WO2004112238A1 - 低雑音増幅器 - Google Patents

低雑音増幅器 Download PDF

Info

Publication number
WO2004112238A1
WO2004112238A1 PCT/JP2004/008217 JP2004008217W WO2004112238A1 WO 2004112238 A1 WO2004112238 A1 WO 2004112238A1 JP 2004008217 W JP2004008217 W JP 2004008217W WO 2004112238 A1 WO2004112238 A1 WO 2004112238A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
transistor
noise amplifier
channel
mos transistor
Prior art date
Application number
PCT/JP2004/008217
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Takefumi Nishimuta
Hiroshi Miyagi
Shigetoshi Sugawa
Akinobu Teramoto
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Niigata Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki, Niigata Seimitsu Co., Ltd. filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to US10/560,703 priority Critical patent/US20070105523A1/en
Priority to EP04745811A priority patent/EP1635454A1/en
Publication of WO2004112238A1 publication Critical patent/WO2004112238A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82385Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0029Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier using FETs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • H03G1/007Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using FET type devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier

Definitions

  • the present invention relates to a low-noise amplifier configured on a MIS (Metals Insulator-Semiconductor) integrated circuit.
  • MIS Metal Insulator-Semiconductor
  • FIG. 1 is a circuit block diagram showing the general direct conversion receiving method.
  • the circuit block diagram 1 in the figure shows an antenna 2, a low-noise amplifier 4, a local oscillator 6, a 90-degree phase shifter 8, a mixer 10, a low-pass filter (LPF) 12, a DC amplifier 14, an A / D converter 16, Consists of DSP18.
  • LPF low-pass filter
  • the RF signal is amplified by the low-noise amplifier 4, and the amplified RF signal is input to the mixers 10 arranged above and below the figure. .
  • a local (L ⁇ ) signal having the same frequency as the RF signal is output from the local oscillator 6, and the LO signal is input to each mixer 10 with a 90-degree phase shift by the 90-degree phase shifter 8. I do.
  • the mixer 10 multiplies the input RF signal and LO signal by converting the output of the low noise amplifier 4 into a baseband signal having an in-phase (I) component and a quadrature (Q) component. I have. According to this method, since the IF becomes zero and the baseband signal overlaps to make demodulation impossible, quadrature demodulation is performed using two LO signals and two sets of mixers 10 whose phases differ by 90 degrees as described above.
  • the digital signal converted by the A / D converter 16 is input to the DSP 18, whereby processing such as code reproduction is performed.
  • the carrier frequency signal received by the antenna is converted into an intermediate frequency (IF) signal, so that the image frequency remains. Therefore, in the case of the superheterodyne receiving system, a band-pass filter for removing the above-mentioned image frequency is configured in front of the low-noise amplifier, and an IF filter or the like for limiting the band for extracting the intermediate frequency is provided. It is composed of circuits.
  • the low-noise amplifier first becomes a circuit block having a gain.
  • MOS Metal-Oxide-Semiconductor
  • FIG. 10 An example of the configuration of a semiconductor device in which a MIS transistor of one conductivity type (p-channel or n-channel) is formed on a semiconductor substrate as a single unit is as follows.
  • Japanese Patent Application Laid-Open No. 2002-110963 discloses a structure configured as a convex portion. With this configuration, it is said that a channel can be formed on the side wall surface of the above-mentioned convex portion of the semiconductor substrate.
  • Patent Document 1 JP 2002-110963 A
  • noise generated in the channel appears remarkably, which is a direct cause of increasing the noise figure of the low-noise amplifier. It becomes clear.
  • the noise is the noise between the semiconductor substrate and the gate insulating film. Flicker noise (1 / f noise) generated by electron-hole pairs, recombination, trapping of carriers in traps, or emission of carriers from traps in channels generated near surfaces and interfaces. It is. And it was difficult to reduce this 1 / f noise.
  • the drain current shows a constant value irrespective of the drain-source voltage, and in fact, the pinch-off point ( The movement of the point at which the channel carrier density becomes substantially zero) decreases the effective gate length, while increasing the drain current causes a channel length modulation effect. For this reason, it has been difficult to obtain a stable signal without distortion as an amplified signal.
  • An object of the present invention is to provide a low-noise amplifier that can suppress noise with a small number of parts and amplify a signal with high gain, and further reduce noise and signal distortion.
  • the configuration is made as follows.
  • the low-noise amplifier of the present invention has a MIS (Metal-Insulator-Semiconductor) transistor, and is premised on amplifying an input signal (for example, a carrier signal) while suppressing noise to a low level.
  • the MIS transistor includes a semiconductor substrate having a first crystal plane as a main surface, and a second crystal plane formed as a part of the semiconductor substrate and different from the first crystal plane.
  • a semiconductor structure comprising a pair of formed side walls and a top surface defined by a third crystal plane different from the second crystal plane; A gate insulating film that covers the top surface with a uniform thickness; a gate electrode that continuously covers the main surface, the side wall surface, and the top surface via the gate insulating film; And the same conductivity type diffusion region formed on one side and the other side of the semiconductor structure via the gate electrode, and both extend continuously along the main surface, the side wall surface, and the top surface.
  • the conductivity type includes, for example, n-type and p-type, and the diffusion region of the same conductivity type means a region having the same conductivity type as a diffusion region formed on both sides of the gate electrode.
  • Another embodiment of the low noise amplifier of the present invention has an MIS transistor, and is premised on amplifying an input signal while suppressing noise to a low level.
  • the MIS transistor has at least a surface.
  • a semiconductor substrate forming a projection having two different crystal planes with respect to the main surface; and a gate insulating film covering at least a part of each of the at least two different crystal planes forming the surface of the projection.
  • Another embodiment of the low-noise amplifier of the present invention has an MIS transistor, and presupposes that an input signal is amplified while suppressing noise to a low level.
  • At least two MIS transistors are provided.
  • a semiconductor substrate having two crystal planes, a gate insulating film formed on at least two of the crystal planes on the semiconductor substrate, and a gate electrode formed on the semiconductor substrate with the gate insulating film interposed therebetween And when a voltage is applied to the gate electrode, a channel width of a channel formed in the semiconductor substrate along the gate insulating film is formed for each of the at least two crystal planes.
  • the MIS transistor has a three-dimensional structure represented by the sum of the channel widths of the respective channels.
  • the semiconductor substrate is a silicon substrate
  • the gate insulating film formed on the surface of the silicon substrate is formed on the surface of the silicon substrate. Is exposed to plasma of a predetermined inert gas to remove hydrogen, and the hydrogen content at the interface between the silicon substrate and the gate insulating film is 1 QH / cm 2 in terms of areal density.
  • the power to compose is S desirable.
  • the at least two crystal planes are configured by combining any two different crystal planes among the (100) plane, the (110) plane, and the (111) plane. .
  • the transistor has an S transistor, and at least one of the n-channel M ⁇ S transistor and the p-channel MOS transistor is configured by the MIS transistor of the low noise amplifier according to any one of the above aspects. .
  • the p-channel MOS transistor and the n-channel M ⁇ S transistor are configured such that the element area and the current driving capability are substantially the same.
  • an input voltage based on the input signal is commonly applied to the gate of the p-channel MOS transistor and the gate of the n-channel MOS transistor, and the p-channel MOS transistor
  • a voltage source is provided on the drain side, the source of the p-channel MOS transistor and the drain of the n-channel MOS transistor are commonly connected, and a direct current for determining an operating point is connected between the source and the drain of the n-channel MOS transistor.
  • a feedback circuit is connected, and a voltage appearing on the commonly connected line between the source of the p-channel MOS transistor and the drain of the n-channel MOS transistor is output as an amplified voltage of the input voltage. May be implemented.
  • the low-noise amplifier of each of the above embodiments may be used in a direct conversion receiving system.
  • a gate width is formed along at least two different crystal planes. Therefore, when a voltage is applied to the gate, a channel is formed along the at least two different crystal planes. In particular, when a channel is formed along the crystal plane of the projection, the gate length modulation effect that occurs in each transistor is significantly suppressed.
  • the semiconductor substrate is a silicon substrate
  • the gate insulating film formed on the surface of the silicon substrate exposes the surface of the silicon substrate to plasma by a predetermined inert gas to generate hydrogen. Formed by removing the above silicon Since the hydrogen content at the surface of the substrate and the interface between the gate insulating film and the interface between the semiconductor substrate and the gate insulating film can be reduced to 10 u / cm 2 or less in terms of surface density, the interface state at the interface between the semiconductor substrate and the gate insulating film can be reduced. The potential density can be reduced, 1 / f noise can be reduced, and variations in the electrical characteristics of each transistor can be reduced.
  • the above-mentioned at least two crystal planes are combined with any two different crystal planes among the (100) plane, the (110) plane, and the (111) plane, so that the lZf is significantly reduced. As a result, variation in electrical characteristics can be greatly reduced.
  • CMOS complementary metal oxide semiconductor
  • FIG. 1 is a circuit block diagram of a conventional direct conversion receiving system.
  • FIG. 2 is a sectional view showing an example of a plasma processing apparatus using a radial line slot antenna.
