WO2006030731A1 - 超音波撮像装置及び投影像生成方法 - Google Patents

超音波撮像装置及び投影像生成方法 Download PDF

Info

Publication number
WO2006030731A1
WO2006030731A1 PCT/JP2005/016745 JP2005016745W WO2006030731A1 WO 2006030731 A1 WO2006030731 A1 WO 2006030731A1 JP 2005016745 W JP2005016745 W JP 2005016745W WO 2006030731 A1 WO2006030731 A1 WO 2006030731A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
image data
projection image
dimensional image
image
Prior art date
Application number
PCT/JP2005/016745
Other languages
English (en)
French (fr)
Inventor
Tetsuya Hayashi
Osamu Arai
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006535872A priority Critical patent/JP4847334B2/ja
Priority to US11/575,166 priority patent/US8160315B2/en
Publication of WO2006030731A1 publication Critical patent/WO2006030731A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging

Definitions

  • the present invention relates to an ultrasonic imaging apparatus and a projection image generation method, and more particularly to a technique suitable for generating a three-dimensional ultrasonic image.
  • An ultrasonic imaging apparatus transmits and receives ultrasonic waves to and from a subject via an ultrasonic probe, and an ultrasonic image of the subject (for example, based on a reflected echo signal from which ultrasonic probe force is also output) , Gray scale images and color blood flow images) are reconstructed and displayed. Based on such an ultrasound image, non-invasive and real-time diagnosis of the imaging part is possible.
  • tomogram volume data! /, U three-dimensional tomogram data
  • Doppler image volume data image data
  • the tissue projection image generated from the acquired tomographic volume data and the Doppler projection image generated from the Doppler image volume data are combined and displayed. Is done.
  • Nutrition of the cancer tissue Recognizing the state of the blood vessel, whether the cancer tissue is primary or metastatic Judgment is made (for example, see Patent Document 1).
  • Patent Document 1 US Pat. No. 6,280,387
  • An object of the present invention is to generate a three-dimensional ultrasonic image capable of accurately grasping the positional relationship between tissues.
  • an ultrasonic imaging apparatus includes an ultrasonic probe (10) that transmits and receives ultrasonic waves to and from a subject, and a drive signal to the ultrasonic probe (10).
  • Signal processing means (
  • a projection image generation method of the present invention includes a first accumulation step of accumulating a plurality of first two-dimensional image data, and the plurality of first two-dimensional image data.
  • a first three-dimensional process for generating first volume data from the second, a second accumulation process for accumulating a plurality of second two-dimensional image data, and the plurality of second two-dimensional image data forces A second three-dimensional process for generating second volume data, a first projection process for rendering the first volume data to generate a first projection image, and the second volume data.
  • generating the first projection image based on the second projection step Said second volume
  • the second projection image is generated based on data and at least a part of the first volume data.
  • the first projection image is generated by adding the information of the second 3D image data to the first 3D image data
  • the second 3D image is generated for each pixel.
  • the overlapping information with the data is reflected in the brightness. Therefore, by referring to the shading of the first projection image, the degree of overlap with the second three-dimensional image data can be grasped, and a three-dimensional and effective diagnosis can be easily performed.
  • the second projected image is generated by adding the information of the first 3D image data to the second 3D image data
  • the second projected image overlaps with the first 3D image data for each pixel.
  • Information is reflected in brightness. Therefore, by referring to the shading of the second projected image, the degree of overlap with the first three-dimensional image data can be grasped, and a three-dimensional and effective diagnosis can be easily performed.
  • FIG. 1 is a configuration diagram of an ultrasonic imaging apparatus of the present embodiment to which the present invention is applied.
  • FIG. 2 is a configuration diagram of a projection image generation unit 28 in FIG.
  • FIG. 3 is a diagram for explaining an operation for generating a composite image.
  • FIG. 4 is an explanatory diagram of normal volume rendering processing.
  • FIG. 5 is a display example of a composite image 69 configured using a phantom.
  • Botacel value force is a diagram showing the relationship leading to opacity.
  • FIG. 7 is a flowchart showing a processing flow for obtaining a projected image and a composite image.
  • FIG. 8 is a diagram showing an example in which a plurality of different color mapping tables are displayed and a composite image is generated based on a selected map!
  • FIG. 1 is a diagram showing an embodiment of an ultrasonic imaging apparatus and a projection image generation method to which the present invention is applied.
  • FIG. 1 is a configuration diagram of the ultrasonic imaging apparatus of the present embodiment.
  • the ultrasonic imaging apparatus displays an imaging processing system for acquiring three-dimensional ultrasonic image volume data of a subject and the acquired three-dimensional ultrasonic image volume data. Broadly divided into display processing systems.
  • the imaging processing system includes an ultrasonic probe 10 in which a plurality of transducers that transmit and receive ultrasonic waves to and from a subject are two-dimensionally arranged, and a transmission unit 12 that supplies a drive signal to the ultrasonic probe 10.
  • the ultrasonic probe 10 includes a receiving unit 14 that receives the reflected echo signal output, and a phasing addition unit 16 that performs phasing addition of the reflected echo signal output from the receiving unit 14. Further, as a means for acquiring tomogram volume data based on the reflected echo signal output from the phasing adder 16, a tomogram system signal processor 18 and a tomogram volume data generator 19 are provided.
  • a Doppler image signal processing unit 20 and a Doppler image volume data creation unit 21 are provided as means for acquiring Doppler image volume data based on the reflected echo signal from which the phasing addition unit 16 also outputs.
  • control commands (dotted lines in FIG. 1) are sent to the ultrasonic probe 10, the transmission unit 12, the reception unit 14, the phasing addition unit 16, the tomographic image signal processing unit 18, and the Doppler image system signal processing unit 20. It has a control unit 22 for outputting.
  • the display processing system includes a communication port 24 that captures tomographic volume data and Doppler image volume data output from the imaging processing system, and a volume data storage unit 26 that stores volume data output from the communication port 24.
  • a projection image generation unit 28 that generates a projection image based on the volume data read from the volume data storage unit 26, and the projection image generated by the projection image generation unit 28 is displayed on the monitor via the video memory 30.
  • a display unit 32 displayed on the screen is provided.
  • a central processing unit hereinafter referred to as a CPU 34
  • a CPU 34 that outputs control commands to the communication port 24, the volume data storage unit 26, the projection image generation unit 28, the video memory 30, and the display unit 32 is provided.
  • the communication port 24, the volume data storage unit 26, the projection image generation unit 28, the video memory 30, the display unit 32, and the CPU 34 are connected to each other via a shared bus 36.
  • a magnetic disk device 27 can be provided as an auxiliary storage device of the volume data storage unit 26. However, not only the magnetic disk unit 27 but also other storage devices such as DVD-R may be provided.
  • a console 38 is connected to the imaging processing system and the image processing system.
  • the console 38 has an input device such as a keyboard or a mouse, and captures commands input via the input device. Output to the control unit 22 of the processing system, or output to the CPU 34 of the image processing system via a shared bus.
  • an input device such as a keyboard or a mouse
  • FIG. 2 is a configuration diagram of the projection image generation unit 28 of FIG.
  • the projection image generation unit 28 corrects the information belonging to each voxel of the tomogram volume data read from the volume data storage unit 26 based on the information belonging to each botacell of the Doppler image volume data
  • a tissue image rendering unit 40 for generating a light and shade (for example, black and white) tissue projection image from the corrected tomographic image volume data is provided.
  • a memory 42 for storing a correction coefficient (blend coefficient) R (or Rl, R2 to be described later) to be given to the tissue image rendering unit 40 is provided.
  • a Doppler image rendering unit 44 for generating a projection image is provided.
  • the memory 46 also stores a correction coefficient (blend coefficient) S (or SI, S2 described later) to be given to the Doppler image rendering unit 44.
  • the correction coefficients R, S (or Rl, R2, SI, S2 to be described later) are variably set in the range of “0” to “1” by a command from the console 38. A fixed value may be used.
  • a composite image is generated by superimposing the tissue projection image generated by the tissue image rendering unit 40 and the Doppler projection image generated by the Doppler image rendering unit 44, and the generated composite image is displayed on the display unit.
  • a compositing unit 48 to be displayed on 32 is provided. It has a memory 50 that stores a color mapping table for composition for giving color data to the composite image.
  • the ultrasonic probe 10 is brought into contact with the body surface of the subject.
  • a drive signal for tissue imaging is supplied from the transmitter 12 to the ultrasonic probe 10.
  • the supplied drive signal is input to a predetermined transducer group selected according to a command from the control unit 22.
  • ultrasonic waves are emitted from each transducer to which the drive signal is input to the subject.
  • the reflected echo signal generated by the subject force is received by each transducer and then output by the ultrasonic probe 10 forces.
  • the reflected echo signal output from the ultrasound probe 10 is subjected to amplification processing or analog-digital conversion processing by the receiver 14. Applied.
  • the reflected echo signal output from the receiving unit 14 is subjected to processing such as detection by the tomographic signal processing unit 18 to obtain black and white tomographic image data based on the signal intensity of the reflected echo signal.
  • a plurality of tomographic image data corresponding to each scan plane is acquired.
  • Each acquired tomogram data is input to the tomogram volume data creation unit 19.
  • the plurality of input tomographic image data is constructed as tomographic image volume data by adding position data (for example, coordinate data of each scan plane) to each botacell by the tomographic volume data creation unit 19.
  • the constructed tomographic volume data is stored in the volume data storage unit 26 via the communication port 24.
  • the Doppler image system signal processing unit 20 calculates a Doppler shift (for example, frequency change or phase change of the reflected echo signal). Then, color Doppler image data such as blood flow velocity, reflection intensity, and dispersion is acquired from the calculated Doppler deviation.
