WO2004111258A1 - L−グルタミン酸の製造法 - Google Patents

L−グルタミン酸の製造法 Download PDF

Info

Publication number
WO2004111258A1
WO2004111258A1 PCT/JP2004/008140 JP2004008140W WO2004111258A1 WO 2004111258 A1 WO2004111258 A1 WO 2004111258A1 JP 2004008140 W JP2004008140 W JP 2004008140W WO 2004111258 A1 WO2004111258 A1 WO 2004111258A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
glutamic acid
medium
gene
strain
Prior art date
Application number
PCT/JP2004/008140
Other languages
English (en)
French (fr)
Inventor
Yusuke Takahashi
Yasuhiro Tateyama
Masakazu Sato
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to EP04745770.0A priority Critical patent/EP1655374B1/en
Priority to BRPI0411086-2A priority patent/BRPI0411086B1/pt
Priority to AU2004248005A priority patent/AU2004248005A1/en
Priority to JP2005506924A priority patent/JPWO2004111258A1/ja
Publication of WO2004111258A1 publication Critical patent/WO2004111258A1/ja
Priority to US11/297,383 priority patent/US7354744B2/en
Priority to US12/033,374 priority patent/US7879583B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for producing L-gnoretamic acid by a fermentation method.
  • L-Gnoletamic acid is widely used as a seasoning raw material.
  • L-gnoretamic acid is mainly produced by a fermentation method using a so-called coryneform L-glutamic acid-producing bacterium belonging to the genus Brevibacterium, Corynebacterium, or Microbateridium, or a mutant thereof.
  • microorganisms belonging to the genera Bacillus, Streptomyces, Penicillium, Pseudomonas, Arthrobacter, Serratia, Candida, Aerobacter pneumoniae (Aenterobacter aerogenes), and Escherichia coli. are known.
  • the present inventors used a method for producing L-gnoretamic acid using a microorganism belonging to the genus Klebsiella, Ervinia or Pantoea (U.S. Pat. No. 6,197,559) and a bacterium belonging to the genus Enterobacter.
  • a method for producing L-glutamic acid (US Pat. No. 6,331,419) has been proposed.
  • 61-268185 discloses a cell having a recombinant DNA containing a glutamate dehydrogenase gene derived from a bacterium belonging to the genus Corynebacterium. Further, Japanese Patent Application Laid-Open No. 63-214189 discloses that L-glutamic acid productivity is increased by amplifying a gnoretamic acid dehydrogenase gene, an isoquenate dehydrogenase gene, an aconitate hydratase gene, and a citrate synthase gene. The technology is disclosed.
  • the present inventors have developed a method of performing fermentation while precipitating L-glutamic acid accumulated in a culture solution (European Patent Application Publication No. 1078989).
  • a culture solution European Patent Application Publication No. 1078989.
  • normal L-glutamic acid-producing bacteria cannot grow under acidic conditions, so L-gnoretamic acid fermentation has been carried out under neutral conditions.
  • the present inventors have succeeded in searching for a microorganism capable of producing L-gnoretamic acid under acidic conditions. Then, by culturing the obtained microorganisms (enteropator 'agglomerans) in a liquid medium whose pH is adjusted to the condition under which L-glutamic acid is precipitated, L-gnoretamic acid is produced and accumulated in the medium. Power S can.
  • L-glutamic acid-producing bacteria capable of growing under the above-described acidic conditions are not inhibited by the total content of organic acids that inhibit the growth of the bacteria.
  • B a method for producing L-glutamic acid by culturing in a medium having an amount (EP-A-123 330 70), and culturing the bacterium at a first pH suitable for the growth of a microorganism;
  • a process for producing L-gunoletamic acid (EP-A-1233068), comprising culturing at a second pH lower than the first pH, suitable for the production of L-glutamic acid by E. .
  • the present inventors have found that when Pantoea bacteria are imparted with a high L-gnoretamic acid-producing ability, by-products of acetoin and 2,3-butanediol are generated together with L-glutamic acid. Then, it was considered that the yield per main raw material (sugar) of L-gnoretamic acid would be improved if these by-products could be suppressed.
  • pantothenic acid By adding pantothenic acid to the culture medium, it was found that by-products of acetoin and 2,3-butanediol were reduced, and as a result, the yield of L-gnoretamic acid fermentation was improved, and the present invention was completed.
  • the present invention is as follows.
  • the carbon source can be metabolized in a liquid medium containing a saturated concentration of L-glutamic acid and a carbon source, and the L-glutamic acid is saturated in the liquid medium at the above pH.
  • a microorganism having an ability to accumulate an amount of L-glutamic acid in excess of the concentration is cultured in a medium whose pH is adjusted to a condition under which L-glutamic acid is precipitated and which contains pantothenic acid, and L-glutamic acid is added to the medium.
  • a method for producing L-gunoletamic acid by fermentation characterized by producing and accumulating while precipitating.
  • pantothenic acid in the medium is pantothenate, and the concentration of the salt is 1 mg / L or more.
  • FIG. 2 is a view showing the construction of a plasmid pMWCPG having a gltA gene, a ppc gene, and a gdhA gene.
  • FIG. 3 shows the construction of a plasmid RSF-Tet containing the replication origin of the broad host range plasmid RSF1010 and a tetracycline resistance gene.
  • FIG. 4 is a view showing the construction of a plasmid RSFCPG having a replication origin, a tetracycline resistance gene, a gltA gene, a ppc gene, and a gdhA gene of a broad host range plasmid RSF1010.
  • FIG. 5 is a view showing construction of a plasmid pSTVCB having a gltA gene.
  • FIG. 6 is a view for explaining the principle that the yield of L-glutamic acid is improved by pantothenic acid-added syrup.
  • FIG. 7 is a graph showing the relationship between the concentration of calcium pantothenate added to the medium and the yield of L-glutamic acid fermentation.
  • the present invention can metabolize the same carbon source in a liquid medium containing a saturated concentration of L-glutamic acid and a carbon source at a specific pH, and can exceed the saturated concentration of L-glutamic acid in the liquid medium at the pH.
  • a microorganism capable of accumulating an amount of L-gnoretamic acid (hereinafter, also referred to as an "L-gunoletamic acid-accumulating microorganism") is added to a medium whose pH is adjusted to a condition under which L-glutamic acid precipitates and which contains pantothenic acid.
  • a method for producing L-glutamic acid by fermentation which comprises culturing and producing and accumulating L-gnoretamic acid while precipitating it in the medium.
  • the L-glutamic acid-accumulating microorganism can be obtained, for example, as follows. A sample containing a microorganism is inoculated into a liquid medium containing a saturated concentration of L-glutamic acid and a carbon source at a specific pH, and a strain that metabolizes the carbon source is selected.
  • the specific pH is not particularly limited, but is usually about 5.0 or less, preferably about 4.5 or less, and more preferably about 4.3 or less.
  • L-glutamic acid-accumulating microorganisms are those that are used for fermentative production while precipitating L-glutamic acid.If the pH is too high, it is difficult for the microorganism to produce enough L-gnoretamic acid to precipitate. . Therefore, the pH is preferably in the above range.
  • the term "capable of metabolizing a carbon source” refers to the ability to grow or consume the carbon source without growing, that is, to catabolize the carbon source such as sugars and organic acids.
  • pH 5.0-4.0 containing a saturated concentration of L-glutamic acid preferably pH 4.5-4.0, more preferably ⁇ 4.3.4.0, and particularly preferably about ⁇ 4.0.
  • pH 5.0-4.0 containing a saturated concentration of L-glutamic acid preferably pH 4.5-4.0, more preferably ⁇ 4.3.4.0, and particularly preferably about ⁇ 4.0.
  • an appropriate temperature for example, 28 ° C, 37 ° C or 50 ° C
  • the microorganism that grows in the medium is a microorganism that can metabolize the carbon source in the same medium.
  • pH 5.0-4.0 preferably pH 4.5-4.0, more preferably pH 4.3-4.0, particularly preferably about pH 4.3-4.0, containing a saturated concentration of L-gnoretamic acid.
  • Microorganisms that consume the carbon source in the medium without growing when cultured for 24 days at a suitable temperature, such as 28 ° C, 37 ° C or 50 ° C, in a liquid synthetic medium at pH 4.0 Is a microorganism that can metabolize a carbon source in the same medium.
  • Microorganisms capable of metabolizing a carbon source include microorganisms capable of growing on the above liquid medium.
  • “Growable” means that it can grow or can produce L-glutamic acid without growing. Specifically, for example, pH 5.0-4.0, preferably pH 4.5-4.0, more preferably pH 4.3-4.0, particularly preferably about pH 4.0, containing a saturated concentration of L-gnoretamic acid Microorganisms that grow when cultured in a liquid medium at an appropriate temperature, for example, 28 ° C., 37 ° C., or 50 ° C. for 2-4 days are microorganisms that can grow in the same medium.
  • a liquid containing ⁇ 5.0-4.0, preferably ⁇ 4.5-4.0, more preferably ⁇ 4.3-4.0, particularly preferably about ⁇ 4.0, containing a saturated concentration of L-glutamic acid A microorganism that increases the amount of L-glutamic acid in a culture medium without growing when cultured for 2-4 days at a suitable temperature, for example, 28 ° C, 37 ° C or 50 ° C in a synthetic medium. Is a microorganism that can grow in the same medium.
  • the above selection may be repeated twice or three or more times under the same conditions or by changing the pH or the concentration of L-glutamic acid.
  • the initial selection may be performed on a medium containing a concentration of L-daltamic acid lower than the saturation concentration, and the subsequent selection may be performed on a medium containing a concentration of L-glutamic acid at a saturation concentration. Further, an operation for selecting a strain having favorable characteristics such as a strain having an excellent growth rate may be performed.
  • An L-glutamic acid-accumulating microorganism is a microorganism having the ability to accumulate L-gunoletamic acid in a liquid medium in an amount exceeding the saturation concentration of L-gunoletamic acid, in addition to the above properties.
  • the pH of the liquid medium is preferably the same as or close to the pH of the medium used for screening microorganisms having the above properties.
  • microorganisms become susceptible to high concentrations of L-glutamic acid when the pH is lowered.Therefore, it is preferable that the pH is not low from the viewpoint of resistance to L-gunoletamic acid, but the microorganism is produced while precipitating L-glutamic acid. From the viewpoint of production, a lower pH is preferable.
  • the pH conditions satisfying these conditions are 3-5, preferably 4-5, more preferably 4.0-4.7, even more preferably 4.0-4.5, and particularly preferably 4.0-5. — 4.3.
  • pantothea As an L-glutamic acid-accumulating microorganism or a material for breeding the same, for example, pantothea (
  • Genus Pantoea Enterobacter, Klebsiella, Serratia, Erwinia, Escherichia, Corynebacterium, Brevibaterium ), Microorganisms belonging to the genus Alicyclobacillus, the genus Bacillus, the genus Saccharomyces, and the like, but are not limited thereto. Among these, microorganisms belonging to the genus Pantoea are preferred.
  • the microorganisms accumulating L-glutamic acid will be described mainly with respect to microorganisms belonging to the genus Pantoea, but not limited to the genus Pantoea, and microorganisms belonging to other genera can be used in the same manner.
  • Pantoea ananatis preferably Pantoea ananatis AJ13355 strain. This strain was isolated from soil in Iwata City, Shizuoka Prefecture, as a strain that can grow at low pH on a medium containing L-gnoretamic acid and a carbon source.
  • Pantoea Ananatis AJ13355 was granted a deposit number FERM P to the Institute of Biotechnology, Institute of Industrial Technology, Ministry of International Trade and Industry (current name, Institute of Biotechnology, Industrial Technology Research Institute, AIST). — Deposited as 16644, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the accession number FERM BP-6614. The strain was identified as Enterobacter agglomerans at the time of its isolation, and was deposited as Enterobacter agglomerans AJ13355. In recent years, the sequence of Pantoea ananatis (
  • Pantoea ananatis (see Examples below).
  • AJ13355 the strains AJ13356, and AJ13601, which have been derived from the strain described later, are also described as Pantoea ananatis in the present specification, as well as the force deposited at the depository organization as Enterobacter agglomerans.
  • the L-glutamic acid accumulating microorganism may originally have L-gunoletamic acid-producing ability, L-glutamic acid-producing ability may be imparted or enhanced by breeding by mutation treatment or recombinant DNA technology.
  • the L-glutamic acid-producing ability can be imparted or enhanced, for example, by increasing the activity of an enzyme that catalyzes the biosynthesis reaction of L-glutamic acid.
  • L-glutamic acid-producing ability is also enhanced by reducing or eliminating the activity of an enzyme that catalyzes a reaction that produces a compound other than L-glutamic acid by branching off from the L-glutamic acid biosynthetic pathway. Power S can.
  • Examples of enzymes that catalyze the biosynthesis reaction of L-glutamic acid include glutamate dehydrogenase (hereinafter, also referred to as "GDH"), glutamine synthetase, glutamate synthase, isocitrate dehydrogenase, aconitate hydratase, and quinone.
  • GDH glutamate dehydrogenase
  • CS Acid synthase
  • PEPC phosphoenolpyruvate carboxylase
  • PPC pinolevic acid dehydrogenase
  • pyruvate kinase pyruvate kinase
  • enolase phosphoglyceromutase
  • phosphoglycerate kinase phosphoglycerate kinase
  • the force S includes, but is not limited to, cell aldehyde-13-phosphate dehydrogenase, triose phosphate isomerase, fructose bisphosphate aldolase, phosphofructokinase, gnorecose phosphate isomerase, and the like.
  • CS CS of Brevibacterium * ratatophamentum is preferred because it is not inhibited by ⁇ -ketoglutarate, L-glutamate and NADH.
  • a gene encoding CS, PEPC or GDH is cloned on an appropriate plasmid, and the resulting plasmid is used to transform a host microorganism. Just fine.
  • the copy number of the genes encoding CS, PEPC and GDH (hereinafter abbreviated as “gltA gene”, “ppc gene”, and “gdhA gene” in this order) in the cells of the transformed strain was increased. Results CS, PEPC and GDH activities are increased.
  • the cloned gltA gene, ppc gene, and gdhA gene are introduced into the above-mentioned starting parent strain alone or in any combination of two or three.
  • Two or three When introducing genes, two or three types of genes may be cloned on a single type of plasmid and introduced into the host, or cloned separately on two or three types of compatible plasmids. It is introduced and introduced into the host.
  • the plasmid is not particularly limited as long as it can be autonomously replicated in cells of microorganisms belonging to the genus Pantoea, for example, but is not limited to, for example, pUC19, pUC18, pBR322, pHSG299, pHSG298, pHSG399, pHSG398, RSF1010, pMW119, pMW118, pMW219, pMW218, pACYC177, pACYC184 and the like.
  • a phage DNA vector can be used.
  • Transformation is carried out, for example, by the method of D.A. Morrison (Methods in Enzymology 68, 326).
  • Enhancing CS, PEPC or GDH activity can also be achieved by allowing the gltA gene, ppc gene or gdhA gene to exist in multiple copies on the chromosomal DNA of the above-mentioned starting parent strain as a host.
  • the chromosomal DNA such as repetitive DNA or inverted 'repeat present at the end of a transposable element, can be used. Sequences with multiple copies above are available.
  • the gltA gene, the ppc gene, or the gdhA gene can be mounted on a transposon and transferred to introduce multiple copies into chromosomal DNA.
  • the copy number of the gltA gene, ppc gene, or gdhA gene in the cells of the transformed strain is increased, and as a result, CS, PEPC, or GDH activity is increased.
  • the organism that serves as the source of the gltA gene, ppc gene, and gdhA gene that increases the copy number may be any organism that has CS, PEPC, and GDH activity.
  • Bacteria that are prokaryotes, such as Pantoea, Enterobacter, Klebsiella, Enorebinia, Serratia, Escherichia, Corynebacterium, Breviba Bacteria belonging to the genus Cterium or Bacillus are preferred. Specific examples include Escherichia coli, Brevibataterum 'Ratatofu amentum and the like.
  • the gltA gene, ppc gene, and gdhA gene can be obtained from the chromosomal DNA of a microorganism as described above.
  • the gltA gene, the ppc gene, and the gdhA gene were isolated from the chromosomal DNA of the above microorganism using a mutant strain lacking CS, PEPC, or GDH activity, respectively, to complement their auxotrophy. Can be obtained by doing.
