy法としては、 例えば、 凝集剤分離処理、 沈降分離処理、 浮上分離処理、 濾 過処理などが挙げられる。
この処理により、 塗装廃水では、 通常、 沈殿物:!〜 100 gZリットル、 COD Mn 1 , 000〜8, 000 mgZリットル、 TOC 1, 000〜8, 00 Omg/ リットル、 BOD 1, 000〜8, 00 Omg/リットル、 有機溶剤:!〜 10, 0 0 Omg/リットル g程度に処理される。 ここで、 CODMnは、 化学的酸素要求量、 TOCは全有機体炭素量、 BODは生化学的酸素要求量を夫々意味する。 有機溶剤 としては、 例えば水性のエーテル系又はアルコール系の溶剤が挙げられる。
上記した凝集剤分離処理は、 塗装廃水などの有機物質を含有する廃水に凝集剤を 添カ卩し、 廃水中の顔料や樹脂等の有機物質や無機物質などの固形分を不溶化させて 凝集させる従来から公知の処理である。
この凝集剤分離処理によって、 浮遊もしくは沈降分離した汚泥は分離除去される。 分離された汚泥は脱水処理されスラッジとなる。 そして汚泥が除去された残りの有 機性物質を含有する廃水は、 必要に応じて Ch em法を行った後に、 2次処理であ る超臨界処理又は亜臨界処理に供される。
凝集剤としては、従来から公知の無機塩及び高分子凝集剤を用いることができる。 無機塩としては、 PAC (ポリ塩化アルミニウム)、硫酸アルミニウム(硫酸パンド)、 酸化ナトリウムアルミニウム、 ポリ塩化アルミニウム、 塩化第二鉄、 硫酸第一鉄、 硫酸第二鉄などがある。 また、高分子凝集剤としては、 ポリアクリル酸エステル系、 ポリアクリルアミド系、 ポリアクリル酸ソーダ系、 変性ポリアクリルアミド系、 ポ リメタクリル酸エステル系、 ポリアミド系、 ポリアミン系、 アミノ縮合系、 マレイ ン酸共重合物、 第 4級アンモニゥム塩、 ポリビュルピリジン系、 ポリオキシェチレ ン、 ァレギン酸ナトリウム、 水溶性ァニリン樹脂、 ポリチォ尿素、 ポリエチレンィ ミンなどがある。 これらの凝集剤は廃水の種類に応じてこれらを単独で、 あるいは 複数種を組合せて用いることができる。
上記した沈降分離処理は、 水と、 廃水中に存在する有機系、 及び/又は無機系の 懸濁物質、 又は固形粒子との密度差を利用して分離させる方法であって、 重力によ る沈降分離と遠心分離による分離処理が挙げられる。 特に遠心分離処理は、 懸濁物 質、 固形粒子などの固形分が水よりも密度が大きいために、 高遠心力により短時間 で固液分離が行われる。 該遠心分離は、 例えば、 連続式の横型、 パッチ式の縦型な どの従来から公知の遠心分離装置を用いて行うことができる。 そして汚泥が除去さ れた残りの有機性物質を含有する廃水は、 必要に応じて C h e m法を行った後に、 超臨界処理又は亜臨界処理に供される。
上記した浮上分離処理は、 微細気泡を廃水に導入し、 気泡を有機系及び/又は無 機系の懸濁物質、 固形粒子に付着させ、 粒子の見かけ比重を小さくして廃水表面上 に浮上させて分離する処理である。 該浮上分離処理は、 例えば、 全量加圧浮上分離 装置、 部分加圧浮上分離装置、 循環加圧浮上分離装置、 常圧浮上分離装置などの従 来から公知の浮上分離処理装置を用いて行うことができる。
そして汚泥が除去された残りの有機性物質を含有する廃水は、 必要に応じて C h e m法を行った後に、 超臨界処理又は亜臨界処理に供される。
上記した濾過処理は、例えば、 スクリーン、布、 フィルター、篩いなどを用いて、 常圧下もしくは加圧下で行うことができる。 該処理は 1種もしくは 2種以上組合わ せて使用することができる。
C h e m法としては、 例えば、 酸化還元処理、 マイクロ波処理、 無機物質分解処 理などが挙げられる。 該処理は 1種もしくは 2種以上組合わせて使用することがで きる。 特にマイクロ波処理と無機物質分解処理とを組合わせて処理することが好ま しい。 これらの処理は、 必要に応じて同じ処理を繰返し行うことができる。 また、 2種以上の処理を組合わせて繰返す処理としては、 例えば、 1 2 C a O · 7 A 1 2 0 3の存在下でマイクロ波処理を行った後、 アル力リ土類金属の酸化物の存在下で マイクロ波処理を行い、 再度ァ 1 2 C a O · 7 A 1 2 O 3の存在下でマイクロ波処理 及び Z又はアル力リ土類金属の酸化物の存在下でマイク口波処理を行う方法等を挙 げることができる。
酸化還元処理は、 廃水中の有機物質を酸化又は還元することにより有機物質に対 して何らかの化学変化を生じさせ、 それにより超臨界処理又は亜臨界処理による分 解を効率よく行わせるものである。 該酸化還元処理としては、 例えば、 酸化剤 (例 えば、 H 20 2、 K 2 C r 20 7、 KMn 04、 0 3、 0。、 N a O C l、 ハロゲン元素 など)、 還元剤 (例えば、 H2、 S02、 H2S、 Na2SO3、 Fe S04など) によ る処理や下記した電気分解処理などが挙げられる。
該電気分解処理は、 電極を塗装廃水などの有機物質を含有する廃水に入れて直流 電流を流して電気分解反応を行わせる方法である。 この処理では、 陽極では電子が 取り込まれ酸化反応が起こり、 陰極では電子を放出して還元反応が起こる。
また、 電気分解処理においては、 上記した酸化還元反応以外に、 水の電気分解に よつて生じた酸素と水素の微細な気泡に廃水中の顔料や樹脂等の有機物質や無機物 質などの固形分を吸着させ、 気泡の浮力でそれらの物質を廃水表面に集めることが できる。
この電気分解処理によって、浮遊もしくは沈降分離した汚泥は、分離除去される。 分離された汚泥は、 脱水処理されてスラッジとなる。 そして汚泥が除去された残り の有機性物質を含有する廃水は、 2次処理である超臨界処理又は亜臨界処理が行わ れる。
該電気分解処理を行うには、 通常、 供給された廃水に電解質を投入 ·溶解して電 気分解を行う。 この場合、 処理槽としては、 水槽内に複数の電極を適当な間隔に配 置したものが用いられる。 電極間に通電することにより、 電気分解を行なうことが できる。 電極としてはアルミ電極を用いることができ、 電解質としては硝酸ナトリ ゥム、 塩化ナトリウムなどを使用することが好適である。
上記電気分解処理において、 その固形分濃度 20, O O Omg /リツトルに対し て、 電解質濃度 (例えば、 硝酸ナトリウム濃度) は、 約 0. 01〜0. O 5mo l /リツトルである。
上記したマイクロ波処理は、 廃水中の有機物質にマイク口波を照射することによ り有機物質に対して何らかの化学変化を生じさせる処理である。この処理によると、 該有機物質はそれ自身が分解されるか又は超臨界処理又は亜臨界処理により分解し やすいものとなる。
マイクロ波は波長約 0. 1〜: 1, 00 Ommの電磁波であり、 UHF (デシメー トル波)、 SHF (センチメートル波)、 EHF (ミリメートル波)、 サブミリ波が含 まれる。 国際的に工業用として割り当てられている 2450MHzが用いられるこ とが多いが、 これに限定されるものではない。 マイク口波処理は、 電子レンジなどに用いられるマイクロ波発生装置を用いて行う ことができる。
マイクロ波照射時間は廃水中の有機物の濃度、 照射光の強さなどによって適宜選 択できるが、 照射時間は通常 1分間〜 60分間程度が好ましい。
マイク口波の照射によって廃水は発熱するが、 一般に温度が高いほど有機物の分 解の速度も上昇するため、 廃水の沸騰や有機溶剤の揮散といった作業上の危険のな い範囲では特に冷却の必要はない。 廃水の温度は高い方が好ましい。