  • a plurality of Doppler image data corresponding to each scan plane is acquired.
  • Each acquired Doppler image data is input to the Doppler image volume data creation unit 21.
  • the plurality of input Doppler image data is constructed as Doppler image volume data by assigning position data (for example, coordinate data of each scan plane) to the respective button cells by the Doppler image volume data creation unit 21.
  • the constructed tomographic volume data is stored in the volume data storage unit 26 via the communication port 24.
  • the tomographic image volume data and the Doppler image volume data stored in the volume data storage unit 26 are read according to a command from the CPU 34 and input to the projection image generation unit 28. Based on the input tomographic volume data, a black and white tissue projection image is input to the projection image generator 28. Therefore, it is generated. Further, based on the read Doppler image volume data, a color Doppler projection image is generated by the projection image generation unit 28. The generated tissue projection image and Doppler projection image are displayed on the display unit 32 as a composite image by being superimposed so that the position data of each pixel is the same. When the tomographic volume data and Doppler image volume data are stored in the magnetic disk device 27, each volume data may be read from the magnetic disk device 27 and input to the projection image generation unit 28.
  • FIG. 3 is a diagram for explaining an operation of generating each projection image and a composite image thereof.
  • tomographic volume data 50 is constructed based on a plurality of tomographic image data Pl to Pn (FIG. 3A) (FIG. 3B).
  • ⁇ Qn V based on FIG. 3 (X)
  • Doppler image volume data 52 is constructed (FIG. 3 (Y).
  • the tomographic volume data 50 is subjected to volume rendering processing by the tissue image rendering unit 40 based on the observation direction (gaze direction) set via the console 38.
  • a tissue projection image 54 is generated (FIG. 3C).
  • the tissue image rendering unit 40 corrects the information belonging to each botacell of the tomographic image volume data 50 based on the information belonging to each botacell of the Doppler image volume data 52, and the slice image volume data 50 And a tissue projection image 54 based on the corrected information.
  • the tissue image rendering unit 40 calculates the attenuation of the botacell determined by the opacity belonging to each botacell in the tomographic image volume data 50.
  • the tomogram volume data 50, the opacity, and the corrected attenuation are corrected based on the opacity of the Doppler image volume data corresponding to the button cell and the opacity belonging to the button cell and the correction coefficient R variably set by the console 38.
  • a tissue projection image 54 is generated by V.
  • the Doppler image volume data 52 is subjected to volume rendering processing by the Doppler image rendering unit 44 based on the observation direction set through the console 38.
  • a Doppler projection image 56 is generated (FIG. 3 (Z).
  • the Doppler image rendering unit 44 uses the tomographic image volume data 52 to obtain information belonging to each botacell of the Doppler image volume data 52. Correction is performed based on information belonging to each of the 50 botacells, and a Doppler projection image 56 is generated based on the Doppler image volume data 52 and the corrected information.
  • the tissue image rendering unit 40 calculates the attenuation of the button cell determined by the opacity belonging to each button cell of the Doppler image volume data 52. Correction based on the opacity of the tomographic image volume data 50 corresponding to the botacell and the correction coefficient S variably set by the console 38, the Doppler image volume data 52, the opacity and the corrected attenuation. Based on the degree, a Doppler projection image 56 is generated.
  • a composite image 58 is generated by superimposing the tissue projection image 54 and the Doppler projection image 56 so that the coordinate data of each pixel is the same (FIG. 3 (K)).
  • the color mapping table 59 is used.
  • This color mapping table 59 is a two-dimensional representation of the brightness value of the composite image 58 corresponding to the brightness value of the tissue projection image 54 set on the horizontal axis and the brightness value of the Doppler projection image 56 set on the vertical axis. It is a map. For example, when the luminance value of the tissue projection image 54 is a and the luminance value of the Doppler projection image 56 is 3 ⁇ 4, the value of the point (a, b) on the color mapping table 59 is the value of the composite image 58 (color (Color) and its brightness).
  • FIG. 8 shows an example in which the selected state of the table is indicated by a mark indicating the selected state ⁇ or the non-selected state 0 in the vicinity of each table.
  • the color mapping table 82 is a table for emphasizing a black and white tissue projection image, and is a table with few color components in the entire table.
  • the color mapping table 84 is a table that emphasizes the color Doppler projection image, and is a table with many color components in the entire table.
  • a synthesized image is synthesized based on the color mapping table.
  • the composite image is synthesized After that, by changing the selection of the color mapping table, the composite image is recombined based on the newly selected color mapping table.
  • Fig. 8 shows an example in which two different color mapping tables are displayed. The number of displayed color mapping tables may be three or more.
  • the composite image is generated as described above, at least one of the tissue projection image 54, the Doppler projection image 56, and the generated composite image 58 is displayed on the display screen of the display unit 32.
  • the composite image is displayed with priority.
  • a tissue projection image and a Doppler projection image are generated together and a composite image is generated by combining these two projection images.
  • Only one of the projected images may be generated.
  • a projection image generated from volume data having a larger amount of information may be generated.
  • the amount of information V and volume data information are taken into account, and the amount of information and volume data force are generated.
  • the tomogram volume data generally has more information than the doppler image volume data, so only the generation of the tissue projection image reflecting the overlap with the blood flow image is performed. You can choose to do it.
  • one projection image is generated in the same manner as in the above-described embodiment, and the other projection image is generated based on only the volume data as in the conventional technology, and these two projection images are combined. You may do it.
  • a tissue projection image may be generated in the same manner as in the above-described embodiment
  • a Doppler projection image may be generated only in the Doppler image volume data
  • a composite image may be generated by combining these two projection images. It can.
  • only the tomographic volume data is generated for the tissue projection image as in the prior art, the Doppler projection image is generated as in the previous embodiment, and the composite image is generated by combining these two projection images. You can also.
  • FIG. Figure 4 shows a typical volleyball when the fetus is the subject of imaging. This figure shows the daring process and is cited from the literature (Kazunori Baba, Yuko Io: Obstetrics and Gynecology 3D Ultrasound. Medical View, Tokyo, 2000.).
  • FIG. 4A is a diagram showing the concept of volume rendering.
  • volume rendering means that the brightness of each point on the projection plane 62 is calculated by performing a predetermined calculation on the brightness value of the botasel on the line 60 passing through the three-dimensional volume data. It is a method to decide.
  • the line 60 is parallel to the observation direction (gaze direction) set via the console 38.
  • FIG. 4B is a diagram showing a concept of a calculation method for determining the luminance of each point on the projection plane 62.
  • the output light amount Cout of the button cell V (x) is expressed by the following equation (1).
  • the output light intensity Cout of the bot cell V (x) attenuates the incident light intensity Cin to the bot cell V (x) according to the degree of attenuation (1 ⁇ ( ⁇ )). It is determined by adding (x) the amount of emitted light C (x) X ⁇ ( ⁇ ).
  • the opacity ⁇ ( ⁇ ) is a value in the range of “0” to “1”. The closer to “0”, the more transparent the button cell V (x), and the closer to “1”, the more the button cell. V (x) means opaque.
  • This opacity ⁇ ( ⁇ ) can be determined by the Botacel value V (x).
  • An example is shown in Fig. 6.
  • the example in Fig. 6 (a) is an example in which the value opacity ⁇ (X) with a low value of the botacel value V (x) is set to a large value, which makes the shape of the subject surface on the incident light side large in the projected image. Will be reflected.
  • Fig. 6 (a) is an example in which the value opacity ⁇ (X) with a low value of the botacel value V (x) is set to a large value, which makes the shape of the subject surface on the incident light side large in the projected image. Will be reflected.
  • Fig. 6 (a) is
  • the high value of the botacel value V (x) is also an example in which the opacity ⁇ 0 is set to a large value.
  • the shape of the part having a large V (x) is greatly reflected in the projected image.
  • the example in Fig. 6 (c) is an example in which the opacity (X (X)) is set in proportion to the botacel value V (x). Become.
  • the tissue image rendering unit 40 converts the attenuation level of the tomographic image volume data 50 into the botell cell Vbw (x), the opacity level belonging to the Doppler image volume data 52 (botacell Vc x), and the variably set correction coefficient R. Based on the tomogram volume data 50, opacity, and corrected attenuation, a tissue projection image 54 is generated.
  • the self-emission amount of the Botacel Vbw (x) in the tomographic volume data 50 is Cbw (x)
  • the opacity is a—bw (x)
  • the opacity of the Botacell Vc x) in the Doppler image volume data 52 is a — Cx
  • the output light quantity Cout of the toeogram volume data 50 of the botasel Vbw (x) is expressed by the following equation (2).
  • the original attenuation (1 a-bw (x)) of the botel cell Vbw (x) is corrected to the new attenuation (1 a _bw (x) + a _cKx) X R)!
  • the Doppler image rendering unit 44 adjusts the attenuation of the Botacel Vc x) of the Doppler image volume data 52, the opacity belonging to the Botacel Vbw (x) of the tomographic image volume data 50, and a variable correction. Correction is performed based on the coefficient S, and a Doppler projection image 56 is generated based on the Doppler image volume data 52, the opacity, and the corrected attenuation.
  • Cc x) be the self-emission amount of the Botacell Vc x) in the Doppler image volume data 52, and opacity a—cx), )
  • the output light amount Cout of the Botacell Vc x) of the Doppler image volume data 52 is expressed by the following equation (3).
  • the original attenuation (1 a—c x)) of the bot cell Vc x) is corrected to the new attenuation (1 a _cKx) + a _bw (x) X S)!
  • the output light intensity Cout of the volume data 50 box Vbw (x) can also be obtained.
  • the output light quantity Cout can be obtained as shown in Equation 4.
  • the output light amount Cout of the button cell Vc x) of the Doppler image volume data 52 can be obtained. That is, the output light amount Cut can also be obtained as shown in Equation 5.
  • the last term (Cbw (x) X ⁇ -bw (x) X S2) is the correction amount