  • FIG. 3 is a result of analyzing a silicon-hydrogen bond on the surface of a silicon substrate 103 by an infrared spectrometer.
  • FIG. 4 shows the relationship between the thickness of an oxide film to be formed and the pressure in the processing chamber when the gas pressure in the processing chamber 101 is changed while maintaining the pressure ratio of KrZ ⁇ in the processing chamber at 97/3. Relationship.
  • FIG. 5 is a comparison diagram between a growth rate of a Kr / 0 plasma oxide film and a growth rate of a thermal oxide film.
  • FIG. 6 is a comparison diagram of interface state density between a Kr / 0 plasma oxide film and a thermal oxide film.
  • FIG. 7A Drain voltage versus normalized drain current characteristics.
  • FIG. 7B Drain voltage versus normalized drain current characteristics.
  • FIG. 7C Drain voltage versus normalized drain current characteristics.
  • FIG. 8 is a configuration example of an n-channel MOS transistor.
  • FIG. 9 is a configuration example of a CMOS transistor.
  • FIG. 10 is a diagram showing a part extracted from FIG. 9;
  • FIG. Ll is a circuit example of a low-noise amplifier using a CMOS structure.
  • FIG. 12 is a circuit block diagram of a direct conversion receiving system.
  • the low-noise amplifier according to the embodiment of the present invention is configured by a transistor having an MIS (Metal-Insulator ⁇ Semiconductor) structure. Then, in the embodiment of the present invention, the gate insulating film of the MIS transistor is formed by adopting a gate insulating film thin film forming technique disclosed in Japanese Patent Application Laid-Open No. 2002-261091.
  • MIS Metal-Insulator ⁇ Semiconductor
  • the gate insulating film may be a nitride film or an oxynitride film as disclosed in Japanese Patent Application Laid-Open No. 2002-261091.
  • MOS Metal-Oxide-Semiconductor
  • MOS Metal-Oxide-Semiconductor
  • MOSFET MOSFET, etc.
  • FIG. 2 is a sectional view showing an example of a plasma processing apparatus 100 using a radial line slot antenna.
  • a silicon oxide or Si is used.
  • Kr which is used as a plasma excitation gas in the process, surface-terminated hydrogen removal and oxidation are performed continuously in the same processing chamber.
  • the inside of the vacuum chamber (processing chamber) 101 is evacuated, and then an Ar gas is first introduced from the shower plate 102, and is switched to a Kr gas. Further, the pressure in the processing chamber 101 is set to about 133 Pa (lTorr).
  • the silicon substrate 103 is placed on the sample stage 104 having a heating mechanism, and the temperature of the sample is set to 400 ° C. Set to about. If the temperature of the silicon substrate 103 is in the range of 200 to 550 ° C., the results described below are almost the same.
  • the silicon substrate 103 is subjected to dilute hydrofluoric acid cleaning in the immediately preceding pretreatment step, and as a result, silicon dangling bonds on the surface are terminated with hydrogen.
  • a microwave having a frequency of 2.45 GHz is supplied from the coaxial waveguide 105 to the radial line slot antenna 106, and the microwave is transmitted from the radial line slot antenna 106 to a part of the wall surface of the processing chamber 101.
  • the substrate is introduced into the processing chamber 101 through a dielectric plate 107 provided in the substrate.
  • the introduced microwave excites the Kr gas introduced into the processing chamber 101 from the shower plate 102, and as a result, a high-density Kr plasma is formed immediately below the shower plate 102. If the frequency of the supplied microwave is in the range from about 900 MHz to about 10 GHz, the results described below are almost the same.
  • the distance between the shower plate 102 and the substrate 103 is set to 6 cm in the present embodiment. The shorter the distance, the faster the film formation.
  • a film is formed using a plasma apparatus using a radial line slot antenna.
  • the microwave may be introduced into the processing chamber using another method to excite the plasma. .
  • the surface of the silicon substrate 103 is irradiated with low-energy Kr ions, and the surface-terminated hydrogen is removed.
  • FIG. 3 shows the result of analyzing the silicon-hydrogen bond on the surface of the silicon substrate 103 by an infrared spectroscope.
  • the microwave was introduced into the processing chamber 101 under a pressure of 133 Pa (lTorr) at 1.2 W / cm.
  • the effect of removing hydrogen terminated on the silicon surface by Kr plasma excited by the introduction of power of 2 is shown.
  • a Kr / ⁇ mixed gas having a partial pressure ratio of 97/3 is introduced from the shower plate 102.
  • the pressure in the processing chamber is maintained at about 133 Pa (lTorr).
  • Kr * and ⁇ molecules in the intermediate excited state collide, and large amounts of atomic oxygen O * can be generated efficiently.
  • the surface of the silicon substrate 103 is oxidized by the atomic oxygen O *.
  • O * the atomic oxygen
  • FIG. 4 shows the relationship between the thickness of the oxide film to be formed and the pressure in the processing chamber when the gas pressure in the processing chamber 101 is changed while maintaining the pressure ratio of Kr / O in the processing chamber at 97Z3.
  • the following shows the relationship.
  • the temperature of the silicon substrate 103 is set to 400 ° C., and the oxidation treatment is performed for 10 minutes.
  • the oxidation rate is highest when the pressure in the processing chamber 101 is about 133 Pa (lTorr), and that this pressure or a pressure condition in the vicinity thereof is optimal.
  • This optimum pressure is not limited to the case where the plane orientation of the silicon substrate 103 is the (100) plane, and is the same regardless of the plane direction of the silicon surface.
  • the introduction of the microwave power is stopped, the plasma excitation is ended, and the Kr / O mixed gas is replaced with Ar gas to end the oxidation step.
  • the reason for using Ar gas before and after this process is to use a gas that is less expensive than Kr as the purge gas. The Kr gas used in this process will be recovered and reused.
  • an electrode formation step, a protection film formation step, a hydrogen sintering step, and the like are performed to complete a semiconductor integrated circuit device including a MOS transistor and a capacitor. it can.
  • the hydrogen content in the silicon oxide film formed by the above procedure was measured by heating and releasing, it was about 10 12 / cm 2 or less in terms of surface density in a silicon oxide film having a thickness of 3 nm.
  • Hydrogen content in silicon oxide film especially in oxide film with low leakage current It was confirmed that the amount was about ion / cm 2 or less in terms of area density.
  • oxide films that were not exposed to Kr plasma before oxide film formation contained hydrogen in excess of 10 12 / cm 2 in terms of areal density.
  • the present gate insulating film thin film forming method hydrogen remaining at the interface between the silicon substrate and the silicon oxide film formed as the gate insulating film of the MS transistor is removed, and the interface is planarized. You. By this flattening, a low interface state density at the interface can be realized, and good electrical characteristics (low leakage current characteristics, low interface state density, high breakdown voltage) can be obtained even when the gate insulating film is thinned. Characteristics, high hot carrier resistance, uniform threshold voltage characteristics, etc.). Further, a gate insulating film formed in any plane orientation can obtain good electrical characteristics in those plane orientations.
  • FIG. 5 shows the growth rate of the Kr / ⁇ plasma oxide film when the (100), (111), and (110) planes of the silicon substrate were oxidized by the plasma processing apparatus 100 of FIG. This is shown in comparison with the growth rate of the thermal oxide film.
  • the growth rate of the Kr / O plasma oxide film is much higher than that of the thermal oxide film, and the growth of the Si substrate using active atomic oxygen The oxidation has been shown to proceed very efficiently. Furthermore, as shown in Fig. 5, in the Kr / O plasma oxide film, the growth rate on the (111) and (110) planes, where the surface density of Si atoms is higher, is smaller than that on the (100) plane. I know that. This is consistent with the result derived from the raw material supply rate-limiting process, and suggests that the plasma oxide film thus formed has excellent film quality.
  • FIG. 6 shows the interface state density between the Kr / O plasma oxide film thus formed and the thermal oxide film.
  • the Kr / O plasma oxide film was formed on the (100) plane of silicon.
  • the interface state density is lower than the interface state density of the thermal oxide film formed on the (100) plane, even if it is formed on the (111) or (110) plane.
  • the oxide film is obtained.
  • thermal oxide film formed on the (111) and (110) planes of silicon has a very high interface state density as predicted from the results in FIG.
  • various problems such as a change in threshold voltage due to carrier capture and an increase in gate leakage current are considered to occur.
  • FIG. 7A to FIG. 7C show a case where a silicon oxide film is formed on the (100), (111), and (110) planes of the silicon substrate by the plasma processing apparatus 100 of FIG.
  • the drain voltage vs. normalized drain current characteristics when a P-channel MOS transistor is formed using an oxide film as a gate insulating film is shown.
  • 7A and 7B show both the case where the silicon oxide film is formed by the Kr / O plasma treatment and the case where the silicon oxide film is formed by the thermal oxidation treatment.
  • FIG. 7C shows only an example of the gate oxide film formed by the Kr / O plasma process because the oxide film cannot be formed on the (110) plane by the thermal oxidation process.
  • results for 7A are for a ⁇ -channel MOS transistor with a gate length of 10 ⁇ m and a gate width of 50 ⁇ m
  • results in Figures 7 ⁇ and 7C are for a gate length of 10 / im and a gate width of 300 ⁇ m. m for p-channel MOS transistor.
  • the drain current of the p-channel M ⁇ S transistor is determined by changing the transistor to a crystal plane other than the (100) plane of silicon, for example, a (111) plane or It can be increased by forming it on the (110) plane.
  • a crystal plane other than the (100) plane of silicon for example, a (111) plane or It can be increased by forming it on the (110) plane.
  • the p-channel M ⁇ S The current driving capability is about 1.3 times that of the transistor, and about 1.8 times the current driving capacity when formed on the (110) plane. I understand that you can get it.
  • FIG. 8 shows a configuration example of an N-channel MOS transistor.
  • a silicon oxide film is formed uniformly on a Si substrate 710 having a (110) plane as a main surface by the plasma processing apparatus 100 described above with reference to FIG.
  • a polysilicon gate electrode 730 is formed on the formed silicon oxide film. Further, the silicon oxide film is also buttered with the force and buttering of the gate electrode 730, and a gate insulating film 720 is formed in a region surrounded by the thick solid line and the broken line in FIG. You.