該マイク口波処理は、 例えば酸素含有ガスの供給下で固体触媒を用いて実施する ことができる。 このマイクロ波処理によると、 有機物質は酸化分解処理を受ける。 該固体触媒としては、 従来公知のものが特に制限なく使用でき、 例えばチタン、 ケィ素、 ジルコニウム、 マンガン、 鉄、 コバルト、 ニッケル、 タングステン、 セリ ゥム、 銅、 銀、 金、 白金、 パラジウム、 ロジウム、 ルテニウム及びイリジウムなど 力 ら選ばれる金属元素の不溶性又は難溶性の化合物、 又はこれらの金属を担持した 無機担体 (無機酸化物、 活性炭、 ゼォライトなどの粒状物) などを用いることがで きる。
無機物質分解処理は、 12C a O ' 7A l 203、 アル力リ土類金属の酸ィ匕物、 ァ ルカリ土類金属の水酸化物等の無機化合物を用いて廃水中の有機物質に何らかの化 学変化を生じさせる処理である。 この処理によると、 有機物質は、 それ自身が分解 するか又は超臨界処理又は亜臨界処理による分解を受けやすくなる。 この無機物質 分解処理は U処理と同時に実施することもできる。
上記した 1 2 C a O · 7 A 1203は、 C 12 A7と称される 1 2 C a O · 7 A 1 203の結晶であり、 通常、 炭酸カルシウムと酸化アルミニウムの混合物を 1 20 0 °C以上 1400 DC以下で加熱 ·焼成することで得られる。 この焼成反応は、 通常 の大気下で行なっても良いが、 有機物分解効果の点からは、 純酸素雰囲気下で行な うことが望ましい。 該 12CaO ' 7A l 203としては、 例えば特開 2002— 3 218号公報に開示の活性酸素を高濃度で包接する 12CaO ' 7Al 203化合物 を用いることができる。
上記 12 C a O■ 7 A 12 O 3を用いる有機物含有廃水の分解処理は、 該 12 C a
O · 7 A 1203を廃水中に添加し、必要に応じて加熱しながら攪拌することによつ て行われる。 処理終了後は、 1 2 C a O ' 7 A 1 20 3をろ過 (又は沈殿) 回収して 再利用することができる。
1 2 C a O · 7 A 1 2 O 3の添加量は、廃水中に含まれる有機物の種類や濃度によ つて適宜選択され、 通常は廃水に対して 0 . 1〜4 0重量%、 好ましくは 0 . 5〜 1 5重量%程度が好適である。 該添加量が 0 . 1重量%未満では、 有機物を十分に 分解するのが困難であり、 一方 4 0重量%を越えると、 処理槽内の十分な攪拌が困 難となり、 またコスト面でも不利となるので望ましくない。
上記処理では加熱によつて無機物質の有機物分解能をさらに高めることができる。 加熱の手段としては、 特にマイク口波の照射が好適である。
上記したアル力リ土類金属の酸ィ匕物及び/又は水酸化物は、 非水溶性であること が望ましい。 アルカリ土類金属としては、 カルシウムがコストや有機物分解能の面 から特に好適である。 アルカリ土類金属の酸化物は、 水と反応して水酸化物となる 力 その際発熱を伴い激しく反応するため、 ハンドリング性、 安定性の面からは水 酸化物の方が望ましい。またァノレ力リ土類金属の酸化物及ぴ Z又は水酸化物として、 アル力リ土類金属を含む複合金属酸化物及び/又は水酸ィ匕物を用いてもよい。
上記アル力リ土類金属の酸化物及び/又は水酸化物を用いた有機物含有廃水の分 解処理は、 該アルカリ土類金属の酸化物及び/又ほ水酸化物を廃水中に添加し、 必 要に応じて加熱しながら攪拌することによって行われる。 処理終了後は、 アルカリ 土類金属の酸化物及び Z又は水酸化物をろ過回収して再利用することができる。 アル力リ土類金属の酸化物及び Z又は水酸化物の添加量は、 廃水中に含まれる有 機物の種類や濃度によって適宜選択され、通常は廃水に対して 0 . 1〜5 0重量%、 好ましくは:!〜 2 0重量%程度が好適である。 該添加量が 0 . 1重量%未満では、 有機物を十分に分解するのが困難であり、 一方 5 0重量%を越えると、 処理槽内の 十分な攪拌が困難となり、 またコスト面でも不利となるので望ましくない。
上記処理では加熱によって有機物の分解効率をさらに高めることができる。 加熱 の手段としては、 特にマイクロ波の照射が好適である。
本発明 A法で実施される補助処理として、 上記した P h y法又は C h e m法を単 独で実施しても、 又は P h y法を実施した後に C h e m法を組合わせて実施するこ とができる。 組合わせて実施する場合には、 特に廃水の固形分が高い場合には、 P hy法により固形分を除去した後、 Ch em法を行うことが好ましい。
本発明 A法の U処理は、 補助処理により特に酸ィ匕分解が容易になった有機物質を 含む廃液を、超臨界水又は亜臨界水で酸ィヒ処理して有機物質を分解する処理である。 超臨界水とは、 水の臨界条件、 即ち臨界温度 374. 1°C、 臨界圧力 22. 12 MP aを超えた状態の水を意味する。 また、 亜臨界水とは、 超臨界水と同様の効果 があり、 通常、 ケルビン単位で温度が臨界温度の 0. 65倍以上であり、 かつ圧力 が臨界圧力の 0. 65倍以上の水を意味する。 このような状態下では、 これ以上圧 力を加えても液化することは不可能となる。 また物性面では、 超臨界水又は亜臨界 水は気体や液体とよぶことができず、 両者の中間的な性質を有している。 気液の境 界はなくなり超臨界水又は亜臨界水として単一相として存在する。 即ち、 超臨界水 又は亜臨界水は酸素などに対して任意の割合で単一相として混合するために、 有機 物質の酸化分解時の反応溶媒として特に有用である。
超臨界水又は亜臨界水を用いる酸化処理において、 必要に応じて従来から公知の 酸化剤 (例えば、 H202、 K2C r 207、 KMn04、 03、 02、 NaOC l、 ハ ロゲン元素など) を存在させることができる。 その割合は、 廃水 100重量部に対 して、 通常、 0. 5〜50重量部、 好ましくは 1〜 20重量部の範囲である。
また、 廃水に、 酸素、 空気を吹き込みながら超臨界処理又は亜臨界処理を行うこ ともできる。
超臨界処理又は亜臨界処理の条件は、 上記した臨界条件を満たす条件であれば制 限はされないが、通常、反応温度は 300〜800°C、好ましくは 400〜600°C、 圧力は 88〜300気圧 (8. 9〜30. 4 MP a )、好ましくは 100〜: 170気 圧 (10. :!〜 17. 2MP a)、反応時間は 30秒〜 180分、 好ましくは 5〜9 0分の範囲である。
超臨界処理又は亜臨界処理では、 ほとんどの有機物は、 加水分解反応や熱分解反 応によりガス状生成物 (CO、 H2、 CH4、 C02など) と、 アルコール、 アルデ ヒド、 フランといった揮発性物質に変換される。 また、 酸素を存在させることによ り数秒から数分で有機物は水と炭酸ガスにまで分解される。 また、 廃水中にヘテロ 原子を含む場合には、塩基性物質を添加して塩として分離することができる。また、 廃水成分中の炭素含有率が 2%以上あれば自己の保有する酸化熱だけで 550°C以 上の状態まで昇温が可能であり燃焼法と比較してエネレギー的に有利である。 また、 超臨界処理又は亜臨界処理を行うために、 廃水に上記無機物質処理で使用 した無機物質を添加し、 ついで超臨界状態又は亜臨界状態とする、 これによつて、 無機物質処理と超臨界処理又は亜臨界処理とを同時に行うこともできる。
U処理 よれば、 塗装廃水では、 CODMnl, 00 OmgZリツトル未満、 好ま しくは 500mgZリツトル未満、 TOC l, O O Omgノリツトル未満、 好まし くは 50 OmgZリットル未満、 BOD 1, 000 m g _ リットル未満、 好ましく は 50 Omg/リットル未満、 有機溶剤 lmg/リットル未満、 好ましくは 0. 5 m g /リツトル未満にまで処理できる。
