WO2005006987A1 - 超音波診断装置及び超音波画像診断方法 - Google Patents

超音波診断装置及び超音波画像診断方法 Download PDF

Info

Publication number
WO2005006987A1
WO2005006987A1 PCT/JP2004/010321 JP2004010321W WO2005006987A1 WO 2005006987 A1 WO2005006987 A1 WO 2005006987A1 JP 2004010321 W JP2004010321 W JP 2004010321W WO 2005006987 A1 WO2005006987 A1 WO 2005006987A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
image
transparency
variance
color doppler
Prior art date
Application number
PCT/JP2004/010321
Other languages
English (en)
French (fr)
Inventor
Tetsuya Hayashi
Hiroshi Kanda
Osamu Arai
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2005511883A priority Critical patent/JP4610011B2/ja
Priority to US10/565,435 priority patent/US7972269B2/en
Publication of WO2005006987A1 publication Critical patent/WO2005006987A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus that has a color Doppler measurement function and that constructs and displays images of a plurality of color Doppler images obtained by measuring a diagnostic site of a subject. Also, the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic image diagnostic method capable of displaying turbulence information.
  • Patent Document 1 discloses such a depth expressed by lightness and darkness as a color bar on a screen.
  • Patent Document 1 JP-A-11 299784
  • the present invention has been made in view of the above points, and has been made in consideration of the above-described problems, and has been made in view of the fact that, when a color Doppler image is displayed, an ultrasonic diagnostic method capable of easily displaying a turbulent flow present in a blood flow can be distinguished.
  • An object of the present invention is to provide a cutting device and an ultrasonic image diagnostic method.
  • an ultrasonic wave is transmitted to and received from a subject via an ultrasonic probe, and a tomographic image forming unit that forms a tomographic image of a diagnostic site of the subject, Color Doppler image forming means for forming a color Doppler image based on the obtained Doppler signal, image processing means for performing image processing on each of the tomographic image and the color Doppler image, and an image processed by the image processing means And display means for displaying In an ultrasonic diagnostic apparatus for displaying a tomographic image and the color Doppler image in color, the image processing means displays the color Doppler image transparently.
  • the display means displays information obtained by combining the color display and the transparent display.
  • a selecting means for selecting the color display or the transparent display, and the display means displays the information selected by the selecting means. Further, a transparency control unit for controlling the degree of transparency of the color Doppler image displayed in a transparent manner is provided.
  • the transparency control means controls the degree of transparency based on the blood flow information of the color Doppler image.
  • the transparency control means controls the degree of transparency based on the distribution of the blood flow of the color Doppler image. Further, the transparency control means sets the transparency of the color Doppler image to be smaller as the variance of the blood flow is larger. Further, the transparency control means obtains the variance as a relative value. When the variance is the maximum, the variance is opaque, when there is no variance, the display is transparent, and when the variance is the other, the display is translucent.
  • the display means displays a transparency force bar representing the transparency of the color Doppler image displayed in color.
  • the transparency control means displays the transparency color bar in which different transparency is set according to the dispersion.
  • a brightness / hue control unit for controlling the hue of the color-displayed color Doppler image.
  • the transparency control unit and the brightness / hue control unit determine brightness, hue, and transparency based on the blood flow information. Control and create 3D color Doppler image.
  • FIG. 1 is a diagram showing an overall configuration according to the present invention.
  • FIG. 2 is a diagram showing details of an image processing unit according to the present invention.
  • FIG. 3 is a view showing a color two-dimensional image display according to the present invention.
  • FIG. 4 is a diagram showing a color three-dimensional image display method according to the present invention.
  • FIG. 5 is a diagram showing a color three-dimensional image display method according to the present invention.
  • FIG. 6 is a view showing a display result according to the present invention.
  • the ultrasonic pulse transmitted from the transmitter 102 is repeatedly transmitted from the ultrasonic probe 101 to the reflecting object 111 at equal intervals T.
  • the ultrasonic pulse reflected by the reflecting object 111 is received by the receiving circuit 103, converted into a digital signal by the AZD converter 104, and a digital signal output of each of the cos component and the sin component is obtained by the phase comparator 105. Is received.
  • the cos component and sin component signals are attenuated by the high-pass MTI filter 106 to attenuate the low-frequency component (clutter component), and the high-frequency component (blood flow component) is extracted. Calculate speed, variance, and power.
  • the respective computation results are rearranged by the digital scan converter 108 according to the television scanning method, color-coded corresponding to the speed variance by the color encoder 109, and displayed on the television monitor 110.
  • a color Doppler image is displayed together with a tomographic image
  • a tomographic image is formed by the tomographic image forming unit 112
  • the color Doppler image is superimposed on the tomographic image and displayed on the television monitor 110 using the image processing unit 113.
  • This ultrasonic diagnostic apparatus captures a plurality of color Doppler images at a diagnostic site of a subject and displays a two-dimensional image or a three-dimensional image based on the color Doppler images. It is.
  • FIG. 2 is a diagram showing details of the image processing unit of the present invention.
  • the ultrasonic Doppler measuring unit 31 measures a plurality of color Doppler images of a diagnostic part of the subject, and processes the Doppler signal obtained from the ultrasonic probe 101 as shown in FIG. Make up the image.
  • the image processing unit 113 includes a communication port 33 and an image forming unit 34.
  • the communication port 33 captures the velocity data, the reflection intensity, and the dispersion of the frequency shift and the tomographic image of the plurality of color Doppler images measured by the ultrasonic Doppler measuring unit 31 into the image forming unit 34.
  • the image forming unit 34 processes the speed, reflection intensity, and dispersion data of a plurality of color Doppler images taken in from the communication port 33, and performs image processing. It comprises a CPU 38 and a transparency control unit 3A.
  • the RAM 36 and the magnetic disk device 37 store the data of the captured color Doppler image.
  • High-speed arithmetic unit Numeral 35 reads out data from the RAM 36 and the magnetic disk device 37 and performs two-dimensional image processing and three-dimensional image processing.
  • the television monitor 110 displays the color Doppler image imaged by the high-speed operation device 35.
  • the CPU 38 controls the operation of each of these components.
  • the data bus 30 is for transmitting data between the components.
  • the transparency control unit 3A appropriately controls the transparency color bar set so that the transparency becomes smaller as the variance becomes larger.
  • the TV monitor 110 displays a color Doppler image obtained by combining the color display and the transparent display. There is provided a selection means (not shown) for selecting between color display and transparent display, and the television monitor 110 displays the color Doppler image selected by the selection means.
  • FIG. 3 (B) when the inside of the blood vessel 2 is entirely a blood flow in the direction indicated by the arrow 4, the turbulence 5 as shown in FIG.
  • An ultrasonic beam as shown in FIG. 3 (A) is transmitted to and received from the subject tissue, color Doppler calculation is performed, and the image is displayed as a color Doppler image.
  • the data structure of the color Doppler image is based on the blood flow velocity and the magnitude of the variance, using a luminance / hue color bar 23 and a transparency color bar 24 as shown in FIG. Will be assigned to the part where exists.
  • each point of the image There are three types of information on each point of the image: speed, reflection intensity, and variance.
