WO2005007382A1 - 成形方法、パージ方法及び成形機 - Google Patents

成形方法、パージ方法及び成形機 Download PDF

Info

Publication number
WO2005007382A1
WO2005007382A1 PCT/JP2004/010191 JP2004010191W WO2005007382A1 WO 2005007382 A1 WO2005007382 A1 WO 2005007382A1 JP 2004010191 W JP2004010191 W JP 2004010191W WO 2005007382 A1 WO2005007382 A1 WO 2005007382A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
resin
molding
heating cylinder
rotated
Prior art date
Application number
PCT/JP2004/010191
Other languages
English (en)
French (fr)
Inventor
Shinji Terada
Hirotsugu Marumoto
Koki Tsunemi
Masaaki Konno
Original Assignee
Sumitomo Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries, Ltd. filed Critical Sumitomo Heavy Industries, Ltd.
Priority to JP2005511854A priority Critical patent/JP4503532B2/ja
Priority to EP04747657A priority patent/EP1647386A4/en
Priority to CN200480020542XA priority patent/CN1822942B/zh
Publication of WO2005007382A1 publication Critical patent/WO2005007382A1/ja
Priority to US11/315,064 priority patent/US20060097421A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1753Cleaning or purging, e.g. of the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Definitions

  • the present invention relates to a molding method, a purging method, and a molding machine.
  • a resin heated and melted in a heating cylinder is injected at a high pressure to fill a cavity of a mold apparatus, and the cavity is filled with the resin.
  • the resin is cooled and solidified to form a molded product.
  • the injection molding machine includes a mold device, a mold clamping device, and an injection device.
  • the mold clamping device includes a fixed platen and a movable platen, and a mold clamping cylinder moves the movable platen forward and backward. The mold is closed, clamped and opened.
  • the injection device includes a heating cylinder that heats and melts the resin, and an injection nozzle that is attached to a front end of the heating cylinder and injects the melted resin.
  • the screw is disposed so as to be freely rotatable and move forward and backward.
  • the resin is injected from the injection nozzle by advancing the screw by a driving unit disposed at the rear end, and the resin is measured by rotating the screw by the driving unit.
  • the molten resin is sent to the tip end of the screw during the measurement, but if the measurement is repeatedly performed, the deteriorated resin may adhere to the screw.
  • the reason for the adhesion is that the molten resin easily adheres to a metal member such as a screw.
  • the screw has a shape in which the resin tends to stay, and the resin stays in the staying place as it is and deteriorates.
  • the degraded resin adhering to the screw could be peeled off due to the flow of the melted resin, and the force could not be completely removed.
  • molding of a molded product may be interrupted in order to perform preparatory operations such as replacement of a mold device and temperature rise.
  • the resin in the heating cylinder is deteriorated because it is exposed (exposed) to a high temperature for a long time. . Therefore, after the preparatory work is completed and before the molding of the molded article is restarted, the residual resin is purged and heated.
  • the deteriorated resin remaining in the cylinder is discharged. Also, when the molding of the molded product is completed, purging is performed to prevent the deteriorated resin from remaining in the heating cylinder. Furthermore, even when the same mold apparatus is used to replace a different resin to form a molded product, purging is performed and the remaining resin before the replacement is discharged from the inside of the heating cylinder. (For example, see Patent Document 1).
  • Patent Document 1 JP-A-2-26720
  • the present invention solves the above-mentioned conventional problems, and applies a reverse back pressure to the screw to reliably remove the resin adhered to the back surface of the screw flight. It is an object to provide a method, a purging method and a molding machine.
  • the molding material is supplied into the heating cylinder, the screw is rotated in one rotation direction, and the pressing force of the molding material is applied to the front surface of the screw flight portion, The molding material is conveyed to the front of the screw while being melted, the screw is rotated in the other rotational direction, and a pressing force of the molding material is applied to the back surface of the screw flight portion to cause a reverse back pressure on the screw. multiply.
  • the reverse back pressure is generated by acting the screw in a direction of retreating the screw.
  • the speed of the screw in the axial direction is set near zero speed while rotating the screw in the other rotation direction.
  • the heating cylinder is moved from a position where the filling of the molding material into the mold is completed or a limit position for advancement to a half of the measuring stroke. At one time, the screw is rotated in the other rotation direction.
  • the screw is further rotated in the other rotation direction every predetermined number of measurement steps.
  • a ratio of a time of rotating the screw in the other rotation direction to a time of the measuring step is 1/10 lZl.5.
  • the molding material is supplied into the heating cylinder, the screw is rotated in one rotation direction, and the pressing force of the molding material is applied to the front surface of the screw flight portion.
  • the material is conveyed to the front of the screw while being melted, the screw is rotated in the other rotational direction, and a pressing force of the molding material is applied to the back surface of the screw flight portion to apply a reverse back pressure to the screw. .
  • the heating cylinder is further retracted after applying a reverse back pressure to the screw.
  • the speed of the screw in the axial direction is set to near zero speed while rotating the screw in the other rotation direction.
  • the screw when the screw is in a range from a forward limit position to a half of a weighing stroke in the heating cylinder, the screw is rotated in the other rotation direction. Rotate to.
  • a heating cylinder In the molding machine of the present invention, a heating cylinder, a screw rotatably disposed in the heating cylinder and having a spiral groove on an outer peripheral surface thereof, and the screw in one rotational direction.
  • a screw rotation driving device for rotating the screw in the other rotation direction and a screw rotating the screw in the other rotation direction to apply a force to the back surface of the screw flight portion of the screw and a pressing force of the molding material to the screw.
  • a control device for applying reverse back pressure.
  • a screw advance / retreat drive device for moving the screw in the axial direction, and the control device causes the screw to exert a force in the direction of moving backward.
  • the operation of the screw advance / retreat drive device is controlled so as to apply reverse back pressure to the screw.
  • control device further sets the axial speed of the screw to near zero speed while rotating the screw in the other rotational direction.
  • control device further rotates the screw in the other rotation direction every predetermined number of measurement steps.
  • control device further causes the heating cylinder to retreat and perform a purging operation.
  • the resin adhering to the back surface of the screw flight can be surely removed. Can be removed.
  • FIG. 1 is a diagram illustrating an operation of an injection device when purging is performed according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an injection molding machine according to an embodiment of the present invention.
  • FIG. 3 is a side view of a screw of the injection molding machine according to the embodiment of the present invention.
  • FIG. 4 is a view showing an operation of the screw when purging is performed in the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a state of resin when reverse back pressure is applied to the screw according to the embodiment of the present invention.
  • FIG. 6 is a table showing experimental results when a reverse back pressure was applied to the screw according to the embodiment of the present invention.
  • the molding method, the purging method, and the molding machine in the present invention can be applied to various molding machines such as an extrusion molding device and a laminator, but in the present embodiment, for convenience of explanation, A case where the present invention is applied to an injection molding machine will be described.
  • FIG. 2 is a schematic diagram of an injection molding machine according to an embodiment of the present invention
  • FIG. 3 is a side view of a screw of the injection molding machine according to the embodiment of the present invention.
  • FIG. 2 shows an injection molding machine as a molding machine, wherein 20 is an injection device, 30 is a mold clamping device arranged opposite to the injection device 20, and 11 is the injection device 20 and the mold clamping device.
  • a molding machine frame that supports the device 30.
  • 31 is a fixed platen as a mold supporting member in the mold clamping device 30, and is fixed on the molding machine frame 11.
  • a fixed die 32 as a die constituting the die apparatus is mounted on a die mounting surface (the left side surface in FIG. 2) of the fixed platen 31.
  • Reference numeral 33 denotes a movable mold attached to a movable platen (not shown).
  • the parting surface of the fixed mold 32 and the parting surface of the movable mold 33 are closed and the mold is closed.
  • Reference numeral 4 denotes a tie bar for connecting a toggle support (not shown) and the fixed platen 31.
  • Reference numeral 21 denotes an injection device main body, which is movably mounted in the front-rear direction (the left-right direction in FIG. 2) along the guide member 12 fixed on the molding machine frame 11.
  • Reference numeral 13 denotes a main body driving device that moves the injection device main body 21 in the front-rear direction, and is fixed on the molding machine frame 11.
  • the main body driving device 13 is, for example, an actuator that uses an electric motor such as a servomotor as a driving source and includes a motion direction changing device using a ball screw mechanism.
  • the driving source such as a hydraulic cylinder device and a pneumatic cylinder device is used. Actuator. By moving the connecting rod 13a attached at one end to the injection device main body 21, the injection device main body 21 is moved back and forth.
  • a heating cylinder 22 is fixed to the injection device main body 21 forward (to the left in FIG. 2), and an injection nozzle as a nozzle is provided at a front end (left end in FIG. 2) of the heating cylinder 22. Zulu 23 is installed.
  • a plurality of heaters 26 as heating devices are provided on the outer peripheral surface of the heating cylinder 22 to adjust the temperature of the heating cylinder 22.
  • a hopper 27 is provided on the heating cylinder 22, and a screw 24 is provided inside the heating cylinder 22 so as to be movable forward and backward and rotatable.
  • the screw 24 is moved forward and backward by a screw advance / retreat device 25 as a screw advance / retreat drive device disposed rearward (rightward in FIG.
  • the screw rotation device 28 uses an electric motor such as a servomotor as a drive source, and transmits rotation to the rear portion of the screw 24 by a gear, timing belt, chain, or the like (not shown).
  • the screw 24 includes a flight 35 as a spiral screw flight section that is continuous over the entirety, and a channel 36 that is a groove between the flights 35.
  • the screw 24 may be of any type, for example, a subflight stall with a barrier, a screw with a mixing section having a mixing section, or the like. In the embodiment, the case of a most common full-flight screw will be described.
  • the flight 35 may be a plurality of flights of two or more or a variable lead type in which the pitch changes midway. However, in the present embodiment, the flight 35 Explain that 35 is Article 1 and the pitch is constant.
  • the screw 24 is divided into three sections of a supply section 37, a compression section 38, and a measurement section 39 from the root to the tip (the left end in FIG. 3).
  • the supply section 37 is an area where the resin as a pellet-shaped molding material supplied from the hopper 27 is transported while being heated.
  • the compression section 38 is an area for promoting the melting by pressurizing and compressing the resin preheated and partially melted in the supply section 37 and supplying mechanical energy.
  • the measuring section 39 is a region where the homogenization of the resin almost completely melted in the compression section 38 is promoted and the flow is regulated. Note that the above three sections are not strict, but rather expedient.
  • the outer diameter of the flight 35 is only slightly smaller than the inner diameter of the heating cylinder 22, a gap (gap) between the outer peripheral surface of the flight 35 and the inner wall surface of the heating cylinder 22 is provided. Is almost. Therefore, when the screw 24 is rotated, the resin is pushed into the spiral channel 36 between the flights 35 by the side wall on the front side of the flight 35 (the left side in FIGS. 2 and 3). Sent to 24 tips.
  • the solid-phase resin charged into the heating cylinder 22 from the hopper 27 is sent to the compression unit 38 by the flight 35 while being kneaded and melted in the supply unit 37.