  • n-type impurities are ion-implanted using the gate electrode 730 as a self-alignment mask, so that n-type diffusion regions 710a and 710b are formed on both sides of the gate electrode 730.
  • an n-channel MOS transistor is formed on the Si substrate 710.
  • the formation range when a channel is formed between the n-type diffusion regions 710a and 710b is indicated by oblique lines.
  • the figure shows a configuration example of an n-channel MOS transistor.
  • a p-type impurity is ion-implanted using a force gate electrode as a self-aligned mask to form p-type diffusion regions on both sides of the gate electrode. Accordingly, a p-channel MOS transistor can be formed on the Si substrate.
  • the transistor is formed on the (110) plane of the Si substrate in the above configuration example, the above-described effects can be obtained by forming the transistor on another (100) plane or (111) plane.
  • FIG. 1 is a configuration example of a CMOS (Complementarv Metal Oxide Semiconductor) transistor.
  • FIG. 10 is a diagram showing a part of FIG. 9 taken out.
  • CMOS Complementarv Metal Oxide Semiconductor
  • a CMOS transistor 800 is formed on an Si substrate 810 having a (100) plane as a main surface in which an n-type region A and a p-type region B separated by an element isolation region 805 are formed.
  • the area A has a width W and a height H, as shown in FIG.
  • protrusions 810B of width W and height H are formed on both side walls.
  • the top surfaces of the protrusions 810A and 810B are defined by the (100) plane, and the side walls are defined by the (110) plane.
  • a silicon oxide film is uniformly formed on the Si substrate 810 of FIG. 10 by the plasma processing apparatus 100 described above with reference to FIG. 2, and further a polysilicon film shown in FIG. Gate electrodes 830A and 830B force S, formed on regions A and B, respectively. Further, with the patterning of the gate electrodes 830A and 830B, the silicon oxide film is also patterned. It is formed in a region surrounded by thick solid lines and oblique lines.
  • n-type impurities are ion-implanted using the gate electrode 830A as a self-aligned mask, so that the protrusions 810A are provided on both sides of the gate electrode 83OA.
  • n-type diffusion regions 810a and 810b are formed to form n-type diffusion regions 810a and 810b.
  • p-type diffusion regions 810c and 810d are formed on both sides of the gate electrode 830B, including the protrusions 810B.
  • an n-channel MOS transistor 840A is formed in the region A and a p-channel MOS transistor 840B is formed in the region B.
  • the n-channel MOS transistor 840A has a gate length L
  • the p-channel MOS transistor 840B has a gate length L
  • the electrode 830A covers the flat portion of the Si substrate 810 with a gate width W / 2 on each side of the protruding portion 810A. As a result, on the (100) plane of the gate electrode 830A,
  • the gate width is given by W + W, including the top of the protrusion 810A. to this
  • the gate width on the (110) plane of the gate electrode 830A is given by 2H because it is formed on both side walls, and as a result, the n-channel MOS transistor formed in the region A is formed.
  • transistor 840A The current drive capability of transistor 840A is given by the formula ⁇ (WlA + W2A) + 2 / iH
  • the current drive capability of the p-channel MS transistor 840B formed in the region B is given by the formula ⁇ (W + W) +2 ⁇ .
  • is the (100) plane
  • pi IB 2B p2 B pi represents the hole mobility
  • represents the hole mobility on the (1 10) plane.
  • Gates can be formed on the (100) plane, which is the principal plane of the Si substrate 810, and on the (110) plane having a different plane orientation from the (100) plane. Can be reduced, and the gate width of the main surface can be compensated by the gate width of the gate formed with respect to the (110) plane. As a result, the size of the transistor element can be reduced.
  • the transistor formed on the side wall surface may be a 1S single side wall surface formed on both side wall surfaces.
  • channels are formed along the gate insulating film 820A or 820B between the n-type diffusion regions 810a and 810b above the Si substrate 810 or between the p-type diffusion regions 810c and 810d, respectively.
  • the range of the formation is indicated by oblique lines.
  • the channel width of the channel formed in the Si substrate along the above-described gate insulating film is, for example, the W + W of the (100) plane in the case of the n-channel MOS transistor 840A.
  • the sum of the above 2H on the (1 10) plane for example, p-channel MOS transistor
  • the channel MOS transistors have the same element area and can form a CMOS transistor having the same current driving capability.
  • the channels are three-dimensionally formed as shown by diagonal lines in FIG.
  • the decrease in the effective gate length due to the shift of the pinch-off point (point where the channel carrier density becomes substantially zero) in the formed channel is suppressed, and the increase in the drain current in the saturation region can be suppressed.
  • CMOS transistor a configuration example of the CMOS transistor is shown.
  • the non-complementary structure that is, only the n-channel MOS transistor 840A or the p-channel MOS transistor 840B is three-dimensionally configured using the (100) plane and the (110) plane as described above. You can also. And, naturally, the above-described operation and effect can be similarly obtained only with such an n-channel MS transistor or a p-channel MOS transistor.
  • the silicon oxide film is uniformly formed in any plane direction by the plasma processing apparatus 100, lZf noise is reduced, and a gate is formed in a plurality of plane directions to form a transistor.
  • the channel length modulation effect is reduced, and good electrical characteristics without variation between elements can be obtained. Further, by adopting the three-dimensional structure, the element area can be reduced.
  • CMOS transistor having a three-dimensional structure has a well-balanced electrical characteristic and can have a significantly reduced element area.
  • FIG. 11 is a circuit diagram of a low-noise amplifier configured by applying the above-described CMOS transistor.
  • the circuit 1000 of the low-noise amplifier has a p-channel M ⁇ S transformer.
  • CMOS transistor 1002 a common input voltage (for example, the gate of the p-channel MOS transistor Ml and the gate of the n-channel MOS transistor M2) ; An input voltage that varies based on the received carrier). Then, the p-channel MOS transistor Ml and the n-channel MOS transistor M2 function as a signal amplifier. Further, in this circuit, a voltage source VDD is added to the drain of the p-channel MOS transistor Ml in order to obtain a high voltage gain. The amplified voltage of the input voltage is output to the source of the p-channel MOS transistor Ml and the drain of the n-channel MOS transistor M2.
  • the operating point determination circuit 1004 determines that the source and n of the p-channel M ⁇ S transistor Ml The amplified voltage is controlled with reference to the reference voltage (Vref) to determine the operating point so that thermal noise and 1 / f noise are reduced by suppressing g, which is inserted between the channel MOS transistor M2 and m. I do. Note that C1 is introduced to reduce thermal noise.
  • CMOS transistor 1002 shown in this circuit 1 / f noise generated from the p-channel MOS transistor Ml and the n-channel MOS transistor M2 is significantly reduced. Further, even if the element areas of the MOS transistors (Ml and M2) are the same, the same electrical characteristics without variation can be obtained. Furthermore, the parasitic capacitances of the p-channel MOS transistor and the n-channel MOS transistor can be matched with each other, so that the difference between the rising and falling characteristics of the drain current with respect to the gate-source voltage can be significantly reduced. it can.
  • the low-noise amplifier of the embodiment of the present invention can be applied to a circuit of a direct conversion receiving system.
  • FIG. 12 shows an example in which the low-noise amplifier is applied to the direct conversion receiving circuit.
  • the low-noise amplifier 1200 according to the embodiment of the present invention can be inserted at the position. (Note that the configuration and operation of the direct conversion receiving method have been described in detail in the prior art with reference to FIG. 1, and thus the description is omitted here.)
  • the lZf noise in the low-noise amplifier having gain first in the direct-conversion receiving method will be described. Therefore, the S / N ratio of the signal demodulated in the subsequent stage is improved, and the quality of the signal demodulated by the direct conversion receiving method can be improved. Further, if the low-noise amplifier according to the embodiment of the present invention is applied, it is not necessary to newly provide a circuit for reducing lZf noise and signal distortion in a circuit at the subsequent stage, and the direct conversion receiver can be downsized. Can be
  • CMOS transistor having the three-dimensional structure it is possible to configure a low-noise amplifier or a direct-conversion receiver that is compact, has low power consumption, and has high performance.
  • the low-noise amplifier according to the embodiment of the present invention can be applied to a superheterodyne receiver.
  • the gain once increased to, for example, 80db is reduced to, for example, 60db in the IF stage to suppress the influence of noise, and then increased to 80db again using a bipolar device in the subsequent stage.
  • the influence of noise can be reduced, so that it is possible to improve the decrease in gain in the IF stage and improve the S / N ratio. You.
  • a known gate insulating film thin film forming technique which is most suitable for reducing noise of a low-noise amplifier has been applied.
  • the present invention is not limited to this gate insulating film thin film forming technology, and other gate insulating film forming methods may be applied as appropriate depending on the application of the low noise amplifier.
  • the embodiment of the present invention it is possible to greatly improve the generation of lZf noise in the low-noise amplifier and the variation in the electrical characteristics of each transistor element. Therefore, 1 / f noise and signal distortion given to the output signal by the low-noise amplifier are greatly reduced, and a circuit for compensating those reductions becomes unnecessary, and the size can be reduced.
  • signal distortion in the output signal can be significantly reduced, and a compact, low-power, and high-performance low-noise amplifier can be realized. Will be possible.
  • the direct conversion receiver including the low noise amplifier of the present invention is miniaturized, and further, the S / N ratio is improved and the quality of the demodulated signal is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Amplifiers (AREA)