  • speed and variance To perform color Doppler display according to speed and variance, first, the luminance and hue color bars are obtained from the speed and variance information. 23 is used to determine the luminance 'hue of each point. Then, using the transparency color bar 24, the transparency of each point is determined based on the magnitude of the variance. The transparency color bar 24 is set such that the greater the variance, the lower the transparency.
  • a turbulent portion existing in the bloodstream has a large dispersion. Therefore, a blood flow image with a small variance is transparent and a blood flow image with a large variance remains, so that turbulence can be easily determined.
  • volume rendering uses the parameters in the 3D vota cell to determine the brightness of the color
  • the hue and transparency are determined.
  • the same color bar as that used in the two-dimensional image is used to determine the brightness and hue according to the blood flow speed * variance, and the transparency is arbitrarily determined by the operator. Use a value that can be set. The operator can observe an arbitrary cross section and control the transparency of the entire blood flow during the three-dimensional display.
  • FIG. 4 is a flowchart illustrating an example of a method for displaying a three-dimensional color Doppler image.
  • FIG. 5 is a diagram showing an example of a procedure for displaying information on the blood flow velocity among the blood flow information at the diagnostic site of the subject measured by the ultrasonic Doppler measuring unit 31 shown in FIG. .
  • a plurality of color Doppler images are measured. That is, as shown in FIG. 5, an ultrasonic diagnostic apparatus having a color Doppler measurement function measures a plurality of color Doppler images 51 (for example, n images of P1 to Pn) at a diagnostic site of a subject.
  • step S42 for each of the measured color Doppler images, the velocity 'reflection intensity and the dispersion data are arranged in a three-dimensional Vota cell. That is, as shown in FIG. 5, each of the n measured color Doppler images 51 is arranged on the three-dimensional button cell 52 according to the position of each surface.
  • step S43 the color information of the three-dimensional vota cell is determined based on the speed and the magnitude of the variance using the luminance ′ hue color bar. That is, as shown in FIG. 5, there are three pieces of information of each point on each three-dimensional voxel 52: speed, reflection intensity, and variance, but in order to perform color Doppler display according to speed and variance, First, the luminance and the hue of each point on each three-dimensional button cell 52 are determined using the luminance and the hue color bar 53 from the speed and dispersion information.
  • step S44 using the transparency color bar 54, the transparency of the three-dimensional Vota cell is determined based on the magnitude of the variance. That is, as shown in FIG. 5, the transparency of each point on each three-dimensional button cell 52 is determined using the transparency color bar 54.
  • the transparency color bar 54 is set such that the greater the variance, the lower the transparency.
  • the transparency color bar 54 is an example, and a different color bar is selected by the transparency control unit 3A. For example, compared to the transparency color bar 54 shown in FIG. 5, the transparency is relatively large only in the portion where the dispersion is relatively small, and the transparency is small (the opacity is large) in the portion where the dispersion is large. Use one that is set as follows.
  • the transparency control unit 3A selects the transparency color bar 54 in which the ratio of the transparency that changes according to the magnitude of the dispersion is different.
  • the transparency obtained by the transparency color bar 54 may be appropriately operated to control the transparency.
  • step S45 volume rendering is executed based on the parameters determined by the previous processing, and a projection image is created and displayed. That is, as shown in FIG. 5, a volume rendering is performed on the three-dimensional bottle cell 52 to create a three-dimensional color Doppler projected image 55, which is displayed on the television monitor 110.
  • the blood flow with a small variance has high transparency, and the blood flow with a large variance has low transparency (high opacity).
  • the turbulence is displayed in an emphasized form as shown.
  • the speed and variance shown in FIG. 5 are obtained as relative values.
  • the speed component is represented by a numerical value from 1.0 to 1.0.
  • the variance component is represented by a numerical value from 0 to 1.0.
  • the speed is +1.0 and the variance is 0, it is determined that the color information of the three-dimensional vota cell is red and transparent, and a volume rendering is performed to create a three-dimensional color Doppler projection image 55, and the transparent red is displayed. It is displayed on the TV monitor 110.
  • the speed is +1.0 and the variance is 1.0
  • the color information of the three-dimensional vota cell is determined to be yellow and not transparent.
  • the velocity is -1.0 and the variance is 0.5
  • the color information of the three-dimensional votacel is determined to be yellow-green and translucent.
  • a three-dimensional color Doppler projection image created by performing volume rendering after arranging a plurality of color Doppler images measured by an ultrasonic diagnostic apparatus in a three-dimensional Vota cell, a three-dimensional color Doppler projection image created by performing volume rendering.
  • the variance is small! Normally, the blood flow can be seen through with great transparency, and the turbulence with large variance can be displayed opaque. Therefore, in a flow in which turbulence exists in a part of the blood flow as shown in FIG. 5, in the conventional method, as shown in FIG. 6 (A), the turbulence 5 is difficult to discriminate, whereas the method according to the present invention has a small dispersion. ⁇ Since the blood flow 2 can be seen through, the flow of the turbulent flow 5 easily exists in the blood flow as shown in FIG. 6 (B).
  • an effective display for image diagnosis can be performed in an ultrasonic diagnostic apparatus having a color Doppler measurement function.
  • a force rubber 541 is prepared in which the luminance 'hue color bar 53 and the transparency color bar 54 are combined in advance, as described in the case where the luminance' hue color bar 53 and the transparency color bar 54 are separately processed. , May be used for processing.
  • the luminance 'hue color bar 53 and the transparency color bar 54 may be displayed simultaneously with the three-dimensional color Doppler projected image 55 as shown in FIG.
  • Luminance ⁇ Hue color bar 53 and Transparency color bar 54 Forced dimensional color Doppler projection image 55 Displayed at the same time as a reference for observation, you can easily understand how much turbulence is Become like
  • a selection means for selecting the luminance / hue color bar 53 and the transparency color bar 54 is provided, and the luminance / hue color bar 53 and the transparency color bar 54 are alternately switched and selected. Only the color bar may be displayed. Further, the luminance color bar 53 and the transparency color bar 54 may be simultaneously displayed. When only the transparency color bar 54 is used, for example, display may be performed by changing the transparency of red by using red as the luminance and hue. Therefore, areas with large variance have low transparency and areas with low variance have high transparency.Each point is displayed in red, so that turbulence is displayed in red with low transparency, and other areas are displayed in red. Large and can be displayed in red.
  • the color bars 23 and 53 are displayed in black and white. Actually, the color bars are displayed. The color bars 23 and 53 gradually change from dark red to orange when the speed near 0 is close to black, and gradually change to near yellow as the variance increases. Conversely, when the velocity is in the negative direction, the color gradually changes from dark blue to bright blue, and gradually changes to a color closer to green as the variance increases.
  • the color of the blood vessel 2 in the color Doppler projection image is displayed in a color corresponding to such color bars 23 and 53. Therefore, as shown in Fig. 3 (B), when turbulence 5 is present in a part of the blood flow flowing at the speed indicated by arrow 4 as a whole, a reddish color is displayed as a whole. The turbulence 5 is displayed in a greenish color in the blood flow 2 that has been generated.
  • the luminance 'hue color bar 53 is a force that determines colors as shown in Figs. 3 and 5, and any color may be assigned according to the speed and dispersion of the color bar.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 超音波探触子101を介して被検体に超音波を送受させ、被検体の診断部位の断層像を構成する断層像構成部112と、診断部位から得られるドプラ信号に基づいてカラードプラ像を構成するカラードプラ像構成手段31と、断層像とカラードプラ像をそれぞれ画像処理する画像処理手段113と、画像処理手段で処理された画像を表示させる表示手段110とを備え、表示手段110に断層像とカラードプラ像とをカラー表示させる超音波診断装置において、画像処理手段113は、カラードプラ像を透明表示させる。