  • the resin is rapidly kneaded and melted, and sent to the measuring section 39. Further, in the measuring section 39, the resin is completely melted and sent toward the tip of the screw 24. Then, the resin sent to the distal end of the screw 24 accumulates in the heating cylinder 22 at the distal end of the screw 24, and the pressure rises. fall back.
  • the screw 24 is rotated in the measuring direction, and resin pressure is also applied to the surface of the flight 35.
  • the force S acts to retreat the screw 24.
  • the screw advancing / retreating device 25 applies a back pressure (an operating force acting in a direction to advance the screw 24) to the screw 24 with respect to the retreating force of the screw 24.
  • the screw rotating device 28 is driven to rotate the screw 24, and the screw advance / retreat device 25 is driven to retract the screw 24 to a predetermined position (rightward in FIG. 2). To). At this time, the resin supplied from the hopper 27 is heated and melted in the heating cylinder 22 and is stored in front of the screw 24 as the screw 24 retreats.
  • the resin may be a thermoplastic resin or a thermosetting resin.
  • PVC polychlorinated vinyl
  • PS polystyrene
  • expanded polystyrene polystyrene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • HDPE high density polyethylene
  • AS styrene / acrylonitrile
  • ABS resin methacrylic resin, biodegradable resin, etc. It may be a resin.
  • it may be a high heat resistant resin, a super engineering plastic, a resin to which a flame retardant is added, a resin to which a filler such as glass fiber is mixed, a resin to which a chemical foaming agent is added, or the like.
  • the main body driving device 13 is driven to advance the injection device main body 21, and the injection nozzle 23 disposed at the front end of the heating cylinder 22 is pressed against the fixed mold 32. Then, since the screw advance / retreat device 25 is driven to advance the screw 24, the resin accumulated in the front of the screw 24 is ejected by the injection nozzle 23 and is formed between the fixed mold 32 and the movable mold 33. Is filled in the cavity space not shown.
  • the mold clamping device 30 includes a fixed platen 31, a not shown support, a toggle support, a tie bar 34 provided between the fixed platen 31 and the toggle support, and a facing platen. And a movable platen (not shown) arranged to be able to advance and retreat along the tie bar 34, and a toggle mechanism disposed between the movable platen and the toggle support. Then, the fixed platen 31 and the movable platen are The fixed mold 32 and the movable mold 33 are respectively attached.
  • toggle mechanism is supported swingably with respect to the crosshead.
  • a link lever comprising a toggle lever swingably supported by the toggle support and a toggle arm swingably supported by the movable platen, wherein the crosshead is movable with the toggle support by a servomotor.
  • the injection molding machine has a control device (not shown).
  • the control device includes arithmetic means such as a CPU and an MPU, storage means such as a magnetic disk and a semiconductor memory, and a keyboard, a mouse, a push button, and a touch panel for inputting the number of rotations and the amount of rotation in the reverse direction.
  • It is a computer equipped with input means, display means such as a CRT for displaying the number of rotations in the reverse direction and the amount of rotation, a liquid crystal display, an LED (Light Emitting Diode) display, a communication interface, and the like.
  • the control device may be configured independently or may be configured integrally with another control device.
  • the control device controls the overall operation of the injection molding machine, and controls the operation of various devices such as the injection device 20 and the mold clamping device 30.
  • the molding of the molded product is interrupted in order to carry out preparatory operations such as replacement of the mold apparatus and temperature rise, and before the molding of the molded product is resumed, the residual resin is purged to perform a heating silicide.
  • the deteriorated resin remaining in the cylinder 22 may be discharged, and when the molding of the molded product is completed, the deteriorated resin may be discharged.
  • Purging may be performed to prevent the resin from remaining in the heating cylinder 22.However, in this case, when the same mold apparatus is used to replace a different resin to form a molded article, An operation of discharging all remaining resin before replacement from inside the heating cylinder 22 will be described.
  • FIG. 1 is a diagram showing an operation of the injection device when performing a purge according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an operation of the screw when performing a purge according to the embodiment of the present invention. Shows the state of the resin when reverse back pressure is applied to the screw in the embodiment of the present invention.
  • FIG. 6 is a table illustrating the results of an experiment in which reverse back pressure was applied to a screw according to an embodiment of the present invention.
  • a resin measuring step is performed, and the screw 24 is driven to rotate the screw 24, and the screw advance / retreat device 25 is driven to set the screw 24.
  • the resin is supplied from the hopper 27 into the heating cylinder 22 in the form of a resin pellet or the like.
  • the resin supplied from the hopper 27 is heated and melted in the heating cylinder 22 and is stored in front of the screw 24 as the screw 24 retreats.
  • the main body driving device 13 is driven to move the injection device main body 21 forward, and the injection nozzle 23 provided at the front end of the heating cylinder 22 is fixed to a fixed mold. Pressing against the back of 32, the knuckle retouch is performed. Thereafter, an injection step is performed.
  • the screw advance / retreat device 25 is driven to advance the screw 24, so that the resin accumulated in front of the screw 24 is injected from the injection nozzle 23 and the fixing metal is fixed.
  • the liquid passes through a spno-ray (not shown) formed in the mold 32 and is filled into a cavity space (not shown) formed between the fixed mold 32 and the movable mold 33.
  • the servomotor is driven to move the crosshead backward, and the movable platen is moved backward along the tie bar 34. Therefore, the movable mold 33 is separated from the fixed mold 32 and the mold is opened. Then, when the molded product is taken out of the cavity, the servomotor is driven again, the crosshead advances, and the movable platen advances along the tie bar 34. As a result, the mold device including the fixed mold 32 and the movable mold 33 is again in a mold-closed state. Then, the injection step is performed again. Thereafter, the above-described operation is repeated, and a plurality of molded products are molded.
  • the operation of molding a molded article in the injection molding machine may be performed manually by an operator, or may be automatically performed under the control of a control device.
  • the molding is stopped, and the resin remaining in the heating cylinder 22 is purged.
  • the operator operates the input means of the control device, for example, by pressing a resin exchange button provided on the input means, Start the operation of resin exchange.
  • the main body driving device 13 is driven to retract the injection device main body 21, and as shown in FIG. 2, the injection nozzle provided at the front end of the heating cylinder 22. 23 reaches behind the back of the fixed platen 31.
  • the operator sets a purged resin housing member such as a tray for housing the purged resin or the like at a predetermined position. Further, it is desirable that the operator sets a scattering prevention member such as a scattering prevention plate at a position surrounding the resin to be purged accommodating member and the injection nozzle 23. Thereby, the injection molding machine and its surroundings are not contaminated by the purged resin and the like.
  • the purged resin housing member and the scattering prevention member may be automatically set without depending on the operation of the operator.
  • the screw rotating device 28 is driven to move the screw 24 in the forward direction as one of the rotation directions as shown by the arrow A in FIG. Rotate.
  • the forward direction is a direction in which the screw 24 is rotated in the measuring step as described above, whereby the molten resin 41 is drawn inside the spiral channel 36 between the flights 35.
  • the screw advance / retreat device 25 is driven to move the screw 24 in the forward direction as shown by the arrow C in FIG.
  • the screw 24 is moved to the forefront position in the movement range in the front-rear direction, that is, the forward limit position of the screw stroke.
  • the screw rotation device 28 is driven to rotate the screw 24 in the opposite direction as the other rotation direction as shown by the arrow B in FIG.
  • the opposite direction is a direction opposite to the direction in which the screw 24 is rotated in the measuring step as described above, whereby the molten resin 41 is supplied into the spiral channel 36 between the flights 35. Is pushed to the back surface 35b of the flight 35 as shown in FIG.
  • the screw advance / retreat device 25 is driven to move the screw 24 in the axial direction. Fix to the stroke forward end position.
  • the screw 24 is rotated in the reverse direction in a state where the screw advance / retreat device 25 is not driven and the screw 24 is capable of moving forward or backward, that is, in a state of being free in the axial direction, the back surface 35b of the flight 35 is melted
  • the screw 24 is moved in the forward direction because it receives the counterforce of the resin 41.
  • the screw advance / retreat device 25 is driven to positively fix the screw 24 at the forward limit position of the screw stroke.
  • a force acts in a direction in which the screw 24 retreats against a force that the screw 24 tries to move forward, that is, a reverse back pressure is applied.
  • the screw 24 need not be strictly fixed in the axial direction.
  • the screw 24 may be in a state where it hardly moves in the axial direction, or in a state where it moves at an extremely slow speed even if it moves.
  • the moving speed of the screw 24 in the axial direction is a value close to zero, that is, near the zero speed.
  • the position at which the screw 24 is fixed in the axial direction or the position at which the axial moving speed is set to near zero speed may be strictly not the forward limit position of the screw stroke but the vicinity of the forward limit position.
  • the position is the position in the axial direction of the screw 24 when the filling of the molten resin 41 into the cavity formed between the fixed mold 32 and the movable mold 33 is completed, that is, the position inside the mold. May be a position where the filling of the molding material is completed.
  • the pressure of the molten resin 41 in the heating cylinder 22 is applied to the back surface 35b of the flight 35 of the screw 24. Further, the molten resin 41 is strongly pressed by the back surface 35b of the flight 35 and receives pressure.
  • the molten resin 41 in the channel 36 flows as indicated by an arrow in a portion E, which is a portion near the surface 35a of the flight 35, so that a resin pressure is generated in the portion E.
  • the portion F which is a portion near the back surface 35b of the flight 35, the molten resin 41 stays in the state, so that no resin pressure is generated.
  • the screw rotating device 28 rotates the screw 24 in the reverse direction by a predetermined number of rotations, and then rotates the screw 24 again in the forward direction. Is moved in the retreating direction as indicated by arrow D in FIG.
  • the solid-phase resin remaining in the area of the supply section 37 of the screw 24 is sent to the compression section 38 and the measurement section 39 by the frit 35 while being kneaded and melted, and is melted.
  • the screw advance / retreat device 25 is driven again to move the screw 24 in the forward direction, and The resin 41 is discharged from the injection nozzle 23.
  • the screw 24 is fixed again at the forward limit position of the screw stroke in the axial direction, and the screw 24 is rotated in the reverse direction. Thereafter, the above operation is repeated until all the residual resin is discharged.
  • the replaced resin that is, new resin is supplied from the hopper 27 into the heating cylinder 22, and the resin is measured.
  • the new resin is heated and melted in the heating cylinder 22, and is stored in front of the screw 24 as the screw 24 retreats. Then, when a predetermined amount of new resin is accumulated in front of the screw 24, molding of a molded article using the new resin can be started.
  • a purging resin that is a resin for cleaning the heating cylinder 22, the screw 24, and the like can be used.
  • the resin for purging is supplied from the hopper 27 into the heating cylinder 22, and the resin is measured.
  • the purging resin is purged to clean the inner surface of the heating cylinder 22 and the surface of the screw 24.
  • the same operation as the purging of fat is performed repeatedly. That is, after the screw 24 is moved in the forward direction, the molten purge resin is discharged from the injection nozzle 23, the screw 24 is fixed at the forward limit position of the screw stroke, and the screw 24 is rotated in the reverse direction.
  • the resin can be replaced as follows.
  • the injection device main body 21 is retracted.