上記したレベルまで浄化されれば、 廃水はそのまま排出され、 そうでなければ上 記した U処理後の処理水を返送水として、 再度補助処理や U処理を行ない、 上記レ ベルまで浄化することが望ましい。
本発明 A法においては、 U処理の後に、 必要に応じて上記した無機物質処理を行 うことができる。
本発明の A法で実施される補助処理は、 超臨界処理又は亜臨界処理を補助するも のであり、 この補助処理の採用により、 短時間で U処理を行うことができ、 そして 有機物質の含有量が少ない廃水をうることができる。
超臨界水又は亜臨界水処理は、 ほとんどの有機物を加水分解反応や熱分解反応に よりガス状生成物と揮発性物質に変換させ、 更に、 酸素を存在させることにより有 機物を単時間で水と揮発性ガスにまで分解することができる。
更に、 12CaO ' 7 A 1203を使用した無機物質処理は、加熱により有機物の 分解触媒として作用し、 特に、 酸素の存在下で加熱すると無機物質自体が酸素ラジ カルを発生して有機物の分解を促進したりする。 加熱手段としてマイクロ波を使用 すると短時間による加熱が可能であり、 また酸素ラジカルの発生にも有効である。 また、 アルカリ土類金属を使用した無機物質処理は、 該無機物質が有する水酸基 イオンが、 例えば、 現在熱硬化型塗料として一般的に使用されているメラミン硬化 形塗装廃水に含まれる水溶性硬化剤であるアルキルエーテル化メラミンのアルキル エーテル結合部の加水分解を促進するといった効果がある。
本発明の B法は、 有機性物質を含有する廃水を、 超臨界処理又は亜臨界処理を補 助する補助処理を行った後に、 超臨界又は亜臨界処理し、 その後、 生物学的処理を 含む処理により浄化処理することを特徴とする有機性物質を含有する廃水の浄化処 理方法である。
この B法においては、 U処理を行う前に該 U処理を補助する処理を行うのが好ま しい。
該補助処理は、 凝集剤分離処理、 沈降分離処理、 浮上分離処理、 濾過処理の中か ら選ばれる少なくとも 1種の処理であることができる。
該補助処理は、 酸化還元処理、 マイクロ波処理、 無機物質による処理の中から選 ばれる少なくとも 1種の処理であることができる。
該酸化還元処理は、 電気分解処理であることができる。
本発明 B法において、 超臨界処理又は亜臨界処理と無機物質による処理とを同時 に行うことができる。
本発明 B法において、 超臨界処理又は亜臨界処理と生物学的処理との間に無機物 質による処理を行うことができる。
本発明 B法によれば、 マイクロ波処理と無機物質による処理とを同時に行うこと ができる。
該電気分解処理を行うために、 有機性物質含有する廃水を、 アルミ電極を具備す る電解槽に供給し、 電解質として硝酸ナトリウムを使用する方法を採用することが できる。
該無機物質は、 1 2 C a O ' 7 A l 2 0 3、 アル力リ土類金属の酸化物及ぴアル力 リ土類金属の水酸化物の中から選ばれる少なくとも 1種の無機化合物であることが できる。
該無機物質を用いて処理する工程において、 加熱を行うことができる。
該マイクロ波処理は、 無機物質の存在下でマイクロ波処理を行うことができる。
B法で用いる補助処理は、 A法で示した補助処理と同様の方法及び条件で実施さ れ、 その詳細は A法で示した補助処理に関する記述を参照されたい。
B法における U処理は、 補助処理により、 特に酸化分解が容易になった有機物を 含有する廃液を、 超臨界又は亜臨界水を用いる酸ィヒ処理により、 該廃液中に含まれ る有機物質を分解するための処理である。 この U処理は、 前記 A法における U処理と同様に実施することができ、 その詳細 は、 A法に関して示した U処理についての記載を参照されたい。
本発明 B法においては、 U処理の後に、 生物学的処理が行われる。
該生物学的処理は、有機又は無機の担体に微生物を担持させ、この微生物により、 廃水中の有機物を分解させるもので、 活性汚泥法より効率がよい。 有機担体の材質 としては、 例えば、 光硬化性樹脂、 ポリウレタン、 ポリビュルアルコール、 ポリエ チレン、 ポリアクリルアミ ド、 ポリエステル、 ポリプロピレン、 寒天、 アルギン酸、 カラギーナン、 セルロール、 デキストラン、 ァガロース、 イオン交換樹脂などが挙 げられるが、 これらに限定されるものではなく、 また、 これらと無機物を併用する こともできる。
生物学的処理に用いられる微生物としては、 従来公知の好気性菌及ぴ嫌気性菌の 中から適宜選択すればよレ、。 好気性菌としては、 例えばシユードモナス属菌、 ァシ トパクター属菌等が挙げられる。 また、 嫌気性菌としては、 例えばメタン細菌、 ク ロストリジゥム属菌等が挙げられる。上記生物処理は、例えば処理温度 1 0〜4 0 °C、 p H 6 . 0〜 9 . 0、 水理学的滞留時間 (H R T) 2 4〜 4 8時間の条件下に行う ことができる。
本発明 B法で実施される補助処理は、 超臨界処理又は亜臨界処理を化学的又は物 理的に補助するもので、 この補助処理により、 短時間で処理を行うことができ、 そ して有機物質の含有量が少ない廃水をうることができる。 また、 この補助処理によ ると、 廃水に含まれる有機物質を直接分解したり、 U処理で分解できない難分解性 有機物質を易分解性有機物質にまで予備的に分解することができる。
超臨界水又は亜臨界水は、 水と酸素である気液の境界がなくなり、 単一相の超臨 界水又は亜臨界水として存在するために、 有機物質の酸化分解時の反応溶媒として 特に有用である。
超臨界水処理又は亜臨界水処理は、 ほとんどの有機物を加水分解反応や熱分解反 応によりガス状生成物と揮発性物質に変換させ、 更に、 有機物を酸素と混合処理す ることにより単時間で水と揮発性ガスにまで分解することができる。
更に、 1 2 C a O■ 7 A 1 20 3を使用した無機物質処理において、 該無機物質は、 加熱により有機物の分解触媒として作用し、 特に、 酸素の存在下で加熱すると無機 物質自体が酸素ラジカルを発生して有機物の分解を促進したりする。 加熱手段とし てマイクロ波を使用すると、 短時間による加熱が可能であり、 また酸素ラジカルの 発生が促進される。
また、 アルカリ土類金属を使用した無機物質処理において、 該無機物質が有する 水酸基イオンは、 例えば、 現在熱硬化形塗料として一般的に使用されているメラミ ン硬化型塗装廃水に含まれる水溶性硬化剤であるアルキルエーテル化メラミン硬化 剤のアルキルエーテル結合部の加水分解を促進するといつた効果がある。
本発明 B法は、 生物学的処理を 超臨界処理又は亜臨界処理と組合わせたことに より、 特に超臨界処理又は亜臨界処理により酸化分解できなかつた有機物質を分解 することができる。
本発明の C法は、有機性物質を含有する廃水を、生物学的処理をおこなったのち、 超臨界処理又は亜臨界処理を含む処理により浄化処理することを特徴とする有機性 物質を含有する廃水の浄化処理方法である。
以下、 C法について詳述する。
本宪明 C法においては、生物学的処理の前に、固液分離処理を行うことができる。 該固液分離処理は、 凝集剤分離処理、 沈降分離処理、 浮上分離処理、 濾過処理の中 から選ばれる少なくとも 1種の処理であることができる。
c法においては、 該固液分離処理と生物学的処理との間に、 生物学的処理及ぴ Z 又は超臨界処理又は亜臨界水処理の分解を促進する中間処理を行うことができる。 該中間処理は、 酸化還元処理、 マイクロ波処理、 無機物質による処理の中から選 ばれる少なくとも 1種の処理であることができる。