  • the brightness of each point on the projection plane is determined, whereby the tissue projection image 54 is generated.
  • a Doppler projection image 56 is generated based on the output light amount Cout of the Doppler image volume data 52.
  • the tissue projection image 54 is generated by adding the tomographic image volume data 50 to the information belonging to each botacell of the Doppler image volume data 52.
  • the degree of overlap is reflected in the brightness. Therefore, referring to the density of the tissue projection image 54, the degree of blood vessel overlap in the tissue can be easily grasped, and a three-dimensional and effective diagnosis can be performed.
  • by adding the correction amount as shown in Equation 4 and obtaining the projection image it is easier to overlap the blood vessels in the tissue more clearly than the projection image using Equation 2 without adding the correction amount. To be able to grasp.
  • the attenuation of the voxel V (x) in which the Doppler images overlap is corrected among the votacells V (x) of the tomographic image volume data 50. Therefore, when the tissue projection image 54 is generated based on the tomographic volume data 50 and the corrected attenuation, the generated tissue projection image 54 reflects the overlapping state with the blood flow image as a shadow for each pixel. It becomes a thing ( Figure 3 (C)). As a result, by referring to the shades of shadow in the tissue projection image 54, it is possible to easily grasp the degree of blood vessel overlap in the tissue. Can be gripped.
  • the Doppler projection image 56 is generated by adding the information belonging to each of the botasels V (x) of the tomographic image volume data 50 to the Doppler image volume data 52. Therefore, the Doppler projection image 56 overlaps the tomographic image for each pixel. The condition is reflected in the brightness. Therefore, referring to the Doppler projection image 56, it is possible to easily grasp the tissue overlap in the blood vessel. In particular, by adding a correction amount as shown in Equation 5 to obtain a projected image, it is easier to make tissue overlap more clearly in the blood vessel than a projection image using Equation 3 without adding a correction amount. It becomes possible to grasp.
  • the attenuation of the voxel V (x) where the tomographic images overlap is corrected among the votacells V (x) of the Doppler image volume data 52. Therefore, when the Doppler projection image 56 is generated based on the Doppler image volume data 52 and the corrected attenuation, the generated Doppler projection image 56 is reflected as a shadow for each pixel in the overlapping state with the slice image. Become a thing. As a result, by referring to the shade of the Doppler projection image 56, it is possible to easily grasp the tissue overlap in the blood vessel.
  • tissue projection image 54 and the Doppler projection image 56 are reflected as a shadow, the tissue projection image 54 and the Doppler projection image 56 are combined to create a blood vessel and a tissue around the blood vessel.
  • a composite image 58 in which the three-dimensional positional relationship is accurately displayed is displayed on the display unit 32. Therefore, the three-dimensional positional relationship between the blood vessel and the tissue surrounding the blood vessel can be easily grasped by referring to the displayed composite image 58.
  • the correction coefficients R, S can be varied through the console 38 as necessary, they appear in the tissue projection image 54 or the Doppler projection image 56. You can adjust the shading.
  • a composite image can be displayed according to, for example, tissue characteristics of the imaging region, the visibility of the composite image indicating the three-dimensional positional relationship between the blood vessel and the tissue around the blood vessel can be improved.
  • FIG. 5 is a display example of a composite image 69 configured using a phantom.
  • Fig. 5 (A) shows a display example of a composite image 69 configured with both correction factors R, S (or Rl, R2, SI, S2) set to ⁇ 0 '', and
  • Fig. 5 (B) shows the correction factor R (Or Rl, R2) is set to ⁇ 1 '' and S (or SI, S2) is set to ⁇ 0.1 ''.
  • R Or Rl, R2
  • S or SI, S2
  • 5 (C) is a display example of a composite image 69 configured by setting both correction coefficients R, S (or Rl, R2, SI, S2) to ⁇ 1 '', and the blood vessel is in the back of the tissue.
  • the situation of gradually disappearing as it enters (that is, how the projection directions overlap each other) is understood accurately.
  • Generating a composite image with both correction coefficients R and S set to “0” is equivalent to the prior art, whereas it was generated with both correction coefficients R and S set to other than “0”.
  • the composite image is a composite image according to the present invention.
  • the composite image 69 in FIG. 5 (A) the image on the viewpoint side of the diagnostician is displayed with priority, so a part of the Doppler projection image 70 is hidden in the tissue projection image 72. . Therefore, it is difficult to accurately grasp the three-dimensional positional relationship between the blood vessel and the tissue surrounding the blood vessel (for example, the penetration state of the object related to the Doppler projection image 70 with respect to the object related to the tissue projection image 72). .
  • the tissue projection image 72 and the Doppler projection image 70 generated by setting both the correction coefficients R, S (or Rl, R2, SI, S2) to "0" do not take into account each other's volume data information.
  • a composite image 69 is generated from the tissue projection image 72 and the Doppler projection image 70 generated in this manner based on a predetermined composition ratio. By varying the composition ratio, either the tissue projection image 72 or the Doppler projection image 70 can be displayed with emphasis.
  • the tissue projection image 72 or the Doppler projection image 70 Since the brightness of each pixel is changed uniformly, it is difficult to grasp the three-dimensional positional relationship between the blood vessel and the tissue surrounding the blood vessel with the composite image 69 force displayed in this way.
  • the Doppler projection image 70 and the tissue projection image 72 are displayed translucently.
  • the three-dimensional positional relationship between the projected image 70 and the tissue projected image 72 can be accurately and easily visually confirmed.
  • FIG. 7 shows the flow of each process from the acquisition of the tomographic image volume data and the Doppler image volume data to the generation of each projection image and the generation of these projection image power composite images. Show.
  • each processing step in this flowchart will be described individually. Since the detailed description of each processing step is as described above, only the outline will be described.
  • step S701 an observation direction (line-of-sight direction) for generating a projection image is set.
  • the plane perpendicular to the viewing direction is the projection plane.
  • step S702 the first line parallel to the observation direction set in step S701 is selected.
  • step S703 in the two volume data, first botasels are respectively selected on the lines selected in step S702.
  • step S704 the initial value of the input light intensity Cin is set for each of the two volume data. For example, it can be “0”.
  • step S705 the voxel value Vbw (x) of the tomographic image volume data is used to determine the self-emission amount Cbw (x) of this voxel. Further, using the Botacell value Vc x) of the Doppler image volume data, the self-emission amount Cc x) of this Botacel is obtained.
  • step S706 the opacity (a—bw (x)) and attenuation (1—a—bw (x)) of this botacel are obtained using the botacel value Vbw (x). Use this to find the opacity (a—cx)) and attenuation (1 a—cx) of this buttonel.
  • step S707 the attenuation of the botels Vbw (x) and Vc x) is corrected. For example, number
  • the attenuation (1—a _bw (x)) is corrected using the opacity _c x)) and the correction coefficient R, and the corrected attenuation (1—a _bw (x) + a— cx) Let XR).
  • the attenuation (1—a—cx)) is corrected using the opacity (a—bw (x)) and the correction coefficient S, and the corrected attenuation (1 a _cKx) + a—bw (x) XS).
  • equations (4) and (5) find the amount of correction that should be added when calculating the output light intensity Cout.
  • step S708 the output light amount Cout of the bottom cell Vbw (x) is obtained using the above-described Equation 2 or Equation 4.
  • the output light amount Cout of the botel cell Vc x) is obtained using the above formula 3 or formula 5.
  • step S709 the output light amount Cout obtained in step S708 is set as the input light amount C in of the next button cell.
  • step S710 it is checked whether it is the last buttonel on the line. If it is the last box, the process proceeds to step S711; otherwise, the process proceeds to step S713.
  • step S711 the output light amount Cout of the last button cell Vbw (x) is set as the pixel value of the tissue projection image on the line.
  • the output light amount Cout of the last bottom cell Vc x) is set to the pixel value of the Doppler projection image on the line.
  • step S712 it is checked whether or not the line is the last position force. If it is the last line, since all the pixel values of the tissue projection image and the Doppler projection image have been obtained, the process proceeds to step S715. Otherwise, the process proceeds to step S714.
  • step S713 in the tomographic image volume data and the Doppler image volume data, the adjacent buttonacells on the line are selected, and the process proceeds to step S705.
  • step S714 the position of the line parallel to the observation direction is changed in the tomogram volume data and the Doppler image volume data, and the process proceeds to step S703.
  • step S715 the tissue projection image and the Doppler projection image are combined based on the color mapping table to obtain a combined image.
  • the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments.
  • the ultrasonic probe 10 in which a plurality of transducers are arranged two-dimensionally, an ultrasonic probe with a position sensor may be used.
  • any scan plane position data can be acquired to be applied to each tomogram volume data or Doppler volume data! ,.
  • the drive signal for tissue imaging and the drive signal for blood flow imaging can be supplied to the transmission unit 12-force ultrasonic probe 10 in a time-sharing manner in a predetermined order.
  • the tomographic image volume data 50 and the Doppler image volume data 52 can be created almost simultaneously.
  • the present invention is not limited to the mode of supplying time-division, and any mode that can acquire tomographic image volume data and Doppler image volume data may be used.
  • a drive signal for tissue imaging it is preferable to use a signal corresponding to a single Norse wave in order to improve the image resolution of the tissue tomogram.
  • Doppler deviation detection is performed for the driving signal for blood flow imaging. In order to facilitate output, it is recommended to use a signal in which multiple (eg, 8) single pulse waves are concatenated.
  • a region of interest can be set via the console 38 so as to surround a display target (for example, cancer tissue or fetus).
  • a display target for example, cancer tissue or fetus.
  • tomogram volume data and Doppler image volume data are not limited to these, and the projection image generation method of the present invention can be applied to two different volume data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 お互いの組織間の位置関係を的確に把握できる三次元超音波像を生成する。そのため、本発明の超音波撮像装置及び投影像生成方法は、第1の3次元像データと第2の3次元像データとを取得し、第1の3次元像データと前記第2の3次元像データの少なくとも一部とに基づいて第1の投影像を生成し、第2の3次元像データと第1の3次元像データの少なくとも一部とに基づいて第2の投影像を生成する。