  • a normal purging operation is performed. That is, the operation of rotating the screw 24 in the forward direction and the operation of moving the screw 24 in the forward direction and discharging the residual resin from the injection nozzle 23 are repeated a plurality of times, and the discharge of the resin used in the previous molding is completed. Thereafter, new resin is supplied into the heating cylinder 22.
  • the operation of rotating the screw 24 in the forward direction, the operation of rotating the screw 24 in the reverse direction, and the operation of moving the screw 24 in the forward direction and discharging the resin from the injection nozzle 23 are performed.
  • the resin used in the previous molding which has adhered to the back surface 35b of the flight 35, can be removed with new resin.
  • the screw 24 is rotated in the reverse direction while the resin used in the previous molding is in the heating cylinder 22 to remove the resin adhered to the back surface 35b of the flight 35 by the resin used in the previous molding. Replace the resin in less time than remove it
  • the resin can be replaced as follows.
  • the injection device main body 21 is retracted.
  • new resin is supplied from the hopper 27 into the heating cylinder 22.
  • the operation of rotating the screw 24 in the forward direction, the operation of rotating the screw 24 in the reverse direction, and the operation of moving the screw 24 in the forward direction are performed.
  • the predetermined number of rotations at which the screw 24 is rotated in the reverse direction can be set as appropriate.
  • the predetermined rotation speed is set to at least one rotation. It is desirable that It is desirable that the maximum value of the predetermined number of rotations is such that the molten resin 41 of the measuring section 39 does not enter the range of the supply section 37 of the screw 24.
  • the molten resin 41 is in the range of the measuring section 39, but by rotating the screw 24 in the reverse direction, the molten resin 41 is opposite to the tip of the screw 24. And moves toward the compression section 38 and the supply section 37. Since the amount of movement of the molten resin 41 is substantially proportional to the number of rotations for rotating the screw 24 in the reverse direction, by appropriately setting the number of rotations, the molten resin 41 enters the range of the supply section 37. I can do it.
  • the resin remains in the solid phase within the supply section 37 of the screw 24, and therefore, the supply section 37 includes the screw 24 including the back surface 35 b of the flight 35. No resin remains on the surface of Rather, when the molten resin 41 enters the supply unit 37, even if the screw 24 is rotated in the forward direction to send the resin forward, the resin cannot be sufficiently sent forward, and the measurement becomes unstable. On the other hand, in the range of the compression section 38, the resin is melted in the operation for molding, so that it can be considered that the resin adheres to the back surface 35b of the flight 35 to some extent.
  • the appropriate value of the predetermined number of rotations for rotating the screw 24 in the reverse direction varies depending on the type of resin, the types and dimensions of the injection device 20, the screw 24, and other devices, operating conditions, and the like. Although it is difficult to stipulate a general rule, in an experiment conducted by the inventor of the present invention using an actual injection device, the rotation was about 5 times.
  • the time for rotating the screw in the reverse direction while fixing the screw at the forward limit position of the screw stroke is about 3 seconds, that is, the ratio of the measuring time to the time for rotating in the reverse direction is 1/4, If the number of rotations of the screw in the reverse direction is around 5 rotations, there is no adhesion of resin before replacement
  • the reverse rotation time is about 8 seconds, that is, the ratio of the weighing time to the reverse rotation time is 1 / 1.5, and the number of rotations of the screw in the reverse direction is about 10 rotations.
  • the inventor of the present invention performed an additional experiment using an injection device.
  • the screw used was a hard chrome plating screw having a diameter of 50 [mm].
  • the screw rotation speed was 50 [turns / minute] in the reverse rotation, and the time during which the screw was rotated in the forward direction in the weighing process, that is, the weighing time was 6 seconds, and the temperature of the heating cylinder was 240 [in].
  • Met. The resin (mixing ratio 10: 1) obtained by adding a red masterbatch to polypropylene (PP) as a resin before replacement is replaced by a resin (mixing ratio) obtained by adding a white masterbatch to polypropylene (PP) as a new resin. Work to replace with the ratio 10: 1) was performed.
  • a flat plate was formed from the resin injected from the injection nozzle, and the amount of resin until the color tone of the flat plate changed from red to white was measured.
  • the color tone was measured by a value measurement using a spectrophotometer.
  • the measured value is 50 [mm].
  • the time to rotate the screw in the reverse direction that is, the reverse rotation time was 3 seconds, and the ratio to the weighing time was 1/2.
  • the additional experiment confirmed that the amount of resin used could be reduced by 20 to 30% as compared to the conventional method. More specifically, the additional experiment yielded the results shown in FIG.
  • the table shown in Figure 6 It is an evaluation result of the removal effect of the residual resin when the ratio of the reverse rotation time to the time is changed, and the measurement stability of the measurement affected by the backflow to the supply unit. In the table shown in FIG. 6, X indicates poor, ⁇ indicates good, and ⁇ indicates very good.
  • the residual resin cannot be sufficiently removed unless the time for rotating the screw in the reverse direction is sufficiently long.
  • the time to rotate the screw in the reverse direction is too long, the molten resin will enter the screw supply section, and the measurement stability will decrease.
  • the residual resin can be sufficiently removed if the ratio of the reverse rotation time to the measurement time is 1Z10 or more.
  • the residual resin can be removed very effectively if the specific force of the reverse rotation time with respect to the weighing time is not less than the specific force.
  • the ratio of the reverse rotation time to the weighing time is lZl.2
  • the molten resin enters the screw supply section, which has an adverse effect on the weighing stability. It can be said that a sufficient effect can be obtained if the ratio of the reverse rotation time to the measurement time is 1/10 to 1 / 1.5. Furthermore, it can be said that a better effect can be obtained if the ratio of the reverse rotation time to the weighing time is S 1 / 5—1 / 1.5.
  • the screw rotation speed is high, but since the amount of movement of the molten resin depends on the screw rotation speed, the screw is rotated in the reverse direction at a rotation speed higher than 100 [turns / minute]. If so, the molten resin may enter the screw supply section. Therefore, if the screw is rotated in the reverse direction with the screw rotating speed in the range of 50-100 [turns / minute], the residual resin can be removed in a short time while maintaining the measurement stability.
  • the operation of purging in the injection molding machine may be performed by a manual operation by an operator, but may be performed automatically by being controlled by a control device.
  • the screw 24 when purging the resin remaining in the heating cylinder 22, the screw 24 is fixed at the forward limit position of the screw stroke in the axial direction and rotated in the opposite direction. It is like that.
  • the pressure of the molten resin 41 in the heating cylinder 22 is applied to the back surface 35b of the flight 35 of the screw 24.
  • the applied resin is removed from the back surface 35b by rubbing the back surface 35b of the flight 35 while the molten resin 41 to which pressure is applied is strongly pressed against the back surface 35b of the flight 35. That was Therefore, the resin adhered to the back surface 35b of the flight 35, which was difficult to remove by the conventional method, can also be removed, and the resin adhered to the screw 24 can be surely removed. Therefore, the resin remaining in the heating cylinder 22 can be completely purged in a short time.
  • the molten resin 41 remaining in the heating cylinder 22 adheres to the screw 24 on the inner surface of the heating cylinder 22, but rotates the screw 24 in the forward direction in the measuring process or advances the screw 24 in the injection process. As a result, it is relatively easily removed because it is scraped off by the flowing molten resin 41.
  • the molten resin 41 is pressed against the inner surface of the heating cylinder 22, the bottom surface of the channel 36 in the screw 24, and the surface 35a of the flight 35. This is thought to be due to flow. However, even if the screw 24 is rotated in the forward direction or moved forward, the molten resin 41 is not pressed against the back surface 35b of the flight 35.
  • the screw 24 is fixed at the forward end position of the screw stroke in the axial direction and is rotated in the opposite direction, so that the molten resin 41 to which the pressure is applied causes the flight 35 to move. Since it rubs against the back surface 35b while being strongly pressed against the back surface 35b, the resin adhering to the back surface 35b can be removed.
  • the position at which the screw 24 is fixed in the axial direction does not necessarily need to be the forward limit position of the screw stroke. As described above, the position may be near the forward limit position, or may be the position where the filling of the molding material into the mold is completed. Furthermore, even if the screw 24 is rotated in the reverse direction, the resin does not flow back to the supply unit 37, but may be up to half the screw stroke.
  • the screw 24 is moved in the backward direction and then fixed in the range from the position where the filling of the molding material into the mold is completed or from the forward limit position to half of the weighing stroke, and then fixed, and the screw 24 is rotated in the reverse direction. It can also be done. As described above, even if the screw 24 is not strictly fixed in the axial direction, the screw 24 hardly moves in the axial direction, that is, the screw 24 It is sufficient that the axial speed of 24 is near zero speed.
  • the screw 24 is moved forward by discharging the molten resin 41 from the injection nozzle 23 to fix the screw 24 at a fixed position.
  • the screw 24 may be rotated in the forward direction to discharge the molten resin 41 from the injection nozzle 23.
  • the present invention can also be applied to the case where the molded product is molded. . In other words, during molding of the molded product, the resin adhering to the back surface 35b of the flight 35 of the screw 24 is removed and removed from the back surface 35b.
  • the screw 24 is fixed at the forward limit position of the screw stroke in the axial direction and rotated in the opposite direction.
  • pressure is applied to the molten resin 41 in the heating cylinder 22, so that the resin adhering to the back surface 35b of the flight 35 of the screw 24 is removed.
  • the removed resin is mixed into the molten resin 41, it is injected from the injection nozzle 23 in the next injection step and is removed from the heating cylinder 22.
  • the weighing can be stabilized by performing the operation of rotating the screw 24 in the reverse direction in all the molding shots.
  • the screw 24 may be rotated in the reverse direction once in a predetermined number of measurement steps.
  • the molding cycle can be shortened as compared with the operation of rotating the screw 24 in the reverse direction in all the molding shots.
  • the screw 24 is fixed after moving the screw 24 in the retreating direction within a range of up to half of the forward limit force screw stroke in which the resin does not flow backward to the supply unit 37 even when the screw 24 is rotated in the reverse direction.
  • the crown 24 can be rotated in the opposite direction.
  • the resin adhering to the back surface 35b of the flight 35 of the screw 24 receives heat in the heating cylinder 22 for a long time, that is, the resin has a large heat history, and thus may have deteriorated. high. Then, if the deteriorated resin is peeled off from the back surface 35b of the flight 35 for some reason and is mixed into the molten resin 41, the quality of the molded product is deteriorated. Therefore, during molding of the molded article, the back of the flight 35 is periodically By removing the resin adhering to 35b, it is possible to prevent the deteriorated resin from being mixed into the molten resin 41 and deteriorating the quality of the molded product.
  • the predetermined number of times can be set as appropriate.
  • the screw 24 may be fixed at the forward end position of the screw stroke in the axial direction and rotated in the opposite direction.
  • the resin from adhering to the back surface 35b of the flight 35 for a long time.
  • the present invention is not limited to the above-described embodiment, but can be variously modified based on the gist of the present invention, and they are not excluded from the scope of the present invention.
  • the present invention can be applied to various molding machines such as an extrusion molding device and a laminator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

