JP2005278988A - 超音波画像処理装置 - Google Patents

超音波画像処理装置 Download PDF

Info

Publication number
JP2005278988A
JP2005278988A JP2004099134A JP2004099134A JP2005278988A JP 2005278988 A JP2005278988 A JP 2005278988A JP 2004099134 A JP2004099134 A JP 2004099134A JP 2004099134 A JP2004099134 A JP 2004099134A JP 2005278988 A JP2005278988 A JP 2005278988A
Authority
JP
Japan
Prior art keywords
data
primary color
dimensional image
image processing
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099134A
Other languages
English (en)
Inventor
Takeshi Mochizuki
剛 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2004099134A priority Critical patent/JP2005278988A/ja
Publication of JP2005278988A publication Critical patent/JP2005278988A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】三次元画像を形成する超音波診断装置において、組織と共に、速度データ及び分散データを表現できるようにする。
【解決手段】カラー演算部58は3つの運動情報から3つの輝度データr,g,bを決定する。その3つの輝度データと組織データeとが合成された3つの輝度データr’,g’,b’が3つの三次元画像形成部40,42,44へ出力される。各三次元画像形成部においては入力データにしたがってボリュームレンダリング演算が逐次的に実行される。その場合において、ボリュームレンダリング演算に使用するオパシティは入力輝度データr’,g’,b’及びLUT30が決定された輝度データr,g,bに従って決定される。各原色ごとに三次元画像が構築され、その三次元画像セットが表示画面上に表示される。
【選択図】図2