Description

明 細 書
超音波撮像装置及び投影像生成方法
技術分野
[0001] 本発明は、超音波撮像装置及び投影像生成方法に係り、特に、三次元超音波像 を生成するのに好適な技術に関する。
技術背景
[0002] 超音波撮像装置は、超音波探触子を介し被検体との間で超音波を送受し、超音波 探触子力も出力される反射エコー信号に基づき被検体の超音波像 (例えば、濃淡断 層像やカラー血流像)を再構成して表示する。この様な超音波像に基づ!ヽて撮像部 位の非侵襲的およびリアルタイムの診断が可能となる。
[0003] このような超音波撮像装置においては、超音波探触子から出力される反射エコー 信号に基づき三次元断層像データ (以下、断層像ボリュームデータと!/、う)と三次元ド ブラ像データ (以下、ドプラ像ボリュームデータという)がそれぞれ取得され、取得され た断層像ボリュームデータから生成される組織投影像と、ドプラ像ボリュームデータか ら生成されるドプラ投影像とが合成されて表示される。この合成像に基づいて、例え ば血管と血管周囲の組織との位置関係を把握し、その位置関係力 癌組織の栄養 血管の状態を認識して癌組織が原発性なのか転移性なのかを判断することが行わ れる (例えば、特許文献 1参照)。
特許文献 1:米国特許第 6,280,387号公報
[0004] しかしながら、特許文献 1のように組織投影像とドプラ投影像を合成して表示する場 合、診断者の視点側の画像が優先して表示されるため、例えばドプラ投影像の一部 が組織投影像に隠れることがある。したがって、血管と血管周囲の組織との立体的な 位置関係 (例えば、組織に対する血管の貫通状態)を的確に把握するために、合成像 の表示角度を回転させたり、合成像力も不要な画像データを取り除 、たりする操作が 必要となり、使い勝手が悪いという問題がある。
[0005] また、組織投影像とドプラ投影像の合成割合を可変して各画像を重ねて表示する 場合、その合成割合の変更に伴って各画像の輝度が均等に変更されるため、表示さ れた合成像力 では血管と血管周囲の組織との立体的な位置関係、例えば投影方 向から見た相互の重なり具合や重なっている領域における投影方向の奥行き感等を 把握することが困難である。
発明の開示
[0006] 本発明の課題は、組織相互間の位置関係を的確に把握できる三次元超音波像を 生成することにある。
上記課題を解決するため、本発明の超音波撮像装置は、被検体との間で超音波を 送受する超音波探触子 (10)と、該超音波探触子 (10)に駆動信号を供給する送信手 段 (12)と、前記超音波探触子 (10)から出力される反射エコー信号を受信する受信手 段 (14)と、該受信手段から出力される反射エコー信号を信号処理する信号処理手段 (
18, 20)と、前記信号処理された反射エコー信号に基づき第 1のボリュームデータと第
2のボリュームデータとを生成するボリュームデータ生成手段 (19, 21)と、前記 2つのボ リュームデータを記憶する記憶手段 (26)と、前記第 1のボリュームデータのレンダリン グ処理による第 1の投影像の生成と前記第 2のボリュームデータのレンダリング処理に よる第 2の投影像の生成を行う投影像生成手段 (28)と、を備え、前記投影像生成手段 は、前記第 1のボリュームデータと前記第 2のボリュームデータの少なくとも一部とに基 づいて前記第 1の投影像を生成し、前記第 2のボリュームデータと前記第 1のボリユー ムデータの少なくとも一部とに基づいて前記第 2の投影像を生成することを特徴とす る。
[0007] また、上記課題を解決するため、本発明の投影像生成方法は、複数の第 1の 2次元 像データを蓄積する第 1の蓄積工程と、前記複数の第 1の 2次元像データから第 1の ボリュームデータを生成する第 1の 3次元化工程と、複数の第 2の 2次元像データを蓄 積する第 2の蓄積工程と、前記複数の第 2の 2次元像データ力 第 2のボリュームデー タを生成する第 2の 3次元化工程と、前記第 1のボリュームデータをレンダリング処理し て第 1の投影像を生成する第 1の投影工程と、前記第 2のボリュームデータをレンダリ ング処理して第 2の投影像を生成する第 2の投影工程と、を有し、前記第 1の投影ェ 程は、前記第 1のボリュームデータと前記第 2のボリュームデータの少なくとも一部とに 基づいて前記第 1の投影像を生成し、前記第 2の投影工程は、前記第 2のボリューム データと前記第 1のボリュームデータの少なくとも一部とに基づいて前記第 2の投影像 を生成することを特徴とする。
[0008] これらによれば、第 1の投影像は、第 1の 3次元像データに第 2の 3次元像データの 情報が加味されて生成されるため、画素ごとに第 2の 3次元像データとの重なり情報 が輝度に反映されたものになる。したがって、第 1の投影像の濃淡を参照すれば、第 2の 3次元像データとの重なり具合を把握でき、立体的かつ有効な診断を容易に行う ことができる。
同様にして、第 2の投影像は、第 2の 3次元像データに第 1の 3次元像データの情報 が加味されて生成されるため、画素ごとに第 1の 3次元像データとの重なり情報が輝 度に反映されたものになる。したがって、第 2の投影像の濃淡を参照すれば、第 1の 3 次元像データとの重なり具合を把握でき、立体的かつ有効な診断を容易に行うことが できる。
[0009] 本発明によれば、組織相互間 (例えば、血管と血管周囲)の位置関係を的確に把握 できる三次元超音波像を生成することができる。
図面の簡単な説明
[0010] [図 1]本発明を適用した本実施形態の超音波撮像装置の構成図である。
[図 2]図 1の投影像生成部 28の構成図である。
[図 3]合成像を生成する動作を説明するための図である。
[図 4]通常のボリュームレンダリング処理の説明図である。
[図 5]ファントムを使って構成した合成像 69の表示例である。
[図 6]ボタセル値力 不透明度を導く関係を示す図である。
[図 7]投影像と合成像を求める処理フローを示すフローチャートである。
[図 8]複数の異なるカラーマッピングテーブルを表示して、選択されたマップに基づ!/ヽ て合成像を生成する例を示す図である。
発明を実施するための最良の形態
[0011] 本発明を適用した超音波撮像装置及び投影像生成方法の一実施形態について図
1乃至図 8を参照して説明する。図 1は、本実施形態の超音波撮像装置の構成図であ る。 [0012] 図 1に示すように、超音波撮像装置は、被検体の三次元の超音波像ボリュームデー タを取得する撮像処理系と、取得した三次元の超音波像ボリュームデータを表示す る表示処理系に大別される。
撮像処理系は、被検体との間で超音波を送受する複数の振動子が 2次元配列され た超音波探触子 10と、超音波探触子 10に駆動信号を供給する送信部 12と、超音波 探触子 10力 出力される反射エコー信号を受信する受信部 14と、受信部 14から出力 される反射エコー信号を整相加算する整相加算部 16を備えている。また、整相加算 部 16から出力される反射エコー信号に基づき断層像ボリュームデータを取得する手 段として、断層像系信号処理部 18及び断層像ボリュームデータ作成部 19が設けられ ている。さらに、整相加算部 16力も出力される反射エコー信号に基づきドプラ像ボリュ ームデータを取得する手段として、ドプラ像系信号処理部 20及びドプラ像ボリューム データ作成部 21が設けられている。なお、超音波探触子 10、送信部 12、受信部 14、 整相加算部 16、断層像系信号処理部 18、ドプラ像系信号処理部 20に制御指令 (図 1 の矢印付点線)を出力する制御部 22を有している。
[0013] 表示処理系は、撮像処理系から出力される断層像ボリュームデータ及びドプラ像ボ リュームデータを取り込む通信ポート 24と、通信ポート 24から出力される各ボリューム データを記憶するボリュームデータ記憶部 26と、ボリュームデータ記憶部 26から読み 出されたボリュームデータに基づき投影像を生成する投影像生成部 28と、投影像生 成部 28により生成された投影像がビデオメモリ 30を介してモニタの表示画面に表示さ れる表示部 32を備えている。また、通信ポート 24、ボリュームデータ記憶部 26、投影 像生成部 28、ビデオメモリ 30、表示部 32に制御指令を出力する中央演算処理装置( 以下、 CPU34)が設けられている。このような通信ポート 24、ボリュームデータ記憶部 2 6、投影像生成部 28、ビデオメモリ 30、表示部 32、 CPU34は、共有バス 36を介して相 互に接続されている。なお、ボリュームデータ記憶部 26の補助記憶装置として磁気デ イスク装置 27を設けることができる。ただし、磁気ディスク装置 27に限らず、 DVD-Rな どその他の記憶装置を設けてもょ 、。
[0014] また、撮像処理系及び画像処理系に操作卓 38が接続されて 、る。操作卓 38は、キ 一ボードやマウスなどの入力装置を有し、入力装置を介して入力される指令を撮像 処理系の制御部 22に出力したり、画像処理系の CPU34に共有バスを介して出力した りする。なお、説明の便宜上、制御部 22と CPU34を別々に設ける例を説明するが、各 制御機能を有した一体型の制御装置を用いてもょ 、。
[0015] 図 2は、図 1の投影像生成部 28の構成図である。図 2に示すように、投影像生成部 28 は、ボリュームデータ記憶部 26から読み出される断層像ボリュームデータの各ボクセ ルに属する情報をドプラ像ボリュームデータの各ボタセルに属する情報に基づき補 正し、補正された断層像ボリュームデータから濃淡 (例えば白黒)組織投影像を生成 する組織像レンダリング部 40を備えている。なお、組織像レンダリング部 40に付与す る補正係数 (ブレンド係数) R (又は後述する Rl, R2)を格納するメモリ 42を有して 、る。
[0016] また、ボリュームデータ記憶部 26から読み出されるドプラ像ボリュームデータの各ボ クセルに属する情報を断層像ボリュームデータの各ボタセルに属する情報に基づき 補正し、補正されたドプラ像ボリュームデータ力 カラードプラ投影像を生成するドプ ラ像レンダリング部 44を備えている。また、ドプラ像レンダリング部 44に付与する補正 係数 (ブレンド係数) S (又は後述する SI, S2)を格納するメモリ 46を有している。なお、補 正係数 R, S (又は後述する Rl, R2, SI, S2)は、操作卓 38からの指令により「0」から「1」 の範囲で可変設定される。なお、固定値としても良い。
[0017] そして、組織像レンダリング部 40により生成された組織投影像と、ドプラ像レンダリン グ部 44により生成されたドプラ投影像とを重ねて合成像を生成し、生成された合成像 を表示部 32に表示させる合成部 48が設けられている。なお、合成像に色彩データを 付与するための合成用のカラーマッピングテーブルが格納されたメモリ 50を有してい る。
[0018] このように構成される超音波撮像装置の動作を説明する。まず、超音波探触子 10を 被検体の体表に接触させる。送信部 12から組織撮像用の駆動信号が超音波探触子 10に供給される。供給された駆動信号は、制御部 22の指令に応じて選択された所定 の振動子群に入力される。これによつて、駆動信号が入力した各振動子から超音波 が被検体に対し射出される。被検体力 発生した反射エコー信号は、各振動子によ り受波された後に超音波探触子 10力 出力される。超音波探触子 10から出力された 反射エコー信号は、受信部 14により増幅処理やアナログディジタル変換処理などが 施される。受信部 14から出力された反射エコー信号は、断層像系信号処理部 18によ り検波などの処理が施されることによって、反射エコー信号の信号強度に基づいた白 黒断層像データが取得される。
[0019] このような組織撮像が所定のスライス間隔で設定された複数のスキャン面に対して 繰り返されることにより、各スキャン面に対応した複数の断層像データが取得される。 取得された各断層像データは、断層像ボリュームデータ作成部 19に入力される。入 力された複数の断層像データは、断層像ボリュームデータ作成部 19によって位置デ ータ (例えば、各スキャン面の座標データ)が各ボタセルに付与されることにより、断層 像ボリュームデータとして構築される。構築された断層像ボリュームデータは、通信ポ ート 24を介してボリュームデータ記憶部 26に記憶される。
[0020] 一方、送信部 12から血流撮像用の駆動信号が超音波探触子 10に供給されることに よって、超音波探触子 10力 超音波が被検体に対し射出される。被検体から発生し た反射エコー信号は、各振動子により受波されて超音波探触子 10力 出力される。 超音波探触子 10から出力された反射エコー信号は、受信部 14および整相加算部 16 を介してドプラ像系信号処理部 20に入力される。入力された反射エコー信号に基づ いて、ドプラ像系信号処理部 20によりドプラ偏位 (例えば、反射エコー信号の周波数 変化や位相変化)が演算される。そして、演算されたドプラ偏位から血流速度、反射 強度、分散などのカラードプラ像データが取得される。
[0021] このような血流撮像が所定のスライス間隔で設定された複数のスキャン面に対して 繰り返されることにより、各スキャン面に対応した複数のドプラ像データが取得される。 取得された各ドプラ像データは、ドプラ像ボリュームデータ作成部 21に入力される。 入力された複数のドプラ像データは、ドプラ像ボリュームデータ作成部 21によって位 置データ (例えば、各スキャン面の座標データ)が各ボタセルに付与されることにより、 ドプラ像ボリュームデータとして構築される。構築された断層像ボリュームデータは、 通信ポート 24を介してボリュームデータ記憶部 26に記憶される。