Description

明 細 書
超音波診断装置及び超音波画像診断方法
技術分野
[0001] 本発明は、カラードプラ計測機能を有し、被検体の診断部位を計測して得た複数 枚のカラードプラ像について画像を構成して表示する超音波診断装置に係り、血流 情報と共に乱流情報が表示することができる超音波診断装置及び超音波画像診断 方法に関する。
背景技術
[0002] カラードプラ像表示、特に 3次元表示においては、血流が投影面に対して奥に位置 するのか近くに位置するのかを示す奥行き情報が必要である。このような奥行きを輝 度の明暗で表して画面上にカラーバーとして表示するようにしたものとして、特許文 献 1に示すようなものがある。
特許文献 1:特開平 11 299784号公報
[0003] 従来のカラードプラ像表示においては、血流中に乱流のような流れが存在する時 に、乱流の周りの血流だけが表示されることになり、乱流はその血流の映像に隠され てしまって乱流自体を発見しに《なるという問題が生じる。なお、操作者は適当な任 意断面を選択することによって血流内に存在する乱流を観察することは可能である が、乱流が存在する部位に断面を設定するには、煩雑な操作が必要である。
[0004] 本発明は、上述の点に鑑みなされたものであり、カラードプラ像を表示する場合に、 容易に血流内部に存在する乱流を判別できるように表示することのできる超音波診 断装置及び超音波画像診断方法を提供することを目的とする。
発明の開示
[0005] 上記目的を達成するために、超音波探触子を介して被検体に超音波を送受させ、 前記被検体の診断部位の断層像を構成する断層像構成部と、前記診断部位から得 られるドプラ信号に基づ 、てカラードプラ像を構成するカラードプラ像構成手段と、前 記断層像と前記カラードプラ像をそれぞれ画像処理する画像処理手段と、前記画像 処理手段で処理された画像を表示させる表示手段とを備え、前記表示手段に前記 断層像と前記カラードプラ像とをカラー表示させる超音波診断装置において、前記 画像処理手段は、前記カラードプラ像を透明表示させる。
[0006] 前記表示手段は、前記カラー表示と前記透明表示とを合成した情報を表示する。
そして、前記カラー表示と前記透明表示とを選択する選択手段を備え、前記表示手 段は、前記選択手段により選択された情報を表示する。さらに前記透明表示された 前記カラードプラ像の透明の度合を制御する透明度制御手段を備えた。
[0007] 前記透明度制御手段は、前記カラードプラ像の前記血流情報に基づいて前記透 明の度合を制御する。また前記透明度制御手段は、前記カラードプラ像の血流の分 散に基づいて前記透明の度合を制御する。また前記透明度制御手段は、前記血流 の分散が大きいほど前記カラードプラ像の透明度が小さくなるように設定する。さらに 前記透明度制御手段は、前記分散を相対値として求め、前記分散が最大のときは不 透明であり、前記分散が無いときは透明であり、その他の前記分散のときは半透明で 表示させる。
[0008] 前記表示手段は、前記カラー表示されたカラードプラ像の透明度を表す透明度力 ラーバーを表示する。前記透明度制御手段は、前記分散によって異なる透明度が設 定される前記透明度カラーバーを表示させる。
[0009] 前記カラー表示されたカラードプラ像の色合を制御する輝度 ·色相制御手段を備え 、前記透明度制御手段及び前記輝度 ·色相制御手段は、輝度 ·色相 ·透明度を前記 血流情報に基づいて制御し、 3次元カラードプラ像を作成する。また、前記ドプラ信号 の速度'反射強度、分散データを 3次元ボタセル内にそれぞれの面の位置に応じて 配置する手段と、前記 3次元ボタセルの色情報を、速度及び分散の大きさに基づい て色相'輝度を決定する手段と、 3次元ボタセルの透明度を分散の大きさに基づいて 透明度を決定する。
図面の簡単な説明
[0010] [図 1]本発明に関する全体構成を示す図である。
[図 2]本発明に関する画像処理部の詳細を示す図である。
[図 3]本発明に関するカラー 2次元画像表示を示す図である。
[図 4]本発明に関するカラー 3次元画像表示方法を示す図である。 [図 5]本発明に関するカラー 3次元画像表示方法を示す図である。
[図 6]本発明に関する表示結果を示す図である。
発明を実施するための最良の形態
[0011] 本発明のカラードプラ計測機能を有する超音波診断装置に関し、図 1を用いて説明 する。送信機 102で送出された超音波パルスを、超音波探触子 101から反射物体 111 に向けて等間隔 Tで繰り返し送波する。反射物体 111により反射された超音波パルス は受波回路 103により受波され、 AZD変換器 104によってデジタル信号に変換され、 位相比較器 105によって、 cos成分、 sin成分のそれぞれのデジタル信号出力が得ら れる。 cos成分、 sin成分の信号は、高域通過型 MTIフィルタ 106によって当該低周波 成分 (クラッタ成分)を減衰し、高周波成分 (血流成分)を抽出し、自己相関演算部 107において血流の平均速度、分散、パワーを演算する。当該各演算結果は、デイジ タルスキャンコンバータ 108によってテレビ走査方式に従って並び替えられ、カラーェ ンコーダ 109によって速度'分散に対応するカラー化を行い、テレビモニタ 110に表示 する。カラードプラ像を断層像とともに表示させる場合、断層像構成部 112で断層像 を構成し、画像処理部 113を用いて、カラードプラ像を断層像と重ね合わせてテレビ モニタ 110上に表示する。
[0012] この超音波診断装置は、被検体の診断部位にっ ヽて複数枚のカラードプラ像を撮 影し、そのカラードプラ像に基づ 、て 2次元画像や 3次元画像を表示するものである。