Description

本発明は超音波画像処理装置に関し、特に、受信信号から生成される互いに異なる複数のデータの三次元表示に関する。
超音波画像処理装置は、超音波診断装置内に組み込まれあるいは画像処理を行うコンピュータとして構成される。最近では、生体の三次元空間内から得られた三次元超音波データ(エコーデータ、ドプラデータ)から三次元画像を構築する様々な手法が提案されている。その手法としては、光の透過散乱モデルを基礎とするボリュームレンダリング法が公知である(例えば特許文献1、特許文献2参照)。その他にも、三次元空間を二次元プレーン上にレンダリングする方法として、レイ(視線)に沿って単純積算を行う方法、レイに沿って最大値等を検索する方法、その他の投影法があり、それ以外にも三次元画像形成に当たってはサーフェイス法などが知られている。なお、速度情報及び速度の偏差(分散)情報を二次元の白黒組織画像上にカラーで合成表示する技術が特許文献3に記載されている。
特許第2883584号 特開2003−325531号 特公昭64−7785号
しかしながら、受信信号から生成される互いに異なる情報(例えば、組織情報とドプラ情報)を三次元表示する技術は未だ提案されていない。三次元表示の場合には、奥行き関係が存在するため、例えば、単純に組織の白黒イメージに血流のカラーイメージを上書き合成すると、組織と血流の前後関係が崩れたり、認識上違和感が生じたりする問題がある。よって、自然な合成技術が求められる。特に、組織情報に加えて、速度情報と分散情報と同時に三次元表示することが求められる。
本発明の目的は、複数の情報が反映された三次元画像を提供することにある。本発明の他の目的は、組織情報とドプラ情報とが反映された三次元画像を提供することにある。本発明の更に他の目的は、組織情報、速度情報及び分散情報とが反映された三次元画像を提供することにある。
(1)本発明は、生体における三次元空間に超音波を送受波して得られた互いに異なる複数のデータに基づいて、各原色ごとに三次元画像処理を行い、これにより原色別の三次元画像セットを生成する画像処理手段と、前記原色別の三次元画像セットをカラー三次元画像としてスクリーン上に表示する表示手段と、を含むことを特徴とする。望ましくは、前記複数のデータには、組織データ及びドプラ情報から生成されるデータが含まれる。
上記構成によれば、互いに異なる複数のデータに基づいて、各原色ごとに三次元画像(単色三次元画像)が形成され、それらがスクリーン上にカラー三次元画像として表示される。この構成によれば、望ましくは組織データとドプラデータ(速度データ及び分散データの少なくとも一方)を三次元画像として構成して、それらの情報を奥行き感(立体感)をもって同時に表現できる。
(2)本発明は、生体における三次元空間に超音波を送受波して得られた組織データ、速度データ及び分散データに基づいて、各原色ごとに三次元画像処理を行い、これにより原色別の三次元画像セットを生成する画像処理手段と、前記原色別の三次元画像セットをカラー三次元画像としてスクリーン上に表示する表示手段と、を含むことを特徴とする。
上記構成において、組織データはエコー強度に対応し、速度データ及び分散データは生体内運動体のドプラ情報から生成される。生体内運動体は一般には血流であるが、心臓壁などを画像化してもよい。通常、速度データは平均速度を表すデータであり、分散データは瞬時速度のバラツキ又は偏差を表すデータである。それらのデータに基づいて、各原色ごとに三次元画像処理が実行されると、各原色ごとに三次元画像が構成される。複数の原色は、画素の色相を決定するR(赤),G(緑),B(青)の三原色であるのが特に望ましいが、他の複数の色相を画像処理上の原色(基準色)として取り扱うようにしてもよい。三次元画像処理としてはボリュームレンダリング法を適用するのが特に望ましいが、その他には積算法、最大値法、最小値法、などがあげられる。いずれにしても、各原色ごとに三次元画像処理が実行されてカラーの三次元画像が構成されるが、典型的には、筋肉、脂肪などの軟組織については白黒表現される。但し、そのような軟組織について薄い着色(例えば肌色の着色)を施すようにしてもよい。また、血流などの運動体はカラー表現されるが、その場合に、血流の流れの向き、その流れの大きさ、流れの乱れ度合いなどの必要な情報がカラー表現から認識できるようにカラー演算を行うのが望ましい。例えば、流れの乱れている部分については、空間的あるいは時間的な色相変化によって表現される。いずれにしても、組織と運動体の両者を空間的な認識をもって観察できるようにカラー演算条件を定めるのが望ましい。
望ましくは、前記画像処理手段は、前記組織データ、前記速度データ及び前記分散データに基づいて、第1原色輝度データ、第2原色輝度データ及び第3原色輝度データを生成するカラー演算部と、前記第1原色輝度データに基づいて第1三次元画像を形成する第1三次元画像形成手段と、前記第2原色輝度データに基づいて第2三次元画像を形成する第2三次元画像形成手段と、前記第3原色輝度データに基づいて第3三次元画像を形成する第3三次元画像形成手段と、を含み、前記三次元画像セットは、前記第1三次元画像、前記第2三次元画像及び前記第3三次元画像によって構成されることを特徴とする。
上記構成において、組織データ、速度データ及び分散データと、第1、第2及び第3原色輝度データとの間の対応関係についてはカラー演算条件として定めることができる。複数のカラー演算条件を用意し、その中から実際に使用するカラー演算条件を選択するようにしてもよい。組織データは第1、第2及び第3原色輝度データに均等に反映されるようにしてもよい。つまり、白黒表現してもよい。速度データ及び分散データについては、それぞれについて、特定の1つの原色を対応付けるようにしてもよいし、特定の複数の原色を対応付けてもよい。複数の三次元画像形成手段をそれぞれ別のモジュールで実現すれば並列処理によって処理時間を短縮でき、それらを単一のモジュールの時分割処理として実現すれば装置構成を簡略化できる。