[0022] ボリュームデータ記憶部 26に記憶された断層像ボリュームデータとドプラ像ボリユー ムデータは、 CPU34の指令に応じて読み出されて投影像生成部 28に入力される。入 力された断層像ボリュームデータに基づき、白黒の組織投影像が投影像生成部 28に よって生成される。また、読み出されたドプラ像ボリュームデータに基づき、カラードプ ラ投影像が投影像生成部 28によって生成される。生成された組織投影像とドプラ投 影像は、各画素の位置データが同一になるように重ねられることにより合成像として 表示部 32に表示される。なお、断層像ボリュームデータとドプラ像ボリュームデータが 磁気ディスク装置 27に保存されて 、るときは、磁気ディスク装置 27から各ボリュームデ ータを読み出して投影像生成部 28に入力すればよい。
[0023] 図 3は、各投影像とそれらの合成像を生成する動作を説明するための図である。図 3に示すように、複数の断層像データ Pl〜Pn (図 3(A))に基づいて、断層像ボリューム データ 50が構築される (図 3(B》。また、複数のドプラ像データ Ql〜Qn (図 3(X》に基づ V、て、ドプラ像ボリュームデータ 52が構築される (図 3(Y》。
[0024] 断層像ボリュームデータ 50は、組織像レンダリング部 40により、操作卓 38を介して設 定された観察方向 (視線方向)に基づいてボリュームレンダリング処理が施される。こ れによって、組織投影像 54が生成される (図 3(C))。このボリュームレンダリング処理に おいて、組織像レンダリング部 40は、断層像ボリュームデータ 50の各ボタセルに属す る情報をドプラ像ボリュームデータ 52の各ボタセルに属する情報に基づき補正し、断 層像ボリュームデータ 50と補正された情報とに基づいて組織投影像 54を生成する。
[0025] 例えば、各ボタセルに属する情報として不透明度と減衰度とを求める場合は、組織 像レンダリング部 40は、断層像ボリュームデータ 50の各ボタセルに属する不透明度に より決められるボタセルの減衰度を、そのボタセルに対応するドプラ像ボリュームデー タのボタセルに属する不透明度と、操作卓 38により可変設定された補正係数 Rとに基 づき補正し、断層像ボリュームデータ 50と不透明度及び補正された減衰度とに基づ Vヽて組織投影像 54を生成する。
[0026] 一方、ドプラ像ボリュームデータ 52は、ドプラ像レンダリング部 44により、操作卓 38を 介して設定された観察方向に基づ 、てボリュームレンダリング処理が施される。これ によって、ドプラ投影像 56が生成される (図 3(Z》。このボリュームレンダリング処理にお いて、ドプラ像レンダリング部 44は、ドプラ像ボリュームデータ 52の各ボタセルに属す る情報を断層像ボリュームデータ 50の各ボタセルに属する情報に基づき補正し、ドプ ラ像ボリュームデータ 52と補正された情報とに基づいてドプラ投影像 56を生成する。 [0027] 例えば、各ボタセルに属する情報として不透明度と減衰度とを求める場合は、組織 像レンダリング部 40は、ドプラ像ボリュームデータ 52の各ボタセルに属する不透明度 により決められるボタセルの減衰度を、そのボタセルに対応する断層像ボリュームデ ータ 50のボタセルに属する不透明度と、操作卓 38により可変設定された補正係数 Sと に基づき補正し、ドプラ像ボリュームデータ 52と不透明度及び補正された減衰度とに 基づ 、てドプラ投影像 56を生成する。
そして、組織投影像 54とドプラ投影像 56とを各画素の座標データが同一となるよう に重ねることにより、合成像 58が生成される (図 3(K))。
[0028] 2つの投影像 54, 56の合成の際には、カラーマッピングテーブル 59を用いて行う。こ のカラーマッピングテーブル 59は、横軸に設定された組織投影像 54の輝度値と、縦 軸に設定されたドプラ投影像 56の輝度値と、に対応する合成像 58の輝度値を 2次元 マップで表したものである。例えば、組織投影像 54の輝度値が aで、ドプラ投影像 56 の輝度値力 ¾の場合に、このカラーマッピングテーブル 59上の点 (a, b)の値が合成像 5 8の値 (カラー (色)とその輝度)となる。
[0029] また、このカラーマッピングテーブルを複数用意して、選択されたカラーマッピング テーブルに基づいて合成像を生成することにより、組織投影像とドプラ投影像との合 成割合、つまり、どちらを強調するかを調整することが可能になる。この例を図 8に示 す。図 8は、右側に 2つの異なるカラーマッピングテーブル 82, 84と、左側に選択され たカラーマッピングテーブル 82に基づ ヽて合成された合成像 80と、が並列に表示部 3 2に表示された例を示している。カラーマッピングテーブルの選択は、例えば操作卓 3 9からの入力により行われる。そして、図 8は、テーブルの選択状態を、各テーブルの 近傍にそのテーブルの選択状態◎又は非選択状態〇を表すマークで示す例を示し ている。
[0030] カラーマッピングテーブル 82は、白黒組織投影像を強調するテーブルであり、テー ブル全体のカラー成分が少ないテーブルである。一方、カラーマッピングテーブル 84 は、カラードプラ投影像を強調するテーブルであり、テーブル全体のカラー成分が多 いテーブルである。いずれかのカラーマッピングテーブルを選択することにより、その カラーマッピングテーブルに基づいて合成像が合成される。また、合成像が合成され た後にも、カラーマッピングテーブルの選択が変更されることによって、その新たに選 択されたカラーマッピングテーブルに基づいて合成像が再合成される。なお、図 8で は 2つの異なるカラーマッピングテーブルが表示される例を示している力 表示される カラーマッピングテーブルの数は 3以上でも良 、。
[0031] 上記の様にして合成像を生成した後には、組織投影像 54とドプラ投影像 56と生成さ れた合成象 58の内の少なくとも一つは、表示部 32の表示画面に表示される。好ましく は、合成像が優先して表示される。
[0032] なお、以上の説明では、組織投影像とドプラ投影像を共に生成して、これらの 2つの 投影像を合成して合成像を生成する例を説明したが、組織投影像とドプラ投影像と の内のいずれか一方の投影像のみ生成しても良い。好ましくは、情報量の多い方の ボリュームデータから生成される投影像のみを生成して良い。つまり、情報量の少な V、ボリュームデータの情報をカ卩味して、情報量の多!、ボリュームデータ力 その投影 像を生成する。前述の例の場合には、一般的に断層像ボリュームデータの方がドプ ラ像ボリュームデータよりも情報量が多いので、血流像との重なり具合が反映された 組織投影像の生成のみを選択して行うことができる。勿論、必要に応じてドプラ投影 像の生成のみを選択して行うことも可能である。 V、ずれか一方の投影像のみ生成さ れた場合には、他方のボリュームデータのボタセル毎の減衰度を求める必要はな!/、。 また、前述の合成像を生成する必要もない。
[0033] 或いは、一方の投影像を前述の実施形態と同様に生成し、他方の投影像を従来技 術と同様にそのボリュームデータのみに基づいて生成し、これらの 2つの投影像を合 成しても良い。例えば、組織投影像を前述の実施形態と同様に生成し、ドプラ投影像 を従来技術と同様にドプラ像ボリュームデータのみ力 生成し、これら 2つの投影像を 合成して合成像を生成することもできる。逆に、組織投影像を従来技術と同様に断層 像ボリュームデータのみ力 生成し、ドプラ投影像を前述の実施形態と同様に生成し 、これら 2つの投影像を合成して合成像を生成することもできる。
[0034] 次に、組織像レンダリング部 40とドプラ像レンダリング部 44のボリュームレンダリング 処理について詳細に説明する。そのために、まず図 4を参照して一般のボリユームレ ンダリング処理を説明する。図 4は、胎児を撮像対象としたときの一般のボリユームレ ンダリング処理を示し、文献 (馬場一憲、井尾裕子:産婦人科 3次元超音波.メジカル ビュー、東京、 2000. )から引用したものである。
[0035] 図 4(A)は、ボリュームレンダリングの概念を示す図である。図 4(A)に示すように、ボリ ユームレンダリングとは、三次元ボリュームデータを貫く線 60上のボタセルの輝度の値 に対し、所定の演算を行って投影平面 62上の各点の輝度を決める手法である。ここ で、線 60は、操作卓 38を介して設定された観察方向 (視線方向)と平行である。
[0036] 図 4(B)は、投影平面 62上の各点の輝度を決める演算方法の概念を示す図である。
図 4(B)に示すように、 1本の線 60上の位置 Xにおけるボタセルの値である V(x)に注目 すると、ボタセル V(x)への入射光量を Cin、ボタセル V(x)の不透明度を α (χ)、ボタセル V(x)の自己発光量を C(x)とすれば、ボタセル V(x)の出力光量 Coutは、数 1式のように 表される。数 1式から分力るように、ボタセル V(x)の出力光量 Coutは、ボタセル V(x)へ の入射光量 Cinを減衰度 (1 α (χ))に応じて減衰すると共に、ボタセル V(x)自体の発 光量 C(x) X α (χ)を付加することによって決められる。
Cout = Cin X (l - a (x)) + C(x) X a (x) (数 1)
ここで、自己発光量 C(x)はボタセル V(x)の関数であり、例えばボタセル V(x)の対数と する (C(x) = a X logV(x) + b ; a,bは定数)ことができる。つまり、 自己発光量 C(x)はボクセ ル値 V(x)に所定の変換を施した値である。或いは、ボタセル値 V(x)そのもの (つまり、 C(x)=V(x))でもよい。
[0037] また、不透明度 α (χ)は、「0」〜「1」の範囲の値であり、「0」に近いほどボタセル V(x) は透明であり、「1」に近いほどボタセル V(x)は不透明であることを意味する。この不透 明度 α (χ)を、ボタセル値 V(x)によって定めることができる。その例を図 6に示す。図 6(a )の例は、ボタセル値 V(x)の低い値力 不透明度《(X)を大きな値とする例であり、これ により入射光側の被検体表面の形状が投影像に大きく反映されることになる。図 6(b) の例は、逆に、ボタセル値 V(x)の高い値力も不透明度《0 を大きな値とする例であり 、これにより被検体内部の輝度の大きい部位 (つまり、ボタセル値 V(x)の大きい部位) の形状が投影像に大きく反映されることになる。図 6(c)の例は、ボタセル値 V(x)に比 例させて不透明度 (X (X)を設定する例であり、これによりボリューム全体がほぼ均等に 投影像に反映されることになる。 [0038] 次に、本発明の組織像レンダリング部 40とドプラ像レンダリング部 44のボリユームレ ンダリング処理について説明する。
[0039] 組織像レンダリング部 40は、断層像ボリュームデータ 50のボタセル Vbw(x)の減衰度 をドプラ像ボリュームデータ 52のボタセル Vc x)に属する不透明度と、可変設定され た補正係数 Rとに基づき補正し、断層像ボリュームデータ 50と不透明度及び補正され た減衰度とに基づいて組織投影像 54を生成する。例えば、断層像ボリュームデータ 5 0のボタセル Vbw(x)の自己発光量を Cbw(x)、不透明度を a— bw(x)とし、ドプラ像ボリ ユームデータ 52のボタセル Vc x)の不透明度を a— c x)とすると、断層像ボリューム データ 50のボタセル Vbw(x)の出力光量 Coutは、数 2式のように表される。要するに、 ボタセル Vbw(x)の元の減衰度 (1 a— bw(x))が、新たな減衰度 (1 a _bw(x)+ a _cKx) X R)に補正されて!、る。
Cout = Cin X (l - a _bw(x) + a _cl(x) X R) + Cbw(x) X a _bw(x) (数 2)
[0040] 同様に、ドプラ像レンダリング部 44は、ドプラ像ボリュームデータ 52のボタセル Vc x) の減衰度を、断層像ボリュームデータ 50のボタセル Vbw(x)に属する不透明度と、可変 設定された補正係数 Sとに基づき補正し、ドプラ像ボリュームデータ 52と不透明度及 び補正された減衰度とに基づいてドプラ投影像 56を生成する。例えば、ドプラ像ボリ ユームデータ 52のボタセル Vc x)の自己発光量を Cc x)、不透明度を a— c x)とし、 断層像ボリュームデータ 54のボタセル Vbw(x)の不透明度を α— bw(x)とすると、ドプラ 像ボリュームデータ 52のボタセル Vc x)の出力光量 Coutは、数 3式のように表される。 要するに、ボタセル Vc x)の元の減衰度 (1 a— c x))が、新たな減衰度 (1 a _cKx ) + a _bw(x) X S)に補正されて!、る。
Cout = Cin X (l - a _cl(x) + a _bw(x) X S) + CcKx) X a _cl(x) (数 3)
[0041] さらに、図 3に示す様に、ドプラ像ボリュームデータ 52のボタセル Vc x)の発光量 (= CcKx) X a— c x))に基づ!/、た補正量を追加して断層像ボリュームデータ 50のボクセ ル Vbw(x)の出力光量 Coutを求めることもできる。つまり、数 4式のように出力光量 Cout を求めることちでさる。