Abstract

 MISトランジスタを有し、雑音を低レベルに抑えて入力信号を増幅する低雑音増幅器を前提とし、上記MISトランジスタは、第1の結晶面を主面として有する半導体基板と、該半導体基板の一部として形成され、上記第1の結晶面とは異なった第2の結晶面により画成された1対の側壁面と、上記第2の結晶面とは異なった第3の結晶面により画成された頂面とよりなる、半導体構造と、上記主面及び上記側壁面及び上記頂面を一様な厚さで覆うゲート絶縁膜と、上記主面及び上記側壁面及び上記頂面を、上記ゲート絶縁膜を介して連続的に覆うゲート電極と、上記半導体基板中及び上記半導体構造中の、上記ゲート電極を介する一方側及び他方側に形成され、いずれも上記主面及び上記側壁面及び上記頂面に沿って連続的に延在する、同一導電型拡散領域と、を有するように構成する。   このように構成することにより、低雑音増幅器によって出力信号に与えられる1/f雑音や信号歪が大幅に低減され、それらの低減を補償する回路が不要になり、小型化が可能になる。

Description

明 細 書
低雑音増幅器
技術分野
[0001] 本発明は、 MIS (Meta卜 Insulator~Semiconductor)集積回路上に構成される低雑 音増幅器に関する。
背景技術
[0002] 高周波 (RF)信号から所望波を取り出す技術としてスーパーヘテロダイン方式ゃダ ィレクトコンバージョン受信方式などが良く知られている。
これら受信方式のダイレクトコンバージョン受信方式を例に、典型的な信号の復調 方式を以下に図面を用いて説明する。
[0003] 図 1は、一般的な上記ダイレクトコンバージョン受信方式を示す回路ブロック図であ る。
同図の回路ブロック図 1は、アンテナ 2、低雑音増幅器 4、局部発振器 6、 90度移相 器 8、ミキサ 10、ローパスフィルタ(LPF) 12、 DCアンプ 14、 A/D変換器 16、及び D SP18から構成されている。
[0004] 同図のアンテナ 2から高周波 (RF)信号を受信すると、その RF信号を低雑音増幅 器 4で増幅させ、その増幅した RF信号を同図の上下に配置されたミキサ 10に入力 する。
また、局部発振器 6からは上記 RF信号と同じ周波数のローカル (L〇)信号が出力 され、 90度移相器 8で互いに 90度の位相を持たせて各ミキサ 10にその LO信号を入 力する。
[0005] ミキサ 10では、上記入力された RF信号と LO信号とを乗算し、低雑音増幅器 4の出 力を同相(I)成分及び直交(Q)成分を有するベースバンド信号へそれぞれ変換して いる。この方式によると IFがゼロとなりベースバンド信号が折り重なって復調できなく なるため、前述したように位相の 90度異なる二つの LO信号と二組のミキサ 10を用い て直交復調を行なう。
[0006] ミキサ 10から出力された信号は、その後段で、 LPF12によって不要波がカットされ 、 LPF12から出力された所望波が DCアンプ 14で増幅され、 DCアンプ 14から出力 された信号が A/D変換器 16でデジタル信号に変換される。
[0007] そして、 A/D変換器 16によって変換されたデジタル信号が DSP18に入力される ことにより、符号再生等の処理が行なわれる。
一方、受信方式力 Sスーパーヘテロダイン受信方式であれば、アンテナで受信した 搬送波周波数信号を中間周波数 (IF)信号へ変換するため、イメージ周波数が残つ てしまう。そのため、スーパーヘテロダイン受信方式の場合には低雑音増幅器の前 段に上記イメージ周波数を取り除くためのバンドパスフィルタが構成され、さらに、中 間周波数を取り出すために帯域制限を行なう中間周波数フィルタなどが IF回路に構 成される。
[0008] 上述した回路ブロック図の説明力もも明らかなように、上記低雑音増幅器は、先ず 始めに利得を有する回路ブロックとなる。
低雑音増幅器の雑音指数はシステムの雑音指数にそのまま加算されてしまうため、 低雑音増幅器を設計する際は如何に雑音を低減させて入力信号を増幅させるかが 重要となる。
[0009] 昨今では、従来問題となっていた MOS (Metal-Oxide-Semiconductor)トランジスタ の低スピードの問題とノイズが大きいという問題が改善されつつあり、上述した低雑音 増幅器に対して MOSトランジスタを適用することで低雑音増幅器を半導体基板上に 集積化できるようになった。
[0010] そして、半導体基板上に一導電型 (pチャネルまたは nチャネル)の MISトランジスタ を単体で構成した半導体装置の構成例としては、そのゲート絶縁膜を一例として熱 酸化処理を施して半導体基板の凸部に構成したものが特開 2002— 110963号公報 に開示されている。この構成であれば、半導体基板の上記凸部の側壁面に対してチ ャネルを形成できるとされてレ、る。
特許文献 1 :特開 2002 - 110963号公報
[0011] しかし、上記 MOSトランジスタを利用して低雑音増幅器を構成すると、チャネルで 発生する雑音が顕著に現れ、それが低雑音増幅器の雑音指数を高める直接的な原 因となっていることが明らかになる。その雑音とは、半導体基板とゲート絶縁膜との界 面及び界面付近に生成されるチャネルにおいて、電子正孔対の生成、再結合やトラ ップでのキャリアの捕獲、或いはトラップからのキャリアの放出などによって生じるフリ ッカ雑音(1/f雑音)である。そして、この 1/f雑音を低減させる事は困難であった。
[0012] また、トランジスタ特性における飽和領域においては、ドレイン一ソース間電圧に寄 らずドレイン電流が一定の値を示すことが理想的である力 S、実際には、この飽和領域 におけるピンチオフ点(チャネルキャリア密度が略 0になる点)の移動により、実行ゲ 一ト長は減少し、反対にドレイン電流が上昇するとレ、うチャネル長変調効果が生じる 。このため、増幅された信号として歪のない安定した信号を得ることが困難であった。
[0013] このように、低雑音増幅器の回路設計をする際には、いかに雑音を低く抑えて利得 を増やせるようにするかが課題で、これまでは、出力信号に影響する雑音や歪を別 回路で補償するなどの構成をとる必要があった。
[0014] さらに、 CMOS構造にした低雑音増幅器においては、 pチャネル M〇Sトランジスタ 及び nチャネル MOSトランジスタの互いの寄生容量が一致せず、ゲート-ソース間電 圧に対する互いのドレイン電流の立上がり特性と立下り特性のずれによる信号歪を 生じており問題であった。
発明の開示
[0015] 本発明は、少ない部品数で雑音を抑えかつ高利得で信号増幅させることが可能な 低雑音増幅器を提供することを目的とし、さらに、雑音を低化させると共に信号歪を 低化させることが可能な CMOS構造の低雑音増幅器を提供することを目的として以 下のように構成する。
[0016] 本発明の低雑音増幅器の態様の一つは、 MIS (Metal-Insulator-Semiconductor) トランジスタを有し、雑音を低レベルに抑えて入力信号 (例えば搬送信号など)を増幅 することを前提とし、上記 MISトランジスタは、第 1の結晶面を主面として有する半導 体基板と、該半導体基板の一部として形成され、上記第 1の結晶面とは異なった第 2 の結晶面により画成された 1対の側壁面と、上記第 2の結晶面とは異なった第 3の結 晶面により画成された頂面とよりなる、半導体構造と、上記主面及び上記側壁面及び 上記頂面を一様な厚さで覆うゲート絶縁膜と、上記主面及び上記側壁面及び上記頂 面を、上記ゲート絶縁膜を介して連続的に覆うゲート電極と、上記半導体基板中及 び上記半導体構造中の、上記ゲート電極を介する一方側及び他方側に形成され、 いずれも上記主面及び上記側壁面及び上記頂面に沿って連続的に延在する、同一 導電型拡散領域 (導電型には、例えば n型や p型があり、同一導電型拡散領域とは、 上記ゲート電極の両側に形成される拡散領域の導電型が同一である領域を意味す る)と、を有するように構成する。
[0017] 本発明の低雑音増幅器の態様のその他の一つは、 MISトランジスタを有し、雑音を 低レベルに抑えて入力信号を増幅することを前提とし、上記 MISトランジスタは、表 面が少なくとも二つの異なる結晶面を有する凸部を主面に対して構成する半導体基 板と、上記凸部の表面を構成する上記少なくとも二つの異なる結晶面の各々の少な くとも一部を覆うゲート絶縁膜と、上記半導体基板と電気的に絶縁されるように上記ゲ ート絶縁膜を介して構成され、かつ上記凸部の表面を構成する上記少なくとも二つ の異なる結晶面の各々に対して構成されるゲート電極と、上記凸部の表面を構成す る上記少なくとも二つの異なる結晶面の各々に面して上記凸部中に形成され、かつ 上記ゲート電極の両側にそれぞれ形成される同一導電型拡散領域と、を有するよう に構成する。
[0018] 本発明の低雑音増幅器の態様のその他の一つは、 MISトランジスタを有し、雑音を 低レベルに抑えて入力信号を増幅することを前提とし、上記 MISトランジスタは、少 なくとも二つの結晶面を有する半導体基板と、該半導体基板上であって上記結晶面 の少なくとも二つに対して形成したゲート絶縁膜と、該ゲート絶縁膜を挟んで上記半 導体基板上に形成したゲート電極と、を有し、該ゲート電極に電圧を加えた際に上記 ゲート絶縁膜に沿って上記半導体基板中に形成されるチャネルのチャネル幅が、上 記少なくとも二つの結晶面に対して各々形成されるチャネルの各チャネル幅の総和 で示される、立体構造 MISトランジスタである、ように構成する。
[0019] なお、本発明の低雑音増幅器の上記各態様において、上記 MISトランジスタは、 上記半導体基板がシリコン基板であり、上記シリコン基板の表面に形成されたゲート 絶縁膜が、上記シリコン基板の表面を所定の不活性ガスによるプラズマに曝して水 素を除去することにより形成され、上記シリコン基板と上記ゲート絶縁膜との界面にお ける上記水素の含有量が面密度換算で l QH/cm2以下となる、ように構成すること力 S 望ましい。
[0020] また、上記少なくとも二つの結晶面は、(100)面、(110)面、 (111)面の内の何れ か異なる二つの結晶面が組み合わされてなる、ように構成することが望ましい。
Sトランジスタを有し、前記 nチャネル M〇Sトランジスタまたは前記 pチャネル MOSト ランジスタの少なくとも一方が上記各態様の何れか一つに記載の低雑音増幅器の M ISトランジスタによって構成される、ことが望ましい。