望ましくは、前記カラー演算部は、前記速度データ及び前記分散データに基づいて、第1原色重みデータ、第2原色重みデータ及び第3原色重みデータを生成する重みデータセット生成手段と、前記組織データと前記第1原色重みデータとを合成して前記第1原色輝度データを生成する第1合成手段と、前記組織データと前記第2原色重みデータとを合成して前記第2原色輝度データを生成する第2合成手段と、前記組織データと前記第3原色重みデータとを合成して前記第3原色輝度データを生成する第3合成手段と、を含む。各原色輝度データは、各三次元画像形成手段に入力されるデータとして位置づけられ、その各原色輝度データは、組織データと各原色重みデータとを合成したデータである。ここで、各原色重みデータは、運動情報を反映した中間的、暫定的な原色輝度データである。
望ましくは、前記重みデータセット生成手段は、前記速度データ及び前記分散データの組み合わせに応じて、前記第1原色重みデータ、前記第2原色重みデータ及び前記第3原色重みデータの組み合わせを決定するルックアップテーブルとして構成される。ルックアップテーブルの内容を変更すれば所望の色付け関数を実現できる。
望ましくは、前記第1三次元画像形成手段、前記第2三次元画像形成手段及び前記第3三次元画像形成手段はそれぞれボリュームレンダリング演算を行って三次元画像を形成する手段である。ボリュームレンダリング法によれば光が媒体中を透過するようなモデルを用いて生体内の状態を三次元画像として構成できる。その場合に、オパシティあるいはオパシティ決定条件を変化させることによって、所望の質感、透明感を実現できる。例えば、半透明の血流を通して組織が観察されるような画像を構成できる。ボリュームレンダリングにおける視点、視線方向については任意に設定できるようにしてもよいし、超音波ビーム方向に視線方向を一致させて、つまり時系列順のデータに沿って順次レンダリング演算を行ってリアルタイムで三次元画像を形成してもよい。超音波データのボリュームレンダリング法については、上記特許文献1,2などにも詳述されている。
望ましくは、前記第1三次元画像形成手段は、前記第1原色輝度データに基づいて第1ボリュームレンダリング演算を行う第1ボリュームレンダリング演算部と、前記組織データ、前記第1重みデータ及び前記第1原色輝度データの内の少なくとも1つに基づいて、前記第1ボリュームレンダリング演算で使用する第1パラメータを決定する第1パラメータ決定部と、を含み、前記第2三次元画像形成手段は、前記第2原色輝度データに基づいて第2ボリュームレンダリング演算を行う第2ボリュームレンダリング演算部と、前記組織データ、前記第2重みデータ及び前記第2原色輝度データの内の少なくとも1つに基づいて、前記第2ボリュームレンダリング演算で使用する第2パラメータを決定する第2パラメータ決定部と、を含み、前記第3三次元画像形成手段は、前記第3原色輝度データに基づいて第3ボリュームレンダリング演算を行う第3ボリュームレンダリング演算部と、前記組織データ、前記第3重みデータ及び前記第3原色輝度データの内の少なくとも1つに基づいて、前記第3ボリュームレンダリング演算で使用する第3パラメータを決定する第3パラメータ決定部と、を含む。望ましくは、前記第1パラメータ、前記第2パラメータ及び前記第3パラメータはそれぞれボリュームレンダリング演算で用いるオパシティである。
上記の各パラメータは、望ましくはオパシティであり、あるいは、そのオパシティ決定関数に含まれる係数である。オパシティ特性を変化させることにより、所望の三次元画像を形成でき、例えば、組織や血流の表面を強調でき、あるいは、透明感を強調できる。
望ましくは、前記カラー演算部は、組織が白黒表現され、且つ、血流がカラー表現されるように前記各原色輝度データを生成する。望ましくは、前記カラー演算部は、血流の向きが正の場合には血流の速度分散の大きさに応じて第1色相範囲内で色相を連続的に変化させる第1の条件、及び、血流の向きが負の場合には血流の速度分散の大きさに応じて第2色相範囲内で色相を連続的に変化させる第2の条件、に従って前記各原色輝度データを決定する。望ましくは、前記カラー演算部は、更に、血流の速度の大きさに応じて輝度を変化させる第3の条件に従って前記各原色輝度データを決定する。
心臓などの超音波診断においては、リアルタイム性が重視されるため、特許文献1に記載されたような手法を利用してデータを時系列順で処理して三次元画像を形成するのが望ましい。一般に、個々のビーム方向について組織データ取得用として一回の超音波の送受信とドプラ情報取得用として複数回の超音波の送受信とが実行される。よって、単に組織を三次元画像として構成する場合に比べて、多数の送受信が必要となることから、ボリュームレートの低下が問題となる。これに対処するために、1つの送信ビームに対して複数の受信ビームを同時に形成する技術、組織データ取得用の三次元空間(全体空間)内にドプラ情報取得用の三次元空間(部分空間)を限定的に設定する技術、組織データとドプラデータとで送受信を兼用する技術、などを適用するのが望ましい。勿論、記憶装置上にデータを蓄積しておいて、その後に、記憶装置からデータを読み出して画像処理を行うようにしてもよい。各時相において形成された三次元画像を順次切り替え表示すれば動画像を構成することも可能である。
以上説明したように、本発明によれば、複数の情報(望ましくは、組織情報、運動体の速度情報及び分散情報)を反映した三次元画像を形成できる。したがって、例えば心臓の超音波診断において、心臓の内部構造との関係において血流の動態を総合的に診断できる。
以下、本発明の好適な実施形態を図面に基づいて説明する。
図1には、本発明に係る超音波診断装置の好適な実施形態が示されており、図1はその全体構成を示すブロック図である。この超音波診断装置はカラー三次元画像を形成する超音波画像処理装置としての機能を具備している。
図1において、3Dプローブ10は、超音波ビームを二次元走査し、これによって三次元データ取込空間を形成する三次元データ取込用超音波探触子である。本実施形態において、3Dプローブ10は、複数の振動素子を二次元的に配列した2Dアレイ振動子を有している。すなわち、その2Dアレイ振動子によって超音波ビームが形成され、その超音波ビームを二次元走査することによって三次元データ空間が形成される。もちろん、1Dアレイ振動子をそれによって形成される走査面と直交する方向に移動させ、これによって三次元データ空間を形成するようにしてもよい。3Dプローブ10は、本実施形態において生体の表面上に当接して用いられるものであるが、その3Dプローブ10が体腔内に挿入されるものであってもよい。