Cout = Cin X (l - a _bw(x) + a _cl(x) X R1)
+ Cbw(x) X a bw(x) + CcKx) cl(x) X R2 (数 4) ここで、最後の項 (Cc x) X α— c x) X R2)が補正量であり、 R1と R2は「0」〜「1」の間で 可変設定される補正係数であり、 R1 = R, R2 = 0とすれば、上記数 2式と同一となる。 或いは、 R1 = 0, R2≠0としても良い。
[0042] 同様に、図 3に示す様に、断層像ボリュームデータ 50のボタセル Vbw(x)の発光量 (= Cbw(x) X a _bw(x))に基づ!/、た補正量を追加してドプラ像ボリュームデータ 52のボタ セル Vc x)の出力光量 Coutを求めることもできる。つまり、数 5式のように出力光量 Co utを求めることもできる。
Cout = Cin X (l - a _cl(x) + a _bw(x) X S 1)
+ CcKx) X a _cKx) + Cbw(x) X a _bw(x) X S2 (数 5)
ここで、最後の項 (Cbw(x) X α— bw(x) X S2)が補正量であり、 S1と S2は「0」〜「1」の間 で可変設定される補正係数であり、 S1 = S, S2 = 0とすれば、上記数 3式と同一となる。 或いは、 S1 = 0, S2≠0としても良い。
[0043] このような演算方法によって求められる断層像ボリュームデータ 50の出力光量 Cout に基づいて、投影平面上の各点の輝度が決められることにより、組織投影像 54が生 成される。同様に、ドプラ像ボリュームデータ 52の出力光量 Coutに基づいてドプラ投 影像 56が生成される。
[0044] 本実施形態によれば、組織投影像 54は、断層像ボリュームデータ 50にドプラ像ボリ ユームデータ 52の各ボタセルに属する情報を加味して生成されるため、画素ごとにド ブラ像との重なり具合が輝度に反映されたものとなる。したがって、組織投影像 54の 濃淡を参照すれば、組織における血管の重なり具合を容易に把握でき、立体的かつ 有効な診断を行うことができる。特に、数 4式で示した様に補正量を追加して投影像 を求めることにより、補正量追加の無い数 2式を用いた投影像よりもより明確に組織に おける血管の重なり具合を容易に把握できる様になる。
[0045] 例えば、断層像ボリュームデータ 50の各ボタセル V(x)のうちドプラ像が重なるボクセ ル V(x)の減衰度が補正される。したがって、断層像ボリュームデータ 50と補正された 減衰度とに基づいて組織投影像 54を生成すると、生成された組織投影像 54は、画素 ごとに血流像との重なり具合が影として反映されたものになる (図 3(C))。その結果、組 織投影像 54の影の濃淡を参照すれば、組織における血管の重なり具合を簡単に把 握することができる。
[0046] また、ドプラ投影像 56は、ドプラ像ボリュームデータ 52に断層像ボリュームデータ 50 の各ボタセル V(x)に属する情報を加味して生成されるため、画素ごとに断層像との重 なり具合が輝度に反映されたものになる。したがって、ドプラ投影像 56を参照すれば 、血管における組織の重なり具合を簡単に把握することができる。特に、数 5式で示し た様に補正量を追加して投影像を求めることにより、補正量追加の無い数 3式を用い た投影像よりもより明確に血管における組織の重なり具合を容易に把握できる様にな る。
[0047] 例えば、ドプラ像ボリュームデータ 52の各ボタセル V(x)のうち断層像が重なるボクセ ル V(x)の減衰度が補正される。したがって、ドプラ像ボリュームデータ 52と補正された 減衰度とに基づいてドプラ投影像 56を生成すると、生成されたドプラ投影像 56は、断 層像との重なり具合が画素ごとに影として反映されたものになる。その結果、ドプラ投 影像 56の影の濃淡を参照すれば、血管における組織の重なり具合を簡単に把握す ることがでさる。
[0048] また、組織投影像 54とドプラ投影像 56は、互いに重なり具合が影として反映されて いるため、組織投影像 54とドプラ投影像 56を合成することにより、血管と血管周囲の 組織との立体的な位置関係が的確に現された合成像 58が表示部 32に表示される。 したがって、表示された合成像 58を参照することにより、血管と血管周囲の組織との 立体的な位置関係を簡単に把握することができる。
[0049] また、補正係数 R, S (又は Rl, R2, SI, S2)を必要に応じて操作卓 38を介して可変す ることができるため、組織投影像 54又はドプラ投影像 56に現れる影の濃淡を調整でき る。これにより、撮像部位の例えば組織特性に応じて合成像を表示することができる ことから、血管と血管周囲の組織との立体的な位置関係を示す合成像の視認性を向 上させることができる。
[0050] 図 5は、ファントムを使って構成した合成像 69の表示例である。図 5(A)は、補正係数 R, S (又は Rl, R2, SI, S2)を共に「0」に設定して構成した合成像 69の表示例、図 5(B) は、補正係数 R (又は Rl, R2)を「1」に、 S (又は SI, S2)を「0.1」に設定して構成した合成 像 69の表示例であり、組織に血管が入り込んでいるが、ドプラ投影像に対する断層 像ボリュームデータの寄与率が低い (つまり、補正係数 Sが小さい)ので、組織の奥に 入り込んでいる血管も表示される様子が理解される。また、図 5(C)は、補正係数 R, S( 又は Rl, R2, SI, S2)を共に「1」に設定して構成した合成像 69の表示例であり、血管 が組織の奥に入り込むに従って次第に見えなくなる様子 (つまり、投影方向の相互の 重なり具合の様子)が的確に理解される。補正係数 R, Sを共に「0」に設定して合成像 を生成することは、従来技術と同等であるのに対し、補正係数 R, Sを共に「0」以外に 設定して生成された合成像が本発明に係る合成像である。
[0051] 図 5(A)の合成像 69によれば、診断者の視点側の画像が優先して表示されることか ら、ドプラ投影像 70の一部が組織投影像 72に隠れている。したがって、血管と血管周 囲の組織との立体的な位置関係 (例えば、組織投影像 72に係る物に対するドプラ投 影像 70に係る物の貫通状態)を的確に把握することが困難となっている。
[0052] 補正係数 R, S (又は Rl, R2, SI, S2)が共に「0」に設定されて生成された組織投影像 72とドプラ投影像 70は、互いのボリュームデータ情報が加味されずにそれぞれ独立 に生成される従来技術の投影像と同等である。そして従来技術では、このようにして 生成された組織投影像 72とドプラ投影像 70とから、所定の合成割合に基づき合成像 69が生成される。合成割合を可変することにより組織投影像 72又はドプラ投影像 70の いずれか一方を強調して表示することができるが、その合成割合の変化に伴って組 織投影像 72又はドプラ投影像 70の各画素の輝度が均等に変更されるため、この様に して表示された合成像 69力 では血管と血管周囲の組織との立体的な位置関係を 把握することが困難である。
[0053] 一方、本発明に係る図 5(B)と図 5(C)の合成像 69によれば、ドプラ投影像 70及び組 織投影像 72が互いに半透明で表示されることから、ドプラ投影像 70と組織投影像 72 の立体的な位置関係を的確かつ簡単に視認することができる。
[0054] 補正係数 R, S (又は Rl, R2, SI, S2)が共に「0」以外に設定されて生成された組織投 影像 72とドプラ投影像 70は、互 、のボリュームデータ情報が加味されて生成されるの で、これらの合成像 69においても相互の立体的な位置関係が明瞭に反映されること になる。これにより、血管と血管周囲の組織との立体的な位置関係を簡単に把握する ことができるため、例えば癌の診断に有効な情報を容易に取得することができる。 [0055] 次に、上記の断層像ボリュームデータとドプラ像ボリュームデータとを取得した後の 、各投影像の生成とこれらの投影像力 合成像を生成するまでの各処理の流れを図 7に示す。以下、このフローチャートにおける各処理ステップを個別に説明する。尚、 各処理ステップの詳細な説明は、前述した通りであるので、省略して概要のみ説明 する。
[0056] ステップ S701で、投影像を生成するための観察方向 (視線方向)を設定する。この観 察方向に垂直な面が投影面となる。
ステップ S702で、ステップ S701で設定された観察方向に平行な最初の線を選択す る。
ステップ S703で、 2つのボリュームデータにおいて、ステップ S702で選択された線上 で、最初のボタセルをそれぞれ選択する。
ステップ S704で、 2つのボリュームデータにおいて、入力光量 Cinの初期値をそれぞ れ設定する。例えば「0」とすることができる。
[0057] ステップ S705で、断層像ボリュームデータのボタセル値 Vbw(x)を用いて、このボクセ ルの自己発光量 Cbw(x)を求める。また、ドプラ像ボリュームデータのボタセル値 Vc x) を用いて、このボタセルの自己発光量 Cc x)を求める。
ステップ S706で、ボタセル値 Vbw(x)を用いて、このボタセルの不透明度(a— bw(x)) と減衰度 (1— a— bw(x》を求める。また、ボタセル値 Vc x)を用いて、このボタセルの 不透明度( a— c x))と減衰度 (1 a— c x》を求める。
[0058] ステップ S707で、ボタセル Vbw(x)と Vc x)の減衰度をそれぞれ補正する。例えば、数
2式を用いる場合は、減衰度 (1— a _bw(x))を不透明度 _c x))と補正係数 Rとを 用いて補正し、補正された減衰度 (1— a _bw(x) + a— c x) X R)とする。また、数 3式 を用いる場合は、減衰度 (1— a— c x))を不透明度 ( a— bw(x))と補正係数 Sとを用い て補正し、補正された減衰度 (1 a _cKx)+ a— bw(x) X S)とする。数 4, 5式を用い る場合は、出力光量 Cout算出の際に追加すべき補正量をそれぞれ求める。
[0059] ステップ S708で、ボタセル Vbw(x)の出力光量 Coutを前述の数 2式又は数 4式を用い て求める。また、ボタセル Vc x)の出力光量 Coutを前述の数 3式又は数 5式を用いて 求める。 ステップ S709で、ステップ S708で求めた出力光量 Coutを次のボタセルの入力光量 C inとする。
ステップ S710で、線上の最後のボタセルであるか否かをチェックする。最後のボクセ ルであればステップ S711に移行し、最後でなければステップ S713に移行する。
ステップ S711で、最後のボタセル Vbw(x)の出力光量 Coutを、線上にある組織投影 像のピクセルの値とする。また、最後のボタセル Vc x)の出力光量 Coutを、線上にあ るドプラ投影像のピクセルの値とする。
[0060] ステップ S712で、線が最後の位置力否かをチェックする。最後の線であれば組織投 影像とドプラ投影像の全てのピクセル値が求められたのでステップ S715に移行し、最 後でなければステップ S714に移行する。
ステップ S713で、断層像ボリュームデータとドプラ像ボリュームデータにおいて、線 上の隣のボタセルをそれぞれ選択し、ステップ S705に移行する。
ステップ S714で、断層像ボリュームデータとドプラ像ボリュームデータにおいて、観 察方向に平行な線の位置を変更し、ステップ S703に移行する。
ステップ S715で、組織投影像とドプラ投影像とを、カラーマッピングテーブルに基づ いて合成し、合成像を得る。
[0061] 以上、実施形態に基づいて本発明を説明したが、本発明は、上記実施形態に限ら れるものではない。例えば、複数の振動子が二次元配列された超音波探触子 10に 代えて、位置センサ付きの超音波探触子を用いてもよい。要するに、断層像ボリユー ムデータ又はドプラ像ボリュームデータの各ボタセルに付与するためのスキャン面の 位置データを取得できる形態であればよ!、。
[0062] また、組織撮像用の駆動信号と血流撮像用の駆動信号については、予め決めた順 で時分割に送信部 12力 超音波探触子 10に供給することができる。これにより、断層 像ボリュームデータ 50とドプラ像ボリュームデータ 52をほぼ同時に作成することができ る。ただし、時分割で供給する形態に限られず、断層像ボリュームデータとドプラ像ボ リュームデータを取得できる形態であればよい。なお、組織撮像用の駆動信号につ いては、組織断層像の画像分解能を向上させるために、単一のノ ルス波に相当する 信号を用いるのがよい。また、血流撮像用の駆動信号については、ドプラ偏位の検 出を容易にするために、単一のパルス波を複数 (例えば 8個)連結した信号を用いる のがよい。
また、表示対象 (例えば、癌組織や胎児)を取り囲むように操作卓 38を介して関心領 域 (ROI)を設定することができる。これにより、周囲の不要部分を除去することができる ことから、組織像レンダリング部 40又はドプラ像レンダリング部 44の処理速度を向上さ せることができる。
また、断層像ボリュームデータとドプラ像ボリュームデータの例を説明した力 これら に限らず、 2つの異なるボリュームデータに対して、本発明の投影像生成方法を適用 することができる。