[0021] この時、上記 pチャネル MOSトランジスタと上記 nチャネル M〇Sトランジスタの素子 面積及び電流駆動能力は略一致する、ように構成することが望ましい。
このように構成される低雑音増幅器においては、上記 pチャネル M〇Sトランジスタ のゲートと上記 nチャネル MOSトランジスタのゲートに対し、上記入力信号に基づく 入力電圧が共通に加わり、上記 pチャネル MOSトランジスタのドレイン側に電圧源が 設けられ、上記 pチャネル MOSトランジスタのソースと上記 nチャネル MOSトランジス タのドレインとが共通接続され、上記 nチャネル MOSトランジスタのソースとドレインと の間に動作点決定用の直流フィードバック回路が接続され、上記 pチャネル MOSト ランジスタのソースと上記 nチャネル MOSトランジスタのドレインとの上記共通接続さ れた接続ラインに現れる電圧が上記入力電圧の増幅電圧として出力される、ように構 成してもよい。
[0022] さらに、上記各態様の低雑音増幅器は、ダイレクトコンバージョン受信方式で使用し てもよい。
本発明の低雑音増幅器においては、上記少なくとも二つの異なる結晶面に沿って ゲート幅が形成される。そのため、ゲートに電圧が印加されると、上記少なくとも二つ の異なる結晶面に沿ってチャネルが形成される。そして、特に凸部の結晶面に沿つ てチャネルが形成された際に、各トランジスタで生じるゲート長変調効果が大幅に抑 制される。
[0023] また、上記 MISトランジスタにおいて、上記半導体基板がシリコン基板であり、上記 シリコン基板の表面に形成されたゲート絶縁膜が、上記シリコン基板の表面を所定の 不活性ガスによるプラズマに曝して水素を除去することにより形成され、上記シリコン 基板の表面及び上記ゲート絶縁膜の界面における上記水素の含有量が面密度換 算で 10u/cm2以下となる、ように形成できるので、半導体基板とゲート絶縁膜との界 面における界面準位密度を低下でき、 1/f雑音の低減及び各トランジスタの電気的 特性のばらつきが低減できる。
[0024] さらに、上記少なくとも二つの結晶面が、(100)面、(110)面、(111)面の内の何 れか異なる二つの結晶面が組み合わされることによって、上記 lZfを大幅に低減で き、電気的特性のばらつみも大幅に低減できる。
[0025] また、ダイレクトコンバージョン方式に上記低雑音増幅器を適用すれば、低雑音増 幅器力 発生する 1/f雑音や信号歪などの影響を後段の回路に与えない。 力及び素子面積を一致させた CMOS (Complementary Metal Oxide Semiconductor )トランジスタを有するミキサ回路を構成できるようになる。
図面の簡単な説明
[0026] 本発明は、後述する詳細な説明を、下記の添付図面と共に参照すればより明らか になるであろう。
[図 1]従来のダイレクトコンバージョン受信方式の回路ブロック図である。
[図 2]ラジアルラインスロットアンテナを用いたプラズマ処理装置の一例を示す断面図 である。
[図 3]シリコン基板 103表面におけるシリコン一水素結合を赤外分光器により分析した 結果である。
[図 4]処理室内の KrZ〇の圧力比を 97/3に保持しつつ、前記処理室 101内のガ ス圧力を変化させた場合の、形成される酸化膜の厚さと処理室内圧力との関係であ る。
[図 5]Kr/0プラズマ酸化膜の成長レートと熱酸化膜の成長レートとの比較図である
[図 6]Kr/0プラズマ酸化膜と熱酸化膜との界面準位密度の比較図である。
[図 7A]ドレイン電圧対規格化ドレイン電流特性である。
[図 7B]ドレイン電圧対規格化ドレイン電流特性である。 [図 7C]ドレイン電圧対規格化ドレイン電流特性である。
[図 8]nチャネル MOSトランジスタの構成例である。
[図 9]CMOSトランジスタの構成例である。
[図 10]図 9の一部を取り出して示した図である。
[図 ll]CMOS構造を用いた低雑音増幅器の回路例である。
[図 12]ダイレクトコンバージョン受信方式の回路ブロック図である。
発明を実施するための最良の形態
[0027] 以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。
本発明の実施の形態の低雑音増幅器は MIS (Metal-Insulator^Semiconductor)構 造を有するトランジスタによって構成される。そして、本発明の実施の形態において、 この MISトランジスタのゲート絶縁膜は、特開 2002-261091号公報に開示されて いるゲート絶縁膜薄膜形成技術を取り入れて形成する。
[0028] なお、上記ゲート絶縁膜としては、上記特開 2002 - 261091号公報に開示されて レ、るように窒化膜や酸窒化膜とすることもできるが、本実施の形態においては上記ゲ ート絶縁膜を酸化膜とした MOS (Metal-Oxide-Semiconductor)トランジスタ(例えば
MOSFETなど)を代表に挙げて説明することにする。
[0029] 先ず始めに、上記 MOSトランジスタのゲート絶縁膜薄膜形成方法について説明す る。
図 2は、ラジアルラインスロットアンテナを用いたプラズマ処理装置 100の一例を示 す断面図である。
[0030] 本ゲート絶縁膜薄膜形成方法にぉレ、ては、シリコンほたは Siで示す)表面の未結 合手を終端してレ、る水素を除去するのに、次の酸化膜形成工程でプラズマ励起ガス として使われる Krを使用し、同一処理室内で連続して表面終端水素除去処理と酸化 処理とを行なう。
[0031] 先ず、真空容器(処理室) 101内を真空にし、次にシャワープレート 102から最初に Arガスを導入し、それを Krガスに切替える。さらに、前記処理室 101内の圧力を 133 Pa (lTorr)程度に設定する。
[0032] 次にシリコン基板 103を、加熱機構を持つ試料台 104に置き、試料の温度を 400°C 程度に設定する。前記シリコン基板 103の温度が 200-550°Cの範囲内であれば、 以下に述べる結果はほとんど同様のものとなる。前記シリコン基板 103は、直前の前 処理工程にぉレ、て希フッ酸洗浄が施され、その結果表面のシリコン未結合手が水素 で終端されている。
[0033] 次に同軸導波管 105からラジアルラインスロットアンテナ 106に周波数が 2. 45GH zのマイクロ波を供給し、前記マイクロ波を前記ラジアルラインスロットアンテナ 106か ら処理室 101の壁面の一部に設けられた誘電体板 107を通して、前記処理室 101 内に導入する。導入されたマイクロ波は前記シャワープレート 102から前記処理室 10 1内に導入された Krガスを励起し、その結果前記シャワープレート 102の直下に高 密度の Krプラズマが形成される。供給するマイクロ波の周波数が 900MHz程度以 上約 10GHz程度以下の範囲にあれば、以下に述べる結果はほとんど同様のものと なる。
[0034] 図 2の構成においてシャワープレート 102と基板 103の間隔は、本実施形態では 6 cmに設定する。この間隔は狭いほうがより高速な成膜が可能となる。
なお、本実施形態では、ラジアルラインスロットアンテナを用いたプラズマ装置を用 いて成膜した例を示している力 他の方法を用いてマイクロ波を処理室内に導入して プラズマを励起してもよい。
[0035] 前記シリコン基板 103を Krガスで励起されたプラズマに曝すことにより、前記シリコ ン基板 103の表面は低エネルギの Krイオン照射を受け、その表面終端水素が除去 される。
[0036] 図 3は前記シリコン基板 103表面におけるシリコン一水素結合を赤外分光器により 分析した結果であり、前記処理室 101中にマイクロ波を 133Pa (lTorr)の圧力下、 1 . 2W/cm2のパワーで導入することで励起した Krプラズマによる、シリコン表面終端 水素の除去効果を示す。
[0037] 図 3を参照するに、わず力、 1秒程度の Krプラズマ照射でシリコン一水素結合に特徴 的な波数 2100cm— 1付近の光吸収がほとんど消滅し、約 30秒の照射ではほぼ完全 に消滅するのがわかる。すなわち、約 30秒の Krプラズマ照射により、シリコン表面を 終端していた水素が除去できることがわかる。本実施形態では、 1分間の Krプラズマ 照射を施して、表面終端水素を完全に除去する。
[0038] 次に、前記シャワープレート 102から 97/3の分圧比の Kr/Ο混合ガスを導入す る。この際、処理室内の圧力は 133Pa (lTorr)程度に維持しておく。 Krガスと〇ガ スが混合された高密度励起プラズマ中では、中間励起状態にある Kr*と〇分子が衝 突し、原子状酸素 O*を効率よく大量に発生できる。
[0039] 本例では、この原子状酸素 O*により前記シリコン基板 103の表面を酸化する。本薄 膜形成方法を用いることにより、原子状酸素による酸化処理では、 400° C程度の非 常に低い温度での酸化が可能となる。 Kr*と Oの衝突機会を大きくするには、処理室 圧力は高い方が望ましいが、あまり高くすると、発生した〇*同志が衝突し、 O分子に 戻ってしまう。当然、最適ガス圧力が存在する。
[0040] 図 4に、処理室内の Kr/Oの圧力比を 97Z3に保持しつつ、前記処理室 101内 のガス圧力を変化させた場合の、形成される酸化膜の厚さと処理室内圧力との関係 を示す。ただし図 4では、シリコン基板 103の温度を 400° Cに設定し、 10分間の酸 化処理を行っている。
[0041] 図 4を参照するに、前記処理室 101内の圧力が約 133Pa (lTorr)の時に最も酸化 速度は速くなり、この圧力ないしはその近傍の圧力条件が最適であることがわかる。 この最適圧力は、前記シリコン基板 103の面方位が(100)面である場合に限らず、ど の面方位のシリコン表面であっても同じである。
[0042] 所望の膜厚のシリコン酸化膜が形成されたところでマイクロ波パワーの導入を止め プラズマ励起を終了し、さらに Kr/O混合ガスを Arガスに置換して酸化工程を終了 する。本工程の前後に Arガスを使用するのは Krより安価なガスをパージガスに使用 するためである。本工程に使用された Krガスは回収再利用する。
[0043] 以上の KrZ〇プラズマ酸化膜形成に続レ、て、電極形成工程、保護膜形成工程、 水素シンタ処理工程等を施して MOSトランジスタやキャパシタを含む半導体集積回 路装置を完成さることができる。