  • these genes of the genus Escherichia and those of the bacteria belonging to the genus Corynebacterium have already been sequenced and their ability to be confirmed has been reviewed (Biochemistry, Vol. 22, pages 5243-5249, 1983; J. Biochem. Vol. 95, 909 916, 1984; Gene, Vol. 27, 193 199, 1984; Microbiology, Vol. 140, 1817 1828, 1994; Mol. Gen. Genet., Vol. 218.
  • the CS, PEPC or GDH activity can be increased by enhancing the expression of the gltA gene, the ppc gene, or the gdhA gene in addition to the gene amplification described above.
  • expression is enhanced by replacing the promoter of the gltA gene, ppc gene, or gdhA gene with another stronger promoter.
  • 1 ac promoter, trp promoter, trc promoter, tac promoter, P promoter of lambda phage, P promoter and the like are known as strong promoters.
  • the gltA gene, ppc gene or gdhA gene in which the promoter has been replaced can be cloned into plasmid and introduced into the host microorganism, or the host can be transformed using reactive DNA, inverted 'repeat, or transposon. Microbial chromosomal DNA Introduced above.
  • the promoter of the gltA gene, ppc gene or gdhA gene on the chromosome is replaced with a stronger promoter (WO 87/03006, This can also be achieved by inserting a strong promoter upstream of the coding sequence of each gene (see Gene, 29, (1984) 231-241). Specifically, homologous recombination may be caused between a DNA containing the gltA gene, the ppc gene, the gdhA gene, or a part thereof replaced with a strong promoter, and the corresponding gene on the chromosome.
  • An enzyme that catalyzes a reaction that branches off from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid includes perfluoroketoglutarate dehydrogenase (hereinafter also referred to as "hi-KG DH").
  • aKGDH is preferred.
  • the activity of the enzyme as described above is reduced or abolished by a conventional mutagenesis method or a genetic engineering technique by adding the gene of the enzyme to the cells in the cell.
  • a mutation may be introduced so that the activity of the enzyme is reduced or deleted.
  • Examples of the mutation treatment method include a method of irradiating X-rays or ultraviolet rays, a method of treating with a mutagen such as N-methyl-N'12-troth N-2-trosogazine, and the like.
  • the site where the mutation is introduced into the gene may be a coding region encoding an enzyme protein or an expression control region of a promoter or the like.
  • Examples of the genetic engineering technique include a method using a gene recombination method, a transduction method, a cell fusion method, and the like.
  • a drug resistance gene is inserted into the cloned target gene to produce a gene that has lost function (deletion type gene).
  • the deletion type gene is introduced into cells of a host microorganism, and the target gene on the chromosome is replaced with the deletion type gene using homologous recombination (gene disruption).
  • the activity of the target enzyme in the cell is reduced or deficient.
  • the degree can be confirmed by measuring the enzyme activity of the cell extract or purified fraction of the candidate strain and comparing it with the wild strain.
  • a KGDH activity can be measured by the method of Reed et al. (LJ Reed and BBMukherjee, Methods m Enzymology 1969, 1 ⁇ , p. 55-6 ⁇ ).
  • the ability to select a target mutant can be determined depending on the phenotype of the mutant. For example, a mutant strain with a defective or reduced KGDH activity cannot grow on a minimal medium containing glucose under aerobic culture conditions or a minimal medium containing acetic acid or L-glutamic acid as the sole carbon source. Or the growth rate is significantly reduced. However, even under the same conditions, normal growth can be achieved by adding succinic acid or lysine, methionine, and diaminopimelic acid to a minimal medium containing glucose. Using these events as indices, it is possible to select mutant strains in which KGDH activity is deficient or reduced.
  • Pantoea ananatis AJ13356 Specific examples of the mutant strains deficient or reduced in a KGDH activity obtained as described above include Pantoea ananatis AJ13356.
  • Pantoair's Ananatis AJ 13356 was awarded the accession number FERM P-1 to the Institute of Biotechnology and Industrial Technology, the Ministry of International Trade and Industry (currently the National Institute of Advanced Industrial Science and Technology).
  • Deposit No. 6645 transferred to an international deposit under the Budapest Treaty on January 11, 2001, and given accession number FERM BP-6615.
  • Pantoea ananatis AJ 13356 lacks human KGD H activity as a result of disruption of the human KGDH-E1 subunit gene (sucA).
  • Pantoea ananatis which is an example of the microorganism used in the present invention, has poor operation efficiency when cultured in a medium containing sugar, because it produces mucus outside the cells. is there. Therefore, Pantoea'ananana having such a mucus-producing property When tis is used, it is preferable to use a mutant in which the amount of mucus produced is lower than that in a wild strain.
  • the mutation treatment method include a method of irradiating X-rays or ultraviolet rays, and a method of treating with a mutagen such as N-methyl-N'-two-row N-nitrosogazine.
  • mutant strain with reduced mucus production is spread on a saccharide-containing medium, for example, an LB medium plate containing 5 g ZL of glucose, and cultured at an angle of about 45 °. Can be selected by selecting colonies that no longer run off.
  • a saccharide-containing medium for example, an LB medium plate containing 5 g ZL of glucose
  • the imparting or enhancing of the L-glutamic acid-producing ability and the imparting of the above-mentioned mucus-low production mutation and the like, and the imparting of properties can be performed in any order.
  • nucleotide sequence of the sucA gene of Pantoea ananatis and the amino acid sequence of the KGD H-E1 subunit encoded by the gene SEQ ID NO: 1 and the sequence Shown in number 3.
  • SEQ ID NO: 8 shows the base sequence of plasmid RSFCPG (see Reference Example 1) containing gltA gene, gdhA gene, and ppc gene derived from Escherichia coli.
  • the coding regions of the gltA gene, the gdhA gene, and the ppc gene correspond to base numbers 1770-487 (encoded by the base chain), 2598-3941, 7869-5218 (complementary). (Encoded by a chain).
  • the amino acid sequences of CS, GDH and PEPC encoded by these genes are shown in SEQ ID NOs: 9, 10, and 11.
  • nucleotide sequence of plasmid pSTVCB (see Reference Example 1) containing the gltA gene derived from Brevibata terminus ratatophamentum and the amino acid sequence of CS encoded by the gene are shown in SEQ ID NOs: 12 and 13.
  • CS, GDH, and PEPC may be substituted, deleted, inserted, added, or substituted with one or several amino acid residues such that the activity of each enzyme is not substantially impaired. Alternatively, it may have an amino acid sequence containing an inversion.
  • the term “several” refers to a force that varies depending on the position and type of the amino acid residue in the protein three-dimensional structure, specifically 2 to 30, preferably 2 and more, more preferably 20 Is from 2 to 10.
  • the above-mentioned mutations of CS, GDH and PEPC are conservative mutations such that the activities of CS, GDH and PEPC are maintained.
  • Substitutions are those in which at least one residue in the amino acid sequence has been removed and another residue has been inserted there. It is.
  • Amino acids that substitute the original amino acids of CS, GDH and PEPC proteins and are considered conservative substitutions include Ala to ser or thr substitution, arg to gln, his or lys substitution fe, asn Put on glu, gln, lys, his or asp: asp power, replace with asn, glu or gin, cys power, replace with bser or fala, gin power, asn, glu, lys, his , Asp or f arg substitution, glu force, substitution to asn, gln, lys or asp, gly force, substitution to pro, his force to asn, lys, gln, arg or tyr, ile from ile Replacement with leu, met, val or phe fe, leu force replacement with ile, met,
  • DNA encoding a protein or peptide substantially identical to CS, GDH and PEPC as described above includes the base sequence 1J shown in SEQ ID NO: 12 or the base sequence shown in SEQ ID NO: 8 DNAs that hybridize under stringent conditions to the respective open reading frames (ORFs) or probes that can be prepared from their nucleotide sequences and that encode proteins having CS, GDH or PEPC activity are included.
  • stringent conditions refer to conditions under which a so-called specific hybrid is formed and a non-specific hybrid is not formed. It is difficult to quantify this condition clearly.
  • DNAs having high homology for example, 50% or more, preferably 70% or more, more preferably 90% or more, and most preferably 95% or more.
  • DNAs having the above homology are hybridized with each other, and DNAs with lower homology are not hybridized with each other, or the usual washing conditions for Southern hybridization are 60 ° C, 1 ⁇ SSC, 0. 1 0/0 SDS, or preferably ⁇ , 0. 1 X SSC, 0. 1 0/0 SDS ( in this Ne eyes This salt concentration Roh, Iburita, 'I's conditions, and the like.
  • the base sequence shown in SEQ ID NO: 12, or each ORF in the base sequence of SEQ ID NO: 8 or a partial sequence thereof can also be used.
  • Such a probe is an oligonucleotide prepared based on the nucleotide sequence of SEQ ID NO: 8 or 12 as a primer, and a DNA fragment containing SEQ ID NO: 8 or 12 or a DNA fragment containing the partial nucleotide sequence thereof as a ⁇ -type PC. It can be made by R.
  • a DNA fragment of about 300 bp When used, washing conditions for the hybridization include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • the deletion type sucA gene used for gene disruption may be homologous enough to cause homologous recombination with the sucA gene on the chromosomal DNA of the target microorganism.
  • Such homology is preferably 85. / 0 or more, more preferably 90% or more, particularly preferably 95% or more.
  • homologous recombination can occur between DNAs that can hybridize under stringent conditions.
  • strain obtained as described above include the AJ13601 strain from which the aforementioned Pantoea'ananatis AJ1355 strain was also induced.
  • the strains were selected for AJ13355 strains with low mucus production, disruption of the KGDH gene, gltA, ppc, and gdhA genes derived from Escherichia coli, and gltA genes derived from Brevibataterium ratatofamentum.
  • This is a strain obtained by introduction, selection of a high-concentration L-gunoletamic acid-resistant strain at low pH, and selection of a strain having high growth rate and L-daltamate-producing ability.
  • the “conditions under which the produced L-gnoretamic acid precipitates” refer to conditions under which L-daltamic acid precipitates when the L-glutamic acid-accumulating microorganism produces and accumulates L-glutamic acid.
  • the pH under these conditions fluctuates depending on the ability of the microorganism to produce L-gnoretamic acid, but is usually 3-5, preferably 4.5 or less, more preferably 4 or less when the microorganism is a Pantoea bacterium. .
  • L-gnoretamic acid precipitates are such that L-glutamic acid-accumulating microorganisms can metabolize the same carbon source in a liquid medium containing a saturated concentration of L-glutamic acid and a carbon source, and that the L-glutamic acid can be metabolized in the liquid medium. It is assumed that the pH is such that it can exhibit the ability to accumulate an amount of L-gnoretamic acid in excess of the saturated concentration of L-glutamic acid.
  • the amount of accumulated L-glutamic acid can be increased by adding pantothenic acid to the medium. This is presumed to be that by adding pantothenic acid to the medium, by-products of acetoin and 2,3-butanediol are reduced, and as a result, the yield of L-glutamic acid fermentation is improved.
  • Pantothenic acid in the medium is preferably added as a pantothenic acid salt.
  • the content of the acid salt is preferably at least 1 mg / L, more preferably at least 4 mg / L, particularly preferably at least 8 mg / L.
  • the pantothenate is not particularly limited, and includes a calcium salt, a sodium salt and the like.
  • pantothenic acid may be contained in the medium in all the steps of the culture, but a period during which the medium is cultured in the medium containing pantothenic acid may be included in a part of the steps.
  • the method of the present invention includes a step of growing L-gnoretamic acid-accumulating microorganisms and a step of producing L-glutamic acid, it is only necessary that the medium contains pantothenic acid in at least the step of producing L-glutamic acid. In the stage of growing the L-glutamic acid-accumulating microorganism, pantothenic acid may or may not be contained in the medium.
  • pantothenic acid does not need to be within the above-mentioned range during the entire period of the stage, and the content becomes the above-mentioned range at the beginning of the same stage.
  • Pantothenic acid may be added intermittently.
  • a known method for producing L-glutamic acid while precipitating L-gnoretamic acid in a medium using an L-glutamic acid-accumulating microorganism can be applied (for example, JP-A-2001-333769 (European Patent Application Publication No. 1078989), JP-A-2002-238591 (European Patent Application Publication No. 1233070), JP-A-2002-238592 (European Patent Application Publication No. 1233068), -238593 (European Patent Application Publication No. 1233069).
  • one preferred form of the method of the present invention is a medium containing pantothenate and having a pH of 5.0 or less, at which pH the growth of a microorganism accumulating L-gnoretamic acid is inhibited. Culturing in a medium in which the total content of organic acids does not inhibit the growth of microorganisms (Japanese Patent Application Laid-Open No. 2002-238591 (European Patent Application Publication No. 1233070). No.) gazette).
  • organic acid harm inhibitory microbial growth in a medium of P H is some degree in the medium of the pH concentration (usually 0.5 g / L or more) of the growth of the microorganisms when that exists in It means an organic acid showing inhibition, and is usually an organic acid having 13 to 13 carbon atoms, that is, formic acid, acetic acid and propionic acid.
  • the total content of organic acids is preferably 0.4 g / L or less, more preferably 0.3 g / L or less, and even more preferably 0.2 g / L or less.
  • Another preferred embodiment of the method of the present invention comprises culturing the L-gnoretamic acid accumulating microorganism at a first pH suitable for the growth of the microorganism, and then culturing the first pH suitable for producing L-gnoretamic acid by the microorganism.
  • a method for producing L-gnoretamic acid which comprises culturing at a second pH lower than that, and culturing at least the second pH in a medium containing pantothenic acid (see Japanese Patent Application Laid-Open No. 2002-238592). No. (EP-A-1233068))).
  • Another preferred embodiment of the method of the present invention provides a method for culturing an L-gunoletamic acid-accumulating microorganism at a first pH at which the growth of the microorganism is not inhibited by an organic acid in a medium, and then culturing L-gnoretamine by the microorganism.
  • a method for producing L-gunoletamic acid comprising culturing at a second pH lower than the first pH suitable for acid production, wherein culturing at least in the second pH is performed in a medium containing pantothenic acid.
  • L-glutamic acid-producing bacteria are generally inhibited from growing by organic acids under acidic conditions, but can consume organic acids under neutral conditions (Japanese Patent Application Laid-Open No. 2002-238591 (European Patent Application Publication No. 1233070). Utilizing this property, cells can be grown at neutral pH, and then the pH can be changed to acidic to produce L-glutamic acid, thereby achieving higher productivity and using a wide range of materials as a sugar source. It is possible to do.
  • the organic acid is at a certain concentration (usually in the medium at the second pH).
  • 0.5 g / L or more means an organic acid that inhibits the growth of microorganisms when present, and is usually an organic acid having 13 to 13 carbon atoms, that is, formic acid, acetic acid, and propionic acid.
  • the first P H and the second pH are selected to suit the nature of the L one-glutamic acid-accumulating microorganism to be used. These pH can be easily measured by those skilled in the art. For example, if the growth of microorganisms is not inhibited by the organic acids in the medium, the L-glutamic acid-accumulating microorganisms are cultured in an organic acid-containing medium adjusted to various pH, and the amount of the cells is measured by absorbance. Then, the cell mass can be determined by comparing the cell mass of the L-glutamic acid-accumulating microorganism cultured under the same conditions except that the organic acid is not contained.
  • the pH suitable for the production of L-daltamate is determined by culturing L-gnoretamic acid-accumulating microorganisms in media of various pH.
  • the pH at which L-glutamic acid is accumulated in the medium is determined by measuring and comparing the amount of L-gnoretamic acid accumulated in the various pH media.
  • the first pH is usually 5.0 to 8.0, which is not particularly limited as long as the growth of the microorganism is not inhibited by the organic acid in the medium.
  • the second pH is preferably the pH at which the produced L-gnoretamic acid precipitates, and such pH is usually 3.0-5.0.
  • the first pH and the second pH do not need to show a strictly constant value during the culture as long as the effects of the present invention can be obtained, and may fluctuate.
  • Culture at the first pH causes L-glutamic acid-producing microorganisms to produce L-glutamic acid. It is preferable to perform the reaction while adding the medium to the medium to maintain the pH of the medium at the first pH.