明 細 書
成形方法、パージ方法及び成形機
技術分野
[0001] 本発明は、成形方法、パージ方法及び成形機に関するものである
背景技術
[0002] 従来、射出成形機等の成形機においては、加熱シリンダ内において加熱され溶融 させられた樹脂を高圧で射出して金型装置のキヤビティ空間に充填(てん)し、該キヤ ビティ空間内において樹脂を冷却し、固化させることによって成形品を成形するよう にしている。
[0003] そのために、前記射出成形機は金型装置、型締装置及び射出装置を有し、前記型 締装置は、固定プラテン及び可動プラテンを備え、型締用シリンダが可動プラテンを 進退させることによつて金型装置の型閉、型締及び型開を行う。
[0004] 一方、前記射出装置は、樹脂を加熱して溶融させる加熱シリンダ、及び、該加熱シ リンダの前端に取り付けられ、溶融させられた樹脂を射出する射出ノズノレを備え、前 記加熱シリンダ内にスクリュが回転自在に、かつ、進退自在に配設される。そして、該 スクリュを、後端に配設された駆動部によって前進させることにより射出ノズルから樹 脂が射出され、前記駆動部によって回転させることにより樹脂の計量が行われる。
[0005] ところで、計量中は溶融させられた樹脂がスクリュの先端側に送られるが、繰り返し 計量を行っていると、劣化した樹脂がスクリュに付着してしまうことがある。付着する原 因としては、溶融させられた樹脂がスクリュ等の金属部材に付着しやすい樹脂である 。また、スクリュの形状が樹脂の滞留が起きやすい形状をしていて、その滞留場所に そのまま樹脂が滞留して劣化する等の原因がある。そして、繰り返し計量を行ってい ると、溶融させられた樹脂の流れによってスクリュに付着した劣化樹脂が剥(は)がし 落とされることもある力 完全に取り除くことができなかった。
[0006] また、前記射出成形機においては、金型装置の交換、昇温等の準備作業を行うた めに成形品の成形を中断することがある。しかし、成形を中断している間、前記加熱 シリンダ内の樹脂は、長時間に亘(わた)り高温に曝(さら)されるので、劣化してしまう 。そこで、前記準備作業が終了して、成形品の成形を再開する前に残留樹脂のパー ジを行い、加熱
シリンダ内に残留する劣化した樹脂を排出するようになっている。また、成形品の成 形を終了した時も、劣化した樹脂が加熱シリンダ内に残留することを防止するために パージを行うようになっている。さらに、同一の金型装置を使用して異なる樹脂に交 換して成形品を成形する場合にも、パージを行って残留している交換前の樹脂をカロ 熱シリンダ内から排出するようになっている(例えば、特許文献 1参照。)。
特許文献 1:特開平 2 - 26720号公報
発明の開示
発明が解決しょうとする課題
[0007] し力 ながら、従来、成形中にスクリュに付着した劣化樹脂を取り除くためには、カロ 熱シリンダからスクリュを取り出して清掃する力、、清浄化するためのパージ用樹脂を使 つて、パージを行うしか手段が無かった。しかし、パージを行っても完全にスクリュに 付着した劣化樹脂を取り除くことができなかった。前記従来のパージ方法においては 、スクリュに付着した樹脂を完全に取り除くことが困難であった。そこで、異なる樹脂に 交換して成形品を成形する場合、古い樹脂を完全に取り除くために、清浄化するた めの樹脂であるパージ用樹脂を多量に使用する必要があった。この場合、多量のパ ージ用樹脂のコストが高くなり、また、パージを行うための時間が多くかかるので射出 成形機のスループットが低下してしまう。さらに、樹脂の交換を確実に行うためには、 スクリュを加熱シリンダから抜き取って分解清掃を行うことによって古い樹脂を取り除く 必要があり、手間と時間がかかってしまう。これは、スクリュのフライトにおける裏面に 付着した樹脂を完全に取り除くことが困難なためである。
[0008] もっとも、パージを確実に行うために、前記特許文献 1に記載されているように、スク リュを周期的に正逆転させながらスクリュと加熱シリンダとを軸方向に相対振動させる ことによって、パージを行う方法も提案されている。しかし、このような方法によっても、 スクリュのフライトにおける裏面に付着した樹脂を確実に取り除くことができなかった。
[0009] 本発明は、前記従来の問題点を解決して、スクリュに逆背圧をかけることによって、 スクリュのフライトにおける裏面に付着した樹脂を確実に取り除くことができる成形方 法、パージ方法及び成形機を提供することを目的とする。
課題を解決するための手段
[0010] そのために、本発明の成形方法においては、成形材料を加熱シリンダ内に供給し、 スクリュを一方の回転方向に回転させ、スクリュフライト部の前面に前記成形材料の押 圧力を作用させ、前記成形材料を溶融しながら前記スクリュの前方へ搬送し、前記ス クリュを他方の回転方向に回転させ、前記スクリュフライト部の背面に前記成形材料 の押圧力を作用させて前記スクリュに逆背圧をかける。
[0011] 本発明の他の成形方法においては、さらに、前記逆背圧は、前記スクリュを後退さ せる方向に作用させることによって発生させる。
[0012] 本発明の更に他の成形方法においては、さらに、前記スクリュを前記他方の回転方 向に回転させつつ、前記スクリュの軸方向の速度を零速近傍にする。
[0013] 本発明の更に他の成形方法においては、さらに、前記スクリユカ 前記加熱シリンダ 内において、金型内への成形材料の充填完了位置又は前進限位置から計量行程 の 1/2までの範囲にあるとき、前記スクリュを前記他方の回転方向に回転させる。
[0014] 本発明の更に他の成形方法においては、さらに、所定回数の計量工程毎に前記ス クリュを前記他方の回転方向に回転させる。
[0015] 本発明の更に他の成形方法においては、さらに、前記計量工程の時間に対する前 記スクリュを前記他方の回転方向に回転させる時間の比は、 1/10 lZl . 5である
[0016] 本発明のパージ方法においては、成形材料を加熱シリンダ内に供給し、スクリュを 一方の回転方向に回転させ、スクリュフライト部の前面に前記成形材料の押圧力を作 用させ、前記成形材料を溶融しながら前記スクリュの前方へ搬送し、前記スクリュを他 方の回転方向に回転させ、前記スクリュフライト部の背面に前記成形材料の押圧力を 作用させて前記スクリュに逆背圧をかける。
[0017] 本発明の他のパージ方法においては、さらに、前記スクリュに逆背圧をかけた後に 前記加熱シリンダを後退させる。
[0018] 本発明の更に他のパージ方法においては、さらに、前記スクリュを前記他方の回転 方向に回転させつつ、前記スクリュの軸方向の速度を零速近傍にする。 [0019] 本発明の更に他のパージ方法においては、さらに、前記スクリユカ 前記加熱シリン ダ内において、前進限位置から計量行程の 1/2までの範囲にあるとき、前記スクリュ を前記他方の回転方向に回転させる。
[0020] 本発明の成形機においては、加熱シリンダと、該加熱シリンダ内に回転可能に配設 され、外周面に螺(ら)旋状の溝部を備えるスクリュと、該スクリュを一方の回転方向及 び他方の回転方向に回転させるスクリュ回転駆動装置と、前記スクリュを前記他方の 回転方向に回転させ、前記スクリュのスクリュフライト部の裏面に力、かる成形材料の押 圧力に対し、前記スクリュに逆背圧をかける制御装置とを有する。
[0021] 本発明の他の成形機においては、さらに、前記スクリュを軸方向に進退させるスクリ ュ進退駆動装置を有し、前記制御装置は、前記スクリュに後退させる方向の力を作 用させることによって前記スクリュに逆背圧をかけるように前記スクリュ進退駆動装置 の動作を制御する。
[0022] 本発明の更に他の成形機においては、さらに、前記制御装置は、前記スクリュを前 記他方の回転方向に回転させつつ、前記スクリュの軸方向の速度を零速近傍にする
[0023] 本発明の更に他の成形機においては、さらに、前記制御装置は、所定回数の計量 工程毎に前記スクリュを前記他方の回転方向に回転させる。
[0024] 本発明の更に他の成形機においては、さらに、前記制御装置は、前記加熱シリン ダを後退させてパージ動作を行わせる。
発明の効果
[0025] 本発明によれば、スクリュを逆方向に回転させて加熱シリンダ内の樹脂の圧力によ つてスクリュに逆背圧をかけることによって、スクリュのフライトにおける裏面に付着し た樹脂を確実に取り除くことができる。
図面の簡単な説明
[0026] [図 1]本発明の実施の形態におけるパージを行う場合の射出装置の動作を示す図で める。
[図 2]本発明の実施の形態における射出成形機の概略図である。
[図 3]本発明の実施の形態における射出成形機のスクリュの側面図である。 [図 4]本発明の実施の形態におけるパージを行う場合のスクリュの動作を示す図であ る。
[図 5]本発明の実施の形態におけるスクリュに逆背圧をかけた場合の樹脂の状態を 説明する図である。
[図 6]本発明の実施の形態におけるスクリュに逆背圧をかけた実験結果を示す表であ る。
符号の説明
[0027] 22 加熱シリンダ
24 スクリュ
25 スクリュ進退装置
28 スクリュ回動装置
32 固定金型
35 フライト
発明を実施するための最良の形態
[0028] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、 本発明における成形方法、パージ方法及び成形機は、押出成形装置、ラミネータ等 の各種の成形機に適用することができるものであるが、本実施の形態においては、説 明の都合上、射出成形機に適用した場合ついて説明する。
[0029] 図 2は本発明の実施の形態における射出成形機の概略図、図 3は本発明の実施の 形態における射出成形機のスクリュの側面図である。
[0030] 図 2は成形機としての射出成形機を示しており、 20は射出装置、 30は該射出装置 20と対向して配設された型締装置、 11は前記射出装置 20及び型締装置 30を支持 する成形機フレームである。ここで、 31は前記型締装置 30における金型支持部材と しての固定プラテンであり、前記成形機フレーム 11上に固定されている。また、前記 固定プラテン 31の金型取付面(図 2における左側の面)には、金型装置を構成する 金型としての固定金型 32が取り付けられている。さらに、 33は図示されない可動プラ テンに取り付けられた可動金型である。ここでは、前記固定金型 32のパーティング面 と可動金型 33のパーティング面とが閉じて型閉された状態が示されている。なお、 3 4は図示されないトグルサポートと固定プラテン 31とを連結するタイバーである。
[0031] そして、 21は射出装置本体であり、成形機フレーム 11上に固定されたガイド部材 1 2に沿って前後方向(図 2における左右方向)に移動可能に取り付けられている。また 、 13は前記射出装置本体 21を前後方向に移動させる本体駆動装置であり、前記成 形機フレーム 11上に固定されている。ここで、前記本体駆動装置 13は、例えば、サ ーボモータ等の電動モータを駆動源とし、ボールねじ機構による運動方向変換装置 を備えるァクチユエータであるが、油圧シリンダ装置、空圧シリンダ装置等の駆動源と するァクチユエータであってもよい。そして、一端が射出装置本体 21に取り付けられ た連結ロッド 13aを進退させることによって、前記射出装置本体 21を前後方向に移 動させるようになつている。