[0044] 上記の手順で形成されたシリコン酸化膜中の水素含有量を昇温放出により測定し たところ、 3nmの膜厚のシリコン酸化膜において面密度換算で 1012/cm2程度以下 であった。特にリーク電流が少ない酸化膜においてはシリコン酸化膜内の水素含有 量は、面密度換算で ion/cm2程度以下であることが確認された。一方、酸化膜形 成前に Krプラズマの暴露を行わなかった酸化膜は面密度換算で 1012/cm2を超え る水素を含んでいた。
[0045] また、上記の手順で形成されたシリコン酸化膜を剥離した後のシリコン表面と酸化 膜形成前のシリコン表面の粗さを原子間力顕微鏡で測定して比較したところ、シリコ ン表面の荒さが変化していないのが確認された。すなわち、終端水素を除去して酸 化した後でもシリコン表面が荒れることはない。
[0046] 本ゲート絶縁膜薄膜形成方法によると、シリコン基板と、 M〇Sトランジスタのゲート 絶縁膜として形成されるシリコン酸化膜との、界面に残留する水素が除去され、その 界面が平坦化される。この平坦ィ匕により、その界面における低界面準位密度を実現 することができ、ゲート絶縁膜が薄膜化されても良好な電気的特性 (低リーク電流特 性、低界面準位密度、高耐圧性、高ホットキャリア耐性、均一なしきい値電圧特性な ど)が得られるようになっている。また、さらに、如何なる面方位に形成されたゲート絶 縁膜もそれらの面方位に対して良好な電気的特性を得る事もできるようになる。
[0047] 次に、上述したゲート絶縁膜薄膜形成方法を利用し、シリコン基板の(100)面のみ ならず( 111 )面や(110)面を使用して MOSトランジスタの形成を行なつた例を示す
[0048] 図 5は、図 2のプラズマ処理装置 100により、シリコン基板の(100)面、 (111)面、 および(110)面を酸化した場合の Kr/Οプラズマ酸化膜の成長レートを、熱酸化膜 の成長レートと比較して示してレ、る。
[0049] 図 5を参照するに、 Kr/Oプラズマ酸化膜では熱酸化膜の場合よりもはるかに大き な成長レートが得られており、活性な原子状酸素〇*を使った S i基板の酸化が非常 に効率良く進むことが示されている。さらに図 5より、 Kr/Oプラズマ酸化膜では、 Si 原子の面密度がより大きな(111)面、(110)面上での成長レートが、(100)面上で の成長レートよりも小さくなつてレ、る事が分かる。これは原料供給律速プロセスから導 かれる帰結と一致しており、このようにして形成したプラズマ酸化膜は、優れた膜質を 有している事が示唆される。
[0050] これに対し、 Si基板の(111)面、(110)面上に熱酸化膜を形成した場合には、 (10 0)面上に熱酸化膜を形成した場合よりも酸化膜の成長レートが大きくなつており、 (1 11)面、(110)面上に形成されている熱酸化膜は膜質が劣ることを示唆している。
[0051] 図 6はこのようにして形成された Kr/Oプラズマ酸化膜と熱酸化膜とで界面準位密
2
度を比較した結果を示す。
図 6を参照するに、 Kr/Oプラズマ酸化膜ではシリコンの(100)面上に形成された
2
場合でも(111)面、(110)面上に形成された場合でも、界面準位密度は (100)面上 に形成された熱酸化膜の界面準位密度よりも低ぐ非常に高品質な酸化膜が得られ ているのがわ力、る。
[0052] これに対し、シリコンの(111)面、(110)面上に形成された熱酸化膜では、図 5の 結果から予測された通り界面準位密度が非常に大きぐ M〇Sトランジスタのゲート 絶縁膜に使用した場合には,キャリアの捕獲によるしきい値電圧の変化やゲートリーク 電流の増大など、様々な問題が生じると考えられる。
[0053] 図 7A—図 7Cは、シリコン基板のそれぞれ(100)面、(111)面、および (110)面上 に,図 2のプラズマ処理装置 100によりシリコン酸化膜を形成し、力かるシリコン酸化膜 をゲート絶縁膜として Pチャネル MOSトランジスタを形成した場合のドレイン電圧対規 格化ドレイン電流特性を示す。ただし図 7A、図 7Bでは、シリコン酸化膜を前記 Kr/ Oプラズマ処理により形成した場合と熱酸化処理により形成した場合の両方を示し
2
ている。これに対し、図 7Cでは、熱酸化処理では(110)面上に酸化膜が形成できな いため、 Kr/Oプラズマ処理により形成したゲート酸化膜の例のみを示している。図
2
7Aの結果は、ゲート長が 10 μ mでゲート幅が 50 μ mの ρチャネル MOSトランジスタ についてのものであり、図 7Β、図 7Cの結果は、ゲート長が 10 /i mでゲート幅が 300 μ mの pチャネル MOSトランジスタについてのものである。
[0054] 図 7A 図 7Cを参照するに、 pチャネル M〇Sトランジスタのドレイン電流、従って 相互コンダクタンスないし電流駆動能力は、トランジスタをシリコンの(100)面以外の 結晶面、例えば(111)面あるいは(110)面上に形成することにより増大させることが 可能であること、特に pチャネル MOSトランジスタをシリコンの(111)面上に形成した 場合に(100)面上に形成した pチャネル M〇Sトランジスタの約 1. 3倍の電流駆動能 力が得られること、また(110)面上に形成した場合には約 1. 8倍の電流駆動能力が 得られることがわ力る。
[0055] 図 8は、 Nチャネル MOSトランジスタの構成例である。
同図に示される Nチャネル MOSトランジスタは、 (110)面を主面とする S i基板 710の 上に、先に図 2で説明したプラズマ処理装置 100によってシリコン酸化膜が一様に形 成され、その形成されたシリコン酸化膜の上にポリシリコンゲート電極 730が形成され ている。さらに、力、かるゲート電極 730のバターユングに伴って前記シリコン酸化膜も バターユングされ、前記ゲート電極 730に対応してゲート絶縁膜 720が同図の太い 実線と破線で囲まれる領域に形成される。
[0056] そして、前記ゲート電極 730を自己整合マスクに n型不純物をイオン注入することに より、前記ゲート電極 730の両側に n型拡散領域 710aおよび 710bが形成される。そ の結果、前記 S i基板 710上に nチャネル MOSトランジスタが形成される。なお、同図 においては、上記 n型拡散領域 710aおよび 710b間にチャネルが形成された際のそ の形成範囲を斜線で示す事とした。
[0057] なお、同図は nチャネル MOSトランジスタの構成例である力 ゲート電極を自己整 合マスクに p型不純物をイオン注入して、そのゲート電極の両側に p型拡散領域を形 成することにより、 S i基板上に pチャネル MOSトランジスタを形成することもできる。
[0058] このように構成した MOSトランジスタにおいては、 Si基板の(100)結晶面とゲート 酸化膜の界面で低界面準位密度を実現できるので、 1/f雑音を低減でき、良好な 電気的特性が安定して得られる。
[0059] このため、素子間における電気的特性のバラツキを低下させたより安定な MOSトラ ンジスタを構成できる。
なお、上記構成例では Si基板の(110)面に対してトランジスタを形成したが、その 他の(100)面や(111)面に形成しても、上述した効果は得られる。
[0060] 次に、上記(110)面のように一方位の結晶面のみにトランジスタを構成するのでは なぐ複数の方位を有する結晶面を同時に利用してトランジスタを構成 (立体構成)す る例を示す。
CMOS (Complementarv Metal Oxide Semiconductor)トランジスタの構成例である。 [0062] ただし図 10は、図 9の一部を取り出して示した図である。
図 9、 10を参照するに、 CMOSトランジスタ 800は素子分離領域 805により隔てら れた n型領域 Aと p型領域 Bとが形成された(100)面を主面とする S i基板 810上に形 成されており、図 10に示すように、前記領域 Aには幅が W で高さが Hの突出部 81
1A A
OAが、また領域 Bには幅が W で高さが Hの突出部 810Bが両側壁面に形成されて
IB B
いる。図 10よりわかるように、前記突出部 810A、 810Bの頂面は(100)面により、側 壁面は(110)面により画成されている。
[0063] 図 10の S i基板 810上には、先に図 2で説明したプラズマ処理装置 100によりシリコ ン酸化膜が一様に形成されており、さらにその上に、図 9に示すポリシリコンゲート電 極 830Aおよび 830B力 S、それぞれ領域 Aおよび B上に形成されている。さらにかかる ゲート電極 830Aおよび 830Bのパターユングに伴って前記シリコン酸化膜もパター ユングされ、前記ゲート電極 830Aに対応してゲート絶縁膜 820A力 またゲート電極 830Bに対応してゲート絶縁膜 820B力 同図に太い実線と斜線で囲まれる領域に 形成される。
[0064] さらに図 9の CMOSトランジスタ 800では、前記 n型領域 Aにおいて前記ゲート電極 830Aを自己整合マスクに n型不純物をイオン注入することにより、前記ゲート電極 83 OAの両側に、前記突出部 810Aをも含んで n型拡散領域 810aおよび 810bが形成さ れる。同様に、前記 p型領域 Bにおいても前記ゲート電極 830Bの両側に、前記突出 部 810Bをも含んで p型拡散領域 810cおよび 810dが形成される。その結果、前記 S i 基板 810上には前記領域 Aに nチャネル MOSトランジスタ 840A力 また前記領域 B に pチャネル MOSトランジスタ 840Bが形成される。
[0065] 本例に示す CMOSトランジスタ 800では、 nチャネル MOSトランジスタ 840Aはゲ ート長 L をまた pチャネル MOSトランジスタ 840Bはゲート長 L を有し、前記ゲート gA gB
電極 830Aは、 S i基板 810の平坦部を、前記突出部 810Aのそれぞれの側におい て、ゲート幅 W /2で覆う。その結果、前記ゲート電極 830Aの(100)面上における
2A
ゲート幅は、前記突出部 810Aの頂部を含めて、 W +W により与えられる。これに
1A 2A
対し、前記ゲート電極 830Aの(110)面上におけるゲート幅は両側壁面に形成され ているので 2Hで与えられ、その結果、前記領域 Aに形成される nチャネル MOSトラ
A ンジスタ 840Aの電流駆動能力は、式 μ (WlA +W2A) + 2 /i Hにより与えられる