Claims

請求の範囲
[1] 第 1の 3次元像の少なくとも一部の情報と第 2の 3次元像の少なくとも一部の情報とを 含む投影像を生成する投影像生成方法であって、
複数の第 1の 2次元像データを蓄積する第 1の蓄積工程と、
前記複数の第 1の 2次元像データから第 1の 3次元像データを生成する第 1の 3次元 化工程と、
複数の第 2の 2次元像データを蓄積する第 2の蓄積工程と、
前記複数の第 2の 2次元像データから第 2の 3次元像データを生成する第 2の 3次元 化工程と、
前記第 1の 3次元像データをレンダリング処理して第 1の投影像を生成する第 1の投 影工程と、
前記第 2の 3次元像データをレンダリング処理して第 2の投影像を生成する第 2の投 影工程と、
を有し、
前記第 1の投影工程は、前記第 1の 3次元像データと前記第 2の 3次元像データの少 なくとも一部とに基づいて前記第 1の投影像を生成し、
前記第 2の投影工程は、前記第 2の 3次元像データと前記第 1の 3次元像データの少 なくとも一部とに基づいて前記第 2の投影像を生成することを特徴とする投影像生成 方法。
[2] 請求項 1記載の投影像生成方法にぉ 、て、
前記第 1の投影工程は、前記第 1の投影像の少なくとも一部の領域の情報を前記第 2の 3次元像データに基づいて補正し、
前記第 2の投影工程は、前記第 2の投影像の少なくとも一部の領域の情報を前記第 1の 3次元像データに基づいて補正することを特徴とする投影像生成方法。
[3] 請求項 2記載の投影像生成方法にぉ 、て、
前記第 1の投影工程は、前記第 1の 3次元像データと同じ位置の前記第 2の 3次元像 データに基づいて前記第 1の投影像の少なくとも一部の領域の情報を補正し、 前記第 2の投影工程は、前記第 2の 3次元像データと同じ位置の前記第 1の 3次元像 データに基づいて前記第 2の投影像の少なくとも一部の領域の情報を補正することを 特徴とする投影像生成方法。
[4] 請求項 3記載の投影像生成方法にぉ 、て、
前記第 1の投影工程は、前記第 1の 3次元像データと重なる部分の前記第 2の 3次元 像データに基づいて、該重なり部分に対応する前記第 1の投影像の領域の情報を補 正し、
前記第 2の投影工程は、前記第 2の 3次元像データと重なる部分の前記第 1の 3次元 像データに基づいて、該重なり部分に対応する前記第 2の投影像の領域の情報を補 正することを特徴とする投影像生成方法。
[5] 請求項 2記載の投影像生成方法にぉ 、て、
前記第 1の投影工程は、前記第 1の投影像の少なくとも一部の領域の輝度を前記第 2の 3次元像データに基づいて補正し、
前記第 2の投影工程は、前記第 2の投影像の少なくとも一部の領域の輝度を前記第 1の 3次元像データに基づいて補正することを特徴とする投影像生成方法。
[6] 請求項 5記載の投影像生成方法にぉ 、て、
前記第 1の投影工程は、前記第 1の投影像の少なくとも一部の領域の輝度に、前記 2つの 3次元像データの投影方向の重なり具合が反映されるように、前記第 2の 3次元 像データに基づ ヽて該輝度を補正し、
前記第 2の投影工程は、前記第 2の投影像の少なくとも一部の領域の輝度に、前記 2つの 3次元像データの投影方向の重なり具合が反映されるように、前記第 1の 3次元 像データに基づいて該輝度を補正することを特徴とする投影像生成方法。
[7] 請求項 1記載の投影像生成方法にぉ 、て、
前記第 1の投影工程と前記第 2の投影工程との内のいずれか一方のみが選択され て行われることを特徴とする投影像生成方法。
[8] 請求項 7記載の投影像生成方法にぉ 、て、
前記第 1の 3次元像データと前記第 2の 3次元像データの内の情報量の多い方の投 影像を生成する工程が選択されることを特徴とする投影像生成方法。
[9] 請求項 2記載の投影像生成方法にぉ 、て、前記第 1の投影工程は、 前記第 1の 3次元像データから第 1情報を求める第 1算出工程と、
前記第 2の 3次元像データに基づいて前記第 1の投影像の少なくとも一部の領域に 対応する前記第 1情報を補正する第 1補正工程と、
前記第 1の 3次元像データと前記補正された第 1情報とに基づいて前記第 1の投影 像を生成する第 1の投影像生成工程と、
を有することを特徴とする投影像生成方法。
[10] 請求項 2記載の投影像生成方法にぉ 、て、前記第 2の投影工程は、
前記第 2の 3次元像データから第 2情報を求める第 2算出工程と、
前記第 1の 3次元像データに基づいて前記第 2の投影像の少なくとも一部の領域に 対応する前記第 2情報を補正する第 2補正工程と、
前記第 2の 3次元像データと前記補正された第 2情報とに基づいて前記第 2の投影 像を生成する第 2の投影像生成工程と、
を有することを特徴とする投影像生成方法。
[11] 請求項 9記載の投影像生成方法において、
前記第 1算出工程は、前記第 1の 3次元像データのボタセル毎に該ボクセルの値を 用いて不透明度と該不透明度力 減衰度とを求め、
前記第 2の投影工程は、前記第 2の 3次元像データのボタセル毎に該ボクセルの値 を用いて不透明度を求める第 2算出工程を有し、
前記第 1補正工程は、前記第 2の 3次元像データのボタセル毎の不透明度を用いて 前記第 1の 3次元像データのボタセル毎の減衰度を補正し、
前記第 1の投影像生成工程は、前記第 1の 3次元像データとその前記不透明度及 び前記補正された減衰度とに基づいて前記第 1の投影像を生成することを特徴とす る投影像生成方法。
[12] 請求項 11記載の投影像生成方法において、
前記第 2算出工程は、前記第 2の 3次元像データのボタセル毎の不透明度力 該ボ クセルの減衰度をボタセル毎に求め、
前記第 2の投影工程は、
前記第 1の 3次元像データのボタセル毎の不透明度を用いて、前記第 2の投影像の 少なくとも一部の領域に対応する前記第 2の 3次元像データのボタセル毎の減衰度を 補正する第 2補正工程と、
前記第 2の 3次元像データとその前記不透明度及び前記補正された減衰度とに基 づいて前記第 2の投影像を生成する第 2の投影像生成工程と、
を有することを特徴とする投影像生成方法。
[13] 請求項 12記載の投影像生成方法にぉ 、て、
前記第 1補正工程は、前記第 2の 3次元像データのボタセル毎の不透明度に第 1補 正係数を掛けた値を用いて前記第 1の 3次元像データのボタセル毎の減衰度を補正 し、
前記第 2補正工程は、前記第 1の 3次元像データのボタセル毎の不透明度に第 2補 正係数を掛けた値を用いて前記第 2の 3次元像データのボタセル毎の減衰度を補正 することを特徴とする投影像生成方法。
[14] 請求項 1記載の投影像生成方法において、
前記第 1の蓄積工程は、前記第 1の 2次元像データとして断層像データを蓄積し、 第 1の 3次元化工程は、前記第 1の 3次元像データとして 3次元断層像データを生成 し、
前記第 2の蓄積工程は、前記第 2の 2次元像データとしてドプラ像データを蓄積し、 第 2の 3次元化工程は、前記第 2の 3次元像データとして 3次元ドプラ像データを生成 し、
前記第 1の投影像生成工程は、前記第 1の投影像として組織投影像を生成し、 前記第 2の投影像生成工程は、前記第 2の投影像としてドプラ投影像を生成するこ とを特徴とする投影像生成方法。
[15] 請求項 1記載の投影像生成方法において、前記投影像生成工程の後に、
前記第 1の投影像と前記第 2の投影像とを合成して合成像を生成する合成工程を 備えたことを特徴とする投影像生成方法。
[16] 請求項 15記載の投影像生成方法にぉ 、て、
前記合成工程は、前記第 1の投影像の画素値を一軸とし、前記第 2の投影像の画 素値を他の一軸とするカラーマッピングテーブルに基づ 、て、前記合成像の画素値 を求めることを特徴とする投影像生成方法。
[17] 請求項 15記載の投影像生成方法にぉ 、て、
前記第 1の投影像と前記第 2の投影像と前記合成像の内の少なくとも一つを表示す る工程を有することを特徴とする投影像生成方法。
[18] 請求項 12記載の投影像生成方法にぉ 、て、
前記第 1の投影像生成工程と前記第 2の投影像生成工程とは、共に
(a)観察方向を設定する工程と、
(b)前記観察方向に平行な最初の線を選択する工程と、
(c) 3次元像データにおいて、前記線上の最初のボタセルを選択する工程と、
(d)前記ボタセルへの入力光量の初期値を設定する工程と、
(e)前記ボタセルの値を用いて該ボクセルの自己発光量を求める工程と、
(£)前記ボタセルの値を用いて該ボクセルの前記不透明度と前記減衰度とを求める 工程と、
(g)前記ボタセルに対応する他方の 3次元像データの対応ボタセルの前記不透明 度を用いて、前記ボタセルの減衰度を補正する工程と、
(h)前記入力光量に前記補正された減衰度を掛けた値と、前記自己発光量に前記 不透明度を掛けた値との和力 前記ボタセルの出力光量を求める工程と、
(0前記 3次元組織像データにおいて、前記線上で前記ボタセルに隣接するボクセ ルを選択する工程と、
(j)前記ボタセルの前記出力光量を前記隣接するボタセルの前記入力光量とする 工程と、
(k) ( 〜 (j)を繰り返す工程と、
(1)前記出力光量を前記線上にある投影像のピクセル値とする工程と、
(m)上記線の位置を変える工程と、
(n) (d)〜(m)を繰り返す工程と、
を有することを特徴とする投影像生成方法。
[19] 被検体との間で超音波を送受する超音波探触子 (10)と、該超音波探触子 (10)に駆 動信号を供給する送信手段 (12)と、前記超音波探触子 (10)から出力される反射ェコ 一信号を受信する受信手段 (14)と、該受信手段力も出力される反射エコー信号を信 号処理する信号処理手段 (16, 18, 20)と、前記信号処理された反射エコー信号に基 づき第 1の 3次元像データと第 2の 3次元像データとを生成する 3次元像データ生成手 段 (19, 21)と、前記 2つの 3次元像データを記憶する記憶手段 (26)と、前記第 1の 3次元 像データのレンダリング処理による第 1の投影像の生成と前記第 2の 3次元像データ のレンダリング処理による第 2の投影像の生成を行う投影像生成手段 (28)と、を備えた 超音波撮像装置において、
前記投影像生成手段は、前記第 1の 3次元像データと前記第 2の 3次元像データの 少なくとも一部とに基づいて前記第 1の投影像を生成し、前記第 2の 3次元像データと 前記第 1の 3次元像データの少なくとも一部とに基づいて前記第 2の投影像を生成す ることを特徴とすることを特徴とする超音波撮像装置。
[20] 請求項 19記載の超音波撮像装置において、
前記投影像生成手段は、前記第 1の投影像と前記第 2の投影像とを合成して合成 像を生成することを特徴とする超音波撮像装置。
[21] 請求項 19記載の超音波撮像装置において、
前記投影像生成手段は、一方の前記投影像の少なくとも一部の領域のみを前記 2 つの 3次元像データに基づいて生成することを特徴とする超音波撮像装置。
PCT/JP2005/016745 2004-09-13 2005-09-12 超音波撮像装置及び投影像生成方法 WO2006030731A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006535872A JP4847334B2 (ja) 2004-09-13 2005-09-12 超音波撮像装置及び投影像生成方法
US11/575,166 US8160315B2 (en) 2004-09-13 2005-09-12 Ultrasonic imaging apparatus and projection image generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-265158 2004-09-13
JP2004265158 2004-09-13