[0032] また、前記射出装置本体 21には、前方(図 2における左方)に向けて加熱シリンダ 2 2が固定され、該加熱シリンダ 22の前端(図 2における左端)にノズルとしての射出ノ ズル 23が配設される。なお、前記加熱シリンダ 22の外周面には、加熱装置としてのヒ ータ 26が複数配設され、前記加熱シリンダ 22の温度を調節する。そして、該加熱シリ ンダ 22にホッパ 27が配設されるとともに、加熱シリンダ 22の内部にはスクリュ 24が前 後方向に移動可能に、かつ、回転可能に配設される。ここで、前記スクリュ 24は、 後方(図 2における右方)に配設されたスクリュ進退駆動装置としてのスクリュ進退装 置 25によって進退、すなわち、前後方向に移動させられるとともに、スクリュ回転駆動 装置としてのスクリュ回動装置 28によって一方の回転方向及び他方の回転方向に回 転させられる。前記スクリュ進退装置 25及びスクリュ回動装置 28は、前記スクリュ 24 を駆動するスクリュ駆動装置として機能する。なお、前記スクリュ進退装置 25は、例え ば、サーボモータ等の電動モータを駆動源とし、ボールねじ機構による運動方向変 換装置を備えるァクチユエータであってもよいが、油圧シリンダ装置、空圧シリンダ装 置等の駆動源とするァクチユエータであってもよい。また、前記スクリュ回動装置 28は 、サーボモータ等の電動モータを駆動源とし、図示されないギヤ、タイミングベルト、 チェーン等によって回転を前記スクリュ 24の後方部に伝達する。
[0033] そして、前記スクリュ 24は、図 3に示されるように、全体に亘つて連続する螺旋状の スクリュフライト部としてのフライト 35、及び、該フライト 35の間の溝であるチャネル 36 を周囲に有する。なお、前記スクリュ 24は、いかなる種類のものであってもよぐ例え ば、バリアを備えたサブフライトスタリュ、ミキシングセクションを備えたミキシングセクシ ヨン付きスクリュ等であってもよいが、本実施の形態においては、最も一般的なフルフ ライトスクリュである場合について説明する。また、前記フライト 35は、 2条以上の複数 条のものであってもよいし、ピッチが途中で変化する可変リード式のものであってもよ レ、が、本実施の形態においては、フライト 35が 1条であり、ピッチも一定であるものと して説明する。
[0034] なお、前記スクリュ 24は、根本から先端(図 3における左端)に向けて、供給部 37、 圧縮部 38及び計量部 39の 3つの区画に分けられる。そして、前記供給部 37は、ホッ パ 27から供給されたペレット状の成形材料としての樹脂を加熱しながら輸送する領 域である。また、前記圧縮部 38は、供給部 37で予熱され一部溶融した樹脂を加圧し 、圧縮し、機械的エネルギーを供給することによって溶融を促進する領域である。さら に、前記計量部 39は、圧縮部 38でほぼ溶融が完了した樹脂の均質化を促進し、整 流する領域である。なお、前記 3つの区画は厳密なものではなぐむしろ便宜的なも のである。
[0035] ここで、前記フライト 35の外径は加熱シリンダ 22の内径よりもわずかに小さいだけで あるから、前記フライト 35の外周面と加熱シリンダ 22の内壁面との間の隙(すき)間は ほとんどなレ、。したがって、前記スクリュ 24が回転させられると、樹脂は、フライト 35の 間の螺旋状のチャネル 36内を、フライト 35の表面側(図 2及び 3における左側)の側 壁に押されることによって、スクリュ 24の先端に向けて送られる。
[0036] そして、前記ホッパ 27から加熱シリンダ 22内に投入された固相の樹脂は、供給部 3 7において、混練、溶融されながら、前記フライト 35によって圧縮部 38に送られる。該 圧縮部 38において、樹脂は急速に混練、溶融させられて、計量部 39に送られる。さ らに、該計量部 39において、樹脂は完全に溶融させられて、スクリュ 24の先端に向 けて送られるようになつている。そして、スクリュ 24の先端側に送られた樹脂がスクリュ 24の先端側の加熱シリンダ 22内に溜(た)まって圧力が上昇し、その圧力によってス クリュ 24に後退力力 Sかかりスクリュ 24が後退する。また、スクリュ 24を計量方向に回転 させてフライト 35の表面側にも樹脂圧がかかり、その圧力によってスクリュ 24に後退 力力 Sかかりスクリュ 24を後退させる作用が働く。スクリュ進退装置 25では、そのスクリ ュ 24の後退力に対して、スクリュ 24に背圧 (スクリュ 24を前進させる方向に作用させ る操作力)をかける。
[0037] 次に、前記構成の射出装置 20の動作について説明する。
[0038] まず、計量工程においては、スクリュ回動装置 28が駆動してスクリュ 24を回転させ 、スクリュ進退装置 25を駆動して前記スクリュ 24を所定の位置まで後退(図 2におけ る右方に移動)させる。このとき、ホッパ 27から供給された樹脂は、加熱シリンダ 22内 において加熱され溶融させられて、スクリュ 24の後退に伴って該スクリュ 24の前方に 溜められる。
[0039] ここで、前記樹脂は、熱可塑性樹脂であっても熱硬化性樹脂であってもよぐ例え ば、 PVC (ポリ塩化ビュル)、 PS (ポリスチレン)、発泡ポリスチレン、 PP (ポリプロピレ ン)、 PET (ポリエチレンテレフタレート)、 PC (ポリカーボネイト)、 PMMA (ポリメタタリ ル酸メチル)、 HDPE (高密度ポリエチレン)、 AS (スチレン/アクリロニトリル)、 ABS 樹脂、メタクリル樹脂、生分解性樹脂等であるが、いかなる樹脂であってもよい。また 、高耐熱性樹脂、スーパーエンジニアリングプラスチック、難燃剤が添加された樹脂、 ガラス繊維等のフィラーが混入された樹脂、化学発泡剤が添加された樹脂等であつ てもよい。
[0040] 次に、射出工程においては、本体駆動装置 13が駆動して射出装置本体 21を前進 させ、加熱シリンダ 22の前端に配設された射出ノズノレ 23を固定金型 32に押し付ける 。そして、スクリュ進退装置 25が駆動して前記スクリュ 24を前進させるので、該スクリュ 24の前方に溜められた樹脂は射出ノズル 23力 射出され、固定金型 32と可動金型 33との間に形成された図示されなレ、キヤビティ空間内に充填される。
[0041] 次に、前記型締装置 30について説明する。
[0042] 該型締装置 30は、固定プラテン 31、図示されなレ、トグノレサポート、前記固定プラテ ン 31とトグルサポートとの間に架設されたタイバー 34、前記固定プラテン 31と対向し て配設され、前記タイバー 34に沿って進退自在に配設された図示されない可動ブラ テン、及び、該可動プラテンと前記トグルサポートとの間に配設されたトグル機構を備 える。そして、前記固定プラテン 31及び可動プラテンに、互いに対向させて前記固 定金型 32及び可動金型 33が、それぞれ、取り付けられる。
[0043] なお、前記トグル機構は、クロスヘッドに対して揺動自在に支持された
、前記トグルサポートに対して揺動自在に支持されたトグルレバー、前記可動プラテ ンに対して揺動自在に支持されたトグルアームから成るリンク機構であり、サーボモー タによってクロスヘッドをトグルサポートと可動プラテンとの間で進退させることによつ て、該可動プラテンをタイバー 34に沿って進退させ、可動金型 33を固定金型 32に 対して接離させて、型閉、型締及び型開を行うようになっている。
[0044] なお、本実施の形態において、前記射出成形機は、図示されない制御装置を有す る。該制御装置は、 CPU, MPU等の演算手段、磁気ディスク、半導体メモリ等の記 憶手段、逆方向への回転数、回転量等を入力するためのキーボード、マウス、押しボ タン、タツチパネル等の入力手段、逆方向への回転数、回転量等を表示するための CRT、液晶ディスプレイ、 LED (Light Emitting Diode)ディスプレイ等の表示手 段、通信インターフェイス等を備えるコンピュータである。なお、前記制御装置は独立 して構成されたものであってもよぐ他の制御装置と一体的に構成されたものであつ てもよレ、。そして、前記制御装置は、前記射出成形機全体の動作を統括的に制御す るものであり、前記射出装置 20、型締装置 30等の各種装置の動作を制御する。
[0045] 次に、前記構成の射出成形機におけるパージを行う動作について説明する。なお 、射出成形機においては、金型装置の交換、昇温等の準備作業を行うために成形品 の成形を中断し、成形品の成形を再開する前に残留樹脂のパージを行って加熱シリ ンダ 22内に残留する劣化した樹脂を排出することもあり、また、成形品の成形を終了 した時点で、劣化した
樹脂が加熱シリンダ 22内に残留することを防止するためにパージを行うこともあるが 、ここでは、同一の金型装置を使用して異なる樹脂に交換して成形品を成形する場 合に、残留している交換前の樹脂を加熱シリンダ 22内からすべて排出する動作につ いて説明する。
[0046] 図 1は本発明の実施の形態におけるパージを行う場合の射出装置の動作を示す図 、図 4は本発明の実施の形態におけるパージを行う場合のスクリュの動作を示す図、 図 5は本発明の実施の形態におけるスクリュに逆背圧をかけた場合の樹脂の状態を 説明する図、図 6は本発明の実施の形態におけるスクリュに逆背圧をかけた実験結 果を示す表である。
[0047] 成形品の成形を行う場合、まず、樹脂の計量工程が行われ、スクリュ回動装置 28を 駆動してスクリュ 24を回転させ、スクリュ進退装置 25を駆動して前記スクリュ 24を所 定の位置まで後退させる。そして、樹脂が、樹脂ペレット等の形態で、ホッパ 27から 加熱シリンダ 22内に供給される。ホッパ 27から供給された樹脂は、加熱シリンダ 22 内において加熱され溶融させられて、スクリュ 24の後退に伴って該スクリュ 24の前方 に溜められる。そして、所定量の樹脂が前記スクリュ 24の前方に溜められると、本体 駆動装置 13が駆動して射出装置本体 21を前進させ、加熱シリンダ 22の前端に配設 された射出ノズノレ 23を固定金型 32の背面に押し付けて、ノズノレタッチが行われる。こ の後、射出工程が行われる。
[0048] 続いて、該射出工程においては、スクリュ進退装置 25が駆動して前記スクリュ 24を 前進させるので、該スクリュ 24の前方に溜められた樹脂は射出ノズル 23から射出さ れ、前記固定金型 32に形成された図示されないスプノレーを通過して、固定金型 32 と可動金型 33との間に形成された図示されないキヤビティ空間内に充填される。
[0049] 続いて、該キヤビティ空間内に充填された樹脂が冷却されて成形品が成形されると 、サーボモータが駆動してクロスヘッドが後退し、可動プラテンがタイバー 34に沿つ て後退するので、可動金型 33が固定金型 32から離れて型開が行われる。そして、前 記キヤビティから前記成形品が取り出されると、再び、前記サーボモータが駆動し、ク ロスヘッドが前進して可動プラテンがタイバー 34に沿って前進する。これにより、固定 金型 32及び可動金型 33から構成される金型装置は、再び、型閉された状態となる。 そして、再び、射出工程が行われる。以降は、前述の動作が繰り返され、複数の成形 品が成形される。なお、射出成形機における成形品の成形を行う動作は、オペレー タによる手動操作によって行われてもよいし、制御装置により制御されて自動的に行 われてもよい。
[0050] 続いて、所定数の成形品が成形されると、成形が停止され、加熱シリンダ 22内に残 留する樹脂のパージが行われる。この場合、オペレータが前記制御装置の入力手段 を操作して、例えば、該入力手段に配設された樹脂交換ボタンを押すことによって、 樹脂交換の動作を開始させる。樹脂交換の動作が開始されると、まず、本体駆動装 置 13が駆動して射出装置本体 21を後退させ、図 2に示されるように、加熱シリンダ 2 2の前端に配設された射出ノズル 23は、固定プラテン 31の背面よりも後方に到達す る。