該酸化還元処理は、 電気分解処理であることができる。
本発明 c法においては、 生物学的処理と超臨界処理又は亜臨界処理との間に、 無 機物質による処理をおこなうことができる。
本発明 c法においては、 該電気分解処理を行うために、 有機性物質含有する廃水 をアルミ電極を具備する電解槽に供給し、 電解質として硝酸ナトリゥムを使用する 方法を採用することができる。
該無機物質は、 1 2 C a O ' 7 A 1 2 0 3、 アル力リ土類金属の酸化物及ぴアル力 リ土類金属の水酸ィヒ物の中から選ばれる少なくとも 1種の無機化合物であることが できる。
該無機物質による処理は、 加熱しながら行うことができる。
該加熱は、 マイクロ波処理により行うことができる。
本発明 C法で用いる生物学的処理は、 前記 B法において示した生物学的処理と同 様に実施することができ、 その詳細については、 前記 B法に示した生物学的処理の 記述を参照されたい。
また、 本発明の C法において用いる超臨界処理又は亜臨界処理は、 前記 A法に関 して示した方法と同様にして行うことができ、 その詳細については、 前記 A法にお いて示した記述を参照されたい。
本発明において、 生物学的処理の前に、 該生物学的処理 (1次処理) や超臨界処 理又は亜臨界処理 (2次処理) による浄化処理を補助する補助処理を行うことがで きる。 この処理により、 短時間で U処理を行うことができ、 そして有機物質の含有 量が少ない廃水をうることができる。このような補助処理としては、物理的方法(P hy法) と化学的方法 (Ch ein法) がある。 これらの補助処理は、 A法において 用いる補助処理 (Phy処理、 Ch em処理) と同様にして実施することができ、 その詳細については A法における補助処理いついての記述を参照されたい。
Phy処理としては、 例えば、 凝集剤分離処理、 沈降分離処理、 浮上分離処理、 濾過処理などが挙げられる。 これらの前処理は、 前記 A法において示した P h y法 と同様に実施することができ、 その詳細は、 その Phy法についての記載を参照さ れたい。
該 P h y処理で汚泥が除去された残りの有機性物質を含有する廃水は、 必要に応 じて Ch em処理を行った後に、 1次処理である生物学的処理に供される。
前記 Ph y処理で用いる濾過処理は、 例えば、 スクリーン、 布、 フイノレター、 篩 いなどを用いて、 常圧下もしくは加圧下で行うことができる。 該処理は 1種もしく は 2種以上組合わせて使用することができる。
Ch em処理は、 前記 A法において示した Ch e m法と同様に実施することがで き、 その詳細は、 その Ch em法についての記載を参照されたい。
本発明 C法で実施される P h y処理又は C h e m処理は、 単独で実施することが できる他、 Phy処理を実施した後に Ch em処理を組合わせて実施することがで きる。 組合わせて実施する場合には、 特に廃水の固形分が高い場合には、 Phy処 理により固形分を除去した後、 Ch em処理を行うことが好ましい。
また、 無機物質を使用した処理を、 生物学的処理と超臨界水処理又は亜臨界水処 理との間で行うことができる。
この無機物質を使用した処理を行うには、 廃水に無機物質を添加し、 ついで超臨 界状態又は亜臨界状態とする。 このようにして、 無機物質処理と超臨界処理又は亜 臨界処理とを同時に行うこともできる。
C法において、 超臨界処理又は亜臨界処理により、 塗装廃水では、 CODMn l, O O OmgZリツトル未満、 好ましくは 500 m g Zリツトル未満、 T O C 1, 0 0 OmgZリットル未満、 好ましくは 50 OmgZリットル未満、 BOD 1 , 00 Omg/リットル未満、 好ましくは 50 OmgZリットル未満、 有機溶剤 lmgZ リットル未満、 好ましくは 0. 5 m gノリツトル未満にまで処理できる。
上記したレベルまで浄化されれば、 廃水はそのまま排出され、 そうでなければ上 記した U処理後の処理水を返送水として、 再度 Ch e m処理や、 生物学的処理を行 ない、 上記レベルまで浄ィ匕することが望ましい。
本発明 C方法で補助処理として実施される P h y処理や C h e m処理は、 生物学 的処理や超臨界処理又は亜臨界処理を化学的又は物理的に補助するものである。 こ の補助処理の採用により、 U処理を短時間で行うことができ、 そして有機物質の含 有量が少ない廃水をうることができる。 実施例
以下、 実施例により本発明をさらに詳細に説明する。
実施例 1
自動車用水性塗料 (ポリエステル Zメラミン硬化型、 固形分 22. 3重量%) を 固形分 2重量%になるように水で希釈したものを塗装廃水試料 (A) として用いた。 この試料 (A) 中の初期における CODMnは 8, 50 OmgZリットル、 TOCは 11, O O Omg /リットル、 メラミン硬化剤量は 3. 49 X 103 m V ·秒であ つた。 尚、 ここでのメラミン硬化剤量は、 高速液体クロマトグラフィー(HPLC) でのメラミン硬化剤を示す検出電位と検出時間の積 (面積) を示す (以下、 同様に 意味を示す)。
この塗装廃水試料 (A) 280 gに、 硝酸ナトリゥム溶液を濃度 0. 02 m o 1 リットルとなるように混合し、その混合液を電解槽に入れ、スターラーで攪拌下、 その中に電極面積 (片面) が 35 cm2のアルミ電極板 2枚を電極間距離 2 Omm となるように設置し、 電圧 10 Vで 0. 17時間通電する条件にて電気分解処理を 行なった。
次いで、 得られた電気分解処理水を濾過し、 その濾過液 100重量部に対して H 202を 5重量部配合したものを 500°Cで 25 MP aの超臨界水下で 30分間処 理を行った。 CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
実施例 2
上記と同様の塗装廃水 (A) 280 gに凝集剤クリスタック B 100 (栗田工業 社製) を 15, 000mg、 クリスタック B450 (栗田工業社製) を 1, 500 m g添力 Pして攪拌した後 1日放置し、 凝集物を取り除いた。 この凝集処理後の処理 液 (B) の CODMnは 5, 80 Omg/ 1及ぴ TOCは 6, 800mg/lであつ た。 該処理液 (B) にマイクロ波 (周波数 2. 45GHz、 出力 500W) を 5分 間照射した。
次いで、得られたマイクロ波処理水 100重量部に対して H202を 5重量部配合 したものを 500°Cで 25MP aの超臨界水下で 30分間処理を行った。 処理液中 の CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
実施例 3
実施例 2で得られた処理液 (B) の 10重量%に相当する量の 12 C a O · 7 A 1 203 (純酸素雰囲気下で 1250°C' 3時間焼成して得られたもの) を処理液 (B) 中に添加して攪拌した後、 マイクロ波 (周波数 2. 45GHz, 出力 500W) を 10分間照射した。 この 12C aO - 7 A 1203処理後の処理液 (C) の CODM n、 TOC、 メラミン硬化剤量を表 1に示す。
次いで、得られた処理水 100重量部に対して H202を 5重量部配合したものを 500°Cで 25MP aの超臨界水下で 30分間処理を行った。処理液中の CODMn、 TOC, メラミン硬化剤量を表 1に示す。