3Dプローブ10に対しては送信部12及び受信部16が接続されている。送信部12は送信ビームフォーマーとして機能し、2Dアレイ振動子を構成する複数の振動素子に対して複数の送信信号を供給する。一方、受信部16は受信ビームフォーマートとして機能し、複数の振動素子から出力される複数の受信信号に対していわゆる整相加算処理を実行する。
制御部14は、図1に示される各構成の動作制御を行っており、特に、送信部12及び受信部16に対して送受信制御を実行している。一般的には、1つのビームアドレス毎に1回の組織データ取得用の送受信と、複数回のドプラ情報取得用の送受信とが実行される。ただし、三次元空間の全体に対して組織データ取得用の送受信を行う一方において、その三次元空間の一部分にドプラ情報取得用の部分空間を設定し、その部分空間内においてのみドプラ情報取得用の送受信を行うようにしてもよい。また、ボリュームレートを上げるために1つの送信ビーム当たり複数の受信ビームを同時形成するようにしてもよい。ボリュームレートを上げるための方法としては各種の公知の手法を組み合わせて適応することができる。ちなみに、前記の全体空間及び部分空間については制御部14に接続された図示されていない操作パネルなどを用いてユーザーによって設定することができる。もちろん、受信信号に基づいて血流部分を自動的に判断し、その血流部分のみについてドプラ情報取得用の送受信が実行されるようにしてもよい。例えば、通常の超音波の送受信によって得られた受信信号においてエコー強度の落ち込み部分を血流部分であると識別し、その血流部分についてドプラ情報取得用の送受信が行われるようにしてもよい。
受信部16から出力される整相加算後の受信信号がエコー信号処理部18及びドプラ信号処理部22に入力される。エコー信号処理部18は通常のBモード画像やMモード画像を形成するための信号処理部と同様の構成を有しており、具体的には、検波器、対数変換器などを有している。エコー信号処理部18から出力されるデータ(組織データ)は3Dメモリ20上に格納される。3Dメモリ20は生体内における送受波空間としての3次元空間と同様の記憶空間を有しており、入力されるデータはデータ取得座標に対応付けられたメモリアドレスに格納される。ただし、このような3Dメモリ20を経由することなく時系列順のデータをそのままカラー3D画像処理部26へ出力し、データの時系列順で後述するボリュームレンダリング処理などを実行するようにしてもよい(特許文献1参照)。
一方、ドプラ信号処理部22は、本実施形態において、直交検波器、ウォールフィルタ、自己相関器などを有している。それらの構成自体は公知であり、二次元血流画像を形成する超音波診断装置に通常組み込まれているものである。いずれにしても、このドプラ信号処理部22によって、生体内における各座標ごとに速度データと分散データとが得られる。本実施形態においては速度データは正方向の速度データと負方向の速度データに区別されており、すなわち、それらのデータの区別によって血流の流れの正方向と負方向とを区別して取り扱うことが可能である。ちなみに、ドプラ信号処理部22においてパワーなどの他の運動情報を演算するようにしてもよい。ドプラ信号処理部22によって生成された正方向速度データV+、負方向速度データV-及び分散データσは3Dメモリ24上に格納される。この場合においては、送受波空間としての三次元空間の各座標に対応付けられたメモリアドレスに対して各データが書き込まれることになる。
なお、それぞれの運動情報ごとに3Dメモリを個別的に設けるようにしてもよいし、図1に示されるように単一の記憶部を利用して3つの運動情報を格納するようにしてもよい。3Dメモリ24から読み出される各ドプラ情報はカラー3D画像形成部26に出力される。なお、リアルタイム処理を行う場合には3つの運動情報を3Dメモリ24を経由することなく直接的にカラー3D画像形成部26へ出力するようにしてもよい。
ちなみに、制御部14に接続された操作パネルなどを利用して、送受波空間としての三次元空間に対して任意の位置に視点を設定することができる。その設定された視点に対して複数の視線(レイ)が設定され、各レイごとにボリュームレンダリング演算としてのボクセル演算を逐次的に進行させることにより各レイごとに画素値が求められ、各画素値をスクリーン上にマッピングすることによって二次元平面上に三次元画像を構築することができる。本実施形態において、カラー3D画像形成部26は、複数の原色すなわちR,G,Bのそれぞれごとにボリュームレンダリング演算が実行されており、各原色ごとに三次元画像が構築されている。
表示部28には、各原色ごとの三次元画像データが表示され、すなわちそれらの3つの画像によって超音波画像として三次元画像が構成されている。
表示部28上においては、筋肉や脂肪などの軟組織については白黒画像として表現され、血流についてはカラー表現される。たとえば、心臓の三次元画像を構築する場合には、カラー表現されている血流を透かして背景としての組織の構造を三次元的に観察することができる。
もちろん、三次元画像を構築する際の条件については診断目的やユーザーの趣味などに応じて適宜変更することができる。表示部28上においては、一般に、血流の正方向については暖色系の色相が割り当てられ、負方向については寒色系の色相が割り当てられており、その色相の変化範囲内において分散の大小が表現される。各変化範囲はオーバーラップしていないのが望ましいが、そうでなくてもよい。また、望ましくは各画素の輝度によって血流の速度(平均速度)が表される。したがって、明るいところについては血流の速度が速いと認識でき、その一方において暗いところについては血流の速度が小さいと認識できる。また、色相から分散の大きさを認識することができ、また空間的な色相のばらつきあるいは時間的な色相のばらつきから血流の動態を評価することもできる。いずれにしても、三次元画像の表示条件については後に説明するカラー演算条件を適宜設定し、あるいは変更することによって自在に調節することが可能である。