[0013] 図 2は、本発明の画像処理部の詳細を示す図である。超音波ドプラ計測部 31は、被 検体の診断部位についてカラードプラ像を複数枚計測するものであり、図 1に示す通 り、超音波探触子 101から得られるドプラ信号を処理し、カラードプラ像を構成する。
[0014] 画像処理部 113は、通信ポート 33と画像構成部 34から構成される。通信ポート 33は 、超音波ドプラ計測部 31で計測した複数枚のカラードプラ像の速度、反射強度、周 波数偏移の分散の各データ及び断層像を画像構成部 34に取り込むものである。画 像構成部 34は、通信ポート 33から取り込まれた複数枚のカラードプラ像の速度、反射 強度、分散のデータを画像処理するものであり、高速演算装置 35、 RAM36,磁気ディ スク装置 37、 CPU38、透明度制御部 3Aから構成される。 RAM36及び磁気ディスク装 置 37は、取り込まれたカラードプラ像のデータを記憶するものである。高速演算装置 35は、 RAM36及び磁気ディスク装置 37からデータを読み出して 2次元画像処理や 3次 元画像処理を行うものである。テレビモニタ 110は、高速演算装置 35により画像ィ匕され たカラードプラ像を表示するものである。 CPU38は、これらの各構成要素の動作を制 御するものである。データバス 30は、各構成要素間でデータを伝送するものである。 透明度制御部 3Aは、分散が大きいほど透明度が小さくなるように設定された透明度 カラーバーを適宜制御するものである。テレビモニタ 110には、カラー表示と透明表示 とを合成したカラードプラ像を表示する。カラー表示と透明表示とを選択する選択手 段(図示しない。)を備えており、テレビモニタ 110は、選択手段により選択されたカラ 一ドプラ像を表示する。
[0015] ここで、本発明のカラー 2次元画像表示を行う場合について図 3を用いて説明する。
図 3 (B)に示すように血管 2の内部が全体的に矢印 4で示す方向の血流であるとき、こ の血流中の一部に図示のような乱流 5が存在するような被検体組織に対して、図 3 (A )に示すような超音波ビームを送受してカラードプラ演算を行い、カラードプラ像とし て表示する。そのカラードプラ像のデータ構造は、血流速度と分散の大きさに基づい て、図 3 (C)に示すような輝度 ·色相カラーバー 23と透明度カラーバー 24を用いて、そ れを血流の存在する部分に割り当てたものになる。
[0016] 画像の各点の情報としては、速度、反射強度、分散の 3つがあるが、速度と分散に 応じたカラードプラ表示を行うために、まず速度と分散の情報から輝度 ·色相カラー バー 23を用いて各点の輝度'色相を決定する。そして、透明度カラーバー 24を用い て、各点の透明度を分散の大きさに基づいて決定する。この透明度カラーバー 24は 、分散が大き 、ほど透明度が小さくなるように設定されて 、る。
[0017] 一概に血流中に存在する乱流個所は分散が大きい。よって、分散の小さい血流像 が透け、分散の大きい血流像が残るため、乱流を容易に判別することができる。
[0018] ここで、 3次元カラー画像処理につ 、て説明する。まず、被検体の診断部位にっ ヽ て適当なスライス間隔で撮影した複数のカラードプラ像を作成し、それを 3次元カラー ドプラボタセルに格納する。この 3次元ボタセルに対して任意の視点 ·角度を設定して ボリュームレンダリングを行うことで画面に 3次元カラードプラ投影像を表示している。 ボリュームレンダリングでは、 3次元ボタセル内のパラメータを用いてカラーの輝度'色 相 ·透明度を決定するが、この場合では 2次元像で用いるものと同じカラーバーを使 用して、血流の速度 *分散に応じた輝度 ·色相を決定し、透明度は操作者が任意に 設定できる値を用いる。操作者は 3次元表示中に、任意の断面を観察したり、血流全 体の透明度を制御することができる。
[0019] 次に、超音波診断装置を用いて 3次元カラードプラ像を表示する方法につ 、て図 4 及び図 5を用いて説明する。図 4は、 3次元カラードプラ像を表示する方法の一例を示 すフローチャート図である。図 5は、図 2に示す超音波ドプラ計測部 31で計測した被検 体の診断部位にっ 、ての血流情報のうち、血流速度の情報を表示する手順の一例 を示す図である。
[0020] まず、最初のステップ S41では、カラードプラ像を複数枚計測する。すなわち、図 5に 示すように、カラードプラ計測機能を有する超音波診断装置で被検体の診断部位に つ!、てカラードプラ像 51を複数枚 (例えば P1— Pnの n枚)を計測する。
[0021] ステップ S42では、計測された各カラードプラ像について、速度'反射強度、分散デ ータを 3次元ボタセル内に配置する。すなわち、図 5に示すように、計測した n枚のカラ 一ドプラ像 51の各枚についてそれぞれの面の位置に応じて 3次元ボタセル 52上への 配置を行う。
[0022] ステップ S43では、輝度'色相カラーバーを用いて 3次元ボタセルの色情報を、速度 及び分散の大きさに基づいて決定する。すなわち、図 5に示すように、各 3次元ボクセ ル 52上の各点の情報としては、速度、反射強度、分散の 3つがあるが、速度と分散に 応じたカラードプラ表示を行うために、まず速度と分散の情報から輝度 ·色相カラー バー 53を用いて各 3次元ボタセル 52上の各点の輝度 ·色相を決定する。