実施例 4 実施例 2で得られた処理液 (B) の 10重量%に相当する量の水酸化カルシゥム を処理液 (B) 中に添加して攪拌した後、 マイクロ波 (周波数 2. 45GHz, 出 力 500W)を 10分間照射した。この 12CaO' 7A l 2 O 3処理後の処理液(C) 中の CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
次いで、得られた処理水 100重量部に対して H2O2を 5重量部配合したものを 500°Cで 25 MP aの超臨界水下で 30分間処理を行った。処理液中の CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
比較例 1
実施例 1において、 超臨界水処理を行わない以外は実施例 1と同様にして処理を 行った。 処理液中の CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
比較例 2
実施例 2において、 超臨界水処理を行わない以外は実施例 2と同様にして処理を 行った。 処理液中の CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
比較例 3
実施例 3において、 超臨界水処理を行わない以外は実施例 3と同様にして処理を 行った。 処理液中の CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
比較例 4
実施例 4において、 超臨界水処理を行わない以外は実施例 4と同様にして処理を 行った。 処理液中の CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
実施例 比讓
1 2 3 4 1 2 3 4
CODMn 8, 500
廃水試料 TOG 1 1, 000
ヌラミン硬 量 3. 49 X 103
纖瞧理 有り 有り 有り 有り 有り 有り ms?処理 有り 有り
マイクロ跳理 有り 有り 有り 有り 有り 有り 謹物質麵 有り 有り 有り 有り
CODMn 6, 400 6, 200 6, 200 6, 500 6, 400 6, 200 6, 200 6, 500 超臨界処理前 TOC 7 , 000 6, 800 6, 800 7, 200 7, 000 6 , 800 6, 800 7, 200 ミン硬聽量 3.25X 103 3.31X 103 3.19 X103 3.47 X1(P 3.25 X103 3.31X 1 3.19X 103 3.47X 103 超臨界処理 有り 有り 有り 有り
CODMn 33 25 20 22
超臨界処理後 TOC 40 39 37 38
ヌラミン硬謂量 10> 10> 10> 10>
表 1において、 000^の単位は^^/リットル、 TO Cの単位は mg/リット ル、 メラミン硬化剤量の単位は mV ·秒である。
実施例 5
実施例 1で示した塗装廃水試料 (A) 280 gに、硝酸ナトリゥム溶液を濃度 0. 02m0 1ノリットルとなるように混合し、 その混合液を電解槽に入れ、 スターラ 一で攪拌下、 その中に電極面積 (片面) が 35 cm2のアルミ電極板 2枚を電極間 距離 2 Ommとなるように設置し、 電圧 10Vで 0. 17時間通電する条件にて電 気分解処理を行なった。
次いで、 得られた電気分解処理水を濾過し、 その濾過液 100重量部に対して H 202を 5重量部配合したものを 500°Cで 25 MP aの超臨界水下で 30分間処 理を行った。
次いで、 該処理液を生物反応槽に入れ、 シユードモナス属、 ァシトパクター属、 ロドコッカス属、 バチルス属、 キャンディダ属及ぴフザリウム属の好気性菌を有す る活性汚泥を使用し、 処理温度 20〜25°C、 pH7〜8. 5及ぴ水理学的滞留時 間 48時間の条件下に生物処理を行った後、 生物処理水を濾過処理した。 CODMn、 TOC、 メラミン硬化剤量を表 2に示す。
実施例 6
上記と同様の塗装廃水 (A) 280 gに凝集剤クリスタック B 100 (栗田工業 社製) を 1 5, 000mg、 クリスタック B450 (栗田工業社製) を 1, 500 mg添加して攪拌した後 1日放置し、 凝集物を取り除いた。 この凝集処理後の処理 液 (B) の CODMnは 5, 80 Omg/ 1及ぴ TOCは 6, 800mg/lであつ た。 該処理液 (B) にマイクロ波 (周波数 2. 45GHz、 出力 500 W) を 5分 間照射した。
次いで、 得られたマイクロ波処理水を 500°Cで 25MP aの超臨界水下で 30 分間処理を行った。
次いで該処理液を生物反応槽に入れ、 シユードモナス属、 ァシトパクター属、 口 ドコッカス属、 バチルス属、 キャンディダ属及びフザリウム属の好気性菌を有する 活性汚泥を使用し、 処理温度 20〜25°C、 pH7〜8. 5及ぴ水理学的滞留時間 48時間の条件下に生物処理を行った後、 生物処理水を濾過した。 CODMn、 TO C、 メラミン硬化剤量を表 2に示す。
実施例 7
実施例 6で得られた処理液 (B) の 10重量%に相当する量の 1 2 C a O · 7 A 12 O 3 (純酸素雰囲気下で 1 250 °C · 3時間焼成して得られたもの)を処理液 ( B ) 中に添加して攪拌した後、 マイクロ波 (周波数 2. 45GHz, 出力 500W) を 1 0分間照射した。 この 1 2C a O ' 7A 1203処理後の処理液 (C) の CODM n、 TOC、 メラミン硬化剤量を表 2に示す。
次いで、得られた処理水 1 00重量部に対して H202を 5重量部配合したものを 500°Cで 25 MP aの超臨界水下で 30分間処理を行った。
次いで、 該処理液を生物反応槽に入れ、 シユードモナス属、 ァシトパクター属、 ロドコッカス属、 バチルス属、 キャンディダ属及ぴフザリウム属の好気性菌を有す る活性汚泥を使用し、 処理温度 20〜25°C、 pH7〜8. 5及び水理学的滞留時 間 48時間の条件下に生物処理を行った後、 生物処理水を濾過した。 CODMn、 T O C、 メラミン硬化剤量を表 2に示す。
実施例 8
実施例 6で得られた処理液 (B) の 1 0重量0 /0に相当する量の水酸化カルシウム を処理液 (B) 中に添加して攪拌した後、 マイクロ波 (周波数 2. 45GHz、 出 力 500W)を 10分間照射した。この 1 2C aO' 7A l 2 O 3処理後の処理液(C) の CODMn、 TOC、 メラミン硬化剤量を表 2に示す。
次いで、得られた処理水 100重量部に対して H202を 5重量部配合したものを 500°Cで 25 MP aの超臨界水下で 30分間処理を行った。
次いで、 該処理液を生物反応槽に入れ、 シユードモナス属、 ァシトパクター属、 ロドコッカス属、 バチルス属、 キャンディダ属及ぴフザリウム属の好気性菌を有す る活性汚泥を使用し、 処理温度 20〜25°C、 pH7〜8. 5及ぴ水理学的滞留時 間 48時間の条件下に生物処理を行った後、 生物処理水を濾過した。 CODMn、 T O C、 メラミン硬化剤量を表 1に示す。
比較例 5
実施例 5において、 超臨界水処理を行わない以外は実施例 5と同様にして処理を 行った。 CODMn、 TOC、 メラミン硬化剤量を表 2に示す。 比較例 6
実施例 6において、 超臨界水処理を行わない以外は実施例 6と同様にして処理を 行った。 CODMn、 TOC、 メラミン硬化剤量を表 2に示す。
比較例 7
実施例 7において、 超臨界水処理を行わない以外は実施例 7と同様にして処理を 行った。 CODMn、 TOC、 メラミン硬化剤量を表 2に示す。