なお、受信部16にはA/D変換器が設けられており、受信部16はいわゆるデジタルビームフォーマーとして構成されている。受信部16の後段に設けられている各構成については専用のハードウエアとして構成することもできるし、ソフトウエアによって実現される機能として構成することもできるし、あるいは、両者の中間としてのデジタルシグナルプロセッサなどによって実現することもできる。
図2には、図1に示したカラー3D画像形成部26の構成例がブロック図と示されている。このカラー3D画像形成部26は大別してカラー演算部58と複数の三次元画像形成部40,42,44とを有している。カラー演算部58は、入力される組織データe、正方向速度データV+、負方向速度データV-、分散データσを入力し、それらの値の組み合わせに応じて赤色輝度データr’、緑色輝度データg’、青色輝度データb’の3つの輝度データを生成する。
具体的には、ルックアップテーブル(LUT)30に対して正方向速度データV+、負方向速度データV-及び分散データσが入力され、それらの値に応じて中間輝度データすなわち重みデータとして三原色の各輝度r,g,bが決定される。それらの重みデータセットは運動体についての運動情報をカラー表現したものである。
カラー演算部58は、合成器としての3つの加算器32,34,36を有している。加算器32には組織データeと赤色輝度データrとが入力され、加算器32ではそれらの2つを加算することによって第1原色輝度データとして赤色輝度データr’を生成している。これと同様に、加算器34は組織データeと緑色輝度データgとを加算し、これによって第2原色輝度データとしての緑色輝度データg’を生成している。加算器36は組織データeと青色輝度データbとを加算し、これによって第3原色輝度データとしての青色輝度データb’を生成している。それらの輝度データは後段に設けられている3つの三次元画像形成部40,42,44の入力データとして位置づけられる。
ちなみに、実施形態においては、rデータ、gデータ、bデータはそれぞれ3次元画像形成部40,42,44内のオパシティ決定部48,52,56へ別途出力されている。
各三次元画像形成部40,42,44はそれぞれボリュームレンダリング法に基づいて三次元画像を形成するモジュールである。各原色ごとに三次元画像を構築することにより組織データについてはそれらの三次元画像全体にわたって白黒輝度として反映させることができ、その一方において複数の運動情報については所定の色相あるいはその色相の変化によってその大小を表現することが可能となる。具体的に説明すると、三次元画像形成部40は、ボリュームレンダリング演算部46及びオパシティ決定部48を有している。ボリュームレンダリング演算部46は上記の特許文献1や特許文献2などに記載されたボリュームレンダリングの演算式を実行するものであり、すなわち、レイ上に存在する各入力データごとにそれをボクセル値とみなしてボリュームレンダリング演算を実行する。この場合においてその演算式内に含まれるオパシティ(不透明度)についてはオパシティ決定部48によって設定されており、そのオパシティ決定部48は、入力データとしての赤色輝度データr’と赤色輝度データrとに基づいてオパシティを決定している。
三次元画像形成部42及び44は上記の三次元画像形成部40と同様の構成を有しており、すなわち、三次元画像形成部42はボリュームレンダリング部50及びオパシティ決定部52を有している。ここで、オパシティ決定部52には、緑色輝度データg’と緑色輝度データgとが入力され、それらに基づいてオパシティが定められている。三次元画像形成部44はボリュームレンダリング部54とオパシティ決定部56とを有しており、オパシティ決定部56には青色輝度データb’と青色輝度データbとが入力され、それらに基づいてオパシティが決定され、その決定されたオパシティを用いてボリュームレンダリング演算が逐次的に実行されている。
したがって、3つの三次元画像形成部40,42,44が並列動作すると、各レイに沿って存在する各データごとにかつ各原色ごとにボリュームレンダリング演算が逐次的に実行される結果、各レイにおける最後のボリュームレンダリング演算の結果として当該レイに対応付けられた画素のR値、G値、B値が決定されることになる。そして、それが各レイごとに繰り返し実行されると、最終的にR値のみによって構成される三次元画像、G値のみによって構成される三次元画像及びB値のみによって構成される三次元画像が構築されることになる。これを表示部におけるR端子、G端子、B端子にそれぞれ供給することにより表示画面上において3つの三次元画像が合成されたカラー三次元画像が表現されることになる。
以下に、図3〜図9を用いて図2に示したカラー演算部58及び三次元画像形成部40,42,44の動作例について説明する。なお、図3、図5及び図7においてr,g,bは各原色の輝度関数を示している。図3には、図2に示したLUT30が有するカラー演算関数の一例が示されている。図4の破線矢印で概念的に示されているように、図3に示す例では、正方向速度データV+が赤色輝度データrに対応付けられており、負方向速度データV-が青色輝度データbに対応付けられており、分散データσが緑色輝度データgに対応付けられている。すなわち、図3の(a)に示されるように、正方向の速度が大きくなればなるほど赤の輝度が線形に増大されており、その一方、(c)における関数bで示されるように、負方向速度が大きくなればなるほど青の輝度が線形に増大されている。そして、(b)に示されるように、分散が大きくなればなるほど混色する色相としての緑の輝度が線形に増大されている。
上記のカラー演算条件を適用すると、血流の正方向については赤系を基調とした暖色系の色相で表され、血流の負方向については青を基調とした寒色系の色相で表される。そして、各画素の輝度によって血流のおおよその速度が表される。更に、混色度合いすなわち色相の変化から分散の大きさを認識することができる。例えば正方向については分散が最小値であるときには赤によって表現されるが、分散の高まりと共にその赤に対して緑の混色度合いが増大され、分散が最大値を迎える地点においては黄色によって表現される。このような色相の変化は負方向についても同様であり、分散が最小である場合には青で表現され、分散が増大するに伴って青に対して緑の混色度合いが増大され、分散が最大の地点においては青緑(シアン)によって表現される。