[0051] そして、オペレータは、パージされた樹脂等を収容するための受け皿等の被パージ 樹脂収容部材を所定の位置にセットする。また、オペレータは、飛散防止プレート等 の飛散防止部材を前記被パージ樹脂収容部材及び射出ノズル 23を取り囲むような 位置にセットすることが望ましい。これにより、射出成形機及びその周囲がパージされ た樹脂等によって汚染されることがない。なお、前記被パージ樹脂収容部材及び飛 散防止部材は、オペレータの作業に依ることなぐ自動的にセットされるようにしてもよ レ、。
[0052] 続いて、残留樹脂のパージが開始され、まず、スクリュ回動装置 28が駆動してスクリ ュ 24を、図 1において矢印 Aで示されるように、一方の回転方向としての正方向に回 転させる。ここで、該正方向とは、前述されたような計量工程においてスクリュ 24を回 転させる方向であり、これにより、溶融樹脂 41は、フライト 35の間の螺旋状のチヤネ ノレ 36内を、図 4に示されるようなフライト 35の表面 35aに押されることによって、スクリ ュ 24の先端に向けて送られる。そして、スクリュ進退装置 25が駆動して前記スクリュ 2 4を、図 1において矢印 Cで示されるように、前進方向に移動させる。これにより、加熱 シリンダ 22内に残留していた溶融樹脂 41は、射出ノズル 23から排出される。この場 合、前記スクリュ 24は、前後方向の移動範囲における最前端位置、すなわち、スクリ ュストロークの前進限位置にまで移動させられる。
[0053] 続いて、スクリュ回動装置 28が駆動してスクリュ 24を、図 1において矢印 Bで示され るように、他方の回転方向としての逆方向に回転させる。ここで、該逆方向とは、前述 されたような計量工程においてスクリュ 24を回転させる方向と逆の方向であり、これに より、溶融樹脂 41は、フライト 35の間の螺旋状のチャネル 36内を、図 4に示されるよう なフライト 35の裏面 35bに押されることによって、スクリュ 24の先端と反対の方向に送 られる。
[0054] この場合、前記スクリュ進退装置 25が駆動してスクリュ 24を軸方向に関してスクリュ ストロークの前進限位置に固定する。ここで、前記スクリュ進退装置 25が駆動せず、 スクリュ 24が前進又は後退可能な状態、すなわち、軸方向にフリーな状態において、 スクリュ 24を逆方向に回転させると、フライト 35の裏面 35bが溶融樹脂 41の反カを受 けるので、スクリュ 24が前進方向に移動させられてしまう。そこで、前記スクリュ進退装 置 25が駆動してスクリュ 24をスクリュストロークの前進限位置に積極的に固定するよう になっている。要するに、スクリュ 24が前進しょうとする力に対してスクリュ 24を後退さ せる方向に力を作用させる、すなわち、逆背圧をかける。
[0055] なお、スクリュ 24を軸方向に関して厳密に固定しなくともよい。この場合、スクリュ 24 が軸方向に関してほとんど移動しない状態、又は、移動しても極めて遅い速度で移 動する状態とすればよい。換言すると、スクリュ 24の軸方向の移動速度がゼロに近い 値、すなわち、零速近傍であればよい。また、スクリュ 24を軸方向に関して固定する 位置、又は、軸方向の移動速度を零速近傍とする位置は、厳密にスクリュストローク の前進限位置でなくともよぐ前進限位置の近傍であればよい。さらに、前記位置は、 固定金型 32と可動金型 33との間に形成されたキヤビティ空間内への溶融樹脂 41の 充填が完了した際におけるスクリュ 24の軸方向に関する位置、すなわち、金型内へ の成形材料の充填完了位置であってもよい。
[0056] これにより、スクリュ 24のフライト 35の裏面 35bには加熱シリンダ 22内の溶融樹脂 4 1の圧力がかけられる。また、溶融樹脂 41は、フライト 35の裏面 35bによって強く押さ れ、圧力を受けることになる。これをより詳細に説明すると次のようになる。図 1におい て矢印 Aで示されるように、正方向に回転させる場合、すなわち、計量工程において スクリュ 24を回転させる場合、図 5 (a)に示されるように、フライト 35の間の螺旋状のチ ャネル 36内における溶融樹脂 41は、フライト 35の表面 35aに近い部分である Eの部 分において矢印で示されるように流動するので、前記 Eの部分に樹脂圧が発生する 。これに対し、フライト 35の裏面 35bに近い部分である Fの部分においては、溶融樹 脂 41が滞留した状態となるので樹脂圧が発生しない。
[0057] しかし、スクリュ 24を、図 1において矢印 Bで示されるように、逆方向に回転させる場 合、図 5 (b)に示されるように、フライト 35の間の螺旋状のチャネル 36内における溶 融樹脂 41は、フライト 35の表面 35aに近い部分である Eの部分において滞留した状 態となるので樹脂圧が発生しない。これに対し、フライト 35の裏面 35bに近い部 分である Fの部分においては、溶融樹脂 41が矢印で示されるように流動するので、 前記 Fの部分に樹脂圧が発生する。そのため、前記フライト 35における裏面 35bに 付着してレ、た樹脂も、前記溶融樹脂 41とともに圧力がかけられ、前記裏面 35bから 取り除かれる。この場合、圧力がかけられた溶融樹脂 41がフライト 35の裏面 35bに 強く押し付けられた状態で該裏面 35bと擦 (こす)れ合うことによって、付着していた樹 脂が裏面 35bから取り除かれるものと考えられる。
[0058] そして、スクリュ回動装置 28は、所定回転数だけスクリュ 24を逆方向に回転させた 後、再び、スクリュ 24を正方向に回転させ、スクリュ進退装置 25は前記スクリュ 24を、 図 1において矢印 Dで示されるように、後退方向に移動させる。これにより、スクリュ 24 の供給部 37の範囲において残留していた固相の樹脂が、混練、溶融されながらフラ イト 35によって圧縮部 38及び計量部 39に送られて、溶融させられる。そして、スクリ ュ 24の後退に伴って該スクリュ 24の前方に所定量の溶融樹脂 41が溜められると、再 び、スクリュ進退装置 25が駆動して前記スクリュ 24を前進方向に移動させ、前記溶融 樹脂 41を射出ノズル 23から排出する。
[0059] 続いて、再び、スクリュ 24を軸方向に関してスクリュストロークの前進限位置に固定 して、スクリュ 24を逆方向に回転させる。以降は、すべての残留樹脂を排出し終える まで、前述の動作を繰り返して行う。そして、すべての残留樹脂を加熱シリンダ 22内 力 排出し終えたならば、交換後の樹脂、すなわち、新しい樹脂をホッパ 27から加熱 シリンダ 22内に供給して、樹脂の計量工程を行う。これにより、新しい樹脂が加熱シリ ンダ 22内において加熱され溶融させられて、スクリュ 24の後退に伴って該スクリュ 24 の前方に溜められる。そして、新しい樹脂が前記スクリュ 24の前方に所定量だけ溜め られると、新しい樹脂による成形品の成形を開始することができる。
[0060] また、必要に応じて、加熱シリンダ 22、スクリュ 24等を清浄化するための樹脂である パージ用樹脂を使用することもできる。この場合、すべての残留樹脂を加熱シリンダ 2 2内力 排出し終えたならば、パージ用樹脂をホッパ 27から加熱シリンダ 22内に供 給して、樹脂の計量工程を行う。続いて、前記パージ用樹脂のパージを行い、加熱 シリンダ 22の内面ゃスクリュ 24の表面を清浄化する。この場合も、前述された残留樹 脂のパージと同様の動作を繰り返しておこなう。すなわち、スクリュ 24を前進方向に 移動させ、溶融したパージ用樹脂を射出ノズル 23から排出した後、スクリュ 24をスクリ ュストロークの前進限位置に固定して、スクリュ 24を逆方向に回転させる動作を繰り 返して行う。これにより、フライト 35の裏面 35bに付着していた樹脂を確実に取り除く こと力 Sできる。そして、パージ用樹脂を加熱シリンダ 22内から排出し終えたならば、新 しい樹脂をホッパ 27から加熱シリンダ 22内に供給し、前述されたようにして、新しレ、 樹脂による成形品の成形を開始することができる。
[0061] また、次のようにして樹脂の入れ替えを行うこともできる。この場合、前回の成形が 終了すると、まず、射出装置本体 21を後退させる。続いて、ホッパ 27と加熱シリンダ 2 2との間における樹脂の供給路を遮断した後、通常のパージ動作を行う。すなわち、 スクリュ 24を正方向に回転させる動作及びスクリュ 24を前進方向に移動させて残留 樹脂を射出ノズル 23から排出する動作を複数回繰り返し、前回の成形で使用した樹 脂の排出を終了する。その後、新しい樹脂を加熱シリンダ 22内に供給する。そして、 スクリュ 24を正方向に回転させる動作、スクリュ 24を逆方向に回転させる動作及びス クリュ 24を前進方向に移動させて樹脂を射出ノズル 23から排出する動作を行う。これ により、フライト 35の裏面 35bに付着していた前回の成形で使用した樹脂を新しい榭 脂によって取り除くことができる。この場合、前回の成形で使用した樹脂が加熱シリン ダ 22内にある状態でスクリュ 24を逆方向に回転させ、前回の成形で使用した樹脂に よってフライト 35の裏面 35bに付着していた樹脂を取り除くよりも、樹脂の入れ替えを 短時間で行うこ
とができる。
[0062] さらに、次のようにして樹脂の入れ替えを行うこともできる。この場合、前回の成形が 終了すると、まず、射出装置本体 21を後退させる。続いて、前回の成形で使用した 樹脂が十分に加熱シリンダ 22内に残留している時点で、ホッパ 27から新しい樹脂を 加熱シリンダ 22内に供給する。そして、加熱シリンダ 22内において前回の成形で使 用した樹脂と新しい樹脂とが混在した状態で、スクリュ 24を正方向に回転させる動作 、スクリュ 24を逆方向に回転させる動作及びスクリュ 24を前進方向に移動させて樹脂 を射出ノズル 23から排出する動作を行う。 [0063] なお、スクリュ 24を逆方向に回転させる前記所定回転数は、適宜設定することがで きるが、フライト 35の裏面 35bに付着していた樹脂を万遍なく取り除くために、 1回転 以上とすることが望ましい。また、前記所定回転数の最大値は、計量部 39の溶融榭 脂 41がスクリュ 24の供給部 37の範囲に進入しない程度とすることが望ましい。スクリ ュ 24を逆方向に回転させる直前の時点において、溶融樹脂 41は計量部 39の範囲 に存在するが、スクリュ 24を逆方向に回転させることによって、溶融樹脂 41はスクリュ 24の先端と反対の方向に送られ、圧縮部 38及び供給部 37に向かって移動する。そ して、溶融樹脂 41の移動量は、スクリュ 24を逆方向に回転させる回転数にほぼ比例 するので、該回転数を適切に設定することによって、溶融樹脂 41が供給部 37の範囲 に進入しなレ、ようにすること力できる。
[0064] 前述されたように、成形のための動作において、樹脂はスクリュ 24の供給部 37の範 囲で固相のままであるので、供給部 37では、フライト 35の裏面 35bを含むスクリュ 24 の表面に樹脂が残留しない。むしろ、供給部 37に溶融樹脂 41が進入すると、スクリュ 24を正方向に回転させて樹脂を前方に送ろうとしても、十分に前方に送ることができ ず、計量が不安定になってしまう。これに対し、圧縮部 38の範囲では、成形のための 動作において、樹脂が溶融するので、フライト 35の裏面 35bにある程度樹脂が付着 していると考えることができる。そのため、スクリュ 24を逆方向に回転させることによつ て、圧縮部 38に進入した溶融樹脂 41がフライト 35の裏面 35bに強く押し付けられた 状態で該裏面 35bと擦れ合うことによって、付着していた樹脂が取り除かれるという効 果を得ること力 Sできる。