比較例 8
実施例 8において、 超臨界水処理を行わない以外は実施例 8と同様にして処理を 行った。 CODMn、 TOC、 メラミン硬化剤量を表 2に示す。
CO
実施例 比較例
1 2 3 4 1 2 3 4
CODMn 8, 500
廃水謝 TOC 11, 000
ミン硬化剤量 3. 49 X 103
難剤纏 有り 有り 有り 有り 有り 有り β処理 有り 有り
マイクロ 理 有り 有り 有り 有り 有り 有り
M l質処理 有り 有り 有り 有り
CODMn 6, 400 6, 200 6, 200 6, 500 6, 400 6, 200 6, 200 6, 500 超臨界処理前 TOC 7, 000 6, 800 6, 800 7, 200 7, 000 6, 800 6, 800 7, 200
ヌラミン硬化職 3.25 xlO3 3.31X103 3.19X11P 3.47 X103 3.25 103 3.31 103 3.19 XI 3.47 XlO3 超臨界鍾 有り 有り 有り 有り 無し 無し 無し 無し 生 ft学的処理 有り 有り 有り 有り 有り 有り 有り 有り
CODMn 13 9 5 7 140 120 120 150
生物学的処理 TOC 15 11 7 9 100 180 180 120
ヌラミン硬化 量 10> 10> 10> 10> 4.01 X 102 5.51X102 5.19x103 5.68X100
実施例 9
実施例 1で示した塗装廃水試料 (A) 280 gに、硝酸ナトリゥム溶液を濃度 0. 02 mo 1 /リツトルとなるように混合し、 その混合液を電解槽に入れ、 スターラ 一で攪拌下、 その中に電極面積 (片面) が 35 cm2のアルミ電極板 2枚を電極間 距離 2 Ommとなるように設置し、 電圧 10Vで 0. 1 7時間通電する条件にて電 気分解処理を行なった。
次いで、得られた電気分解処理水を濾過し、次いで該濾過液を生物反応槽に入れ、 シユードモナス属、 ァシトパクター属、 ロドコッカス属、 バチルス属、 キャンディ ダ属及ぴフザリゥム属の好気性菌を有する活性汚泥を使用し、 処理温度 20〜 2 5 °C、 p H 7〜 8. 5及ぴ水理学的滞留時間 48時間の条件下に生物処理を行つた 後、 生物処理水を濾過した。 次いで、 その濾過液 100重量部に対して H202を 5 重量部配合したものを 500°Cで 25 MP aの超臨界水下で 30分間処理を行った。 CODMn、 TOC、 メラミン硬化剤量を表 3に示す。
実施例 10
上記と同様の塗装廃水 (A) 280 gに凝集剤クリスタック B 100 (栗田工業 社製) を 15, 00 Omg, クリスタック B450 (栗田工業社製) を 1, 500 mg添加して攪拌した後 1日放置し、 凝集物を取り除いた。 この凝集処理後の処理 液 (B) にマイクロ波 (周波数 2. 45GHZ、 出力 500W) を 5分間照射した。 次いで、 得られたマイクロ波処理水を生物反応槽に入れ、 シユードモナス属、 ァ シトパクター属、 ロドコッカス属、 バチルス属、 キャンディダ属及ぴフザリウム属 の好気性菌を有する活性汚泥を使用し、 処理温度 20〜25°C、 pH7〜8. 5及 ぴ水理学的滞留時間 48時間の条件下に生物処理を行った後、 生物処理水を濾過し た。 次いで、 その濾過液 100重量部に対して H202を 5重量部配合したものを 5 00°Cで 25 MP aの超臨界水下で 30分間処理を行った。 CODMn、 TOC、 メ ラミン硬化剤量を表 3に示す。
実施例 1 1
実施例 10で得られた処理液 (B) の 10重量%に相当する量の 12 C a O . 7 A 1203 (純酸素雰囲気下で 1250°C■ 3時間焼成して得られたもの) を処理液 (B) 中に添加して攪拌した後、 マイクロ波 (周波数 2. 45GHzs 出力 500 W) を 10分間照射した。 この 12C aO · 7A1203処理後の処理液 (C) の C ODMn、 TOC、 メラミン硬化剤量を表 3に示す。
次いで、 該処理液を生物反応槽に入れ、 シユードモナス属、 ァシトパクター属、 ロドコッカス属、 バチルス属、 キャンディダ属及ぴフザリウム属の好気性菌を有す る活性汚泥を使用し、 処理温度 20〜25°C、 pH7〜8. 5及び水理学的滞留時 間 48時間の条件下に生物処理を行つた後、 生物処理水を濾過した。
次いで、得られた処理水 100重量部に対して H202を 100重量%に換算して 5重量部配合したものを 500でで 25 MP aの超臨界水下で 30分間処理を行つ た。 CODMn、 TOC、 メラミン硬化剤量を表 3に示す。
実施例 12
実施例 10で得られた処理液 (B) の 10重量%に相当する量の水酸化カルシゥ ムを処理液 (B) 中に添加して攪拌した後、 マイクロ波 (周波数 2. 45GHz, 出力 500W) を 10分間照射した。 この処理後の処理液 (C) を生物反応槽に入 れ、 シユードモナス属、 ァシトパクター属、 ロドコッカス属、 バチルス属、 キャン ディダ属及びフザリゥム属の好気性菌を有する活性汚泥を使用し、 処理温度 20〜 25°C、 pH7〜8. 5及ぴ水理学的滞留時間 48時間の条件下に生物処理を行つ た後、 生物処理水を濾過した。
次いで、得られた処理水 100重量部に対して H202を 5重量部配合したものを 500°Cで 25MP aの超臨界水下で 30分間処理を行った。 CODMn、 TOC、 メラミン硬化剤量を表 3に示す。
比較例 9
実施例 9において、 超臨界水処理を行わない以外は実施例 9と同様にして処理を 行った。 CODMn、 TOC、 メラミン硬化剤量を表 3に示す。
比較例 10
実施例 10において、 超臨界水処理を行わない以外は実施例 10と同様にして処 理を行った。 CODMn、 TOC、 メラミン硬化剤量を表 3に示す。
比較例 1 1
実施例 1 1において、 超臨界水処理を行わない以外は実施例 1 1と同様にして処 理を行った。 CODMn、 TOC、 メラミン硬化剤量を表 3に示す。 比較例 12
実施例 12において、 超臨界水処理を行わない以外は実施例 12と同様にして処 理を行った。 CODMn、 TOC、 メラミン硬化剤量を表 1に示す。
CO
実施例 比較例
1 2 3 4 1 2 3 4
CODMD 8, 500
廃水試料 TOC 1 1, 000
ヌラミン硬化剤量 3. 49 X 1 03
纖剤処理 有り 有り 有り 有り 有り 有り
TO纏 有り 有り
マイクロ鍵理 有り 有り 有り 有り 有り 有り 繊物舰理 有り 有り 有り 有り
CODMN 6 , 400 6 , 200 6 , 200 6, 500 6, 400 6, 200 6 , 200 6 , 500 超臨界処理前 TOC 7 , 000 6 , 800 6 , 800 7 , 200 7 , 000 6 , 800 6 , 800 7 , 200
ヌラミン硬化剤量 3^5 X103 3.31 X103 3.19 X103 3.47 Xl(P 3.25 X103 3.31X 103 3.19X103 3.47 XI 超離処理 有り 有り 有り 有り 無し 無し 無し 無し 生物学的処理 有り 有り 有り 有り 有り 有り 有り 有り
CODMN 1 3 9 5 7 1 40 1 20 1 20 1 50 生物学的処理 TOC 1 5 1 1 7 9 1 00 1 80 1 80 1 20 後 ミン硬化織 10> 1 0> 1 0> 1 0> 4.01 X102 5.51X 102 5.1SX 102 5.68 X102