[0023] ステップ S44では、透明度カラーバー 54を用いて、 3次元ボタセルの透明度を分散 の大きさに基づいて決定する。すなわち、図 5に示すように、透明度カラーバー 54を 用いて各 3次元ボタセル 52上の各点の透明度を決定する。透明度カラーバー 54は、 分散が大き 、ほど透明度が小さくなるように設定されて 、る。この透明度カラーバー 54は、一例であり、透明度制御部 3Aによって異なるものが選択されるようになってい る。例えば、図 5に示す透明度カラーバー 54に比べて比較的分散の小さい部分だけ の透明度が大きぐ分散が大きい部分では透明度が小さく(不透明度が大きく)なるよ うに設定されたものなどを用いる。すなわち、透明度制御部 3Aは、分散の大きさに応 じて変化する透明度の割合が異なるような透明度カラーバー 54を選択するものである 。なお、透明度カラーバー 54を選択する代わりに、透明度カラーバー 54によって得ら れた透明度に適宜演算を行って透明度を制御するようにしてもよい。
[0024] ステップ S45では、前の処理によって決定したパラメータを元に、ボリュームレンダリ ングを実行し、投影像を作成して表示する。すなわち、図 5に示すように、 3次元ボタ セル 52に対してボリュームレンダリングを行って 3次元カラードプラ投影像 55を作成し 、それをテレビモニタ 110に表示する。
[0025] この結果、図 5に示すように、分散の小さい血流は透明度が大きくなり、分散の大き な血流は透明度が小さく(不透明度が大きく)なるので、 3次元カラードプラ投影像 55 のように乱流が強調された形で表示されるようになる。
[0026] 図 5に示す速度及び分散は相対値として求めたものであり、例えば速度成分は 1.0から 1.0として数値で表される。また分散成分は 0から 1.0として数値で表される。速 度が + 1.0であり、分散が 0である場合、 3次元ボタセルの色情報は赤色で且つ透ける と決定され、ボリュームレンダリングを行って 3次元カラードプラ投影像 55を作成し、透 けた赤色をテレビモニタ 110に表示する。同様にして、速度が + 1.0であり、分散が 1.0 である場合、 3次元ボタセルの色情報は黄色で且つ透けないと決定される。また速度 がー 1.0であり、分散が 0.5である場合、 3次元ボタセルの色情報は黄緑で且つ半透明 と決定される。
[0027] この実施の形態によれば、超音波診断装置で計測された複数枚のカラードプラ像 を 3次元ボタセル内に配置した後、ボリュームレンダリングを行って作成した 3次元カラ 一ドプラ投影像にぉ 、て分散の小さ!、通常血流は透明度が大きく透けて見え、分散 の大きな乱流は不透明に表示することができる。従って、図 5に示すように血流中の 一部に乱流が存在する流れにおいては、従来法では図 6 (A)に示すように血管 2内の 分散の小さな血流に隠れて乱流 5が判別しにくいのに対して、本発明による方法では 分散のすくな ヽ血流 2が透けて見えるために図 6 (B)のように容易に血流中に存在す る乱流 5の流れを判別することが可能となる。このことから、カラードプラ計測機能を有 する超音波診断装置において画像診断に有効な表示ができるようになる。 [0028] なお、輝度'色相カラーバー 53と透明度カラーバー 54を別々に処理する場合につ いて説明した力 予め輝度'色相カラーバー 53と透明度カラーバー 54とを合成した力 ラーバー 541を作成し、それを用いて処理するようにしてもよい。また、輝度'色相カラ 一バー 53と透明度カラーバー 54は、図 5に示すように 3次元カラードプラ投影像 55と 同時に表示するようにしてもょ 、。輝度 ·色相カラーバー 53と透明度カラーバー 54力^ 次元カラードプラ投影像 55と同時に表示されることによって、観察する場合の参考と なり、どの程度の乱流なのかを容易に把握することができるようになる。
[0029] また、輝度 ·色相カラーバー 53と透明度カラーバー 54とを選択する選択手段を備え て(図示しない。)、輝度 ·色相カラーバー 53と透明度カラーバー 54を交互に切り替え て、選択したカラーバーのみを表示させてもよい。さらに輝度'色相カラーバー 53と透 明度カラーバー 54を同時に用いて表示させてもょ 、。透明度カラーバー 54のみを用 いる場合、例えば輝度 ·色相は赤色を用いて、赤色の透明度を変えて表示を行って もよい。よって、分散が大きい箇所は透明度を小さぐ分散が小さい箇所は透明度を 大きく設定し、各点を赤色に表示させることにより、乱流を透明度の小さい赤色で表 示させ、その他の箇所を透明度の大き 、赤色で表示させることができる。
[0030] なお、図 3、図 5では、カラーバー 23、 53を白黒で表示してある力 実際はカラー表 示である。カラーバー 23、 53は、速度 0付近が黒色に近ぐ正方向の速度の場合は暗 い赤色から徐々に橙色に変化し、分散が大きくなるに従って徐々に黄色に近い色に 変化するようになっており、逆に負方向の速度の場合は濃紺から徐々に明るい青色 に変化し、分散が大きくなるに従って徐々に緑色に近い色に変化するようになってい る。カラードプラ投影像内の血管 2の色は、このようなカラーバー 23、 53に対応した色 で表示される。従って、図 3 (B)のように、全体的に矢印 4で示す方向の速度で流れて いる血流中の一部に乱流 5が存在するような場合は、全体的に赤系色表示された血 流 2に乱流 5が緑系色で表示されていることになる。
[0031] また、輝度'色相カラーバー 53は、図 3、図 5のように色を決定している力 このカラ 一バーの速度及び分散に応じた色の割り当ては何色でもよ 、。