図3に示したカラー演算関数は最も典型的なものであるが、これについてはいろいろなバリエーションが考えられ、たとえば視認性を向上させるために各種のカラー演算関数を採用することができる。その他の例が図5に示されている。そして、その図5に示されるカラー演算条件を実現する場合におけるLUT30における入出力の対応関係が図6において破線の矢印記号において表されている。
図5に示されるように、正方向の速度に着目するとその大小によらずに一定の輝度値をもった赤が設定されており、その一方において、正方向の速度が増大すると青の混色度合いが高められている。負方向については、その速度の大小によらずに一定輝度の青が設定されており、その一方において、負方向の速度の増大に伴って赤の混色度合いが増している。分散についてはその大小に応じて緑の混色度合いが増大されている。
このようなカラー演算関数を採用すると、血流の正方向については概ね暖色系の色相によって表現され、血流の負方向については概ね寒色系の色相によって表現される。さらに、分散の程度に応じて緑の混色度合いが高められる結果、そのような色相の変化から分散を認識することが可能となる。また、血流の速度が増大すれば増大するほど純粋な赤あるいは青からそれに他の色を加算した色相に変化することになる。したがって、この図5に示したカラー演算関数によれば、低速域においてもはっきりと色相表現を行えるという利点がある。
図7には更に他の例が示されている。図7に示すカラー演算関数におけるLUT30の入力と出力の対応関係は図6に示したものと同じである。図7において、血流の正方向についてはその大小によらずに一定の輝度値をもった赤が設定され、その一方において速度が増大するにしたがって青の加算割合が減少されている。これは負方向についても同様であり、負方向の速度の大小によらずに一定の輝度値をもった青が設定され、これと共に、その速度が増大にしたがって赤の加算割合が減少している。分散については緑の混色割合によって表現され、すなわち分散が大きくなればなるほど緑の加算割合が増大されている。
図3、図5及び図7に示したカラー演算関数はもちろん一例であって、診断部位、診断目的ユーザーの好みなどに応じて各種のカラー演算条件を採用することが可能である。例えば、組織データeについてもLUT30に入力し、組織を例えば薄い肌色などによって表現することも可能である。
図8には、三次元画像形成部40,42,44が有するオパシティ決定部48,52,56が有するオパシティ決定関数の一例が示されている。ここで第1の水平軸IはLUT30から出力される輝度データすなわちr,g,bを表しており、第2の水平軸I’は加算器32,34,36から出力される合成後の原色輝度データ(すなわちボリュームレンダリング演算部に入力されるデータ)r’,g’,b’の大きさを表している。ここで各水平軸の定義を逆にしてもよい。また垂直軸は決定されるオパシティの値を表している。そして、直線210,212,214はI’がある値をとった場合におけるIの変化に対するオパシティの値を表しており、それらの直線210,212,214を含む曲面によってオパシティ決定関数が構成されている。
図9(a)には第2水平軸と垂直軸とを含む平面が示されており、(b)には第1水平軸と垂直軸とを含む平面が示されている。いずれの平面も図8に示した立方空間を平面上に表したものである。
図8及び図9に示されるように、一般に、入力データであるI’が大きくなればなるほど非線形にオパシティの値が増大されているが、この場合においては更に重みデータとしてのIが考慮され、そのIが大きければ大きいほどより大きなオパシティの値が設定されている。もちろん、図8及び図9に示したオパシティ決定関数は一例であって、診断目的、診断部位、ユーザーの好みなどの諸状況に応じて各種のオパシティ決定関数を用意し、それらの中から所望の関数を選択するようにすればよい。
上記の実施形態によれば、例えば心臓の弁部位を観察する場合において、その弁に疾患があってその弁から逆方向にジェット流が生じているような場合、弁については白黒画像として三次元的にその構造を認識できると共に、その弁からジェット流がカラーの柱として表現され、その柱の中心が例えば黄色の高輝度で表現され、その柱の周辺については例えば赤色で表現される。そのジェット流についても立体的にカラー表現される。更に、弁の奥側に存在する心臓壁などの構造体についても必要に応じてそれを背景として表現することもできるし、あるいはオパシティ決定関数を操作することによってジェット流をより顕著に表すことも可能である。更に乱流が生じている部分を定常的な血流部分よりもより顕著に表すことも可能である。
上記実施形態では、組織データ、速度データ及び分散データが三次元画像として表現されたが、それらの内の2つのデータを表現するようにしてもよい。例えば、組織データと速度データの組み合わせ、組織データと分散データの組み合わせ、速度データと分散データの組み合わせである。
本発明に係る超音波診断装置の好適な実施形態を示すブロック図である。 図1に示すカラー3D画像形成部の構成例を示すブロック図である。 LUTが有するカラー演算関数の一例を示す図である。 図3に示したカラー演算関数を採用する場合におけるLUTの入出力関係を示す模式図である。 LUTが有するカラー演算関数の他の例を示す図である。 図5(及び図7)に示すカラー演算関数を採用する場合におけるLUTの入出力関係を示す模式図である。 カラー演算関数の更に他の例を示す図である。 オパシティ決定関数の一例を示す図である。 オパシティ決定関数を投影した図である。
符号の説明
10 プローブ、18 エコー信号処理部、20 3Dメモリ、22 ドプラ信号処理部、26 カラー3D画像形成部、40,42,44 三次元画像形成部、58 カラー演算部。