  • the alkalizing substance is not particularly limited as long as it does not adversely affect the growth of L-glutamic acid-accumulating microorganisms and L-gnoretamic acid production, but ammonia gas is preferred.
  • the decrease in the pH of the medium from the first pH to the second pH may be performed by adding an acidic substance to the medium.
  • the medium is produced by an L-glutamic acid-accumulating microorganism. Since the decrease in pH due to L-glutamic acid occurs during the culture, the decrease in the pH of the medium from the first pH to the second pH can be performed by adjusting the amount of the alkalizing substance added. This is preferable because the addition of an acid substance can be omitted.
  • the culture at the first pH may be continued until the organic acid in the medium is depleted.
  • dead means that the amount of organic acid decreases to a level that does not inhibit the growth of L-glutamic acid-accumulating microorganisms in the culture at the second pH. It is easy for those skilled in the art to measure the level of such organic acids. For example, culturing in a medium containing various concentrations of organic acids at the second pH, measuring the amount of L-glutamic acid-accumulating microorganisms, and measuring the amount of microorganisms without containing organic acids. L-gnoretamic acid accumulation cultured under the same conditions except for It can be determined by comparing with the amount of microbial cells. Generally, the lower the second pH, the lower the level of organic acids.
  • the L-gnoretamic acid-accumulating microorganism is cultured in a liquid medium whose pH is adjusted to a condition under which L-glutamic acid produced by the microorganism precipitates
  • the method for producing L-glutamic acid by fermentation including producing and accumulating L-gunoletamic acid while precipitating L-gunoletamic acid therein, when the concentration of L-gunoletamic acid in the medium is lower than the concentration at which spontaneous crystallization occurs, the medium An operation is performed in which crystals of L-glutamic acid are present in the medium, and the medium contains pantothenic acid (see Japanese Patent Application Laid-Open No.
  • ⁇ natural crystallization '' means that a microorganism having an ability to produce L-glutamic acid accumulates L-glutamic acid, so that the concentration of L-glutamic acid in the medium exceeds the saturation concentration and the concentration of L-glutamic acid naturally increases in the medium. This means that monoglutamic acid precipitates out.
  • the operation of causing the crystals of L-glutamic acid to exist in the medium means an operation of artificially causing the crystals to exist in the medium.
  • Examples of such an operation include adding crystals to the culture medium, dissolving a certain amount of L-glutamic acid in the culture medium at the start of culture, and forcibly precipitating by lowering the pH during the culture. And the like.
  • the amount of crystals to be present in the medium is usually 0.01-10 g / L.
  • the amount of L-glutamic acid crystals present in the medium and the concentration of L-glutamic acid can be measured by methods well known to those skilled in the art.
  • the L-glutamic acid crystals are allowed to stand in the culture solution, decanted from the culture solution, and the amount of L-glutamic acid is measured.
  • the concentration of L-daltamic acid in the medium is the concentration of dissolved L-glutamic acid. If crystals are precipitated in the medium, the solid content is separated by centrifugation (or filtration), and this refers to the measured value of L-glutamic acid concentration in the obtained clear solution.
  • the operation of causing the L-glutamic acid crystals to be present in the medium is preferably a process of adding L-glutamic acid crystals to the medium.
  • the added crystal is preferably an a-type crystal.
  • the preferable amount of the crystal to be added varies depending on conditions such as the crystal type of the crystal. In the case of an a-type crystal, it is usually 0.2 g / L or more. When the concentration is higher than the above range, a model crystal can be obtained with good reproducibility. Due to its shape, the diamond-shaped crystal is easier to handle than the / 3 type crystal.
  • the medium used in the present invention contains pantothenic acid, and except that the pH is adjusted to predetermined conditions, except for a carbon source, a nitrogen source, inorganic salts, and, if necessary, amino acids, vitamins, and the like.
  • a carbon source e.g., a carbon source, a nitrogen source, inorganic salts, and, if necessary, amino acids, vitamins, and the like.
  • Ordinary nutrient media containing organic micronutrients can be used.
  • Either a synthetic medium or a natural medium can be used.
  • the carbon source and nitrogen source used in the medium may be those available for the strain to be cultured.
  • Examples of the carbon source include glucose, glycerol, fructose, sucrose, and maltose.
  • Mannose, galactose, starch hydrolysates, molasses and other saccharides are used.
  • Organic acids such as acetic acid, citric acid and the like are also used alone or in combination with other carbon sources.
  • ammonia ammonium salts such as ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, and ammonium acetate, or nitrates are used.
  • organic trace nutrients amino acids, vitamins, fatty acids, nucleic acids, and peptones, casamino acids, yeast extracts, soybean protein decomposed products containing these, and the like are used, and amino acids and the like are required for metabolism or growth.
  • auxotrophic mutants it is necessary to supplement the required nutrients.
  • inorganic salts phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like are used.
  • the culture method is usually aeration culture at a fermentation temperature of 20 to 42 ° C, except that the pH is adjusted to a predetermined value.
  • L-gunoletamic acid precipitated in the culture solution can be collected by centrifugation or filtration. Further, L-glutamic acid dissolved in the medium can be collected according to a known method. For example, concentrated crystallization or ion-exchange chromatography It can be isolated by, for example, chromatography. L-Gnoletamic acid precipitated in the culture solution may be isolated together after crystallization of L-glutamic acid dissolved in the medium.
  • the concentration of L- gnoretamic acid dissolved in the medium is maintained at a constant amount, and the effect of microorganisms on the high concentration of L- gnoretamic acid is affected. Can be reduced. Therefore, it is also possible to breed microorganisms with further improved L-glutamic acid producing ability.
  • L-glutamic acid precipitates as crystals, the amount of alkali used to maintain the pH of the culture solution is greatly reduced because the culture solution is less acidified due to the accumulation of L-glutamic acid. It becomes possible.
  • the search for microorganisms having L-glutamic acid resistance in an acidic environment was performed as follows. Approximately 500 samples obtained from nature such as soil, fruits, plants, and river water of lg are suspended in 5 mL of sterile water, and 200 of them are adjusted to pH 4.0 with hydrochloric acid, and 20 mU of solid medium is prepared. This was applied.
  • the composition of the medium is as follows.
  • the medium coated with the sample was cultured at 28 ° C, 37 ° C or 50 ° C for 2 to 4 days, and 378 strains forming colonies were obtained.
  • the bacterial strain obtained as described above was planted in a 16.5 cm long, 14 mm diameter test tube into which 3 mL of a liquid medium containing saturated concentration of L-glutamic acid (adjusted to pH 4.0 with hydrochloric acid) was injected. Fungus Then, shaking culture was performed at 28 ° C., 37 ° C., or 50 ° C. for 24 hours and 13 days, and a growing strain was selected.
  • the composition of the medium is as follows.
  • AJ13355 strain obtained from soil in Iwata City, Shizuoka Prefecture was obtained as a strain with good growth.
  • This strain was determined to be Enterobacter agglomerans based on its bacteriological properties. Enterobacter agglomerans have been reclassified into Pantoea agglomerans or Pantoana anatis, Pantoea stewartii, etc. by 16S rRNA nucleotide sequence analysis or the like.
  • the AJ13355 strain is classified into Pantoea ananatis among these.
  • Pantoea'ananatis strain AJ13355 When cultured in a medium containing sugar, Pantoea'ananatis strain AJ13355 is not efficient due to the production of mucus outside the cells. Therefore, the acquisition of a low mucus-producing strain was determined by the UV irradiation method (Miller, J.H. et al., "A Short Cource in Bacterial Genetics;
  • the Pantoea'ananatis AJ13355 strain was irradiated with ultraviolet light for 2 minutes, and then cultured overnight in an LB medium to fix the mutation.
  • the mutagenized strain is diluted and spread on an LB medium containing 5 g / L glucose and 20 g / L agar so that about 100 colonies appear per plate. Cultivation was performed overnight at ° C, and 20 colonies where mucus did not flow down were selected.
  • sucAB gene of Pantoea ananatis AJ13355 strain is a DNA fragment that complements the non-acetic acid assimilation property of the aKGDH-El subunit gene (hereinafter referred to as "sucA") deficient strain of Escherichia coli. Cloning was performed by selecting from chromosomal DNA.
  • the chromosomal DNA of Pantoea 'Ananatis strain AJ13355 can be obtained by the same method as used for extracting chromosomal DNA in Escherichia coli (Bioengineering Experiments, Bioengineering Society of Japan, pp. 97-98). , Baifukan, 1992).
  • PTWV228 ampicillin resistance used as a vector was a commercial product from Takara Shuzo.
  • coli JRG465 harboring pTWVEK101 restored the requirement for succinic acid or L-lysine and L-methionine in addition to the trait of assimilating acetic acid. This suggests that pTWVEKlOl contains the sucA gene of Pantoea 'ananatis.
  • FIG. 1 shows a restriction enzyme map of a DNA fragment derived from Pantoea ananatis of pTWVEK101.
  • the result of determining the base sequence of the portion shown by hatching in FIG. 1 is shown in SEQ ID NO: 1.
  • SEQ ID NO: 1 The result of determining the base sequence of the portion shown by hatching in FIG. 1 is shown in SEQ ID NO: 1.
  • two full-length ORFs and a base sequence that was considered to be a partial sequence of the two ORFs were found.
  • the amino acid sequences that can be encoded by these ⁇ RF or a partial sequence thereof are shown in SEQ ID NOs: 2 to 5 in order from the 5 ′ side.
  • the base sequence was determined to be the partial sequence at the 3 'end of the succinate dehydrogenase iron-sulfur protein gene (sdhB), the full-length sucA and a KGDH-E2 subunit.
  • the amino acid sequences deduced from these nucleotide sequences were obtained from Escherichia coli (EurJ. Biochem., 141, 351-359 (1984), Eur. J. Biochem., 141, 361-374 (1984), Biochemistry , twenty four,
  • pTWVEKlOl was cut with Sphl to cut out a fragment containing sucA, and the blunt-ended fragment was cut with Klenow fragment (Takara Shuzo Co., Ltd.), cut with EcoRI and cut with Klenow fragment.
  • the blunt-ended pBR322 (Takara Shuzo) was ligated using T4 DNA ligase (Takara Shuzo).
  • the resulting plasmid was cleaved with the restriction enzyme BglII recognition site located at approximately the center of sucA using the same enzyme, blunt-ended with Klenow fragment, and ligated again with T4 DNA ligase.
  • the Pantoea'ananatis SC17 strain was purified by the electoporation method (Miller JH, "A Short Course in Bacterial Genetics; Handbook", Cold Spring Harbor Laboratory Press, USA, p.279, 1992) to obtain a strain in which sucA on the chromosome was replaced with a mutant by homologous recombination using tetracycline resistance as an index.
  • the obtained strain was named SCI 7sucA strain.
  • the SC17sucA strain was transfected with a citrate synthase gene, a phosphoenolpyruvate carboxylase gene, and a glutamate dehydrogenase gene derived from Escherichia coli.
  • Plasmid pBRGDH Japanese Unexamined Patent Publication No. 7-203980 having a gdhA gene derived from Escherichia coli was digested with HindIII and Sphl, and both ends were made blunt by T4 DNA polymerase treatment. Purified and recovered.
  • a plasmid pMWCP (WO97 / 08294) having a gltA gene and a ppc gene derived from Escherichia coli was digested with Xbal, and both ends were blunt-ended with T4 DNA polymerase.
  • the DNA fragment having the gdhA gene purified above was mixed with the mixture, and ligated with T4 ligase to obtain a plasmid pMWCPG having pMWCP and the gdhA gene (FIG. 2).
  • plasmid pVIC40 having a replication origin of the broad host range plasmid RSF1010 Japanese Unexamined Patent Publication No. 8-047397
  • Notl Japanese Unexamined Patent Publication No. 8-047397
  • Pstl plasmid pVIC40
  • pBR322 was digested with EcoT14I plasmid.
  • T4 DNA polymerase the resultant was mixed with Pstl-digested DNA, and ligated with T4 ligase to obtain a plasmid RSF-Tet having an RSF1010 replication origin and a tetracycline resistance gene (FIG. 3).
  • pMWCPG was digested with EcoRI and Pstl, and a DNA fragment containing the gltA gene, ppc gene, and gdhA gene was purified and recovered, and RSF-Tet was similarly digested with EcoRI and Pstl to have a replication origin of RSF1010. After mixing with the purified and recovered DNA fragment, it was ligated with T4 ligase to obtain a plasmid RSFCPG carrying the gltA gene, ppc gene, and gdhA gene on RSF-Tet (FIG. 4).
  • the expression of the gltA gene, ppc gene and gdhA gene in the obtained plasmid RSFCPG was confirmed by complementation of the auxotrophy of the gltA gene, ppc gene or gdhA gene-deficient strain of Escherichia coli, and measurement of each enzyme activity. Confirmed by
  • a plasmid having the gltA gene derived from Brevibacterium 'ratatophamentum' was constructed as follows. Corynebacterium ′, based on the nucleotide sequence of the gltA gene of Gunoletamicum (Microbiology, 1994, 140, 1817-1828), using primer DNAs having the nucleotide sequences shown in SEQ ID NOs: 6 and 7, PCR was performed using the chromosomal DNA of ratatophamentum ATCC1386 9 as type I to obtain a gltA gene fragment of about 3 kb.
  • the Pantoea ananatis strain SC17sucA was transformed by RSFCPG by the electoporation method to obtain a tetracycline-resistant transformant SC17sucA / RSFCPG strain. Further, the SC17sucA / RSFCPG strain was transformed using pSTVCB by electoporation, and a transformant showing chloramphenicol resistance was obtained.
  • a strain with improved resistance to high concentrations of L-glutamic acid in a low pH environment was isolated from Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain (hereinafter, also referred to as a "high-concentration Glu-resistant strain at low pH").
  • the SC17sucA / RSFCPG + pSTVCB strain was transformed into an LBG medium (10 g / L tryptone, 5 g yeast extract,
  • the cells washed with physiological saline are appropriately diluted, and the M9-E medium (4 g of glucose, NaHPO-12H0 17 g / L, KH PO
  • the obtained strain was measured for the degree of growth in M9-E liquid medium, and L-glutamic acid production test medium (glucose 40 g / ammonium resulfate 20 g / L, magnesium sulfate heptahydrate 0.5 g / L, potassium dihydrogen phosphate 2 g / L, sodium chloride 0.5 g / L, calcium chloride dihydrate 0.25 g / L, ferrous sulfate heptahydrate 0.02 g / L, manganese sulfate tetrahydrate 0.02 g / L Zinc lesulphate diwater Salt 0.72mg / L, Copper sulfate pentahydrate 0.64mg / L, Cobalt chloride hexahydrate 0.72mg, boric acid
  • the AJ13601 strain was established on August 18, 1999, by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology (currently, National Institute of Advanced Industrial Science and Technology), postal code 305-8566, Ibaraki, Japan Deposit No. FERM P-17516 at Tsukuba 1-3-1 Higashi), transferred to an international deposit under the Budapest Treaty on July 6, 2000, and given a deposit number FERM BP-7207 .
  • Pantoea ananatis AJ13601 strain was cultured in a medium containing calcium pantothenate (12 mg / L) and a medium without calcium pantothenate, and the productivity of L-glutamic acid was examined.
  • the culture was performed as follows. Pantoea ananatis AJ13601 strain on LBG agar medium containing 10 mg / L of tetracycline hydrochloride and 25 mg / L of chloramphenicol The cells cultured at 30 ° C for 14 hours were picked from one plate, and inoculated into a 1-L jar fermenter into which 300 ml of a seed culture medium having the following composition had been injected. Seed culture was performed under the conditions.
  • the pH during the cultivation was adjusted by adding ammonia gas to be 6.0.
  • the seed culture was terminated using the sugar deficiency in the medium as an indicator, and the seed culture solution corresponding to 20% of the main culture medium volume was inoculated into a 1-L Jafermenter into which 300 ml of the main culture medium had been injected, at 34 ° C.
  • Main culture was performed at pH 4.5.
  • the composition of the main culture medium is shown below.
  • the pH during the cultivation was adjusted by adding ammonia gas to pH 4.5. After the sugar in the medium was consumed and depleted, a 700 g / L aqueous glucose solution was continuously added (5 ml / hr). When the concentration of L-glutamic acid in the culture reached 45 g / L, 1.0 g / L of L-glutamic acid crystals were added to the medium as seed crystals to promote precipitation of L-glutamic acid in the culture.