[0065] なお、スクリュ 24を逆方向に回転させる前記所定回転数の適正値は、樹脂の種類 、射出装置 20、スクリュ 24等の装置の種類、寸法、運転条件等によって変化するも のであって、一概に規定することが困難であるが、本発明の発明者が実際の射出装 置を使用して行つた実験の場合、約 5回転であつた。
[0066] 当該実験においては、スクリュは直径 14〔mm〕のフルフライトスクリュを使用した。ま た、スクリュの回転速度は、正方向の回転及び逆方向の回転において 100〔回/分〕 、計量工程においてスクリュを正方向に回転させた時間は 12秒、加熱シリンダの温 度は 200〔で〕であった。そして、交換前の樹脂としてのポリスチレン (PS)に赤色のマ スターバッチをカ卩えた樹脂をパージして、交換後の新しい樹脂としての無色ポリスチ レン (PS)に交換する作業を行った。この場合、樹脂を交換する作業を、スクリュをス クリュストロークの前進限位置に固定してを逆方向に回転させる時間を変化させて、 複数回行った。そして、前記作業の終了する度に、スクリュを加熱シリンダから抜き取 つて交換前の樹脂の付着状態を目視によって確認した。
[0067] その結果、スクリュをスクリュストロークの前進限位置に固定して逆方向に回転させ る時間が 3秒前後、すなわち、計量時間と逆方向に回転させる時間との比が 1/4、 また、スクリュを逆方向に回転させる回転数が 5回転前後であると、交換前の樹脂の 付着が皆無
であることを確認することができた。また、前記逆方向に回転させる時間が 8秒前後、 すなわち、計量時間と逆方向に回転させる時間との比が 1/1. 5、また、スクリュを逆 方向に回転させる回転数が 10回転前後であると、スクリュの供給部に溶融樹脂が進 入したことを確認することができた。
[0068] さらに、本発明の発明者は、射出装置を使用して追加の実験を行った。当該実験 においては、スクリュは直径 50〔mm〕の硬質クロムメツキ処理スクリュを使用した。また 、スクリュの回転速度は逆方向の回転において 50〔回/分〕、計量工程においてスク リュを正方向に回転させた時間、すなわち、計量時間は 6秒、加熱シリンダの温度は 240〔で〕であった。そして、交換前の樹脂としてのポリプロピレン(PP)に赤色のマス ターバッチをカ卩えた樹脂(混合比 10 : 1)から、新しい樹脂としてのポリプロピレン (PP )に白色のマスターバッチを加えた樹脂(混合比 10 : 1)に置き換える作業を行った。 この場合、射出ノズルから射出された樹脂によって平板を成形し、該平板の色調が 赤色から白色に変わるまでの樹脂量を測定した。なお、色調の測定は、分光測色計 による a値測定によって行った。また、計量値は 50〔mm〕である。さらに、スクリュを逆 方向に回転させる時間、すなわち、逆回転時間は 3秒であり、計量時間に対する比 は 1/2であった。
[0069] 前記追加の実験によって、従来の方法と比較して、使用する樹脂の量を 20— 30〔 %〕削減することができることが確認された。さらに詳細に説明すると、前記追加の実 験によって、図 6に示されるような結果を得ることができた。図 6に示される表は、計量 時間に対する逆回転時間の比を変化させた場合における残留樹脂の除去効果及び 供給部への逆流の影響を受けた計量安定性の評価結果である。図 6に示される表に おいて、 Xは不良、〇は良好、及び、◎は非常に良好という評価結果を示している。
[0070] 図 6から、スクリュを逆方向に回転させる時間を十分に長くしないと、残留樹脂を十 分に取り除くことができないことが分かる。一方、スクリュを逆方向に回転させる時間を 長くし過ぎると、溶融樹脂がスクリュの供給部に進入してしまい、計量安定性が低下 すること力 S分力^)。具体的には、計量時間に対する逆回転時間の比が 1Z10以上で あれば残留樹脂を十分に取り除くことができることが分かる。さらに、計量時間に対す る逆回転時間の比力 以上であれば残留樹脂を非常に効果的に取り除くことが できることが分かる。一方、計量時間に対する逆回転時間の比が lZl . 2になると、 溶融樹脂がスクリュの供給部に進入し、計量安定性に悪影響を及ぼすことが分かる。 これらのこと力、ら、計量時間に対する逆回転時間の比が 1/10— 1/1. 5であれば 十分な効果を得ることができると言える。さらに、計量時間に対する逆回転時間の比 力 S 1/5— 1/1. 5であればより良好な効果を得ることができると言える。
[0071] また、スクリュの回転速度は、高い方が望ましいが、溶融樹脂の移動量はスクリュの 回転速度に依存するため、 100〔回/分〕より高い回転速度にスクリュを逆方向に回 転させると、溶融樹脂がスクリュの供給部に進入する恐れがある。そのため、スクリュ の回転速度が 50— 100〔回/分〕の範囲でスクリュを逆方向に回転させると、計量安 定性を維持しながら、短時間で残留樹脂を取り除くことができる。
[0072] なお、射出成形機におけるパージを行う動作は、オペレータによる手動操作によつ て行われてもよいが、制御装置によって制御されて自動的に行われるようにしてもよ レ、。
[0073] このように、本実施の形態においては、加熱シリンダ 22内に残留する樹脂のパージ を行う際に、スクリュ 24を軸方向に関してスクリュストロークの前進限位置に固定して 逆方向に回転させるようになつている。これにより、スクリュ 24のフライト 35の裏面 35b には加熱シリンダ 22内の溶融樹脂 41の圧力がかけられる。そして、圧力がかけら れた溶融樹脂 41がフライト 35の裏面 35bに強く押し付けられた状態で該裏面 35bと 擦れ合うことによって、付着していた樹脂が前記裏面 35bから取り除かれる。そのた め、従来の方法では取り除くことが困難であったフライト 35の裏面 35bに付着した榭 脂も取り除くことができ、スクリュ 24に付着した樹脂を確実に取り除くことが可能となる 。したがって、短時間で加熱シリンダ 22内に残留する樹脂を完全にパージすることが できる。
[0074] 加熱シリンダ 22内に残留する溶融樹脂 41は、加熱シリンダ 22の内面ゃスクリュ 24 に付着するが、計量工程においてスクリュ 24を正方向に回転させたり、射出工程に おいてスクリュ 24を前進させたりすることによって流動する溶融樹脂 41に擦り取られ るので、比較的容易に取り除かれる。この場合、スクリュ 24を正方向に回転させたり、 前進させたりすることによって、溶融樹脂 41が加熱シリンダ 22の内面、スクリュ 24に おけるチャネル 36の底面やフライト 35の表面 35aに押し付けられた状態で流動する ためであると考えられる。しかし、スクリュ 24を正方向に回転させたり、前進させたりし ても、フライト 35の裏面 35bに溶融樹脂 41が押し付けられることがなレ、。そのため、 従来においては、フライト 35の裏面 35bに付着した樹脂を取り除くことができなかった 。これに対して、本実施の形態においては、スクリュ 24を軸方向に関してスクリュストロ ークの前進限位置に固定して逆方向に回転させることによって、圧力がかけられた溶 融樹脂 41がフライト 35の裏面 35bに強く押し付けられた状態で該裏面 35bと擦れ合 うので、裏面 35bに付着していた樹脂を取り除くことができる。
[0075] また、スクリュ 24を正方向に回転させる動作と逆方向に回転させる動作とを何回か 繰り返して行うことによって、スクリュ 24に付着した樹脂をより確実に取り除くことがで きる。なお、スクリュ 24を逆方向に回転させる際に、スクリュ 24を軸方向に関して固定 する位置は、必ずしも、スクリュストロークの前進限位置でなくてもよい。前述のように 、前進限位置の近傍であればよいし、また、金型内への成形材料の充填完了位置で あってもよレ、。さらに、スクリュ 24を逆方向に回転させても樹脂が供給部 37へ逆流し ない範囲であるスクリュストロークの半分までの範囲であってもよレ、。すなわち、金型 内への成形材料の充填完了位置又は前進限位置から計量行程の 1/2までの範囲 において、スクリュ 24を後退方向に移動させた後に固定して、スクリュ 24を逆方向に 回転させることもできる。また、前述のように、スクリュ 24を軸方向に関して厳密に固定 しなくとも、スクリュ 24が軸方向に関してほとんど移動しない状態、すなわち、スクリュ 24の軸方向の速度が零速近傍であればよい。
[0076] なお、本実施の形態においては、前記パージ方法として、スクリュ 24を前進させるこ とによって溶融樹脂 41を射出ノズル 23から排出している力 スクリュ 24を一定位置に 固定しておいて、スクリュ 24を正方向に回転させて溶融樹脂 41を射出ノズノレ 23から 排出するようにしてもよレ、。また、樹脂の交換等の際に、加熱シリンダ 22内の樹脂を すべて排出する場合の動作について説明したが、本発明は、成形品の成形を行って レ、る場合にも適用することができる。すなわち、成形品の成形を行っている際に、スク リュ 24のフライト 35の裏面 35bに付着している樹脂を該裏面 35bから取り除いて除去 することちでさる。
[0077] 例えば、成形品の成形を行っている際に、計量工程を行う前に、スクリュ 24を軸方 向に関してスクリュストロークの前進限位置に固定して逆方向に回転させるようにする 。これにより、加熱シリンダ 22内の溶融樹脂 41に圧力がかけられるので、スクリュ 24 のフライト 35の裏面 35bに付着している樹脂が取り除かれる。そして、取り除かれた 樹脂は、溶融樹脂 41内に混入するので、次の射出工程において、射出ノズル 23か ら射出され、加熱シリンダ 22内から除去される。なお、すべての成形ショットにおいて スクリュ 24を逆方向に回転させる動作を行うことによって、計量を安定させることがで きる。
また、前記スクリュ 24の逆方向の回転は、所定回数の計量工程に 1回行うようにして もよレ、。この場合、すべての成形ショットにおいてスクリュ 24を逆方向に回転させる動 作を行うよりも、成形サイクルを短縮することができる。さらに、スクリュ 24を逆方向に 回転させても樹脂が供給部 37へ逆流しない範囲である前進限力 スクリュストローク の半分までの範囲において、スクリュ 24を後退方向に移動させた後に固定して、スク リュ 24を逆方向に回転させることもできる。
[0078] 該スクリュ 24のフライト 35の裏面 35bに付着している樹脂は、長時間に亘り加熱シリ ンダ 22内において熱を受けるので、すなわち、熱履歴が大きいので、劣化している 可能性が高い。そして、劣化した樹脂が何らかの原因でフライト 35の裏面 35bから剥 がれ落ちて、溶融樹脂 41内に混入すると、成形品の品質が低下してしまう。そこで、 成形品の成形を行っている際に、前述されたようにして、定期的にフライト 35の裏面 35bに付着している樹脂を取り除くことによって、劣化した樹脂が溶融樹脂 41内に混 入して成形品の品質を低下させることを防止することができる。
[0079] なお、前記所定回数は、適宜設定することができる。例えば、毎回計量工程を行う 前に、スクリュ 24を軸方向に関してスクリュストロークの前進限位置に固定して逆方向 に回転させるようにしてもよい。これにより、樹脂がフライト 35の裏面 35bに長時間に 亘り付着することを防止することができる。
[0080] また、本発明は前記実施の形態に限定されるものではなぐ本発明の趣旨に基づ いて種々変形させることが可能であり、それらを本発明の範囲から排除するものでは ない。
産業上の利用可能性
[0081] この発明は、押出成形装置、ラミネータ等の各種の成形機に適用することができる