Claims

請求の範囲
[1] 超音波探触子を介して被検体に超音波を送受させ、前記被検体の診断部位の断 層像を構成する断層像構成部と、前記診断部位カゝら得られるドプラ信号に基づ ヽて カラードプラ像を構成するカラードプラ像構成手段と、前記断層像と前記カラードプラ 像をそれぞれ画像処理する画像処理手段と、前記画像処理手段で処理された画像 を表示させる表示手段とを備え、前記表示手段に前記断層像と前記カラードプラ像と をカラー表示させる超音波診断装置において、前記画像処理手段は、前記カラード ブラ像を透明表示させることを特徴とする超音波診断装置。
[2] 前記表示手段は、前記カラー表示と前記透明表示とを合成した情報を表示するこ とを特徴とする請求項 1記載の超音波診断装置。
[3] 前記カラー表示と前記透明表示とを選択する選択手段を備え、前記表示手段は、 前記選択手段により選択された情報を表示することを特徴とする請求項 1記載の超音
[4] 前記透明表示された前記カラードプラ像の透明の度合を制御する透明度制御手段 を備えたことを特徴とする請求項 1記載の超音波診断装置。
[5] 前記透明度制御手段は、前記カラードプラ像の前記血流情報に基づ!、て前記透 明の度合を制御することを特徴とする請求項 4記載の超音波診断装置。
[6] 前記透明度制御手段は、前記カラードプラ像の血流の分散に基づいて前記透明 の度合を制御することを特徴とする請求項 4記載の超音波診断装置。
[7] 前記透明度制御手段は、前記血流の分散が大き 、ほど前記カラードプラ像の透明 度が小さくなるように設定することを特徴とする請求項 4記載の超音波診断装置。
[8] 前記透明度制御手段は、前記分散を相対値として求め、前記分散が最大のときは 不透明であり、前記分散が無いときは透明であり、その他の前記分散のときは半透明 で表示させることを特徴とする請求項 4記載の超音波診断装置。
[9] 前記表示手段は、前記カラー表示されたカラードプラ像の透明度を表す透明度力 ラーバーを表示することを特徴とする請求項 1記載の超音波診断装置。
[10] 前記透明度制御手段は、前記分散によって異なる透明度が設定される前記透明度 カラーバーを表示させることを特徴とする請求項 4記載の超音波診断装置。
[11] 前記カラー表示されたカラードプラ像の色合を制御する輝度 ·色相制御手段を備え
、前記透明度制御手段及び前記輝度 ·色相制御手段は、輝度 ·色相 ·透明度を前記 血流情報に基づ!ヽて制御し、 3次元カラードプラ像を作成することを特徴とする請求 項 4記載の超音波診断装置。
[12] 前記ドプラ信号の速度'反射強度、分散データを 3次元ボタセル内にそれぞれの面 の位置に応じて配置する手段と、前記 3次元ボタセルの色情報を、速度及び分散の 大きさに基づいて色相'輝度を決定する手段と、 3次元ボタセルの透明度を分散の大 きさに基づいて透明度を決定する手段とを備えた請求項 11記載の超音波診断装置
[13] 前記表示手段には、前記 3次元カラードプラ像の前記血流の乱流部が表示されるこ とを特徴とする請求項 11記載の超音波診断装置。
[14] 前記カラードプラ像構成手段は、前記ドプラ信号の cos成分及び sin成分をそれぞれ 出力する位相比較器と、前記 cos成分及び前記 sin成分の信号の当該低周波成分を 減衰し、高周波成分を抽出する ΜΉフィルタと、前記血流の平均速度、分散、パワー を演算する自己相関演算部と、テレビ走査方式に従って並び替えられるディジタルス キャンコンバータと、速度'分散に対応するカラー化を行うカラーエンコーダとを備え たことを特徴とする請求項 1記載の超音波診断装置。
[15] 前記カラー表示されたカラードプラ像の色を表す輝度 ·色相カラーバーを表示させ 、前記輝度'色相カラーバーは、前記血流の速度 0付近が黒色に近ぐ正方向の速 度の場合は暗い赤色力 徐々に橙色に変化し、分散が大きくなるに従って徐々に黄 色に近い色に変化するようになっており、逆に負方向の速度の場合は濃紺から徐々 に明るい青色に変化し、分散が大きくなるに従って徐々に緑色に近い色に変化する ことを特徴とする請求項 1記載の超音波診断装置。
[16] 前記画像処理手段は、複数枚のカラードプラ像のデータを記憶する記録手段を有 し、前記記録手段から前記データを読み出し、複数枚のカラードプラ像の速度、反射 強度、分散のデータを画像処理することを特徴とする請求項 1記載の超音波診断装
[17] 超音波探触子を介して被検体に超音波を送受させるステップと、前記被検体の診 断部位の断層像を構成するステップと、前記診断部位カゝら得られるドプラ信号に基 づ!、てカラードプラ像を構成するステップと、前記断層像と前記カラードプラ像をそれ ぞれ画像処理するステップと、前記画像処理で処理された画像を表示させるステップ とを有し、前記断層像と前記カラードプラ像とをカラー表示させる超音波画像診断方 法にぉ 、て、前記カラードプラ像を透明表示させるステップを有することを特徴とする 超音波画像診断方法。
[18] 前記カラードプラ像を複数枚計測するステップと、前記カラードプラ像にっ 、て、速 度'反射強度、分散データを 3次元ボタセル内にそれぞれの面の位置に応じて配置 するステップと、前記 3次元ボタセルの色情報を、前記速度及び前記分散の大きさに 基づいて色相 ·輝度を決定するステップと、前記分散の大きさに基づいて前記 3次元 ボタセルの透明度を決定するステップと、上記ステップによって決定したパラメータを 元に、ボリュームレンダリングを実行し、投影像を作成して表示するステップとを有す ることを特徴とする請求項 17記載の超音波画像診断方法。
PCT/JP2004/010321 2003-07-22 2004-07-21 超音波診断装置及び超音波画像診断方法 WO2005006987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005511883A JP4610011B2 (ja) 2003-07-22 2004-07-21 超音波診断装置及び超音波画像表示方法
US10/565,435 US7972269B2 (en) 2003-07-22 2004-07-21 Ultrasonographic device and ultrasonographic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003200162 2003-07-22
JP2003-200162 2003-07-22