  • the concentrations of acetoin and 2,3-butanediol were measured under the following conditions using a gas chromatography GC1700 manufactured by Shimadzu Corporation.
  • Air flow rate 400ml / min
  • Table 2 shows the amounts of acetin and 2,3-butanediol produced, and their value. The calculated amount of CO (each converted to carbon) is calculated.
  • the measured value of CO discharged from the culture medium was 26.5% for kato without pantothenic acid
  • CoA is used as a coenzyme in the process of progressing from pyruvate to acetyl CoA in metabolic pathways.
  • acetoin and 2,3-butanediol are produced from pyruvic acid, and CO is emitted with the production of acetoin.
  • pantothenic acid cannot be added to the culture medium used for culturing the bacteria, the bacteria originally lacked CoA due to accumulation of acetin and 2,3-butanediol in the culture medium. It was considered that acetoin and 2,3-butanediol were formed as by-products.
  • D-pantoic acid can be used instead of or together with pantothenic acid
  • the concentration of calcium pantothenate added to the medium was varied from 0 mg / L to 196 mg / L, and the effect of calcium pantothenate concentration on L-glutamic acid fermentation yield was measured.
  • the cultivation was carried out in the same manner as in Example 1, and the cultivation was performed by changing the calcium pantothenate concentration to 0, 1, 2, 4, 8, 12, 24, 48, 96, and 192 mg / L, respectively.
  • the results are shown in FIG. As confirmed from these results, the yield of L-gnoretamic acid fermentation was improved depending on the calcium pantothenate concentration. Especially when calcium pantothenate is added at lmg / L The yield was improved by about 5% compared to the addition (Omg / L).
  • the main culture was performed by replacing the calcium pantothenate with sodium pantothenate and adding soy sauce. Culture conditions were the same as in Example 1.
  • the sodium pantothenate concentration was adjusted to 12.15 mg / L so as to be equivalent to the number of moles of pantothenic acid when calcium was added at 12 mg / L. Table 3 shows the results.
  • L-gnoretamic acid can be produced more efficiently than conventional techniques using bacteria such as Pantoea bacteria.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 特定のpHにおいて飽和濃度のL−グルタミン酸及び炭素源を含む液体培地で同炭素源を代謝することができ、かつ、前記pHの液体培地中にL−グルタミン酸の飽和濃度を超える量のL−グルタミン酸を蓄積する能力を有する微生物を、pHがL−グルタミン酸が析出する条件に調整され、かつ、パントテン酸を含む培地に培養し、該培地中にL−グルタミン酸を析出させながら生成蓄積させることにより、L−グルタミン酸を製造する。

Description

明 細 書
L一グルタミン酸の製造法
技術分野
[0001] 本発明は、発酵法による L—グノレタミン酸の製造法に関する。 L—グノレタミン酸は調 味料原料等として広く用いられている。
背景技術
[0002] Lーグノレタミン酸は、主としてブレビバクテリウム属、コリネバクテリウム属、ミクロバタ テリゥム属に属するいわゆるコリネ型 L グルタミン酸生産菌またはそれらの変異株を 用いた発酵法により製造されている。また、バチルス属、ストレプトミセス属、ぺニシリ ゥム属、シユードモナス属、アースロバクター属、セラチア属、キャンディダ属に属する 微生物、ァェロバクタ一'ァエロゲネス(現ェンテロパクター .ァエロゲネス)、及びェシ エリヒア'コリの変異株を用いる方法等が知られている。また、本発明者らは、クレブシ エラ属、エルビニァ属又はパントエア属に属する微生物を用いた Lーグノレタミン酸の 製造法(米国特許第 6, 197, 559号明細書)、及びェンテロパクター属細菌を用い た L一グルタミン酸の製造法 (米国特許第 6, 331 , 419号明細書)を提案している。
[0003] また、組換え DNA技術により Lーグノレタミン酸の生合成酵素の活性を増強すること によって、 L一グルタミン酸の生産能を増加させる種々の技術が開示されている。例え ば、コリネバタテリゥム属またはブレビバタテリゥム属細菌において、ェシエリヒア'コリ 又はコリネバタテリゥム.ダルタミクム由来のクェン酸シンターゼをコードする遺伝子の 導入が、 L一グルタミン酸生産能の増強に効果的であったことが報告されている(特公 平 7—121228号公報)。また、特開昭 61—268185号公報には、コリネバタテリゥム 属細菌由来のグルタミン酸デヒドロゲナーゼ遺伝子を含む組換え体 DNAを保有した 細胞が開示されている。さらに、特開昭 63—214189号公報には、グノレタミン酸デヒド ロゲナーゼ遺伝子、イソクェン酸デヒドロゲナーゼ遺伝子、アコニット酸ヒドラターゼ遺 伝子、及びクェン酸シンターゼ遺伝子を増幅することによって、 L グルタミン酸の生 産能を増加させる技術が開示されている。
[0004] 上記のような微生物の育種や製造法の改良により、 L-グルタミン酸の生産性はか なり高まってはいる力 今後の需要の一層の増大に応えるためには、さらに安価かつ 効率的な Lーグノレタミン酸の製造法の開発が求められている。
[0005] 一方、本発明者らは、培養液中に蓄積する L一グルタミン酸を析出させながら発酵 を行う方法を開発している(欧州特許出願公開第 1078989号明細書)。従来、通常 の L一グルタミン酸生産菌は酸性条件下では生育できないため、 Lーグノレタミン酸発酵 は中性で行われていた。それに対し、本発明者らは、酸性条件下で L-グノレタミン酸 生産能を有する微生物を探索することに成功した。そして、得られた微生物(ェンテロ パクター 'アグロメランス)を、 pHが L一グルタミン酸が析出する条件に調整された液体 培地に培養することによって、培地中に Lーグノレタミン酸を析出させながら生成蓄積さ せること力 Sできる。
[0006] また、本発明者らは、上記のような酸性条件下で生育できる L一グルタミン酸生産菌 を、同細菌の生育を阻害する有機酸の合計含有量が前記細菌の生育を阻害しなレ、 量である培地中で培養する L一グルタミン酸の製造法(欧州特許出願公開第 12330 70号明細書)、及び、前記細菌を微生物の生育に適した第 1の pHで培養し、次いで 微生物による L一グルタミン酸の生産に適した、第 1の pHよりも低い第 2の pHで培養 することを含む L-グノレタミン酸の製造法(欧州特許出願公開第 1233068号明細書) を開示している。さらに、培地中に Lーグノレタミン酸を析出させながら L一グルタミン酸 を生成蓄積させる際に、培地中の L-グノレタミン酸濃度が、 自然起晶が起こる濃度より も低いときに、培地中に L一グルタミン酸の結晶を存在させる操作を行う方法(欧州特 許公開公開第 1233069号明細書)を開示している。
発明の開示
[0007] 本発明は、 Lーグノレタミン酸生産能を有するパントエア属細菌等の細菌を用いて、 従来技術よりもさらに効率的に L-グノレタミン酸を生産する方法を提供することを課題 とする。
[0008] 本発明者らは、パントエア属細菌に高い Lーグノレタミン酸生産能を付与すると、 Lーグ ルタミン酸とともにァセトイン、 2, 3—ブタンジオールの副生が生じることを見い出した 。そして、これらの副生を抑制することが可能となれば、 Lーグノレタミン酸の主原料 (糖 )あたりの収率は向上すると考えた。そこで、本発明者等は、種々検討を行った結果 、培地にパントテン酸を添加することにより、ァセトイン及び 2, 3 ブタンジオールの副 生が削減され、その結果 L-グノレタミン酸発酵収率が向上することを見出し、本発明 を完成するに至った。
[0009] すなわち、本発明は以下のとおりである。
(1)特定の pHにおレ、て飽和濃度の L一グルタミン酸及び炭素源を含む液体培地で 同炭素源を代謝することができ、かつ、前記 pHの液体培地中に L一グルタミン酸の飽 和濃度を超える量の L一グルタミン酸を蓄積する能力を有する微生物を、 pHが Lーグ ルタミン酸が析出する条件に調整され、かつ、パントテン酸を含む培地に培養し、該 培地中に L一グルタミン酸を析出させながら生成蓄積させることを特徴とする発酵法に よる L—グノレタミン酸の製造法。
(2)前記微生物がパントエア属に属することを特徴とする前記の方法。
(3)前記微生物がパントエア ·アナナティスである前記の方法。
(4)培地中のパントテン酸がパントテン酸塩であり、同塩の濃度が lmg/L以上であ る前記の方法。
図面の簡単な説明
[0010] [図 l]pTWVEKl 01のパントエア .アナナティス由来 DNA断片の制限酵素地図。
[図 2]gltA遺伝子、 ppc遺伝子および gdhA遺伝子を有するプラスミド pMWCPGの 構築を示す図。
[図 3]広宿主域プラスミド RSF1010の複製起点とテトラサイクリン耐性遺伝子を含む プラスミド RSF— Tetの構築を示す図である。
[図 4]広宿主域プラスミド RSF1010の複製起点、テトラサイクリン耐性遺伝子、 gltA 遺伝子、 ppc遺伝子および gdhA遺伝子を有するプラスミド RSFCPGの構築を示す 図。
[図 5]gltA遺伝子を有するプラスミド pSTVCBの構築を示す図。
[図 6]パントテン酸添カ卩により L グルタミン酸収率が向上する原理を説明する図。
[図 7]培地に加えたパントテン酸カルシウム濃度と L グルタミン酸発酵収率との関係 を示す図。
発明を実施するための最良の形態 [0011] 以下、本発明を詳細に説明する。
本発明は、特定の pHにおいて飽和濃度の L一グルタミン酸及び炭素源を含む液体 培地で同炭素源を代謝することができ、かつ、前記 pHの液体培地中に L一グルタミン 酸の飽和濃度を超える量の Lーグノレタミン酸を蓄積する能力を有する微生物(以下、「 L-グノレタミン酸蓄積微生物」ともいう)を、 pHが L-グルタミン酸が析出する条件に調 整され、かつ、パントテン酸を含む培地に培養し、該培地中に Lーグノレタミン酸を析出 させながら生成蓄積させることを特徴とする発酵法による L一グルタミン酸の製造法で める。
[0012] 上記 L一グルタミン酸蓄積微生物は、例えば、以下のようにして取得することができ る。微生物を含む試料を、特定の pHにおいて飽和濃度の L一グルタミン酸及び炭素 源を含む液体培地に接種し、炭素源を代謝する菌株を選抜する。特定の pHとは、特 に制限されないが、通常、約 5. 0以下、好ましくは約 4. 5以下、さらに好ましくは約 4 . 3以下である。 L一グルタミン酸蓄積微生物は L一グルタミン酸を析出させながら発酵 生産するのに用いられるものである力 前記 pHが高すぎると、析出させるのに十分な Lーグノレタミン酸を微生物に生産させることが困難になる。したがって pHは前記の範 囲が好ましい。
[0013] L一グルタミン酸を含む水溶液の pHを低下させると、 L一グルタミン酸は γ—カルボキ シノレ基の pKa (4. 25、 25°C)付近で溶解度は著しく減少し、等電点(ρΗ3· 2)で溶 解度は最も低くなり、飽和濃度を越える Lーグノレタミン酸は析出する。培地組成によつ ても異なる力 通常には、 L—グルタミン酸は約 30°Cにおいては、 ρΗ3· 2では 10— 2 Og/ ρΗ4. 0で ίま 30— 40g/し、 pH4. 7で ίま 50— 60g/L溶角早する。尚、 pH力 S 一定の値を下回ると Lーグノレタミン酸を析出させる効果は頭打ちになるので、通常 3. 0以下にする必要はなレ、。しかし、 pHが 3. 0以下であっても差し支えない。
[0014] 「炭素源を代謝できる」とは、増殖できるか、あるいは増殖しなくても炭素源を消費す ることができることをいい、すなわち、糖類、有機酸類等の炭素源を異化することをい う。具体的には、例えば、飽和濃度の L一グルタミン酸を含む pH5. 0-4. 0、好ましく は pH4. 5—4. 0、さらに好ましくは ρΗ4. 3 4. 0、特に好ましくは約 ρΗ4. 0の f夜体 培地中で、適当な温度、例えば 28°C、 37°C又は 50°Cにて、 2— 4日間培養したとき に増殖する微生物は、同培地中で炭素源を代謝できる微生物である。さらに、例え ば、飽禾ロ濃度の Lーグノレタミン酸を含む pH5. 0-4. 0、好ましくは pH4. 5-4. 0、さ らに好ましくは pH4. 3— 4. 0、特に好ましくは約 pH4. 0の液体合成培地中で、適当 な温度、例えば 28°C、 37°C又は 50°Cにて、 2 4日間培養したときに増殖せずとも、 培地中の炭素源を消費する微生物は、同培地中で炭素源を代謝できる微生物であ る。
[0015] 炭素源を代謝できる微生物は、上記液体培地で生育できる微生物を包含する。