nl n2 A
。ただし は、(100)面における電子移動度を、 μ は(1 10)面における電子移動
nl n2
度を表す.
同様に、前記領域 Bに形成される pチャネル M〇Sトランジスタ 840Bの電流駆動能 力は、式 μ (W +W ) + 2 μ Ηにより与えられる。ただし μ は、(100)面におけ
pi IB 2B p2 B pi るホール移動度を、 β は(1 10)面におけるホール移動度を表す。
2
[0066] このように、 Si基板の(100)結晶面とゲート酸化膜の界面で低界面準位密度を実 現できるので、 1/f雑音を低減でき、良好な電気的特性が安定して得られる。 Si基 板 810の主面とする(100)面に加え、それとは異なる面方位の(1 10)面に対してゲ ートを形成できるので、上記主面のゲート幅を小さくして素子面積を小さくし、主面の ゲート幅を上記(1 10)面に対して形成したゲートのゲート幅で補填することができる。 その結果、トランジスタ素子を小型化することが可能になる。
[0067] なお、上述した例では側壁面へ形成するトランジスタを両側壁面に対して形成した 1S 片側壁面であってもよい。
また、上記 Hを 0とする構成にすることもできる。
A
[0068] また、同図においては、 Si基板 810上方の n型拡散領域 810aおよび 810b間、或 いは p型拡散領域 810c及び 810d間に、ゲート絶縁膜 820A或いは 820Bに沿って チャネルが夫々形成された際のその形成範囲を斜線で示すこととした。この図からも 明らかなように、上述したゲート絶縁膜に沿って Si基板中に形成されるチャネルのチ ャネル幅は、例えば nチャネル MOSトランジスタ 840Aで言えば、 (100)面の上記 W +W 及び(1 10)面の上記 2Hの総和に追従し、例えば pチャネル MOSトランジス
1A 2A A
タ 840Bで言えば、(100)面の上記 W +W 及び(1 10)面の上記 2Hの総和に追
IB 2B B
従する。
[0069] よって、 W +W =W +W 、 μ (W +W ) + 2 μ U = μ (W +W ) + 2
1A 2A IB 2B nl 1A 2A n2 A pi IB 2B μ Hを満たすように、 H及び Hを決めれば、 nチャネル M〇Sトランジスタ及び pチ p2 A A B
ャネル MOSトランジスタは互いの素子面積が一致し、かつ電流駆動能力が一致した CMOSトランジスタを構成できるようになる。
[0070] 同図に斜線で示されるようにチャネルが立体的に形成されることにより、一平面に形 成されるチャネルにおけるピンチオフ点(チャネルキャリア密度が略 0になる点)の移 動に基づく実行ゲート長の減少が抑制され、飽和領域におけるドレイン電流の増加 が抑制できる。
[0071] その結果、 MOSトランジスタによって増幅される信号における信号歪が低減される 事となる。
ここでは CMOSトランジスタの構成例を示した。しかし、当然、相補型としない構成 、すなわち nチャネル M〇Sトランジスタ 840A或いは pチャネル MOSトランジスタ 840 Bのみを、上述したように(100)面、(110)面を使用して立体的に構成することもでき る。そして、当然、そのように nチャネル M〇Sトランジスタ、或いは pチャネル MOSトラ ンジスタのみにおいても、上述した作用効果が同様に得られる。
[0072] このように、プラズマ処理装置 100によりシリコン酸化膜が如何なる面方位に対して も一様に形成されることにより、 lZf雑音が低減され、複数の面方位にゲートを形成 してトランジスタを立体構造にすることにより、チャネル長変調効果が低減され、素子 間にバラツキのない良好な電気的特性を得る事が可能となる。また、上記立体構造と したことにより素子面積を小さくできる。
[0073] さらに、立体構造をなす CMOSトランジスタでは、バランスの良い電気的特性を有 しながら、その素子面積を大幅に小型化できるようになる。
次に、上記ゲート絶縁膜薄膜形成方法を用いて形成した上記立体構造の MOSト ランジスタの、 pチャネル MOSトランジスタ及び nチャネル MOSトランジスタからなる C MOSトランジスタを適用した低雑音増幅器の回路構成を示す。
[0074] 図 11は、上記 CMOSトランジスタを適用して構成した低雑音増幅器の一回路図で ある。
同図に示されるように、当該低雑音増幅器の回路 1000は、 pチャネル M〇Sトラン
2と、コンデンサ C1と nチャネル M〇Sトランジスタ M3とオペアンプ〇P1とを組み合わ せた動作点決定回路 1004とからなる。
[0075] 先ず、上記 CMOSトランジスタ 1002においては、 pチャネル MOSトランジスタ Ml のゲートと nチャネル MOSトランジスタ M2のゲートに対して共通の入力電圧(例えば ;受信した搬送波に基づいて変化する入力電圧など)を加える。そして、 p チャネル MOSトランジスタ Mlと nチャネル MOSトランジスタ M2を信号増幅器として 機能させる。さらに、本回路においては高い電圧利得を得るために pチャネル MOSト ランジスタ Mlのドレインに電圧源 VDDを加える。そして、 pチャネル MOSトランジス タ Mlのソースと nチャネル MOSトランジスタ M2のドレインに上記入力電圧の増幅電 圧が出力される。
[0076] 一方、上記動作点決定回路 1004は、 pチャネル M〇Sトランジスタ Mlのバイアス電 流とドレイン電圧が電源電圧 VDDによって影響を受けやすため、 pチャネル M〇Sト ランジスタ Mlのソースと nチャネル MOSトランジスタ M2の間に挿入され、 gを抑制 m して熱雑音と 1/f雑音とが低下するように、基準電圧 (Vref)を基準に上記増幅電圧 を制御し、その動作点を決定する。なお、 C1は熱雑音を減らすために揷入されてい る。
[0077] 本回路に示される CMOSトランジスタ 1002は、 pチャネル MOSトランジスタ Ml及 び nチャネル MOSトランジスタ M2から発生する 1/f雑音が大幅に低減される。また 、互いの MOSトランジスタ(Ml及び M2)の素子面積を同一にしても互いにバラツキ のない同一の電気的特性を得ることができる。 さらに、 pチャネル MOSトランジスタ 及び nチャネル MOSトランジスタの互いの寄生容量を一致させることができ、ゲート- ソース間電圧に対する互いのドレイン電流の立上がり特性と立下り特性のずれを大 幅に緩和することができる。
[0078] よって、上記回路においては 1/f雑音は勿論のことそのトランジスタ素子の電気的 特性のバラツキによって生じる信号歪の影響が大幅に改善され、従来以上に低雑音 で高利得な低雑音増幅器を構成できる。
[0079] そのため、低雑音増幅器において発生する lZf雑音や信号歪を低減させるための 回路を新たに設ける必要がなくなり、低雑音増幅器を小型化できる。
また、本発明の実施形態の低雑音増幅器をダイレクトコンバージョン受信方式の回 路に適用できる。
[0080] 図 12は、当該ダイレクトコンバージョン受信方式の回路に当該低雑音増幅器を適 用した場合の例である。同図に示されるように、従来技術で説明した低雑音増幅器 4 の位置に当該発明の実施形態である低雑音増幅器 1200を挿入できる。 (なお、この ダイレクトコンバージョン受信方式の構成や動作は、図 1を用いて従来技術で詳しく 説明しているため、この説明はここでは省略する)。
[0081] このように、ダイレクトコンバージョン受信方式に本発明の実施の形態の低雑音増 幅器の構成を適用すれば、上記ダイレクトコンバージョン受信方式において先ず始 めに利得を有する低雑音増幅器において lZf雑音が低減できるので、その後段に おいて復調される信号の S/N比は向上し、ダイレクトコンバージョン受信方式によつ て復調する信号の品質を高くすることが可能になる。また、本発明の実施の形態の低 雑音増幅器を適用すれば、その後段の回路において、 lZf雑音や信号歪を低減さ せるための回路を新たに設ける必要がなくなり、ダイレクトコンバージョン受信機を小 型化できる。
[0082] さらに、上記立体構造の CMOSトランジスタを適用することにより、小型化、低消費 電力、かつ高性能な低雑音増幅器或いはダイレクトコンバージョン受信器を構成でき る。
また、本発明の実施の形態における低雑音増幅器をスーパーヘテロダイン方式の 受信機に適用することも可能である。スーパーヘテロダイン方式では、雑音の影響を 抑えるために例えば 80dbなどに一旦上げた利得を IF段で例えば 60dbに下げ、その 後段でバイポーラ等を用いて再度 80dbに上げるなどの方式をとる。しかし、本発明 の実施の形態の低雑音増幅器を適用することにより、雑音の影響を低減させることが できるため、 IF段における利得の低下を改善し S/N比を向上させることが可能にな る。
[0083] なお、本発明の実施の形態においては、ゲート絶縁膜の形成方法として、低雑音 増幅器のノイズ低減に最も好適に作用する公知のゲート絶縁膜薄膜形成技術を適 用して説明してきたが、このゲート絶縁膜薄膜形成技術に限らず、低雑音増幅器の 用途先によつて適宜、その他のゲート絶縁膜形成方法を適用してもょレ、。
[0084] 以上述べたように、本発明の実施形態によれば、低雑音増幅器における lZf雑音 の発生及びトランジスタ素子毎の電気的特性のバラツキを大幅に改善することが可 肯 になる。 よって、低雑音増幅器によって出力信号に与えられる 1/f雑音や信号歪が大幅に 低減され、それらの低減を補償する回路が不要になり、小型化が可能になる。 力を一致させた CMOSトランジスタを有する低雑音増幅器を構成することにより、出 力信号における信号歪を大幅に低減し、小型化、低消費電力、かつ高性能な低雑 音増幅器を実現することが可能になる。
また、本発明の低雑音増幅器が含まれるダイレクトコンバージョン受信機は小型化 され、さらに、 S/N比が向上して復調信号の品質が高まる。
なお、本発明は、その精神または主要な特徴から逸脱することなぐ他のいろいろ な形で実施することができる。そのため、前述の実施例はあらゆる点で単なる例示に すぎず、限定的に解釈してはならない。本発明の範囲は、特許請求の範囲によって 示すものであって、明細書本文には、なんら拘束されなレ、。さらに、特許請求の範囲 の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。