Claims

請求の範囲
1 . 有機性物質を含有する廃水を、 超臨界処理又は亜臨界処理を補助する補助処 理をおこなった後に、 超臨界処理又は亜臨界処理を含む処理により浄化処理するこ とを特徴とする有機性物質を含有する廃水の浄化処理方法。
2 . 補助処理が、 凝集剤分離処理、 沈降分離処理、 浮上分離処理、 濾過処理の中 から選ばれる少なくとも 1種の物理的処理である請求の範囲第 1項に記載の浄化処 理方法。
3 . 補助処理が、 酸化還元処理、 マイクロ波処理、 無機物質による処理の中から 選ばれる少なくとも 1種の化学的処理である請求の範囲第 1項に記載の浄化処理方 法。
4 . 酸化還元処理が、電気分解処理である請求の範囲第 3に記載の浄化処理方法。
5 . 超臨界処理又は亜臨界処理と無機物質による処理とを同時に行う請求の範囲 第 3項に記載の浄化処理方法。
6 . 超臨界処理又は亜臨界処理の後に無機物質による処理を行う請求の範囲第 3 項に記載の浄化処理方法。
7 . マイクロ波処理と無機物質による処理とを同時に行う請求の範囲第 3項、 第 5項又は第 6項に記載の浄化処理方法。
8 . 電気分解処理を行うために、 有機性物質含有する廃水をアルミ電極を具備し た電解槽に供給し、 電解質として硝酸ナトリゥムを使用する請求の範囲第 4項に記 載の浄化処理方法。
9 . 無機物質が、 1 2 C a O ' 7 A l 2 0 3、 アル力リ土類金属の酸化物及ぴアル 力リ土類金属の水酸ィヒ物の中から選ばれる少なくとも 1種の無機化合物である請求 の範囲第 5項、 第 6項又は第 7項に記載の浄化処理方法。
1 0 . 加熱を行う請求の範囲第 5項、 第 6項、 第 7項又は第 9項に記載の浄化処 理方法。
1 1 . 無機物質の存在下でマイクロ波処理を行う請求の範囲第 1 0項に記载の浄 化処理方法。
1 2 . 有機性物質を有する廃水を、 超臨界処理又は亜臨界処理を補助する補助処 理を行った後に、 超臨界処理又は亜臨界処理し、 その後生物学的処理を含む処理に より浄化処理することを特徴とする有機性物質を含有する廃水の浄化処理方法。
1 3 . 補助処理が、 凝集剤分離処理、 沈降分離処理、 浮上分離処理、 濾過処理か ら選ばれる少なくとも 1種の処理である請求の範囲第 1 2項に記載の浄化処理方法。
1 4 . 補助処理が、 酸化還元処理、 マイクロ波処理、 無機物質による処理の中か ら選ばれる少なくとも 1種の処理である請求の範囲第 1 2項に記載の浄化処理方法。
1 5 . 超臨界処理又は亜臨界処理と無機物質による処理とを同時に行う請求の範 囲第 1 4項に記載の浄化処理方法。
1 6 . 超臨界処理又は亜臨界処理の後に無機物質による処理を行う請求の範囲第 1 4項に記載の浄化処理方法。
1 7 . 有機性物質を含有する廃水を、 生物学的処理をおこなったのち、 超臨界処 理又は亜臨界処理を含む処理により浄化処理することを特徴とする有機性物質を含 有する廃水の浄化処理方法。
1 8 . 生物学的処理の前に、 固液分離処理を行う請求の範囲第 1 7項に記載の浄 化処理方法。
1 9 . 固液分離処理が、 凝集剤分離処理、 沈降分離処理、 浮上分離処理、 濾過処 理の中から選ばれる少なくとも 1種の処理である請求の範囲第 1 8項に記載の浄化 処理方法。
2 0 . 固液分離処理と生物学的処理との間に、 生物学的処理及び/又は超臨界処 理又は亜臨界処理を促進する中間処理を行う請求の範囲第 1 8項又は第 1 9項に記 載の浄化処理方法。
2 1 . 中間処理が、 酸化還元処理、 マイクロ波処理、 無機物質による処理の中か ら選ばれる少なくとも 1種の処理である請求の範囲第 2 0項に記載の浄化処理方法。
2 2 . 生物学的処理と超臨界処理又は亜臨界処理との間に、 無機物質による処理 をおこなう請求の範囲第 1 7項〜第 2 1項のいずれかに記載の浄化処理方法。
PCT/JP2004/008939 2003-06-19 2004-06-18 有機性物質を含有する廃水の浄化処理方法 WO2005007578A2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04746408A EP1659098A2 (en) 2003-06-19 2004-06-18 Method for clarifying waste water containing organic material
US10/561,269 US7431850B2 (en) 2003-06-19 2004-06-18 Process for purification treatment of wastewater containing organic substance
CA002529787A CA2529787A1 (en) 2003-06-19 2004-06-18 Method for clarifying waste water containing organic material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-174579 2003-06-19
JP2003174668 2003-06-19
JP2003174669 2003-06-19
JP2003174579 2003-06-19
JP2003-174669 2003-06-19
JP2003-174668 2003-06-19

Publications (2)

Publication Number Publication Date
WO2005007578A2 true WO2005007578A2 (ja) 2005-01-27
WO2005007578A3 WO2005007578A3 (ja) 2005-05-12

Family

ID=34084261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008939 WO2005007578A2 (ja) 2003-06-19 2004-06-18 有機性物質を含有する廃水の浄化処理方法

Country Status (6)