「生育できる」とは、増殖できるか、あるいは増殖しなくても L一グルタミン酸を生産す ることができることをいう。具体的には、例えば、飽和濃度の Lーグノレタミン酸を含む p H5. 0—4. 0、好ましくは pH4. 5—4. 0、さらに好ましくは pH4. 3 4. 0、特に好ま しくは約 pH4. 0の液体培地中で、適当な温度、例えば 28°C、 37°C又は 50°Cにて、 2-4日間培養したときに増殖する微生物は、同培地中で生育できる微生物である。 さらに、例えば、飽和濃度の L—グルタミン酸を含む ρΗ5· 0-4. 0、好ましくは ρΗ4· 5— 4. 0、さらに好ましくは ρΗ4. 3— 4. 0、特に好ましくは約 ρΗ4. 0の液体合成培 地中で、適当な温度、例えば 28°C、 37°C又は 50°Cにて、 2— 4日間培養したときに 増殖せずとも、培地中の L一グルタミン酸の量を増加させる微生物は、同培地中で生 育できる微生物である。
[0016] 上記の選抜は、同じ条件で、又は pHもしくは L一グルタミン酸の濃度を変えて 2回又 は 3回以上繰り返してもよい。また、初期の選抜は、飽和濃度より低い濃度の L一ダル タミン酸を含む培地で行い、後の選抜を飽和濃度の L -グルタミン酸を含む培地で行 つてもよい。さらに、増殖速度に優れる菌株等、好ましい特性を有する菌株を選抜す る操作を行ってもよレ、。
[0017] L-グルタミン酸蓄積微生物は、上記性質に加えて、液体培地中に L-グノレタミン酸 の飽和濃度を越える量の L-グノレタミン酸を蓄積する能力を有する微生物である。前 記液体培地の pHは、前記の性質を有する微生物のスクリーニングに用いた培地の p Hと同じか、又はそれに近い pHであることが好ましい。通常、微生物は pHが低くなる と高濃度の L-グルタミン酸に対して感受性となるため、 L-グノレタミン酸に対する耐性 という観点からは pHは低くない方が好ましいが、 L-グルタミン酸を析出させながら生 産させるという観点からは、 pHは低い方が好ましい。これらの条件を満足する pH条 件としては、 3— 5、好ましくは 4一 5、より好ましくは 4. 0— 4. 7、さらに好ましくは 4. 0 一 4. 5、特に好ましくは 4. 0— 4. 3が挙げられる。
[0018] L一グルタミン酸蓄積微生物又はその育種の材料としては、例えば、パントテア(
Pantoea)属、ェンテロバクタ一 (Enterobacter)属、クレブシエラ (Klebsiella)属、セラチ ァ(Serratia)属、エルビニァ(Erwinia)属、ェシエリヒア(Escherichia)属、コリネバタテリ ゥム(Corynebacterium)属、ブレビバタテリゥム(Brevibacterium)属、アリサイクロバチ ノレス (Alicyclobacillus)属、バチノレス (Bacillus)属、サッカロマイセス (Saccharomyces) 属等に属する微生物が挙げられるが、これらには限定されない。これらの中ではパン トエア属に属する微生物が好ましい。以下、 L一グルタミン酸蓄積微生物について、パ ントエア属に属する微生物を中心に説明するが、パントエア属に限られず他の属に 属する微生物も同様に使用できる。
[0019] パントエア属に属する微生物として具体的には、パントエア ·アナナティス(Pantoea ananatis)が、好ましくはパントエア ·アナナティス AJ13355株が挙げられる。同株は、 静岡県磐田市の土壌から、低 pHで Lーグノレタミン酸及び炭素源を含む培地で増殖で きる株として分離された株である。
[0020] パントエア ·アナナティス AJ13355は、平成 10年 2月 19日に、通産省工業技術院 生命工学工業技術研究所 (現名称、産業技術総合研究所生命工学工業技術研究 所)に、受託番号 FERM P— 16644として寄託され、平成 11年 1月 11日にブダぺス ト条約に基づく国際寄託に移管され、受託番号 FERM BP - 6614が付与されてい る。尚、同株は、分離された当時はェンテロバクタ一'アグロメランス(Enterobacter agglomerans)と同定され、ェンテロパクター 'アグロメランス AJ13355として寄託され た力 近年 16S rRNAの塩基配列解析などにより、パントエア'アナナティス(
Pantoea ananatis)に再分類されてレ、る(後記実施例参照)。
また、後述する AJ13355力、ら誘導された菌株 AJ13356、及び AJ13601も、同様 にェンテロパクター ·アグロメランスとして前記寄託機関に寄託されている力 本明細 書ではパントエア ·アナナティスと記述する。
[0021] L-グルタミン酸蓄積微生物は、元来 L-グノレタミン酸生産能を有していてもよいし、 変異処理又は組換え DNA技術等による育種によって L一グルタミン酸生産能を付与 、又は増強したものであってもよい。
[0022] L一グルタミン酸生産能は、例えば、 L一グルタミン酸の生合成反応を触媒する酵素 の活性を高めることによって、付与又は増強することができる。また、 L一グルタミン酸 の生合成経路から分岐して L -グルタミン酸以外の化合物を生成する反応を触媒す る酵素の活性を低下または欠損させることによつても、 L一グルタミン酸生産能を増強 すること力 Sできる。
[0023] L一グルタミン酸の生合成反応を触媒する酵素としては、グルタミン酸デヒドロゲナー ゼ(以下、「GDH」ともレ、う)、グルタミンシンセターゼ、グルタミン酸シンターゼ、イソク ェン酸デヒドロゲナーゼ、アコニット酸ヒドラターゼ、クェン酸シンターゼ(以下、「CS」 ともレ、う)、ホスホェノールピルビン酸カルボキシラーゼ(以下、「PEPC」ともいう)、ピ ノレビン酸デヒドロゲナーゼ、ピルビン酸キナーゼ、エノラーゼ、ホスホグリセロムターゼ 、ホスホグリセリン酸キナーゼ、グリセルアルデヒド一 3—リン酸デヒドロゲナーゼ、トリオ ースリン酸イソメラーゼ、フルクトースビスリン酸アルドラーゼ、ホスホフルクトキナーゼ 、グノレコースリン酸イソメラーゼ等が挙げられる力 S、これらには限定されない。これらの 酵素の中では、 CS、 PEPCおよび GDHのいずれ力 1種または 2種もしくは 3種が好 ましレ、。さらに、 L一グルタミン酸蓄積微生物においては、 CS、 PEPCおよび GDHの 3種の酵素の活性がともに高められていることが好ましい。特に、ブレビバクテリウム* ラタトフアーメンタムの CSは、 α—ケトグルタル酸、 L—グルタミン酸及び NADHによる 阻害を受けないため、好ましいものである。
[0024] CS、 PEPCまたは GDH活性を高めるには、例えば、 CS、 PEPCまたは GDHをコ ードする遺伝子を適当なプラスミド上にクローユングし、得られたプラスミドを用いて宿 主微生物を形質転換すればよい。形質転換株の細胞内の CS、 PEPC及び GDHを コードする遺伝子(以下、おのおのをこの順に「gltA遺伝子」、「ppc遺伝子」、「gdh A遺伝子」と略する)のコピー数が上昇し、その結果 CS、 PEPC及び GDH活性が高 められる。
[0025] クローニングされた gltA遺伝子、 ppc遺伝子、および gdhA遺伝子は、単独または 任意の 2種または 3種の組合わせで、上記出発親株に導入される。 2種または 3種の 遺伝子を導入する場合には、一種類のプラスミド上に 2種又は 3種の遺伝子がクロー ン化されて宿主に導入されるか、あるいは共存可能な 2種類または 3種類のプラスミド 上に別々にクローンィ匕されて宿主に導入される。
[0026] 尚、同種の酵素をコードする遺伝子であって、由来が異なる 2又は 3以上の遺伝子 を同一の宿主に導入してもよレ、。
上記プラスミドとしては、例えばパントエア属等に属する微生物の細胞中で自律複 製可能なプラスミドであれば特に制限されなレ、が、例えば pUC19、 pUC18、 pBR322、 pHSG299、 pHSG298、 pHSG399、 pHSG398、 RSF1010、 pMW119、 pMW118、 pMW219、 pMW218、 pACYC177、 pACYC184等が挙げられる。他にもファージ DNA のベクターも利用できる。
[0027] 形質転換は、例えば、 D.A.Morrisonの方法(Methods in Enzymology 68, 326
(1979))、受容菌細胞を塩化カルシウムで処理して DNAの透過性を増す方法( Mandel,M. and Higa,A.,J.Mol.Biol.,53,159(1970))、あるいはエレクト口ポレーシヨン法 (Miller J.H., Ά Shortし ourse m Bacterial uenetics ,Cold bprmg Haroor
Laboratory Press, U.S.A., 1992)等により行うことができる。
[0028] CS、 PEPCまたは GDH活性を高めることは、 gltA遺伝子、 ppc遺伝子または gdh A遺伝子を、宿主となる上記出発親株の染色体 DNA上に多コピー存在させることに よっても達成できる。パントエア属等に属する微生物の染色体 DNA上に gltA遺伝子 、 ppc遺伝子、または gdhA遺伝子を多コピーで導入するには、レぺッティブ DNA、 転移因子の端部に存在するインバーティッド'リピート等、染色体 DNA上に多コピー 存在する配列が利用できる。あるいは、 gltA遺伝子、 ppc遺伝子、または gdhA遺伝 子をトランスポゾンに搭載して、これを転移させて染色体 DNA上に多コピー導入する ことも可能である。形質転換株の細胞内の gltA遺伝子、 ppc遺伝子、または gdhA遺 伝子のコピー数が上昇し、その結果 CS、 PEPCまたは GDH活性が高められる。
[0029] コピー数を上昇させる gltA遺伝子、 ppc遺伝子、および gdhA遺伝子の供給源とな る生物としては、 CS、 PEPC及び GDH活性を有する生物ならいかなる生物でも良い 。なかでも原核生物である細菌、たとえばパントエア属、ェンテロバクター属、クレブ シエラ属、エノレビ二ァ属、セラチア属、ェシエリヒア属、コリネバクテリウム属、ブレビバ クテリウム属、バチルス属に属する細菌が好ましい。具体的な例としては、ェシエリヒア •コリ、ブレビバタテリゥム 'ラタトフアーメンタム等が挙げられる力 これらには限定され なレ、。 gltA遺伝子、 ppc遺伝子、および gdhA遺伝子は、上記のような微生物の染色 体 DNAより得ること力 Sできる。
[0030] gltA遺伝子、 ppc遺伝子、および gdhA遺伝子は、おのおの CS、 PEPCもしくは G DH活性を欠失した変異株を用いてその栄養要求性を相補する DNA断片を上記微 生物の染色体 DNAから単離することによって取得できる。またェシエリヒア属のこれ ら遺伝子、コリネバタテリゥム属細菌のこれら遺伝子は既に塩基配列が明らかにされ てレヽること力、ら(Biochemistry,第 22卷、 5243— 5249頁、 1983年; J. Biochem. 、第 95卷、 909 916頁、 1984年; Gene、第 27卷、 193 199頁、 1984年; Micr obiology,第 140卷、 1817 1828頁、 1994年; Mol. Gen. Genet.、第 218卷、 330— 339頁、 1989年; Molecular Microbiology,第 6卷、 317 326頁、 1992 年)それぞれの塩基配列に基づいてプライマーを合成し、染色体 DNAを铸型にして PCR法により取得することが可能である。尚、ェンテロパクター属又はクレブシエラ属 細菌等の腸内細菌においては、同種の細菌由来の gltA遺伝子に比べて、コリネ型 細菌由来の gltA遺伝子の導入力 L一グルタミン酸生産能の増強に有効であること が知られている(欧州特許出願公開第 0999282号)。同公報においては、本願明細 書に記載のパントエア ·アナナティスの菌株はェンテロパクター ·アグロメランスと記載 されている。
[0031] CS、 PEPCまたは GDH活性を高めるには、上記の遺伝子増幅による以外にも、 gl tA遺伝子、 ppc遺伝子、または gdhA遺伝子の発現が強化されることによって達成さ れる。例えば、 gltA遺伝子、 ppc遺伝子、または gdhA遺伝子のプロモーターをそれ よりも強力な他のプロモーターに置換することによって発現が強化される。たとえば、 1 acプロモーター、 trpプロモーター、 trcプロモーター、 tacプロモーター、ラムダファー ジの Pプロモーター、 Pプロモーター等が強力なプロモーターとして知られている。
R L
プロモーターが置換された gltA遺伝子、 ppc遺伝子または gdhA遺伝子は、プラスミ ド上にクローニングされて宿主微生物に導入される力、、またはレぺッティブ DNA、ィ ンバーティッド 'リピート、またはトランスポゾン等を用いて宿主微生物の染色体 DNA 上に導入される。
[0032] また、 CS、 PEPCまたは GDH活性を高めるには、染色体上の gltA遺伝子、 ppc遺 伝子または gdhA遺伝子のプロモーターを、それらよりも強力なプロモーターで置換 する(WO87/03006号、特開昭 61—268183号参照)か、またはそれぞれの遺伝 子のコード配列の上流に、強力なプロモーターを揷入すること(Gene, 29, (1984) 231-241参照)によっても達成することができる。具体的には、強力なプロモーターに 置換された gltA遺伝子、 ppc遺伝子もしくは gdhA遺伝子またはそれらの一部を含む DNAと、染色体上の対応する遺伝子との間で相同組換えを起こさせればよい。
[0033] L一グルタミン酸の生合成経路から分岐して L一グルタミン酸以外の化合物を生成す る反応を触媒する酵素としては、 ひ—ケトグルタル酸デヒドロゲナーゼ(以下、「ひ KG DH」ともレ、う)、イソクェン酸リアーゼ、リン酸ァセチルトランスフェラーゼ、酢酸キナー ゼ、ァセトヒドロキシ酸シンターゼ、ァセト乳酸シンターゼ、ギ酸ァセチルトランスフェラ ーゼ、乳酸デヒドロゲナーゼ、グルタミン酸デカルボキシラーゼ、 1一ピロリンデヒドロゲ ナーゼ等がある。これらの酵素の中では、 a KGDHが好ましい。
[0034] パントエア属等に属する微生物において、上記のような酵素の活性を低下または欠 損させるには、通常の変異処理法によって、あるいは遺伝子工学的手法によって、 上記酵素の遺伝子に、細胞中の当該酵素の活性が低下または欠損するような変異 を導入すればよい。
[0035] 変異処理法としては、たとえば X線や紫外線を照射する方法、または N -メチル- N '一二トロー N—二トロソグァ二ジン等の変異剤で処理する方法等がある。遺伝子に変 異が導入される部位は、酵素タンパク質をコードするコード領域であってもよぐプロ モーター等の発現制御領域であってもよレ、。
[0036] また、遺伝子工学的手法には、例えば遺伝子組換え法、形質導入法、細胞融合法 等を用いる方法がある。例えば、クローン化された目的遺伝子の内部に薬剤耐性遺 伝子を揷入し、機能を失った遺伝子(欠失型遺伝子)を作製する。次いで、この欠失 型遺伝子を宿主微生物の細胞に導入し、相同組み換えを利用して染色体上の目的 遺伝子を前記欠失型遺伝子に置換する(遺伝子破壊)。
[0037] 細胞中の目的酵素の活性が低下または欠損していること、および活性の低下の程 度は、候補株の菌体抽出液または精製画分の酵素活性を測定し、野生株と比較す ることによって確認すること力 Sできる。例えば、 a KGDH活性は、 Reedらの方法( L.J.Reed and B.B.Mukherjee, Methods m Enzymology 1969, 1ό, p.55—6丄ノ (こ従って 測定することができる。
[0038] また、 目的とする酵素によっては、変異株の表現型によって目的変異株を選択する こと力 Sできる。例えば、 ひ KGDH活性が欠損もしくは低下した変異株は、好気的培養 条件ではグルコースを含む最少培地、あるいは、酢酸や L一グルタミン酸を唯一の炭 素源として含む最少培地で増殖できなレ、か、または増殖速度が著しく低下する。とこ ろが、同一条件でもグルコースを含む最少培地にコハク酸またはリジン、メチォニン、 及びジアミノピメリン酸を添加することによって通常の生育が可能となる。これらの現 象を指標としてひ KGDH活性が欠損もしくは低下した変異株の選抜が可能である。
[0039] 相同組換えを利用したブレビバタテリゥム 'ラタトフアーメンタムのひ KGDH遺伝子 欠損株の作製法は、 W095/34672号に詳述されており、他の微生物にも同様の 方法を適用することができる。