Claims

請求の範囲
[1] MISトランジスタを有し、雑音を低レベルに抑えて入力信号を増幅する低雑音増幅 器であって、
前記 MISトランジスタは、
第 1の結晶面を主面として有する半導体基板と、
該半導体基板の一部として形成され、前記第 1の結晶面とは異なった第 2の結晶面 により画成された 1対の側壁面と、前記第 2の結晶面とは異なった第 3の結晶面により 画成された頂面とよりなる、半導体構造と、
前記主面及び前記側壁面及び前記頂面を一様な厚さで覆うゲート絶縁膜と、 前記主面及び前記側壁面及び前記頂面を、前記ゲート絶縁膜を介して連続的に 覆うゲート電極と、
前記半導体基板中及び前記半導体構造中の、前記ゲート電極を介する一方側及 び他方側に形成され、 V、ずれも前記主面及び前記側壁面及び前記頂面に沿って連 続的に延在する、同一導電型拡散領域と、
よりなる MISトランジスタである、
ことを特徴とする低雑音増幅器。
[2] MISトランジスタを有し、雑音を低レベルに抑えて入力信号を増幅する低雑音増幅 器であって、
前記 MISトランジスタは、
表面が少なくとも二つの異なる結晶面を有する凸部を主面に対して構成する半導 体基板と、
前記凸部の表面を構成する前記少なくとも二つの異なる結晶面の各々の少なくとも 一部を覆うゲート絶縁膜と、
前記半導体基板と電気的に絶縁されるように前記ゲート絶縁膜を介して構成され、 かつ前記凸部の表面を構成する前記少なくとも二つの異なる結晶面の各々に対して 構成されるゲート電極と、
前記凸部の表面を構成する前記少なくとも二つの異なる結晶面の各々に面して前 記凸部中に形成され、かつ前記ゲート電極の両側にそれぞれ形成される同一導電 型拡散領域と、
よりなる MISトランジスタである、
ことを特徴とする低雑音増幅器。
[3] MISトランジスタを有し、雑音を低レベルに抑えて入力信号を増幅する低雑音増幅 器であって、
前記 MISトランジスタは、
少なくとも二つの結晶面を有する半導体基板と、
該半導体基板上であって前記結晶面の少なくとも二つに対して形成したゲート絶 縁膜と、
該ゲート絶縁膜を挟んで前記半導体基板上に形成したゲート電極と、
を有し、
該ゲート電極に電圧を加えた際に前記ゲート絶縁膜に沿って前記半導体基板中に 形成されるチャネルのチャネル幅力 前記少なくとも二つの結晶面に対して各々形 成されるチャネルの各チャネル幅の総和で示される、
立体構造 MISトランジスタである、
ことを特徴とする低雑音増幅器。
[4] 前記 MISトランジスタは、
前記半導体基板がシリコン基板であり、
前記シリコン基板の表面に形成されたゲート絶縁膜が、前記シリコン基板の表面を 所定の不活性ガスによるプラズマに曝して水素を除去することにより形成され、前記 シリコン基板と前記ゲート絶縁膜との界面における前記水素の含有量が面密度換算 で 10u/cm2以下となる、ことを特徴とする請求の範囲第 1項乃至第 3項の何れか一 つに記載の低雑音増幅器。
[5] 前記少なくとも二つの結晶面は、(100)面、(110)面、(111)面の内の何れか異な る二つの結晶面が組み合わされてなる、
ことを特徴とする請求の範囲第 4項に記載の低雑音増幅器。 ジスタを有し、 前記 nチャネル M〇Sトランジスタまたは前 1
も一方が請求の範囲第 1項または第 3項に記載の低雑音増幅器の MISトランジスタ によって構成される、
ことを特徴とする低雑音増幅器。
[7] 前記 pチャネル M〇Sトランジスタと前記 nチャネル MOSトランジスタの素子面積及 び電流駆動能力は略一致する、ことを特徴とする請求の範囲第 6項に記載の低雑音 増幅器。
[8] 前記 pチャネル M〇Sトランジスタのゲートと前記 nチャネル M〇Sトランジスタのゲー トに対し、前記入力信号に基づく入力電圧が共通に加わり、 前記 pチャネル M〇Sトランジスタのソースと前記 nチャネル MOSトランジスタのドレ インとが共通接続され、
前記 nチャネル MOSトランジスタのソースとドレインとの間に動作点決定用の直流 フィードバック回路が接続され、
前記 pチャネル MOSトランジスタのソースと前記 nチャネル MOSトランジスタのドレ インとの前記共通接続された接続ラインに現れる電圧が前記入力電圧の増幅電圧と して出力される、
ことを特徴とする請求の範囲第 6項に記載の低雑音増幅器。
[9] 前記 pチャネル MOSトランジスタのゲートと前記 nチャネル MOSトランジスタのゲー トに対し、前記入力信号に基づく入力電圧が共通に加わり、
前記 pチャネル MOSトランジスタのドレイン側に電圧源が設けられ、
前記 pチャネル M〇Sトランジスタのソースと前記 nチャネル MOSトランジスタのドレ インとが共通接続され、
前記 nチャネル M〇Sトランジスタのソースとドレインとの間に動作点決定用の直流 フィードバック回路が接続され、
前記 pチャネル M〇Sトランジスタのソースと前記 nチャネル MOSトランジスタのドレ インとの前記共通接続された接続ラインに現れる電圧が前記入力電圧の増幅電圧と して出力される、 ことを特徴とする請求の範囲第 7項に記載の低雑音増幅器。
[10] ダイレクトコンバージョン受信方式で使用されることを特徴とする請求の範囲第 1項 乃至第 3項の内の何れか一つに記載の低雑音増幅器。
PCT/JP2004/008217 2003-06-13 2004-06-11 低雑音増幅器 WO2004112238A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/560,703 US20070105523A1 (en) 2003-06-13 2004-06-11 Low noise amplifier
EP04745811A EP1635454A1 (en) 2003-06-13 2004-06-11 Low-noise amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003170106A JP2005006227A (ja) 2003-06-13 2003-06-13 低雑音増幅器
JP2003-170106 2003-06-13

Publications (1)

Publication Number Publication Date
WO2004112238A1 true WO2004112238A1 (ja) 2004-12-23

Family

ID=33549409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008217 WO2004112238A1 (ja) 2003-06-13 2004-06-11 低雑音増幅器

Country Status (7)

Country Link
US (1) US20070105523A1 (ja)
EP (1) EP1635454A1 (ja)
JP (1) JP2005006227A (ja)
KR (1) KR100692946B1 (ja)
CN (1) CN1806385A (ja)
TW (1) TWI279076B (ja)
WO (1) WO2004112238A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7224029B2 (en) 2004-01-28 2007-05-29 International Business Machines Corporation Method and structure to create multiple device widths in FinFET technology in both bulk and SOI
JP5018028B2 (ja) * 2006-11-10 2012-09-05 セイコーエプソン株式会社 基準電圧供給回路、アナログ回路及び電子機器
CN101442293B (zh) * 2007-11-22 2011-03-23 上海华虹Nec电子有限公司 抗工艺变化的2.4GHz低噪声放大器电路
KR101823105B1 (ko) * 2012-03-19 2018-01-30 삼성전자주식회사 전계 효과 트랜지스터의 형성 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081324B2 (ja) * 1991-11-27 2000-08-28 三洋電機株式会社 空気調和機
JP2002110963A (ja) * 2000-09-28 2002-04-12 Toshiba Corp 半導体装置
JP2002299613A (ja) * 2001-03-30 2002-10-11 Toshiba Corp 縦型電界効果トランジスタ及び半導体装置の製造方法
JP2003188273A (ja) * 2001-12-13 2003-07-04 Tadahiro Omi 相補型mis装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3360366D1 (en) * 1982-02-26 1985-08-14 Toshiba Kk Mos switch circuit
US5675164A (en) * 1995-06-07 1997-10-07 International Business Machines Corporation High performance multi-mesa field effect transistor
US6754478B1 (en) * 1998-07-24 2004-06-22 Gct Semiconductor, Inc. CMOS low noise amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081324B2 (ja) * 1991-11-27 2000-08-28 三洋電機株式会社 空気調和機
JP2002110963A (ja) * 2000-09-28 2002-04-12 Toshiba Corp 半導体装置
JP2002299613A (ja) * 2001-03-30 2002-10-11 Toshiba Corp 縦型電界効果トランジスタ及び半導体装置の製造方法
JP2003188273A (ja) * 2001-12-13 2003-07-04 Tadahiro Omi 相補型mis装置

Also Published As

Publication number Publication date
KR20060017873A (ko) 2006-02-27
TWI279076B (en) 2007-04-11
US20070105523A1 (en) 2007-05-10
EP1635454A1 (en) 2006-03-15
JP2005006227A (ja) 2005-01-06
TW200509522A (en) 2005-03-01
CN1806385A (zh) 2006-07-19
KR100692946B1 (ko) 2007-03-19

Similar Documents

Publication Publication Date Title
JP4265882B2 (ja) 相補型mis装置
WO2004112238A1 (ja) 低雑音増幅器
EP1633000A1 (en) Mixer circuit
TWI241786B (en) Frequency conversion circuit for direct conversion reception, semi-conductor integrated circuit thereof and direct conversion receiver
TWI294212B (en) Switched capacitor circuit and semi-conductor integrated circuit thereof
KR100769067B1 (ko) Mis 트랜지스터 및 cmos 트랜지스터
US20200350431A1 (en) Self-aligned high voltage transistor
TWI286414B (en) Limiter circuit and semiconductor integrated circuit thereof
KR100692944B1 (ko) Dc 증폭기 및 그 반도체 집적 회로

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004745811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048163130

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007105523

Country of ref document: US

Ref document number: 1020057024006

Country of ref document: KR

Ref document number: 10560703

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057024006

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004745811

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560703

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004745811

Country of ref document: EP