Claims (12)

  1. 生体における三次元空間に超音波を送受波して得られた互いに異なる複数のデータに基づいて、各原色ごとに三次元画像処理を行い、これにより原色別の三次元画像セットを生成する画像処理手段と、
    前記原色別の三次元画像セットをカラー三次元画像としてスクリーン上に表示する表示手段と、
    を含むことを特徴とする超音波画像処理装置。
  2. 請求項1記載の装置において、
    前記複数のデータには、組織データ及びドプラ情報から生成されるデータを含むことを特徴とする超音波画像処理装置。
  3. 請求項1記載の装置において、
    前記複数のデータは、組織データ、速度データ及び分散データであることを特徴とする超音波画像処理装置。
  4. 請求項3記載の装置において、
    前記画像処理手段は、
    前記組織データ、前記速度データ及び前記分散データに基づいて、第1原色輝度データ、第2原色輝度データ及び第3原色輝度データを生成するカラー演算部と、
    前記第1原色輝度データに基づいて第1三次元画像を形成する第1三次元画像形成手段と、
    前記第2原色輝度データに基づいて第2三次元画像を形成する第2三次元画像形成手段と、
    前記第3原色輝度データに基づいて第3三次元画像を形成する第3三次元画像形成手段と、
    を含み、
    前記三次元画像セットは、前記第1三次元画像、前記第2三次元画像及び前記第3三次元画像によって構成されることを特徴とする超音波画像処理装置。
  5. 請求項4記載の装置において、
    前記カラー演算部は、
    前記速度データ及び前記分散データに基づいて、第1原色重みデータ、第2原色重みデータ及び第3原色重みデータを生成する重みデータセット生成手段と、
    前記組織データと前記第1原色重みデータとを合成して前記第1原色輝度データを生成する第1合成手段と、
    前記組織データと前記第2原色重みデータとを合成して前記第2原色輝度データを生成する第2合成手段と、
    前記組織データと前記第3原色重みデータとを合成して前記第3原色輝度データを生成する第3合成手段と、
    を含むことを特徴とする超音波画像処理装置。
  6. 請求項5記載の装置において、
    前記重みデータセット生成手段は、前記速度データ及び前記分散データの組み合わせに応じて、前記第1原色重みデータ、前記第2原色重みデータ及び前記第3原色重みデータの組み合わせを決定するルックアップテーブルとして構成されたことを特徴とする超音波画像処理装置。
  7. 請求項4記載の装置において、
    前記第1三次元画像形成手段、前記第2三次元画像形成手段及び前記第3三次元画像形成手段はそれぞれボリュームレンダリング演算を行って三次元画像を形成する手段であることを特徴とする超音波画像処理装置。
  8. 請求項7記載の装置において、
    前記第1三次元画像形成手段は、
    前記第1原色輝度データに基づいて第1ボリュームレンダリング演算を行う第1ボリュームレンダリング演算部と、
    前記組織データ、前記第1重みデータ及び前記第1原色輝度データの内の少なくとも1つに基づいて、前記第1ボリュームレンダリング演算で使用する第1パラメータを決定する第1パラメータ決定部と、
    を含み、
    前記第2三次元画像形成手段は、
    前記第2原色輝度データに基づいて第2ボリュームレンダリング演算を行う第2ボリュームレンダリング演算部と、
    前記組織データ、前記第2重みデータ及び前記第2原色輝度データの内の少なくとも1つに基づいて、前記第2ボリュームレンダリング演算で使用する第2パラメータを決定する第2パラメータ決定部と、
    を含み、
    前記第3三次元画像形成手段は、
    前記第3原色輝度データに基づいて第3ボリュームレンダリング演算を行う第3ボリュームレンダリング演算部と、
    前記組織データ、前記第3重みデータ及び前記第3原色輝度データの内の少なくとも1つに基づいて、前記第3ボリュームレンダリング演算で使用する第3パラメータを決定する第3パラメータ決定部と、
    を含むことを特徴とする超音波画像処理装置。
  9. 請求項8記載の装置において、
    前記第1パラメータ、前記第2パラメータ及び前記第3パラメータはそれぞれボリュームレンダリング演算で用いるオパシティであることを特徴とする超音波画像処理装置。
  10. 請求項4記載の装置において、
    前記カラー演算部は、組織が白黒表現され、且つ、血流がカラー表現されるように前記各原色輝度データを生成することを特徴とする超音波画像処理装置。
  11. 請求項4記載の装置において、
    前記カラー演算部は、血流の向きが正の場合には血流の速度分散の大きさに応じて第1色相範囲内で色相を連続的に変化させる第1の条件、及び、血流の向きが負の場合には血流の速度分散の大きさに応じて第2色相範囲内で色相を連続的に変化させる第2の条件、に従って前記各原色輝度データを決定することを特徴とする超音波画像処理装置。
  12. 請求項11記載の装置において、
    前記カラー演算部は、更に、血流の速度の大きさに応じて輝度を変化させる第3の条件に従って前記各原色輝度データを決定することを特徴とする超音波画像処理装置。
JP2004099134A 2004-03-30 2004-03-30 超音波画像処理装置 Pending JP2005278988A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099134A JP2005278988A (ja) 2004-03-30 2004-03-30 超音波画像処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099134A JP2005278988A (ja) 2004-03-30 2004-03-30 超音波画像処理装置