[0040] その他、遺伝子のクローニング、 DNAの切断、連結、形質転換法等の技術につい H Molecular Cloning, 2nd edition, Cold pnng Haroor press (1989》等に羊 さ れている。
[0041] 以上のようにして得られる a KGDH活性が欠損もしくは低下した変異株の具体例と しては、パントエア'アナナティス AJ13356が挙げられる。パントエア'アナナティス AJ 13356は、平成 10年 2月 19日に、通産省工業技術院生命工学工業技術研究所 (現 名称、産業技術総合研究所生命工学工業技術研究所)に、受託番号 FERM P-1 6645として寄託され、平成 1 1年 1月 1 1日にブダペスト条約に基づく国際寄託に移 管され、受託番号 FERM BP—6615が付与されている。パントエア'アナナティス AJ 13356は、 ひ KGDH—E1サブユニット遺伝子(sucA)が破壊された結果、 ひ KGD H活性を欠損している。
[0042] また、本発明に用いられる微生物の一例であるパントエア'アナナティスは、糖を含 有する培地で培養を行うと、菌体外に粘液質を生成するために、操作効率がよくない こと力 Sある。したがって、このような粘液質を生成する性質を有するパントエア'ァナナ ティスを用いる場合には、粘液質の生成量が野生株よりも低下した変異株を用いるこ とが好ましい。変異処理法としては、たとえば X線や紫外線を照射する方法、または N—メチルー N'—二トロー N—二トロソグァ二ジン等の変異剤で処理する方法等がある。 また、粘液質の生成量が低下した変異株は、変異処理した菌株を、糖を含む培地、 例えば 5gZLのグルコースを含む LB培地プレートに撒き、プレートを約 45° 傾けて 培養したときに、液質が流れ落ちないようになったコロニーを選抜することによって選 択すること力 Sできる。
[0043] 本発明において、 L一グルタミン酸生産能の付与又は増強、及び上記の粘液質低 生産変異等の好ましレ、性質の付与は、任意の順序で行うことができる。
上記のような Lーグノレタミン酸生産菌の育種に用いられる遺伝子として、パントエア' アナナティスの sucA遺伝子の塩基配列及び同遺伝子によってコードされるひ KGD H - E1サブユニットのアミノ酸配列を、配列番号 1及び配列番号 3に示す。
[0044] また、ェシエリヒア'コリ由来の gltA遺伝子、 gdhA遺伝子、及び ppc遺伝子を含む プラスミド RSFCPG (参考例 1参照)の塩基配列を配列番号 8に示す。配列番号 8に おいて、 gltA遺伝子、、 gdhA遺伝子、及び ppc遺伝子のコード領域は、それぞれ塩 基番号 1770— 487 (ネ目ネ甫鎖によってコードされる)、 2598— 3941、 7869— 5218 ( 相補鎖によってコードされる)に相当する。これらの遺伝子によってコードされる CS、 GDH及び PEPCのアミノ酸配列を、配列番号 9、 10、 11に示す。さらに、ブレビバタ テリゥム 'ラタトフアーメンタム由来の gltA遺伝子を含むプラスミド pSTVCB (参考例 1 参照)の塩基配列及び同遺伝子によってコードされる CSのアミノ酸配列を、配列番 号 12及び配列番号 13に示す。
[0045] CS、 GDH及び PEPCは、野生型の他に、各々の酵素の活性を実質的に損なわな レ、ような 1若しくは数個のアミノ酸残基の置換、欠失、揷入、付加、又は逆位を含むァ ミノ酸配列を有するものであってもよレ、。ここで、「数個」とは、アミノ酸残基のタンパク 質の立体構造における位置や種類によっても異なる力 具体的には 2から 30個、好 ましくは、 2力、ら 20個、より好ましくは 2から 10個である。上記の CS、 GDH及び PEP Cの変異は、 CS、 GDH及び PEPCの活性が維持されるような保存的変異である。置 換は、アミノ酸配列中の少なくとも 1残基が除去され、そこに他の残基が揷入される変 化である。 CS、 GDH及び PEPCの各タンパク質の元々のアミノ酸を置換し、かつ、 保存的置換とみなされるアミノ酸としては、 Alaから ser又は thrへの置換、 argから gln、 his又は lysへの置 fe、 asn力り glu、 gln、 lys、 his又は aspへの置 :、 asp力ら asn、 glu又は ginへの置換、 cys力、 bser又 f alaへの置換、 gin力、り asn、 glu、 lys、 his、 asp又 f argへの 置換、 glu力、ら asn、 gln、 lys又は aspへの置換、 gly力、ら proへの置換、 his力ら asn、 lys、 gln、 arg又は tyrへの 、 ileから leu、 met、 val又は pheへの置 fe、 leu力り ile、 met、 val 又は pheへの置換、 lys力、ら asn、 glu、 gln、 his又は argへの置換、 met力ら ile、 leu、 val又 は pheへの置換、 phe力、ら t卬、 tyr、 met, ile又は leuへの置換、 serから thr又は alaへの 置換、 thrから ser又は alaへの置換、 t卬から phe又は tyrへの置換、 tyrから his、 phe又は trpへの置換、及び、 valから met、 ile又は leuへの置換が挙げられる。
[0046] 上記のような CS、 GDH及び PEPCと実質的に同一のタンパク質又はペプチドをコ ードする DNAとしては、配列番号 12に示す塩基配歹 1J、又は配列番号 8に示す塩基 配列中のそれぞれのオープンリーディングフレーム(ORF)又はそれらの塩基配列か ら調製され得るプローブとストリンジェントな条件下でハイブリダィズし、かつ CS、 GD H又は PEPCの活性を有するタンパク質をコードする DNAが挙げられる。ここで、 「ス トリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハ イブリツドが形成されない条件をいう。この条件を明確に数値化することは困難である 、一例を示せば、相同性が高い DNA同士、例えば 50%以上、好ましくは 70%以 上、より好ましくは 90%以上、最も好ましくは 95%以上の相同性を有する DNA同士 がハイブリダィズし、それより相同性が低い DNA同士がハイブリダィズしない条件、 あるいは通常のサザンハイブリダィゼーシヨンの洗いの条件である 60°C、 1 X SSC, 0. 10/0SDS、好ましく ίま、 0. 1 X SSC、 0. 10/0SDS (こネ目当する塩濃度でノ、イブリタ、' ィズする条件が挙げられる。
[0047] プローブとして、配列番号 12に示す塩基配列、又は配列番号 8の塩基配列中の各 ORF又はそれらの一部の配列を用いることもできる。そのようなプローブは、配列番 号 8又は 12の塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとし、配 列番号 8もしくは 12又はそれらの一部の塩基配列を含む DNA断片を铸型とする PC Rによって作製することができる。プローブとして、 300bp程度の長さの DNA断片を 用いる場合には、ハイブリダィゼーシヨンの洗いの条件は、 50°C、 2 X SSC、 0. 1 % SDSが挙げられる。
[0048] 遺伝子破壊に用いる欠失型 sucA遺伝子は、 目的とする微生物の染色体 DNA上 の sucA遺伝子と相同組換えを起こす程度の相同性を有していればよレ、。このような 相同性は、好ましくは 85。/0以上、より好ましくは 90%以上、特に好ましくは 95%以上 である。また、ストリンジ工ントな条件下でハイブリダィズし得る DNA同士であれば、相 同組換えは起こり得る。
[0049] 上記のようにして得られる菌株として具体的には、前記パントエア'アナナティス AJ1 3355株力も誘導された AJ13601株が挙げられる。同株は、 AJ13355株力 の粘液 質低生産株の選択、 ひ KGDH遺伝子の破壊、ェシヱリヒア'コリ由来の gltA、 ppc、 gdhAの各遺伝子、及びブレビバタテリゥム 'ラタトフアーメンタム由来の gltA遺伝子の 導入、低 pHにおける高濃度 L-グノレタミン酸耐性株の選択、及び増殖度及び L-ダル タミン酸生産能が高い株の選択によって、取得された菌株である。
[0050] L一グルタミン酸蓄積微生物を、 pHが L一グルタミン酸が析出する条件に調整された 液体培地に培養することにより、培地中に L一グルタミン酸を析出させながら生成蓄積 させること力 Sできる。ここで前記微生物が「生産した Lーグノレタミン酸が析出する条件」 とは、 L一グルタミン酸蓄積微生物が L一グルタミン酸を生成蓄積したときに L一ダルタミ ン酸が析出する条件をいう。この条件の pHは、微生物の Lーグノレタミン酸生産能に応 じて変動するが、微生物がパントエア属細菌の場合には、通常 3— 5、好ましくは 4. 5 以下、より好ましくは 4以下である。
尚、上記の Lーグノレタミン酸が析出する条件は、 L一グルタミン酸蓄積微生物力 飽 和濃度の L -グルタミン酸及び炭素源を含む液体培地で同炭素源を代謝することが でき、かつ、液体培地中に L一グルタミン酸の飽和濃度を超える量の Lーグノレタミン酸 を蓄積する能力を示すことができる pHであることが前提となる。
[0051] 上記条件で L一グルタミン酸蓄積微生物を培地で培養する際に、同培地にパントテ ン酸を含有させることによって、 L一グルタミン酸の蓄積量を上昇させることができる。 これは、培地にパントテン酸を添カ卩することにより、ァセトイン及び 2, 3—ブタンジォー ルの副生が削減され、その結果 L一グルタミン酸発酵収率が向上すると推定される。 [0052] 培地中のパントテン酸は、パントテン酸塩として添カ卩することが好ましレヽ
酸塩の含有量は、好ましくは lmg/L以上、より好ましくは 4mg/L以上、特に好まし くは 8mg/L以上である。パントテン酸塩としては特に制限されず、カルシウム塩、ナ トリウム塩等が挙げられる。
尚、パントテン酸は、培養の全工程において培地に含有されていてもよいが、パント テン酸を含む培地で培養される期間を工程の一部に含んでいてもよい。例えば、本 発明の方法が、 Lーグノレタミン酸蓄積微生物を増殖させる段階と、 L一グルタミン酸を 産生させる段階を含む場合、少なくとも L一グルタミン酸を産生させる段階においてパ ントテン酸を培地に含有させればよぐ L一グルタミン酸蓄積微生物を増殖させる段階 においては、パントテン酸を培地に含有させてもよぐ含有させなくてもよい。また、 L —グルタミン酸を産生させる段階にぉレ、ても、その段階の全期間でパントテン酸の含 有量が前記の範囲である必要はなぐ同段階の初期に含有量が前記範囲となるよう にパントテン酸を含有させ、培養時間に応じて減少してもよい。パントテン酸を間欠的 に追加添加してもよい。
[0053] 本発明は、パントテン酸を含む培地を用いる以外は、 L グルタミン酸蓄積微生物を 用いて、培地中で Lーグノレタミン酸を析出させながら L グルタミン酸を製造する公知 の方法を適用することができる(例えば、特開 2001— 333769 (欧州特許出願公開 第 1078989号)、特開 2002-238591 (欧州特許出願公開第 1233070号)、特開 2002-238592 (欧州特許出願公開第 1233068号)、特開 2002-238593 (欧州 特許出願公開第 1233069号))。
[0054] 例えば、本発明の方法の好ましい形態の一つは、パントテン酸塩を含有し、 pHが 5 . 0以下である培地であって、この pHで Lーグノレタミン酸蓄積微生物の生育を阻害す る有機酸の合計含有量が微生物の生育を阻害しない量である培地中で培養すること を含む、 L-グノレタミン酸の製造法である(特開 2002-238591号(欧州特許出願公 開第 1233070号)公報参照)。この態様において、培地の PHで微生物の生育を阻 害する有機酸は、その pHの培地中に或る程度の濃度(通常には 0.5g/L以上)で存 在するときに微生物の生育の阻害を示す有機酸を意味し、通常には、炭素数 1一 3 の有機酸、すなわち、蟻酸、酢酸及びプロピオン酸である。 [0055] 有機酸の合計含有量は、好ましくは 0. 4g/L以下、より好ましくは 0. 3g/L以下、 さらに好ましくは 0. 2g/L以下である。
本発明の方法の好ましい他の態様は、 L-グノレタミン酸蓄積微生物を、同微生物の 生育に適した第 1の pHで培養し、次いで微生物による Lーグノレタミン酸の生産に適し た、第 1の pHよりも低い第 2の pHで培養することを含み、少なくとも第 2の pHでの培 養をパントテン酸を含む培地で培養する、 L-グノレタミン酸の製造法である((特開 20 02 - 238592号 (欧州特許出願公開第 1233068号)公報参照))。
[0056] 本発明の方法の好ましい別の態様は、 L-グノレタミン酸蓄積微生物を、培地中の有 機酸による微生物の生育の阻害が生じない第 1の pHで培養し、次いで微生物による Lーグノレタミン酸の生産に適した、第 1の pHより低い第 2の pHで培養することを含み、 少なくとも第 2の pHでの培養をパントテン酸を含む培地で培養する、 L-グノレタミン酸 の製造法である(特開 2002-238591号 (欧州特許出願公開第 1233070号)公報 参照)。
[0057] L グルタミン酸生産菌は、一般に、酸性条件下で有機酸による生育の阻害を受け る一方、中性条件下では有機酸を消費することができる(特開 2002— 238591号 (欧 州特許出願公開第 1233070号)公報参照)。この性質を利用して中性 pHで菌体生 育を行い、その後 pHを酸性に変化させて L グルタミン酸を生成させることにより、よ り高い生産性を得るとともに、広範な材料を糖源として使用することが可能となる。
[0058] この態様において、有機酸は、第 2の pHの培地中に或る程度の濃度(通常には
0.5g/L以上)で存在するときに微生物の生育の阻害を示す有機酸を意味し、通常に は、炭素数 1一 3の有機酸、すなわち、蟻酸、酢酸及びプロピオン酸である。
[0059] 第 1の PH及び第 2の pHは、使用される L一グルタミン酸蓄積微生物の性質に適合 するように選択される。これらの pHは、当業者であれば容易に測定できる。例えば、 培地中の有機酸による微生物の生育の阻害が生じなレ、 pHは、種々の pHに調整し た有機酸含有培地で L一グルタミン酸蓄積微生物を培養し、吸光度などにより菌体量 を測定して、その菌体量を、有機酸を含有しないこと以外は同一の条件で培養され た L一グルタミン酸蓄積微生物の菌体量と比較することにより決定できる。 L一ダルタミ ン酸の生産に適した pHは、種々の pHの培地で Lーグノレタミン酸蓄積微生物を培養し 、培地中に L一グルタミン酸が蓄積されるときの pHをいう。具体的には、当該種々の p Hの培地中に蓄積された Lーグノレタミン酸量を測定して比較することにより決定できる
[0060] 第 1の pHは、培地中の有機酸による微生物の成育の阻害が生じなければ特に制 限はなぐ通常には 5. 0-8. 0である。
第 2の pHは、生産された Lーグノレタミン酸が析出する pHであることが好ましぐこの ような pHは、通常には、 3. 0-5. 0である。生産された Lーグノレタミン酸が析出する p Hで培養することにより、 L一グルタミン酸の高濃度蓄積による生産性の阻害を回避で きる。
[0061] 第 1の pH及び第 2の pHは、本発明の効果が得られる限り、培養中において厳密に 一定の値を示す必要はなく、変動しても差し支えなレ、。
第 1の pHでの培養は、この pHであっても、 L—グルタミン酸蓄積微生物が L—グルタ ミン酸を生産するので、生産される Lーグノレタミン酸による pHの低下が生じるため、ァ ルカリ化物質を培地に添加することにより培地の pHを第 1の pHに維持しながら行うこ とが好ましい。