Publications (1)

Publication Number Publication Date
WO2006030731A1 true WO2006030731A1 (ja) 2006-03-23

Family

ID=36059984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016745 WO2006030731A1 (ja) 2004-09-13 2005-09-12 超音波撮像装置及び投影像生成方法

Country Status (3)

Country Link
US (1) US8160315B2 (ja)
JP (1) JP4847334B2 (ja)
WO (1) WO2006030731A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011711A (ja) * 2007-07-09 2009-01-22 Toshiba Corp 超音波診断装置
JP2010505575A (ja) * 2006-10-13 2010-02-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ グレイスケール反転を用いる3d超音波カラーフローイメージング
WO2011099410A1 (ja) * 2010-02-09 2011-08-18 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107925A2 (en) * 2006-03-21 2007-09-27 Koninklijke Philips Electronics, N.V. Optimization of velocity scale for color tissue doppler imaging
EP1959391A1 (de) * 2007-02-13 2008-08-20 BrainLAB AG Bestimmung des dreidimensionalen Verlaufs des Randes einer anatomischen Struktur
JP4636338B2 (ja) * 2007-03-28 2011-02-23 ソニー株式会社 表面抽出方法、表面抽出装置及びプログラム
US20100130860A1 (en) * 2008-11-21 2010-05-27 Kabushiki Kaisha Toshiba Medical image-processing device, medical image-processing method, medical image-processing system, and medical image-acquiring device
JP5316118B2 (ja) 2009-03-12 2013-10-16 オムロン株式会社 3次元視覚センサ
JP5245938B2 (ja) * 2009-03-12 2013-07-24 オムロン株式会社 3次元認識結果の表示方法および3次元視覚センサ
JP5714232B2 (ja) * 2009-03-12 2015-05-07 オムロン株式会社 キャリブレーション装置および3次元計測のためのパラメータの精度の確認支援方法
JP2010210585A (ja) * 2009-03-12 2010-09-24 Omron Corp 3次元視覚センサにおけるモデル表示方法および3次元視覚センサ
JP5282614B2 (ja) * 2009-03-13 2013-09-04 オムロン株式会社 視覚認識処理用のモデルデータの登録方法および視覚センサ
CN103220980B (zh) * 2010-10-28 2015-05-20 株式会社日立医疗器械 超声波诊断装置以及超声波图像显示方法
US9486291B2 (en) 2012-06-21 2016-11-08 Rivanna Medical Llc Target region identification for imaging applications
CN103006263B (zh) * 2012-12-19 2014-09-10 华南理工大学 一种基于线性扫描的医学超声三维成像的位置标定方法
US11147536B2 (en) 2013-02-28 2021-10-19 Rivanna Medical Llc Localization of imaging target regions and associated systems, devices and methods
WO2014134188A1 (en) * 2013-02-28 2014-09-04 Rivanna Medical, LLC Systems and methods for ultrasound imaging
US11134921B2 (en) * 2013-04-12 2021-10-05 Hitachi, Ltd. Ultrasonic diagnostic device and ultrasonic three-dimensional image generation method
KR101851221B1 (ko) * 2013-07-05 2018-04-25 삼성전자주식회사 초음파 영상 장치 및 그 제어 방법
US10548564B2 (en) 2015-02-26 2020-02-04 Rivanna Medical, LLC System and method for ultrasound imaging of regions containing bone structure
US10019784B2 (en) * 2015-03-18 2018-07-10 Toshiba Medical Systems Corporation Medical image processing apparatus and method
EP3588438A4 (en) * 2017-03-07 2020-03-18 Shanghai United Imaging Healthcare Co., Ltd. METHOD AND SYSTEM FOR PRODUCING COLORED MEDICAL IMAGES
US20220095891A1 (en) * 2019-02-14 2022-03-31 Dai Nippon Printing Co., Ltd. Color correction device for medical apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213522A (ja) * 1994-01-26 1995-08-15 Toshiba Corp 超音波診断装置
JPH09262236A (ja) * 1996-03-22 1997-10-07 Advanced Technol Lab Inc 超音波診断3次元画像処理方法及び装置
US5857973A (en) * 1997-09-30 1999-01-12 Siemens Medical Systems, Inc. Fuzzy logic tissue flow determination system
JP2001017428A (ja) * 1999-07-06 2001-01-23 Ge Yokogawa Medical Systems Ltd オパシティ設定方法、3次元像形成方法および装置並びに超音波撮像装置
US6280387B1 (en) * 1998-05-06 2001-08-28 Siemens Medical Systems, Inc. Three-dimensional tissue/flow ultrasound imaging system
JP2005143733A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 超音波診断装置、3次元画像データ表示装置及び3次元画像データ表示方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860924A (en) * 1996-11-26 1999-01-19 Advanced Technology Laboratories, Inc. Three dimensional ultrasonic diagnostic image rendering from tissue and flow images
JP2000201925A (ja) * 1999-01-12 2000-07-25 Toshiba Corp 3次元超音波診断装置
JP4610011B2 (ja) * 2003-07-22 2011-01-12 株式会社日立メディコ 超音波診断装置及び超音波画像表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213522A (ja) * 1994-01-26 1995-08-15 Toshiba Corp 超音波診断装置
JPH09262236A (ja) * 1996-03-22 1997-10-07 Advanced Technol Lab Inc 超音波診断3次元画像処理方法及び装置
US5857973A (en) * 1997-09-30 1999-01-12 Siemens Medical Systems, Inc. Fuzzy logic tissue flow determination system
US6280387B1 (en) * 1998-05-06 2001-08-28 Siemens Medical Systems, Inc. Three-dimensional tissue/flow ultrasound imaging system
JP2001017428A (ja) * 1999-07-06 2001-01-23 Ge Yokogawa Medical Systems Ltd オパシティ設定方法、3次元像形成方法および装置並びに超音波撮像装置
JP2005143733A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 超音波診断装置、3次元画像データ表示装置及び3次元画像データ表示方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505575A (ja) * 2006-10-13 2010-02-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ グレイスケール反転を用いる3d超音波カラーフローイメージング
JP2009011711A (ja) * 2007-07-09 2009-01-22 Toshiba Corp 超音波診断装置
WO2011099410A1 (ja) * 2010-02-09 2011-08-18 株式会社 日立メディコ 超音波診断装置及び超音波画像表示方法
US8988462B2 (en) 2010-02-09 2015-03-24 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic image display method
JP5774498B2 (ja) * 2010-02-09 2015-09-09 株式会社日立メディコ 超音波診断装置

Also Published As

Publication number Publication date
JPWO2006030731A1 (ja) 2008-05-15
JP4847334B2 (ja) 2011-12-28
US8160315B2 (en) 2012-04-17
US20080260227A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP4847334B2 (ja) 超音波撮像装置及び投影像生成方法
US9943288B2 (en) Method and system for ultrasound data processing
JP3187148B2 (ja) 超音波診断装置
JP5495357B2 (ja) 画像表示方法及び医用画像診断システム
US6951543B2 (en) Automatic setup system and method for ultrasound imaging systems
JP5236655B2 (ja) グレイスケール反転を用いる3d超音波カラーフローイメージング
US6048312A (en) Method and apparatus for three-dimensional ultrasound imaging of biopsy needle
US5911691A (en) Ultrasound image processing apparatus and method of forming and displaying ultrasound images by the apparatus
JP5848709B2 (ja) 超音波診断装置及び超音波画像表示方法
JP5774498B2 (ja) 超音波診断装置
JP2013536720A (ja) 2次元超音波画像の3次元表示
CN101791229A (zh) 超声波诊断装置、图像处理装置及方法、图像显示方法
US20180206825A1 (en) Method and system for ultrasound data processing
JP2005095278A (ja) 超音波診断装置
JP3936450B2 (ja) 投影画像生成装置及び医用画像装置
JP2001128982A (ja) 超音波画像診断装置および画像処理装置
US7346228B2 (en) Simultaneous generation of spatially compounded and non-compounded images
JP4297561B2 (ja) オパシティ設定方法、3次元像形成方法および装置並びに超音波撮像装置
JP6169911B2 (ja) 超音波画像撮像装置及び超音波画像表示方法
JP7078457B2 (ja) 血流画像処理装置及び方法
JP6879039B2 (ja) 超音波診断装置、合成画像の表示方法及びプログラム
JPH0938084A (ja) 超音波3次元画像形成方法および装置
JP5182932B2 (ja) 超音波ボリュームデータ処理装置
EP0809119A2 (en) Ultrasound image processing apparatus and method of forming and displaying ultra sound images by the apparatus
JP2005006718A (ja) 超音波診断装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535872

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11575166

Country of ref document: US