Publications (1)

Publication Number Publication Date
JP2005278988A true JP2005278988A (ja) 2005-10-13

Family

ID=35178006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099134A Pending JP2005278988A (ja) 2004-03-30 2004-03-30 超音波画像処理装置

Country Status (1)

Country Link
JP (1) JP2005278988A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088699A (ja) * 2008-10-09 2010-04-22 National Center For Child Health & Development 医療画像処理システム
WO2012053514A1 (ja) * 2010-10-19 2012-04-26 株式会社 東芝 超音波診断装置、超音波画像処理装置及び超音波画像処理方法
WO2012160976A1 (ja) * 2011-05-24 2012-11-29 株式会社東芝 超音波診断装置及び画像処理装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088699A (ja) * 2008-10-09 2010-04-22 National Center For Child Health & Development 医療画像処理システム
WO2012053514A1 (ja) * 2010-10-19 2012-04-26 株式会社 東芝 超音波診断装置、超音波画像処理装置及び超音波画像処理方法
JP2012105966A (ja) * 2010-10-19 2012-06-07 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
CN102573653A (zh) * 2010-10-19 2012-07-11 株式会社东芝 超声波诊断装置、超声波图像处理装置以及超声波图像处理方法
WO2012160976A1 (ja) * 2011-05-24 2012-11-29 株式会社東芝 超音波診断装置及び画像処理装置
JP2012239820A (ja) * 2011-05-24 2012-12-10 Toshiba Corp 超音波診断装置及び画像処理装置
US10226231B2 (en) 2011-05-24 2019-03-12 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus and image processing apparatus

Similar Documents

Publication Publication Date Title
JP5366612B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP5236655B2 (ja) グレイスケール反転を用いる3d超音波カラーフローイメージング
JP4847334B2 (ja) 超音波撮像装置及び投影像生成方法
US8988462B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
JP7077118B2 (ja) 二次元超音波画像をシェーディングするための方法およびシステム
JP5848709B2 (ja) 超音波診断装置及び超音波画像表示方法
CN114469173A (zh) 超声流体成像系统
JP2009011711A (ja) 超音波診断装置
WO2010024023A1 (ja) 超音波診断装置及び超音波画像表示方法
JP2010505575A5 (ja)
WO2005006987A1 (ja) 超音波診断装置及び超音波画像診断方法
JP4363644B2 (ja) 超音波画像表示方法および超音波診断装置
US11017512B2 (en) Blood flow image processing apparatus and blood flow image processing method
JP2009268734A (ja) 超音波観測装置
JP2005278988A (ja) 超音波画像処理装置
JP2015016062A (ja) 超音波画像撮像装置及び超音波画像表示方法
CN109754869B (zh) 着色的超声图像对应的着色描述符的呈现方法和系统
JP2009050720A (ja) 超音波診断装置
JP3977779B2 (ja) 超音波診断装置
JP2004135934A (ja) 超音波診断装置
JP3776523B2 (ja) 超音波診断装置
JP2010194047A (ja) 超音波診断装置及び画像処理装置
JP2000157540A (ja) 投影画像表示方法および装置並びに超音波撮像装置
JP2012045253A (ja) 超音波診断装置
JP2009078187A (ja) 超音波画像表示方法および超音波診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825