Country Link
US (1) US7431850B2 (ja)
EP (1) EP1659098A2 (ja)
KR (1) KR20040111161A (ja)
CN (1) CN100339313C (ja)
CA (1) CA2529787A1 (ja)
WO (1) WO2005007578A2 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821138B1 (ko) * 2006-09-28 2008-04-14 경희대학교 산학협력단 초임계용매를 이용한 폐유의 정제방법 및 그 정제장치
KR100820169B1 (ko) * 2007-07-06 2008-04-08 주식회사 도하인더스트리 아임계수(亞臨界水)에 의한 난분해성(難分解性) 유기계폐기물의 무해화 처리 장치
NL1035729C2 (en) * 2008-07-21 2010-01-22 Stichting Wetsus Ct Of Excelle Method and system for supercritical removal or an inorganic compound.
FR2942220B1 (fr) * 2009-02-16 2011-04-08 Orege Procede et dispositif d'epuration d'effluents liquides
US8404121B2 (en) * 2009-08-11 2013-03-26 Anaergia Inc. Method for separating suspended solids from a waste fluid
US20110108491A1 (en) * 2009-11-10 2011-05-12 Palo Alto Research Center Incorporated Desalination using supercritical water and spiral separation
DE102010001796A1 (de) * 2010-02-11 2011-08-11 Voith Patent GmbH, 89522 Abwasserreinigungsanlage
DE102010001808A1 (de) * 2010-02-11 2011-08-11 Voith Patent GmbH, 89522 Abwasserreinigungsanlage
DE102010001801A1 (de) * 2010-02-11 2011-08-11 Voith Patent GmbH, 89522 Abwasserreinigungsanlage
US9175314B2 (en) 2011-07-06 2015-11-03 Hollingford Limited Anaerobic digestion with supercritical water hydrolysis as pretreatment
CN102491584B (zh) * 2011-11-25 2013-06-19 甘肃银光化学工业集团有限公司 一种炸药废水和硝基苯、苯胺废水混合处理的方法
CN102515399A (zh) * 2011-12-14 2012-06-27 杭州回水科技股份有限公司 一种电化学处理污水的方法
WO2013112654A1 (en) * 2012-01-27 2013-08-01 Ohio University Integrated precipatative-super critical technology for cost-effective treatment of flowback and produced water from unconventional gas resources
CN102745870A (zh) * 2012-07-25 2012-10-24 浙江海洋学院 工厂化养殖水循环装置
CN102742540A (zh) * 2012-07-25 2012-10-24 浙江海洋学院 工厂化养殖水净化方法
US10005995B2 (en) * 2012-08-29 2018-06-26 Renewable Energy Alternatives, Llc System and method for thermophilic anaerobic digester process
CN103803685B (zh) * 2012-11-09 2015-05-20 安吉尔·迈可·马什 水分子高频转化方法及装置
CN103112974B (zh) * 2013-01-22 2014-07-23 长沙创享环保科技有限公司 含砷废水的处理方法
KR101417686B1 (ko) * 2013-12-12 2014-07-09 (주)성우실업 표면 개질된 고분자 응집제 및 이의 제조방법
CN103723895A (zh) * 2014-01-23 2014-04-16 戴均和 一种亚临界水氧化法结合生化法处理工业废水的方法
CN103868819B (zh) * 2014-03-31 2016-05-11 南京大学 一种快速评价污废水处理用有机填料生物亲和性的方法
WO2015151112A1 (en) * 2014-04-01 2015-10-08 Rajah Vijay Kumar Fine particle shortwave thrombotic agglomeration reactor (fpstar)
CN104140175B (zh) * 2014-08-20 2016-04-13 南京大学 一种城市生活污水生化出水的深度处理和回用方法
CN104310504B (zh) * 2014-09-30 2016-03-02 渤海大学 一种印染废水中有机污染物的处理方法
CN105367227B (zh) * 2014-11-15 2018-12-18 深圳市芭田生态工程股份有限公司 一种碳平衡有机液体肥的制备方法
CN104326604B (zh) * 2014-11-28 2016-11-30 中国船舶重工集团公司第七一一研究所 基于钠碱法的船舶废气脱硫洗涤水处理工艺及其处理系统
CN104496092B (zh) * 2014-12-30 2017-03-15 武汉大学 一种重金属吸附饱和活性炭再利用的有机废水处理方法
CN104649483A (zh) * 2015-03-03 2015-05-27 陕西天宏硅材料有限责任公司 多晶硅生产过程中含硅碱性废水的处理方法
CN104787932A (zh) * 2015-04-29 2015-07-22 铜陵化学工业集团有限公司 一种工业含砷废水的处理方法
CN105129961A (zh) * 2015-09-17 2015-12-09 上海大学 微波加热强化近临界水氧化处理含铬有机废水的方法
CN105692954A (zh) * 2016-02-14 2016-06-22 楚雄滇中有色金属有限责任公司 一种污酸处理中减少渣产量的方法
CN105692964A (zh) * 2016-03-25 2016-06-22 福建禹环境科技有限公司 一种畜禽养殖废水除磷新工艺
CN105964264B (zh) * 2016-06-03 2018-08-21 福建工程学院 一种用废旧锂离子电池制备有机染料废水净化剂的方法
CN105923927A (zh) * 2016-06-30 2016-09-07 无锡龙盈环保科技有限公司 一种大豆蛋白废水的处理工艺及装置
CN106242114B (zh) * 2016-08-24 2022-12-27 厦门嵩湖环保股份有限公司 一种高浓度有机工业废水处理系统及处理方法
CN108383198A (zh) * 2018-03-28 2018-08-10 侯梦斌 一种制备亚临界水的设备与工艺
CN110372050B (zh) * 2019-07-15 2021-07-13 昆明理工大学 一种红土镍矿作为催化剂在废水处理中的应用及其方法
CN112169243B (zh) * 2020-10-09 2022-03-11 石家庄新奥环保科技有限公司 一种有机危险废物的处理方法
CN113121000B (zh) * 2021-05-25 2022-07-15 浙江欣华园艺工程有限公司 市政用蓄水池净化系统
CN114873849B (zh) * 2022-05-07 2023-04-18 深圳市沃尔奔达新能源股份有限公司 一种超临界水氧化反应器及有机废弃物能源化利用系统
CN116573816B (zh) * 2023-07-12 2023-09-19 东营巨宝工贸有限公司 一种硫化促进剂生产废水的处理工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240619A (en) * 1993-02-11 1993-08-31 Zimpro Passavant Environmental Systems, Inc. Two-stage subcritical-supercritical wet oxidation
JP2001179074A (ja) * 1999-12-24 2001-07-03 Mitsubishi Heavy Ind Ltd 窒素、リンを含む有機性物質の処理方法及びその装置
JP2002102870A (ja) * 2000-09-28 2002-04-09 Ishikawajima Harima Heavy Ind Co Ltd 塗料含有廃液や塗料剥離液等の樹脂系有機廃棄物の処理方法および処理装置
JP2002273459A (ja) * 2001-03-23 2002-09-24 Kurita Water Ind Ltd 水熱酸化反応方法および装置
JP2002331265A (ja) * 2001-03-05 2002-11-19 Kansai Paint Co Ltd 複層塗膜形成方法
JP2003088892A (ja) * 2001-09-18 2003-03-25 Mitsubishi Heavy Ind Ltd 有機性廃水処理装置
JP2003175392A (ja) * 2001-09-28 2003-06-24 Japan Organo Co Ltd 水熱酸化方法及び水熱酸化システム
JP2003251374A (ja) * 2002-02-27 2003-09-09 Hiroyuki Daimon 高温高圧水反応を用いた難分解性排水の生物分解性向上
JP2003299941A (ja) * 2002-04-04 2003-10-21 Kurita Water Ind Ltd 水熱酸化反応処理装置および方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142407A (ja) * 1992-11-13 1994-05-24 Sumitomo Light Metal Ind Ltd エマルジョン廃液の処理方法
JP4092384B2 (ja) * 1998-04-09 2008-05-28 本田技研工業株式会社 電着塗装排水処理方法
CN1137861C (zh) * 1998-10-22 2004-02-11 孙传经 超临界水氧化处理废水的方法
JP4824867B2 (ja) 2001-05-30 2011-11-30 三菱レイヨン株式会社 メタクロレインおよびメタクリル酸の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240619A (en) * 1993-02-11 1993-08-31 Zimpro Passavant Environmental Systems, Inc. Two-stage subcritical-supercritical wet oxidation
JP2001179074A (ja) * 1999-12-24 2001-07-03 Mitsubishi Heavy Ind Ltd 窒素、リンを含む有機性物質の処理方法及びその装置
JP2002102870A (ja) * 2000-09-28 2002-04-09 Ishikawajima Harima Heavy Ind Co Ltd 塗料含有廃液や塗料剥離液等の樹脂系有機廃棄物の処理方法および処理装置
JP2002331265A (ja) * 2001-03-05 2002-11-19 Kansai Paint Co Ltd 複層塗膜形成方法
JP2002273459A (ja) * 2001-03-23 2002-09-24 Kurita Water Ind Ltd 水熱酸化反応方法および装置
JP2003088892A (ja) * 2001-09-18 2003-03-25 Mitsubishi Heavy Ind Ltd 有機性廃水処理装置
JP2003175392A (ja) * 2001-09-28 2003-06-24 Japan Organo Co Ltd 水熱酸化方法及び水熱酸化システム
JP2003251374A (ja) * 2002-02-27 2003-09-09 Hiroyuki Daimon 高温高圧水反応を用いた難分解性排水の生物分解性向上
JP2003299941A (ja) * 2002-04-04 2003-10-21 Kurita Water Ind Ltd 水熱酸化反応処理装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
URAMO S ET AL: 'Application of High-Temperature and High-Pressure Water Reaction to Wastewater Treatment' PROCEEDINGS OF 5TH INTERNATIONAL SYMPOSIUM ON WASTE MANAGEMENT PROBLEMS IN AGRO-INDUSTRIES - INTERNATIONAL WATER ASSOCIATION 16 November 2001, pages 359 - 364, XP002985955 *

Also Published As

Publication number Publication date
US20070256972A1 (en) 2007-11-08
EP1659098A2 (en) 2006-05-24
CN100339313C (zh) 2007-09-26
CA2529787A1 (en) 2005-01-27
KR20040111161A (ko) 2004-12-31
US7431850B2 (en) 2008-10-07
WO2005007578A3 (ja) 2005-05-12
CN1640822A (zh) 2005-07-20

Similar Documents

Publication Publication Date Title
WO2005007578A2 (ja) 有機性物質を含有する廃水の浄化処理方法
Rajoria et al. Treatment of electroplating industry wastewater: a review on the various techniques
Nidheesh et al. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation
Sruthi et al. Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes
CN106687417B (zh) 使用由废水生产的氧化剂的工业废水处理方法及装置
Kongjao et al. Simultaneous removal of organic and inorganic pollutants in tannery wastewater using electrocoagulation technique
JP4663012B2 (ja) 窒素化合物の逆転電気透析−電気化学的廃水処理工程
CN105461135B (zh) 一种高浓度难降解有机石化废水预处理工艺
CN108793540A (zh) 一种难降解有机废水深度处理的方法
WO2013132294A1 (en) Process for treatment of waste water from nitro-aromatic production
Chalaris et al. Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview
JP2007029825A (ja) 廃水処理装置及びこの装置を用いた廃水処理方法
CN113233643B (zh) 一种剩余污泥铁循环式芬顿氧化降解方法
CN111018208A (zh) 一种电镀废水及污泥的处理方法
Mouli et al. Electrochemical processes for the remediation of wastewater and contaminated soil: emerging technology
Lawal et al. An overview of characterization and treatment methods of wastewater from iron and steel industries
JP4541776B2 (ja) 有機性物質を含有する廃水の浄化処理方法
Le et al. Reduction of COD in Nam Son landfill leachate by electro-Fenton as secondary treatment after electrocoagulation pretreatment
US6902674B2 (en) Treating method for coating material waste water
CN114105277B (zh) 一种催化过氧化氢去除水中有机污染物的方法
JP2004136274A (ja) 塗料廃水の処理方法
CN211111439U (zh) 一种针对高浓度含氰废水的处理装置
CN113003699A (zh) WS2助催化Fe2+活化过硫酸盐处理废水的方法和试剂组合
CN114477412A (zh) 一种热活化过硫酸盐去除水中有机污染物的方法
JP2004089991A (ja) 塗装廃水の処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2529787

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004746408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 00084/KOLNP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004746408

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWE Wipo information: entry into national phase

Ref document number: 10561269

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10561269

Country of ref document: US