Claims

請求の範囲
[1] (a)成形材料を加熱シリンダ内に供給し、
(b)スクリュを一方の回転方向に回転させ、スクリュフライト部の前面に前記成形材料 の押圧力を作用させ、
(c)前記成形材料を溶融しながら前記スクリュの前方へ搬送し、
(d)前記スクリュを他方の回転方向に回転させ、前記スクリュフライト部の背面に前記 成形材料の押圧力を作用させて前記スクリュに逆背圧をかけることを特徴とする成形 方法。
[2] 前記逆背圧は、前記スクリュを後退させる方向に作用させることによって発生させる 請求項 1に記載の成形方法。
[3] 前記スクリュを前記他方の回転方向に回転させつつ、前記スクリュの軸方向の速度を 零速近傍にする請求項 1又は 2に記載の成形方法。
[4] 前記スクリユカ 前記加熱シリンダ内において、金型内への成形材料の充填完了位 置又は前進限位置から計量行程の 1/2までの範囲にあるとき、前記スクリュを前記 他方の回転方向に回転させる請求項 1一 3のいずれ力 1項に記載の成形方法。
[5] 所定回数の計量工程毎に前記スクリュを前記他方の回転方向に回転させる請求項 4 に記載の成形方法。
[6] 前記計量工程の時間に対する前記スクリュを前記他方の回転方向に回転させる時間 の比は、 1/10— 1/1. 5である請求項 5に記載の成形方法。
[7] (a)成形材料を加熱シリンダ内に供給し、
(b)スクリュを一方の回転方向に回転させ、スクリュフライト部の前面に前記成形材料 の押圧力を作用させ、
(c)前記成形材料を溶融しながら前記スクリュの前方へ搬送し、
(d)前記スクリュを他方の回転方向に回転させ、前記スクリュフライト部の背面に前記 成形材料の押圧力を作用させて前記スクリュに逆背圧をかけることを特徴とするパー ジ方法。
[8] 前記スクリュに逆背圧をかけた後に前記加熱シリンダを後退させる請求項 7に記載の パージ方法。
[9] 前記スクリュを前記他方の回転方向に回転させつつ、前記スクリュの軸方向の速度を 零速近傍にする請求項 7又は 8に記載のパージ方法。
[10] 前記スクリユカ 前記加熱シリンダ内において、前進限位置から計量行程の 1/2ま での範囲にあるとき、前記スクリュを前記他方の回転方向に回転させる請求項 7 9 のレ、ずれか 1項に記載のパージ方法。
[11] (a)加熱シリンダと、
(b)該加熱シリンダ内に回転可能に配設され、外周面に螺旋状の溝部を備えるスクリ ュと、
(c)該スクリュを一方の回転方向及び他方の回転方向に回転させるスクリュ回転駆動
(d)前記スクリュを前記他方の回転方向に回転させ、前記スクリュのスクリュフライト 部の裏面に力、かる成形材料の押圧力に対し、前記スクリュに逆背圧をかける制御装 置とを有することを特徴とする成形機。
[12] (a)前記スクリュを軸方向に進退させるスクリュ進退駆動装置を有し、
(b)前記制御装置は、前記スクリュに後退させる方向の力を作用させることによって 前記スクリュに逆背圧をかけるように前記スクリュ進退駆動装置の動作を制御する請 求項 11に記載の成形機。
[13] 前記制御装置は、前記スクリュを前記他方の回転方向に回転させつつ、前記スクリュ の軸方向の速度を零速近傍にする請求項 11又は 12に記載の成形機。
[14] 前記制御装置は、所定回数の計量工程毎に前記スクリュを前記他方の回転方向に 回転させる請求項 11一 13のいずれ力 1項に記載の成形機。
[15] 前記制御装置は、前記加熱シリンダを後退させてパージ動作を行わせる請求項 11 一 14のいずれか 1項に記載の成形機。
PCT/JP2004/010191 2003-07-17 2004-07-16 成形方法、パージ方法及び成形機 WO2005007382A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005511854A JP4503532B2 (ja) 2003-07-17 2004-07-16 成形方法、パージ方法及び成形機
EP04747657A EP1647386A4 (en) 2003-07-17 2004-07-16 MOLDING PROCESS, PURGE PROCESS AND MOLDING MACHINE
CN200480020542XA CN1822942B (zh) 2003-07-17 2004-07-16 成形方法、清理方法以及成形机
US11/315,064 US20060097421A1 (en) 2003-07-17 2005-12-23 Molding method, purging method, and molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003198158 2003-07-17
JP2003-198158 2003-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/315,064 Continuation US20060097421A1 (en) 2003-07-17 2005-12-23 Molding method, purging method, and molding machine

Publications (1)

Publication Number Publication Date
WO2005007382A1 true WO2005007382A1 (ja) 2005-01-27

Family

ID=34074368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010191 WO2005007382A1 (ja) 2003-07-17 2004-07-16 成形方法、パージ方法及び成形機

Country Status (7)

Country Link
US (1) US20060097421A1 (ja)
EP (1) EP1647386A4 (ja)
JP (1) JP4503532B2 (ja)
KR (1) KR20060033017A (ja)
CN (1) CN1822942B (ja)
TW (1) TWI248393B (ja)
WO (1) WO2005007382A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098499A (ja) * 2009-11-05 2011-05-19 Nanshin Kagaku Kogyo Kk 樹脂供給装置、射出成形装置、及び樹脂成形品の製造方法
JP2011098498A (ja) * 2009-11-05 2011-05-19 Nanshin Kagaku Kogyo Kk 樹脂供給装置、射出成形装置、及び樹脂成形品
JP2015080898A (ja) * 2013-10-22 2015-04-27 東芝機械株式会社 計量装置、可塑化装置、射出装置、成形装置、及び成形品の製造方法
JP2019018358A (ja) * 2017-07-11 2019-02-07 東洋機械金属株式会社 射出成形機

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431141B (zh) * 2011-10-25 2013-12-11 广东金明精机股份有限公司 多层共挤吹膜设备的挤出机和模头的清机方法
JP4947234B1 (ja) * 2011-11-18 2012-06-06 富士ゼロックス株式会社 プリプラ式の射出成形機のパージ方法、ゴム製品の製造方法
JP5893466B2 (ja) * 2012-03-28 2016-03-23 住友重機械工業株式会社 射出成形機
DE102013100812B4 (de) * 2013-01-28 2020-03-19 Windmöller & Hölscher Kg Verfahren für einen Materialwechsel bei einer Extrusionsvorrichtung und Extrusionsanlage
PL3227078T3 (pl) * 2014-12-04 2020-05-18 Extrude to Fill, Inc. Układ formowania wtryskowego oraz sposób wytwarzania elementu
CN104858183A (zh) * 2015-05-11 2015-08-26 昆山恒光塑料制品有限公司 螺杆表层塑胶清理工艺
DE102015108976A1 (de) * 2015-06-08 2016-12-08 Windmöller & Hölscher Kg Extrusionsvorrichtung für die Herstellung einer Kunststofffolie
JP6523129B2 (ja) * 2015-10-09 2019-05-29 住友重機械工業株式会社 射出成形機
CN105599221B (zh) * 2015-12-26 2017-07-07 宁波斯曼尔电器有限公司 一种注塑机
JP7326117B2 (ja) 2019-10-31 2023-08-15 住友重機械工業株式会社 射出成形機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115318U (ja) * 1982-02-01 1983-08-06 株式会社名機製作所 射出成形機
JPS59131438A (ja) * 1983-01-17 1984-07-28 Japan Steel Works Ltd:The 射出成形法における色替えあるいは材料替え方法
JPS6135817U (ja) * 1984-08-06 1986-03-05 トヨタ自動車株式会社 射出成形装置
JPH0226720A (ja) * 1988-07-18 1990-01-29 Toyo Mach & Metal Co Ltd 射出成形機の射出装置におけるパージング方法
JPH0226721A (ja) * 1988-07-18 1990-01-29 Toyo Mach & Metal Co Ltd 射出成形機の射出装置
JPH053972B2 (ja) * 1987-12-04 1993-01-19 Japan Steel Works Ltd
JPH10669A (ja) * 1996-06-17 1998-01-06 Toshiba Mach Co Ltd 射出成形機のフィードバック制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293823A (ja) * 1985-06-21 1986-12-24 Toyota Motor Corp 射出成形機の色替方法
JPH0741634B2 (ja) * 1986-08-13 1995-05-10 三菱重工業株式会社 金型ホツトランナの樹脂替・色替方法
JP3877190B2 (ja) * 1997-07-18 2007-02-07 住友重機械工業株式会社 逆流防止装置
SE519100C2 (sv) * 1998-10-23 2003-01-14 Wirsbo Bruks Ab Anordning och förfarande för tillverkning av extruderbara formstycken av förnätningsbara polymermaterial
JP2002137279A (ja) * 2000-10-14 2002-05-14 Maag Pump Syst Textron Ag エラストマ媒体を搬送する装置、該装置の使用方法及び該装置の2つの運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115318U (ja) * 1982-02-01 1983-08-06 株式会社名機製作所 射出成形機
JPS59131438A (ja) * 1983-01-17 1984-07-28 Japan Steel Works Ltd:The 射出成形法における色替えあるいは材料替え方法
JPS6135817U (ja) * 1984-08-06 1986-03-05 トヨタ自動車株式会社 射出成形装置
JPH053972B2 (ja) * 1987-12-04 1993-01-19 Japan Steel Works Ltd
JPH0226720A (ja) * 1988-07-18 1990-01-29 Toyo Mach & Metal Co Ltd 射出成形機の射出装置におけるパージング方法
JPH0226721A (ja) * 1988-07-18 1990-01-29 Toyo Mach & Metal Co Ltd 射出成形機の射出装置
JPH10669A (ja) * 1996-06-17 1998-01-06 Toshiba Mach Co Ltd 射出成形機のフィードバック制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1647386A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098499A (ja) * 2009-11-05 2011-05-19 Nanshin Kagaku Kogyo Kk 樹脂供給装置、射出成形装置、及び樹脂成形品の製造方法
JP2011098498A (ja) * 2009-11-05 2011-05-19 Nanshin Kagaku Kogyo Kk 樹脂供給装置、射出成形装置、及び樹脂成形品
JP2015080898A (ja) * 2013-10-22 2015-04-27 東芝機械株式会社 計量装置、可塑化装置、射出装置、成形装置、及び成形品の製造方法
JP2019018358A (ja) * 2017-07-11 2019-02-07 東洋機械金属株式会社 射出成形機

Also Published As

Publication number Publication date
JP4503532B2 (ja) 2010-07-14
CN1822942A (zh) 2006-08-23
JPWO2005007382A1 (ja) 2006-11-09
US20060097421A1 (en) 2006-05-11
TW200510160A (en) 2005-03-16
EP1647386A1 (en) 2006-04-19
CN1822942B (zh) 2010-09-22
TWI248393B (en) 2006-02-01
KR20060033017A (ko) 2006-04-18
EP1647386A4 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
US20060097421A1 (en) Molding method, purging method, and molding machine
JP2018503546A (ja) 射出成形システムおよび部品製造方法
JP5940740B1 (ja) 射出成形方法、及び、射出成形機
JPH10235701A (ja) 射出成形機の射出装置
EP2735418B1 (en) Injection molding machine and raw material metering unit
JP5846998B2 (ja) 可塑化装置、射出装置、射出成形装置、押出機、及び成形品の製造方法
JP5612755B2 (ja) 一体型溶融装置を備えた金型アセンブリ
TWI648143B (zh) Method for forming resin molded article containing reinforced fiber
JP5704392B2 (ja) 射出成形機の樹脂替え及び色替え方法
EP3912792A1 (en) Injection method and injection apparatus for molten resin, and injection stretch blow molding machine using injection apparatus
JP5612892B2 (ja) 射出成形機及び射出成形機における加熱シリンダの清掃方法
JP5634767B2 (ja) 成形機
JP2011224801A (ja) 射出成形機
JP6118619B2 (ja) 可塑化装置、成形装置、可塑化方法、及び成形品の製造方法
JP5840261B2 (ja) 射出成形機の加熱シリンダの清掃に用いられる清掃棒
JP2704605B2 (ja) 熱可塑性樹脂の射出成形装置とその成形方法
JP2000071284A (ja) 射出成形機用射出装置の制御方法および射出成形機用射出装置
JPH10166428A (ja) 混練押出機
JP2004306497A (ja) 樹脂替え装置及び方法
JPH0839637A (ja) 可塑化スクリュ
KR101506809B1 (ko) 사출성형기
JPH0820053A (ja) 熱硬化性樹脂の射出装置
JP2014184733A (ja) 射出成形機
JP2002192569A (ja) 金型における材料替え装置およびこの装置を用いた材料替え方法
JPS5818898B2 (ja) 樹脂成形機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020542.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11315064

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005511854

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004747657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067000979

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004747657

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11315064

Country of ref document: US