[0062] アルカリ化物質は、 L一グルタミン酸蓄積微生物の生育や Lーグノレタミン酸生産に悪 影響を与えないものであれば特に限定されないが、アンモニアガスが好ましい。
[0063] 第 1の pHから第 2の pHへの、培地の pHの低下は、酸性物質を培地に添加するこ とにより行ってもよいが、上述のように、 L一グルタミン酸蓄積微生物により生産される L —グルタミン酸による pHの低下が培養中に生じるので、第 1の pHから第 2の pHへの 、培地の pHの低下は、アルカリ化物質の添加量を調整することにより行うことが、酸 性物質の添カ卩を省略できるので好ましい。
[0064] 第 1の pHでの培養は、培地中の有機酸が枯渴するまで継続すればよレ、。枯渴とは 、有機酸の量が第 2の pHにおける培養において、 L一グルタミン酸蓄積微生物の生 育を阻害しなレ、レベルに低下することをレ、う。このような有機酸のレベルを測定するこ とは当業者にとって容易である。例えば、第 2の pHにおいて種々の濃度の有機酸を 含む培地で培養を行い、 L一グルタミン酸蓄積微生物の菌体量を測定して、その菌体 量を、有機酸を含有しなレ、こと以外は同一の条件で培養された Lーグノレタミン酸蓄積 微生物の菌体量と比較することにより決定できる。一般に、第 2の pHが低くなればな るほど、有機酸のレベルも低くなる。
[0065] 本発明の方法の好ましいさらに別の態様は、 Lーグノレタミン酸蓄積微生物を、 pHが 当該微生物によって生産された L一グルタミン酸が析出する条件に調整された液体培 地に培養し、該培地中に L-グノレタミン酸を析出させながら生成蓄積させることを含む 、発酵法による L一グルタミン酸の製造法において、培地中の Lーグノレタミン酸濃度が 、自然起晶が起こる濃度よりも低いときに、培地中に L一グルタミン酸の結晶を存在さ せる操作を行い、前記培地はパントテン酸を含む方法である(特開 2002—238593 号 (欧州特許出願公開第 1233069号)公報参照)。前記「自然起晶」とは、 L-グルタ ミン酸を生産する能力を有する微生物が L一グルタミン酸を蓄積することにより、培地 中の L一グルタミン酸濃度が飽和濃度を超えて自然に培地中に L一グルタミン酸が析 出することをいう。
[0066] 培地中に L一グルタミン酸の結晶を存在させる操作とは、人為的に培地中に結晶を 存在させる操作を意味する。このような操作の例としては、培地に結晶を添加すること 、培養開始時に或る量の L一グルタミン酸を培地に溶解させておき、培養途中で pHを 下げることにより、強制的に析出させること等が挙げられる。 結晶を培地中に存在さ せる量は、通常には 0.01— 10g/Lである。また、存在させる時期は、培地中の Lーグノレ タミン酸の蓄積量が飽和濃度近くまで (例えば pH4.5の場合、 25g/L以上)上昇した時 が好ましレ、。培地中の L一グルタミン酸の結晶の存在量や L一グルタミン酸の濃度は、 当業者に周知の方法で測定することができる。 L一グルタミン酸の結晶は、培養液を 静置し、デカントにより培養液から採取して存在量を測定する。培地中の L一ダルタミ ン酸の濃度とは、溶解している L一グルタミン酸の濃度である。培地中に結晶が析出し ている場合は、遠心分離 (又は濾過)により固形分を分離し、得られた清澄液の L -グ ルタミン酸濃度の測定値を指す。
[0067] 培地中に L一グルタミン酸の結晶を存在させる操作は、好ましくは、 L一グルタミン酸 の結晶を添カ卩することである。
L一グルタミン酸の結晶にはひ型と j3型の結晶が存在する(H. Takahashi, T.Takenishi, Ν· Nagashima, Bull. Chem. So Japan, 35, 923 (1962); J. D.Bernal, Z. Krist., 78, 363 (1931); S. Hirokawa, Acta Cryst., 8, 637 (1955))。 α型の結晶を得る 場合には、添加する結晶は a型であることが好ましい。
[0068] 好ましい結晶の添加量は、結晶の結晶型等の条件で変わるが、 a型の結晶である 場合には、通常には 0. 2g/L以上である。この濃度以上であると、再現性良くひ型 の結晶を得ることができる。 ひ型の結晶は、その形状の点から、 /3型の結晶に比べて 取り扱いが容易である。
[0069] 本発明に用いる培地は、パントテン酸を含有し、かつ、 pHが所定の条件に調整さ れること以外は、炭素源、窒素源、無機塩類、その他必要に応じてアミノ酸、ビタミン 等の有機微量栄養素を含有する通常の栄養培地を用いることができる。合成培地ま たは天然培地のいずれも使用可能である。培地に使用される炭素源および窒素源 は、培養する菌株の利用可能なものならばよい。
[0070] 炭素源としてはグルコース、グリセロール、フラクトース、シユークロース、マルトース
、マンノース、ガラクトース、でんぷん加水分解物、糖蜜等の糖類が使用され、その他
、酢酸、クェン酸等の有機酸等も単独あるいは他の炭素源と併用して用いられる。
[0071] 窒素源としてはアンモニア、硫酸アンモニゥム、炭酸アンモニゥム、塩化アンモニゥ ム、リン酸アンモニゥム、酢酸アンモニゥム等のアンモニゥム塩または硝酸塩等が使 用される。
[0072] 有機微量栄養素としては、アミノ酸、ビタミン、脂肪酸、核酸、さらにこれらのものを 含有するペプトン、カザミノ酸、酵母エキス、大豆蛋白分解物等が使用され、代謝又 は生育にアミノ酸等を要求する栄養要求性変異株を使用する場合には要求される栄 養素を補添する事が必要である。
[0073] 無機塩類としてはリン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等が 使用される。
培養方法は、 pHが所定の値に調整される以外は、通常には、発酵温度 20ないし 4 2°Cでの通気培養である。
[0074] 培養終了後、培養液中に析出した L-グノレタミン酸は、遠心分離又は濾過等により 採取すること力 Sできる。また、培地中に溶解している L一グルタミン酸は、公知の方法 に従って採取することができる。例えば、濃縮晶析する方法、あるいはイオン交換クロ マトグラフィ一等によって単離することができる。培養液中に析出した Lーグノレタミン酸 は、培地中に溶解している L一グルタミン酸を晶析した後に、併せて単離してもよい。
[0075] 飽和濃度を超える L一グルタミン酸が析出する態様では、培地中に溶解している L一 グノレタミン酸の濃度は一定量に保たれ、微生物が高濃度の L—グノレタミン酸から受け る影響を低減することができる。したがって、 L一グルタミン酸生産能が一層向上した 微生物を育種することも可能となる。また、 L一グルタミン酸は結晶として析出してくる ため、 L一グルタミン酸の蓄積に伴う培養液の酸性化が少なぐ培養液の pHを維持す るために使用されるアルカリの量を大幅に削減することが可能となる。
実施例
[0076] 以下、本発明を詳細に説明する。
参考例 1
く 1〉酸性環境下にて L一グルタミン酸耐性を有する微生物の探索
酸性環境下にて L一グルタミン酸耐性を有する微生物の探索は、以下のようにして 行った。 lgの土壌、果実、植物体、河川水などの自然界より得られたサンプルおよそ 500点を、それぞれ 5mLの滅菌水に懸だくし、そのうち 200 しを塩酸にて pHを 4.0に 調製した固体培地 20mUこ塗布した。同培地の組成は、以下のとおりである。ダルコ ース 3g/L、硫酸アンモニゥム lg/L、硫酸マグネシウム七水塩 0.2g/L、リン酸二水素力 リウム 0.5g/L、塩ィ匕ナトリウム 0.2g/レ塩ィ匕カルシウム二水塩 0.1g/L、硫酸第一鉄七 水塩 0.01g/L、硫酸マンガン四水塩 0.01g/L、硫酸亜鉛二水塩 0.72mg/レ硫酸銅五 水塩 0.64mg/L、塩化コバルト六水塩 0.72mg/レホウ酸 0.4mg/L、モリブデン酸ナトリ ゥム 2水塩 1.2mg/L、ピオチン 50 μ g/L、パントテン酸カルシウム 50 μ g/L、葉酸 50 μ g/L、イノシトール g/L、ナイァシン 50 g/レパラアミノ安息香酸 50 g/レピリド キシン塩酸塩 50 μ g/L、リボフラビン 50 μ g/L、チアミン塩酸塩 50 μ g/L、シクロへキシ ミド 50mg/L、寒天 20g/L。
[0077] 上記のサンプルを塗布した培地を、 28°C、 37°C又は 50°Cにて、 2— 4日間培養し、 コロニーを形成する菌株を 378株取得した。
続いて、上記のようにして得られた菌株を、飽和濃度の L一グルタミン酸を含む液体 培地(塩酸にて PH4.0に調整) 3mLを注入した長さ 16.5cm、径 14mmの試験管に植菌 し、 24時間一 3日間、 28°C、 37°C又は 50°Cにて振とう培養を行レ、、増殖する菌株を選 抜した。前記培地の組成は、以下のとおりである。グルコース 40g/L、硫酸アンモニゥ ム 20gん、硫酸マグネシウム七水塩 0.5g/L、リン酸二水素カリウム 2g/L、塩化ナトリウ ム 0.5g/L、塩化カルシウム二水塩 0.25g/レ硫酸第一鉄七水塩 0.02g/L、硫酸マンガ ン四水塩 0.02g/L、硫酸亜鉛二水塩 0.72mg/レ硫酸銅五水塩 0.64mg/L、塩化コバ ルト六水塩 0.72mg/L、ホウ酸 0.4mg/L、モリブデン酸ナトリウム二水塩 1.2mg/L、酵母 エキス 2g/L。
[0078] このようにして、酸性環境下にて L一グルタミン酸耐性を有する微生物 78株を取得 することに成功した。
[0079] く 2〉酸性環境下にて L一グルタミン酸耐性を有する微生物からの増殖速度に優れた 菌株の選抜
上記のようにして得られた、酸性環境下にて L一グルタミン酸耐性を有する種々の微 生物を、 M9培地(J. Sambrook, E.F.Fritsh, T.Maniatis "Molecular Cloning", Cold Spring Harbor Laboratory Press, U.S.A., 1989)に 20g/Lのグルタミン酸と 2g/Lのグル コースを加え、 pHを塩酸で 4.0に調整した培地 3mLを注入した長さ 16.5cm、径 14mm の試験管に植菌し、培地の濁度を経時的に測定することによって、増殖速度の良好 な菌株の選抜を行った。その結果、生育が良好な菌株として、静岡県磐田市の土壌 より採取された AJ13355株が得られた。本菌株は、菌学的性質から、ェンテロパクター •アグロメランスと判定された。ェンテロパクター.アグロメランスは、 16S rRNAの塩基 配列解析などにより、パントエア'アグロメランス(Pantoea agglomerans)又はパントェ ァ 'アナナティス(P. ananatis)、パントエア'スチューアルティ(Ρ· stewartii)等に再分 類されているものがあり、前記 AJ13355株は、これらのうち、パントエア'アナナティス に分類されている。
[0080] く 3〉パントエア.アナナティス AJ13355株からの粘液質低生産株の取得
パントエア'アナナティス AJ13355株は糖を含有する培地で培養を行うと、菌体外に 粘液質を生成するために、操作効率がよくない。そこで、粘液質低生産株の取得を、 紫外泉照射法(Miller, J.H. et al., "A Short Cource in Bacterial Genetics;
Laboratory Manual", Cold Spring Harbor Laboratory Press, U.S.A., p.150, 1992)に より行った。
[0081] 60Wの紫外線ランプから 60cm離した位置で、パントエア'アナナティス AJ13355株 に紫外線を 2分間照射した後、 LB培地で終夜培養して変異を固定した。変異処理し た菌株を、 5g/Lのグルコースと 20g/Lの寒天を含む LB培地に、プレート当たり約 100個程度のコロニーが出現するように希釈して撒き、プレートを約 45° 傾けて 30 °Cで終夜培養を行レ、、粘液質が流れ落ちないようになったコロニーを 20個選抜した
[0082] 選抜された株の中から、 5gZLのグルコースと 20gZLの寒天を含む LB培地で 5回 継代培養を行っても復帰変異株が出現せず、さらに、 LB培地及び 5g/Lのグノレコー スを含む LB培地ならびに M9培地(Sambrook, J. et al, Molecular Cloning, 2nd edition, Cold Spring Harbor press, U.S.A. (1989))に 20g/Lの L—グルタミン酸と 2g /Lのグノレコースをカ卩え、 pHを塩酸で 4. 5に調製した培地で親株と同等の生育を示 すという条件を満たす菌株として、 SC17株を選抜した。
[0083] く 4〉パントエア.アナナティス SC17株からのグルタミン酸生産菌の構築
(1)パントエア.アナナティス SC17株からの a KGDH欠損株の作製
パントエア.アナナティス SC17株から、 a KGDHを欠損し、さらに L—グルタミン酸 生合成系が強化された株を作製した。
[0084] (i)パントエア ·アナナティス AJ13355株の a KGDH遺伝子(以後「sucAB」とレ、う) のクローニング
パントエア.アナナティス AJ13355株の sucAB遺伝子は、ェシエリヒア'コリの a KG DH— Elサブユニット遺伝子(以後「sucA」という)欠損株の酢酸非資化性を相補す る DNA断片を、パントエア'アナナティス AJ13355株染色体 DNAより選択すること によって、クローユングした。
[0085] パントエア'アナナティス AJ13355株の染色体 DNAは、ェシエリヒア'コリにおいて 通常染色体 DNAを抽出するのに使用されるのと同様の方法(生物工学実験書、 日 本生物工学会偏、 97— 98頁、培風館、 1992年)で単離した。ベクターとして使用し た PTWV228 (アンピシリン耐性)は宝酒造社製の市販品を用いた。
[0086] AJ13355株の染色体 DNAを EcoT221で消化したもの、および pTWV228を Pst Iで消化したものを T4リガーゼにより連結し、 sucA欠損のェシエリヒア'コリ JRG465 株(Herbert J.ら Mol. Gen. Genetics 1969, 105卷、 182頁)を形質転換し た。こうして得た形質転換株より、酢酸最少培地にて増殖する株を選択し、これよりプ ラスミドを抽出して pTWVEK 101と命名した。 pTWVEK 101を持つェシエリヒア'コリ JRG465株は酢酸非資化性という形質の他にコハク酸もしくは L一リジンおよび Lーメ チォニンの要求性も回復していた。このことより pTWVEKlOlにはパントエア 'アナ ナティスの sucA遺伝子が含まれてレ、ると考えられる。
[0087] pTWVEK 101のパントエア ·アナナティス由来 DNA断片の制限酵素地図を図 1に 示した。図 1の斜線にて示した部分の塩基配列を決定した結果を配列番号 1に示し た。この配列の中には、 2つの完全長の ORFと、 2つの ORFの部分配列と思われる 塩基配列が見いだされた。これらの〇RFまたはその部分配列がコードし得るアミノ酸 配列を、 5'側から順に配列番号 2— 5に示す。これらのホモロジ一検索をした結果、 塩基配列を決定した部分は、サクシネートデヒドロゲナーゼアイロンースルファープロ ティン遺伝子(sdhB)の 3'末端側の部分配列、完全長の sucAと a KGDH—E2サブ ユニット遺伝子(sucB)、サクシニル CoAシンセターゼ βサブユニット遺伝子(sucC) の 5 '末端側の部分配列を含んでいることが明らかとなった。これらの塩基配列から推 定されるアミノ酸配列をそれぞれェシエリヒア'コリのもの(EurJ. Biochem., 141, 351-359 (1984)、 Eur.J. Biochem., 141, 361-374 (1984)、 Biochemistry, 24,
6245-6252 (1985))と比較したところ、各アミノ酸配列は非常に高い相同性を示した。 また、パントエア ·アナナティス染色体上でもェシエリヒア 'コリと同様に(Eur.J.