Publications (1)

Publication Number Publication Date
WO2005006987A1 true WO2005006987A1 (ja) 2005-01-27

Family

ID=34074452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010321 WO2005006987A1 (ja) 2003-07-22 2004-07-21 超音波診断装置及び超音波画像診断方法

Country Status (4)

Country Link
US (1) US7972269B2 (ja)
JP (1) JP4610011B2 (ja)
CN (1) CN100446733C (ja)
WO (1) WO2005006987A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143733A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 超音波診断装置、3次元画像データ表示装置及び3次元画像データ表示方法
JP2007007402A (ja) * 2005-06-28 2007-01-18 Medison Co Ltd カラーフロー映像をディスプレイする方法及び超音波診断システム
JP2007143627A (ja) * 2005-11-24 2007-06-14 Ge Medical Systems Global Technology Co Llc 画像診断装置
JP2007296333A (ja) * 2006-04-27 2007-11-15 General Electric Co <Ge> フロージェットの3d描出のための方法及び装置
JP2009011711A (ja) * 2007-07-09 2009-01-22 Toshiba Corp 超音波診断装置
JP2009153919A (ja) * 2007-12-27 2009-07-16 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JPWO2011086774A1 (ja) * 2010-01-18 2013-05-16 株式会社日立メディコ 超音波診断装置及び超音波画像表示方法
JP2013526975A (ja) * 2010-05-27 2013-06-27 三星メディソン株式会社 カラー再構成映像を提供する超音波システムおよび方法
JP2021159696A (ja) * 2020-04-03 2021-10-11 キヤノンメディカルシステムズ株式会社 超音波診断装置、およびプログラム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030731A1 (ja) * 2004-09-13 2006-03-23 Hitachi Medical Corporation 超音波撮像装置及び投影像生成方法
US11228753B1 (en) * 2006-12-28 2022-01-18 Robert Edwin Douglas Method and apparatus for performing stereoscopic zooming on a head display unit
US10795457B2 (en) * 2006-12-28 2020-10-06 D3D Technologies, Inc. Interactive 3D cursor
US11275242B1 (en) * 2006-12-28 2022-03-15 Tipping Point Medical Images, Llc Method and apparatus for performing stereoscopic rotation of a volume on a head display unit
EP2417912B1 (en) * 2009-04-10 2018-09-05 Hitachi, Ltd. Ultrasonic diagnosis apparatus and method for constructing distribution image of blood flow dynamic state
WO2011099410A1 (ja) * 2010-02-09 2011-08-18 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法
CN102429684B (zh) * 2010-09-28 2013-10-09 深圳迈瑞生物医疗电子股份有限公司 一种多普勒彩色血流成像方法和装置
KR101390186B1 (ko) * 2010-12-07 2014-04-29 삼성메디슨 주식회사 시간에 따른 혈류 변화를 나타내는 부가 정보를 제공하는 초음파 시스템 및 방법
US20120245465A1 (en) * 2011-03-25 2012-09-27 Joger Hansegard Method and system for displaying intersection information on a volumetric ultrasound image
US8891881B2 (en) 2012-01-25 2014-11-18 General Electric Company System and method for identifying an optimal image frame for ultrasound imaging
KR102185726B1 (ko) 2014-01-28 2020-12-02 삼성메디슨 주식회사 관심 영역에 대응하는 초음파 영상 표시 방법 및 이를 위한 초음파 장치
CN105574861B (zh) * 2015-12-14 2018-05-08 上海交通大学 无标记的血流成像方法及系统
CN107228684B (zh) * 2017-06-20 2019-12-06 长春理工大学 基于自相关滤波技术的psd输出有用信号提取方法
US10846911B1 (en) * 2019-07-09 2020-11-24 Robert Edwin Douglas 3D imaging of virtual fluids and virtual sounds
US11090873B1 (en) * 2020-02-02 2021-08-17 Robert Edwin Douglas Optimizing analysis of a 3D printed object through integration of geo-registered virtual objects
US11619737B2 (en) * 2020-07-01 2023-04-04 Ge Precision Healthcare Ultrasound imaging system and method for generating a volume-rendered image

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000238A (ja) * 1998-06-15 2000-01-07 Toshiba Iyo System Engineering Kk 3次元超音波システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613031B2 (ja) * 1987-08-12 1994-02-23 株式会社東芝 超音波血流イメ−ジング装置
CN1182357A (zh) * 1996-03-18 1998-05-20 古野电气株式会社 超声波诊断装置
US6086539A (en) * 1996-12-04 2000-07-11 Acuson Corporation Methods and apparatus for ultrasound image quantification
JP3403917B2 (ja) * 1997-05-26 2003-05-06 株式会社日立メディコ 超音波断層装置
AU7711498A (en) * 1997-06-02 1998-12-21 Joseph A. Izatt Doppler flow imaging using optical coherence tomography
JP3857788B2 (ja) * 1997-09-01 2006-12-13 テルモ株式会社 循環器情報計測システム
CA2333583C (en) * 1997-11-24 2005-11-08 Everette C. Burdette Real time brachytherapy spatial registration and visualization system
JPH11299784A (ja) 1998-04-22 1999-11-02 Toshiba Corp 超音波診断装置
US6116244A (en) * 1998-06-02 2000-09-12 Acuson Corporation Ultrasonic system and method for three-dimensional imaging with opacity control
US6239796B1 (en) * 1998-06-09 2001-05-29 Agilent Technologies, Inc. Apparatus and method for controlling dialog box display and system interactivity in a signal measurement system
US6196972B1 (en) * 1998-11-11 2001-03-06 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow
US6547736B1 (en) * 1998-11-11 2003-04-15 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli
US6544181B1 (en) * 1999-03-05 2003-04-08 The General Hospital Corporation Method and apparatus for measuring volume flow and area for a dynamic orifice
JP4297561B2 (ja) * 1999-07-06 2009-07-15 ジーイー横河メディカルシステム株式会社 オパシティ設定方法、3次元像形成方法および装置並びに超音波撮像装置
US7527597B2 (en) * 2001-01-16 2009-05-05 Biomedical Acoustic Research Corporation Acoustic detection of vascular conditions
JP3495710B2 (ja) * 2001-02-01 2004-02-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 血流イメージング装置および超音波診断装置
US7044913B2 (en) * 2001-06-15 2006-05-16 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus
US20030045797A1 (en) * 2001-08-28 2003-03-06 Donald Christopher Automatic optimization of doppler display parameters
US7128713B2 (en) * 2003-07-10 2006-10-31 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow and hemodynamics
US20050090747A1 (en) * 2003-10-06 2005-04-28 Clark David W. Automatic alias avoidance for doppler audio
US7288068B2 (en) * 2003-12-15 2007-10-30 Siemens Medical Solutions Usa, Inc. Automatic optimization for ultrasound medical imaging

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000238A (ja) * 1998-06-15 2000-01-07 Toshiba Iyo System Engineering Kk 3次元超音波システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPAN SOCIETY OF ULTRASONICS IN MEDICINE: "Iyo choonpa no kiso", vol. 1, 15 May 2000, pages: 55 - 57, XP002985329 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143733A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 超音波診断装置、3次元画像データ表示装置及び3次元画像データ表示方法
JP2007007402A (ja) * 2005-06-28 2007-01-18 Medison Co Ltd カラーフロー映像をディスプレイする方法及び超音波診断システム
JP2007143627A (ja) * 2005-11-24 2007-06-14 Ge Medical Systems Global Technology Co Llc 画像診断装置
JP2007296333A (ja) * 2006-04-27 2007-11-15 General Electric Co <Ge> フロージェットの3d描出のための方法及び装置
US8519998B2 (en) 2007-07-09 2013-08-27 Kabushiki Kaisha Toshiba Ultrasonic imaging apparatus
JP2009011711A (ja) * 2007-07-09 2009-01-22 Toshiba Corp 超音波診断装置
JP2009153919A (ja) * 2007-12-27 2009-07-16 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JPWO2011086774A1 (ja) * 2010-01-18 2013-05-16 株式会社日立メディコ 超音波診断装置及び超音波画像表示方法
JP5723790B2 (ja) * 2010-01-18 2015-05-27 株式会社日立メディコ 超音波診断装置
US9247922B2 (en) 2010-01-18 2016-02-02 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic image display method
JP2013526975A (ja) * 2010-05-27 2013-06-27 三星メディソン株式会社 カラー再構成映像を提供する超音波システムおよび方法
JP2021159696A (ja) * 2020-04-03 2021-10-11 キヤノンメディカルシステムズ株式会社 超音波診断装置、およびプログラム
JP7440328B2 (ja) 2020-04-03 2024-02-28 キヤノンメディカルシステムズ株式会社 超音波診断装置、およびプログラム
US12023196B2 (en) 2020-04-03 2024-07-02 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus and storage medium

Also Published As

Publication number Publication date
US20060241458A1 (en) 2006-10-26
CN100446733C (zh) 2008-12-31
CN1826082A (zh) 2006-08-30
US7972269B2 (en) 2011-07-05
JP4610011B2 (ja) 2011-01-12
JPWO2005006987A1 (ja) 2007-04-12

Similar Documents

Publication Publication Date Title
WO2005006987A1 (ja) 超音波診断装置及び超音波画像診断方法
US8519998B2 (en) Ultrasonic imaging apparatus
US8160315B2 (en) Ultrasonic imaging apparatus and projection image generating method
JP5236655B2 (ja) グレイスケール反転を用いる3d超音波カラーフローイメージング
JP4528529B2 (ja) 超音波診断装置及び超音波画像データ処理方法
US7684603B2 (en) Complete field of view of contrast medium in a time-varying ultrasonic imaging apparatus
RU2652257C2 (ru) Ультразвуковая цветовая карта потока для исследования митральной регургитации
KR19990014883A (ko) 초음파진단장치
KR100825054B1 (ko) 컬러 플로우 영상을 촬상하는 방법 및 초음파 진단 시스템
JP3248001B2 (ja) 三次元カラードプラ画像表示方法及びその装置
JPH01310648A (ja) 超音波血流イメージング装置
JP2003102726A (ja) 超音波診断装置
CN101574269B (zh) 超声波观测装置
KR101196211B1 (ko) 초음파 진단장치 및 그 방법
KR101097578B1 (ko) 3차원 컬러 도플러 영상 제공 방법 및 그를 위한 초음파 시스템
JP3776563B2 (ja) 超音波診断装置
JP3619201B2 (ja) 超音波診断装置
JP5269535B2 (ja) 超音波診断装置及び超音波画像表示方法
JP3517002B2 (ja) 超音波診断装置
JPH07303646A (ja) 超音波診断装置
JP5936857B2 (ja) 超音波診断装置及びその画像処理プログラム
JP2005278988A (ja) 超音波画像処理装置
JPH08206113A (ja) 超音波イメージング処理方法及び超音波イメージング装置
JP2013111102A (ja) 超音波診断装置
JPH01244738A (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021072.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511883

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006241458

Country of ref document: US

Ref document number: 10565435

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10565435

Country of ref document: US