Biochem., 141, 351-359 (1984)、 Eur.J. Biochem., 141, 361-374 (1984)、
Biochemistry, 24, 6245—6252 (1985))、 sdhB— sucA— sucB— sucCとクラスターを構 成していることが判明した。
[0088] (ii)パントエア ·アナナティス SC17株由来のひ KGDH欠損株の取得
上記のようにして取得されたパントエア ·アナナティスの sucAB遺伝子を用レ、、相同 組換えによりパントエア ·アナナティスのひ KGDH欠損株の取得を行った。
[0089] pTWVEKlOlを Sphlで切断して sucAを含む断片を切り出した後、クレノーフラグ メント(宝酒造 (株))で平滑末端化した断片を、 EcoRIで切断しクレノーフラグメントで 平滑末端化した pBR322 (宝酒造 (株))とを、 T4 DNAリガーゼ(宝酒造 (株))を用 いて結合した。得られたプラスミドを、 sucAのほぼ中央部分に位置する制限酵素 Bgl II認識部位で同酵素を用いて切断し、クレノーフラグメントで平滑末端化し、再び T4 DNAリガーゼで結合した。以上の操作によって、新たに構築されたプラスミド中の su cAにはフレームシフト変異が導入され、同遺伝子は機能しなくなると考えられた。
[0090] 上記のようにして構築されたプラスミドを制限酵素 ApaLIで切断した後、ァガロース ゲル電気泳動を行い、フレームシフト変異が導入された sucA及び pBR322由来の テトラサイクリン耐性遺伝子を含む DNA断片を回収した。回収した DNA断片を再び T4 DNAリガーゼで結合し、 ひ KGDH遺伝子破壊用プラスミドを構築した。
[0091] 上記のようにして得られたひ KGDH遺伝子破壊用プラスミドを用いて、パントエア' アナナティス SC 17株を、エレクト口ポレーシヨン法(Miller J.H., "A Short Course in Bacterial Genetics; Handbook", Cold Spring Harbor Laboratory Press, U.S.A., p.279, 1992)によって形質転換し、テトラサイクリン耐性を指標にプラスミドが相同組 換えによって染色体上の sucAが変異型に置換された菌株を取得した。取得された 株を SCI 7sucA株と命名した。
[0092] SC17sucA株が a KGDH活性を欠損していることを確認するために、 LB培地で 対数増殖期まで培養した同株の菌体を用いて、 Reedらの方法(L.J.Reed and B.B.Mukherjee, Methods in Enzymology 1969, 13, p.55- 61)に従って酵素活性を測 定した。その結果、 SC17株力らは 0. 073 ( A ABS/min/mgタンパク)の a KGDH 活性が検出されたのに対し、 SC17sucA株では a KGDH活性を検出できず、 目的 通り sucAが欠損していることが確かめられた。
[0093] (2)パントエア ·アナナティス SC17sucA株の L—グルタミン酸生合成系の強化
続レヽて SC17sucA株に、ェシエリヒア'コリ由来のクェン酸シンターゼ遺伝子、ホス ホェノールピルビン酸カルボキシラーゼ遺伝子、およびグルタミン酸デヒドロゲナーゼ 遺伝子を導入した。
[0094] (i)ェシヱリヒア'コリ由来の gltA遺伝子、 ppc遺伝子、および gdhA遺伝子を有するプ ラスミドの作製
gltA遺伝子、 ppc遺伝子、および gdhA遺伝子を有するプラスミドの作成の手順を 、図 2、 3に基づいて説明する。
[0095] ェシエリヒア 'コリ由来の gdhA遺伝子を有するプラスミド pBRGDH (特開平 7-203 980号)を HindIII、 Sphl消化し、 T4DNAポリメラーゼ処理で両末端を平滑末端に した後、 gdhA遺伝子を有する DNA断片を精製回収した。一方、ェシエリヒア'コリ由 来の gltA遺伝子および ppc遺伝子を有するプラスミド pMWCP (WO97/08294号 )を Xbalで消化後、 T4DNAポリメラーゼで両末端を平滑末端にした。これに、上で 精製した gdhA遺伝子を有する DNA断片を混合後、 T4リガーゼにより連結し、 pM WCPに更に gdhA遺伝子を搭載したプラスミド pMWCPGを得た(図 2)。
[0096] 同時に、広宿主域プラスミド RSF1010の複製起点を有するプラスミド pVIC40 (特 開平 8— 047397号)を Notlで消化し、 T4DNAポリメラーゼ処理した後、 Pstl消化し たものと、 pBR322を EcoT14I消ィ匕し、 T4DNAポリメラーゼ処理した後、 Pstl消化 したものとを混合後、 T4リガーゼにより連結し、 RSF1010の複製起点及びテトラサイ クリン耐性遺伝子を有するプラスミド RSF— Tetを得た(図 3)。
[0097] 次に、 pMWCPGを EcoRI、 Pstl消化し、 gltA遺伝子、 ppc遺伝子、および gdhA 遺伝子を有する DNA断片を精製回収し、 RSF-Tetを同様に EcoRI、 Pstl消化し、 RSF1010の複製起点を有する DNA断片を精製回収したものと混合後、 T4リガ一 ゼにより連結し、 RSF - Tet上に gltA遺伝子、 ppc遺伝子、および gdhA遺伝子を搭 載したプラスミド RSFCPGを得た(図 4)。得られたプラスミド RSFCPGが gltA遺伝子 、 ppc遺伝子および gdhA遺伝子を発現していることは、ェシエリヒア'コリの gltA遺伝 子、 ppc遺伝子、あるいは gdhA遺伝子欠損株の栄養要求性の相補と各酵素活性の 測定によって確認した。
[0098] (ii)ブレビバタテリゥム 'ラタトフアーメンタム由来の gltA遺伝子を有するプラスミドの作 製
ブレビバタテリゥム 'ラタトフアーメンタム由来の gltA遺伝子を有するプラスミドは、以 下のようにして構築した。コリネバクテリウム'グノレタミカムの gltA遺伝子の塩基配列( Microbiology, 1994, 140, 1817-1828)をもとに、配列番号 6及び 7に示す塩基配列を 有するプライマー DNAを用レ、、ブレビバタテリゥム 'ラタトフアーメンタム ATCC1386 9の染色体 DNAを錡型として PCRを行レ、、約 3kbの gltA遺伝子断片を得た。この断 片を Smal消化したプラスミド pHSG399 (宝酒造 (株)より購入)に挿入し、プラスミド p HSGCBを得た(図 5)。次に、 pHSGCBを Hindlllで切断し切り出された約 3kbの gl tA遺伝子断片を Hindlll消化したプラスミド pSTV29 (宝酒造 (株)より購入)に挿入 し、プラスミド pSTVCBを得た(図 5)。得られたプラスミド pSTVCBが gltA遺伝子を 発現していることは、パントエア'アナナティス AJ13355株中での酵素活性の測定に よって確認した。
[0099] (iii)RSFCPG及び pSTVCBの SC17sucA株への導入
パントエア.アナナティス SC17sucA株を、 RSFCPGを用いてエレクト口ポレーショ ン法にて形質転換し、テトラサイクリン耐性を示す形質転換体 SC17sucA/RSFCPG株 を取得した。さらに SC17sucA/RSFCPG株を pSTVCBを用いてエレクト口ポレーシヨン 法にて形質転換し、クロラムフエ二コール耐性を示す形質転換体
SC17sucA/RSFCPG+pSTVCB株を取得した。
[0100] く 4〉低 pH環境下で L一グルタミン酸に対する耐性が向上した菌株の取得
パントエア.アナナティス SC17sucA/RSFCPG+pSTVCB株から、低 pH環境下で高濃 度の L-グルタミン酸に対する耐性が向上した菌株(以下、「低 pH下高濃度 Glu耐性 株」ともいう)の分離を行った。
[0101] SC17sucA/RSFCPG+pSTVCB株を LBG培地(トリプトン 10g/L、酵母エキス 5gん、
NaCl 10gん、グルコース 5g/L)にて 30°C—夜培養後、生理食塩水にて洗浄した菌体 を適宜希釈して、 M9—E培地(グルコース 4gん、 Na HPO - 12H 0 17g/L、 KH PO
2 4 2 2 4
3g/L、 NaCl 0.5g/L、 NH CI lgん、 lOmM MgSO 、 10 μ M CaCl、 L_リジン 50mgん、
4 4 2
L-メチォニン 50mgん、 DL-ジアミノピメリン酸 50mgん、テトラサイクリン 25mg/L、クロ ラムフエ二コール 25mg/L、 L -グルタミン酸 30g/L、アンモニア水にて ρΗ4·5に調整) プレートに塗布した。 32°C、 2日間培養後出現したコロニーを低 pH下高濃度 Glu耐性 株として取得した。
[0102] 得られた株にっレ、て、 M9 - E液体培地での増殖度の測定、及び L -グルタミン酸生 産試験培地(グルコース 40g/レ硫酸アンモニゥム 20g/L、硫酸マグネシウム七水塩 0.5g/L、リン酸二水素カリウム 2g/L、塩化ナトリウム 0.5g/L、塩化カルシウム二水塩 0.25g/L、硫酸第一鉄七水塩 0.02g/L、硫酸マンガン四水塩 0.02g/レ硫酸亜鉛二水 塩 0.72mg/L、硫酸銅五水塩 0.64mg/L、塩化コバルト六水塩 0.72mgん、ホウ酸
0.4mg/L、モリブデン酸ナトリウム二水塩 1.2mgん、酵母エキス 2g/L、 L_リジン塩酸塩 200mgん、 L-メチォニン 200mgん、 DL- α , ε -ジアミノピメリン酸 200mgん、テトラサイ クリン塩酸塩 25mg/L、クロラムフヱニコール 25mg/L) 5mlを注入した 50ml容大型試験 管における L一グルタミン酸生産能の検定を実施し、増殖度が最もよぐ Lーグノレタミン 酸生産能が親株 SC17/RSFCPG+pSTVCB株と変わらなかった株は、パントエア'アナ ナティス AJ13601と命名された。 AJ13601株は、 1999年 8月 18日に、通商産業省ェ 業技術院生命工学工業技術研究所 (現名称、産業技術総合研究所生命工学工業 技術研究所)(郵便番号 305-8566 日本国茨城県つくば巿東一丁目 1番 3号)に受託 番号 FERM P-17516として寄託され、 2000年 7月 6日にブダペスト条約に基づく国際 寄託に移管され、受託番号 FERM BP-7207が付与されている。
[0103] 実施例 1
パントエア.アナナティス AJ13601株を、パントテン酸カルシウムを含む(12mg/L)培 地、及び含まない培地で培養し、 L一グルタミン酸の生産性を調べた。
[0104] 具体的には、次のようにして培養を行った。パントエア ·アナナティス AJ13601株を、 テトラサイクリン塩酸塩 25mg/L、クロラムフエ二コール 25mg/Lを含有する LBG寒天培 地(トリプトン 10g/L、酵母エキス 5g/L八 NaCl 10gん、寒天 15g/L)にて 30°Cで 14時間 培養した菌体を 1枚のプレートから搔き取り、以下に示す組成の種培養培地 300mlを 注入した 1L容ジャーファメンターに植菌し、 34°C、 pH6.0の条件で種培養を行った。
[0105] 〔種培養培地組成〕
シユークロース 50g/L
MgSO · 7Η O 0.4g/L
4 2
ΚΗ ΡΟ 2.0g/L
2 4
酵母エキス 4.0g/L
FeSO · 7Η O O.Olg/L
4 2
MnSO - 5H O O.Olg/L
4 2
L—リジン塩酸塩 0.4g/L
DL-メチォニン 0.4g/L ε—ジアミノピメリン酸 0.4g/L
テトラサイクリン塩酸塩 25mg/L
クロラムフエニコーノレ 25mg/L
[0106] 培養中の pHは、 6.0となるようにアンモニアガスを添加することにより調整を行った。
培地中の糖の枯渴を指標に種培養を終了し、本培養培地 300mlを注入した 1L容ジ ヤーファメンターに、本培養培地体積の 20%に当たる種培養液を植菌し、 34°C、 PH4.5で本培養を行った。本培養培地組成は以下に示す。
[0107] 〔本培養培地組成〕
グルコース 50g/L
(NH ) SO 5.0g/L
4 2 4
MgSO · 7Η Ο 0.4g/L
4 2
ΚΗ Ρ〇 6.0g/L
2 4
NaCl 1.5g/L
FeSO · 7Η Ο O.Olg/L
4 2
MnSO · 5Η Ο O.Olg/L
4 2
L一リジン塩酸塩 0.8g/L
DL-メチォニン 0.6g/L
DL- α , ε -ジアミノピメリン酸 0.6g/L
テトラサイクリン塩酸塩 25mg/L
クロラムフエニコーノレ 25mg/L
:水塩 0.75g/L
12mg/L (パントテン酸添加培養時のみ添加)
[0108] 培養中の pHは、 pH4.5となるようにアンモニアガスを添加することにより調整を行つ た。培地中の糖が消費され枯渴した後は、 700g/Lのグルコース水溶液を連続的に添 カロした(5ml/hr)。培養液中の L一グルタミン酸濃度が 45g/Lに達した段階で L一グルタ ミン酸結晶 1.0g/Lを種晶として培地に添加し、培養液中の L一グルタミン酸の析出を 促した。
[0109] 本培養を 50時間行った結果、ジャーファメンター内には著量の Lーグノレタミン酸結晶 が析出した。その後、アンモニアガスを添加して pH6.0に上昇させ、ジャーファメンタ 一内の全ての Lーグノレタミン酸結晶を溶解させた後、生成 Lーグノレタミン酸量の測定を 行った。 L—グノレタミン酸濃度は、旭ィ匕成社製 Automatic enzyme electrode analyzer As210を用いて測定した。
[0110] その結果、表 1に示す通り、 L一グルタミン酸発酵収率は、パントテン酸を添加するこ とにより大幅に向上した。
[0111] [表 1]
Λ'ントテン酸カルシウム無添加 Λ'ントテン酸カルシウム添加
( 12mg/L)
L一グルタミン酸 4 0 . 2 5 3 . 3 発酵収率 (%)
[0112] パントテン酸カルシウム添加による L_L_グルタミン酸収率の向上の原因を解析し た結果、ァセトイン、 2, 3—ブタンジオール、及び COの生成の減少を確認した(表 2)
2
。尚、ァセトイン及び 2, 3_ブタンジオール濃度は、島津社製ガスクロマトグラフィー GC1700を用いて、以下の条件で測定した。
[0113] 〔使用カラム〕
J&Wサイエンティフィック社製 DB-210 123-0233
カラム長: 30m、カラム径: 0.32mm、 Film厚: 5 /i m
〔測定条件〕
気化室温度: 250°C
キャリアガス: He
圧力: 85.6kPa
全流量: 97.2ml/min
カラム流量: 0.93ml/min
速度: 25.0cm/sec パージ流量: 3.0ml/min
スプリット比: 100
カラム温度: 70°C
メイクアップガス: He
メイクアップ流量: 30.0ml/min
H流量: 47ml/min
2
Air流量: 400ml/min
[0114] また、排出 CO量は、 ABLE社製 Exhaust oxygen carbon dioxide meter Model
2
EX-1562を用いて測定した。ァセトイン及び 2, 3_ブタンジオールの生成量、及びこ れらの値力 計算される COの生成量 (それぞれ炭素量に換算した値)を表 2に示す
2
。また、培地から排出された COの測定値は、パントテン酸無添カ卩の場合は 26.5%、
2
添加した場合は 27.6%であった。
[0115] パントテン酸カルシウムを培地に添加した場合、無添カ卩の場合と比較してァセトイン 、 2, 3—ブタンジオール、及びこれらの物質の副生に伴い発生する CO (ァセトイン、
2
2, 3—ブタンジオール 1モルに対し 2モルの COが生成する)が、炭素収支にして併
2
せて約 14.3%減少した。この値はパントテン酸カルシウムの添加の有無による Lーグ ルタミン酸発酵の収率差約 13.1%とほぼ等しいことから、パントテン酸カルシウム添カロ による収率向上効果は、ァセトイン及び 2, 3—ブタンジオール副生の減少が主原因と 考えられる。
[0116] [表 2] 表 2 副生物 (¾) Λ'ントテン酸カルシウム無添加 ハ'ントテン酸カルシウム添加
(炭素換算) ( 1 2mg/L) ァセトイン + 7セトイン生成に 1 2 . 0 2 . 5 伴い発生する co2 フ'タンシ'才-ル +フ'タン 才-ル 6 . 1 1 . 3 発生に伴い発生する C02 [0117] 以上のことから、パントテン酸添カ卩による Lーグノレタミン酸発酵収率向上のプロセスを 、次のように推測した。すなわち、 L一グルタミン酸発酵収率が向上したのは、パントテ ン酸添加により補酵素 A (CoA)の不足を補うことができたためと考えられる。パントテ ン酸は CoAの構造の中にパンテティンの形で含まれてレ、ており、 CoAの構成要素の 一つである。 CoAは、代謝経路においてピルビン酸からァセチル CoAへと進む過程 で補酵素として用いられている。他方、ァセトイン及び 2, 3_ブタンジオールはピルビ ン酸から生成し、ァセトインの生成に伴い COが排出される。前記 L-グノレタミン酸生
2
産菌の培養に用いた培地にパントテン酸をカ卩えない場合は、ァセトイン及び 2, 3—ブ タンジオールが培地に蓄積したことから、前記細菌ではもともと CoAが不足しており、 十分なァセチル CoAが生成せず、ァセトイン及び 2, 3_ブタンジオールが副成したと 考えられる。
[0118] 一方、パントテン酸添カ卩により CoAが十分量供給されると、 CoA不足により律速とな つてレ、たピルビン酸デヒドロゲナーゼ複合体の反応(ピルビン酸→ァセチル CoA)が 促進され、 TCAサイクルへの炭素の流入が進む。その結果、 α—ケトグルタル酸(α KG)を介して L一グルタミン酸生成が進むと考えられる。さらに、ァセトイン及び 2, 3- ;オールの生成が減少すると、ピルビン酸からこれらの物質が生成する際に排 出される COもまた減少するため(ァセトイン、 2, 3_ブタンジオール 1モルに対し CO
2 2
2モル)、その減少分もまた L一グルタミン酸収率向上に関与したと考えられる(図 6)。
[0119] 上記のプロセスから、パントテン酸に代えて、又はパントテン酸とともに、 D—パント酸
、 -ァラニン、 D-パンテティン等の成分を添加すると、同等又はそれ以上の収率 向上効果が得られると考えられる。
[0120] 実施例 2
培地に添加するパントテン酸カルシウム濃度を、 0mg/Lから 196mg/Lまで変化させ、 パントテン酸カルシウム濃度が L一グルタミン酸発酵収率に及ぼす影響を測定した。 培養は、実施例 1と同様に行レ、、パントテン酸カルシウム濃度を 0, 1, 2, 4, 8, 12, 24, 48, 96, 192mg/Lとそれぞれ変化させて培養を行った。その結果を図 7に示した。この 結果から確認されるように、パントテン酸カルシウム濃度に依存して Lーグノレタミン酸発 酵収率が向上した。特にパントテン酸カルシウムを lmg/L添加した場合においても無 添加(Omg/L)と比較して約 5%収率が向上した。添加パントテン酸カルシウム濃度が 12mg/Lに達するまでは、添加濃度に応じて収率向上効果が得られていることから、 lmg/L以下においても収率向上効果が得られると考えられる。
[0121] 実施例 3
パントテン酸カルシウムをパントテン酸ナトリウムに置き換えて添カ卩し、本培養を行つ た。培養条件は実施例 1と同様に行った。パントテン酸ナトリウム濃度はノ カルシウム 12mg/L添加時のパントテン酸のモル数と等量になるように、 12.15mg/L添 カロした。結果を表 3に示す。
[0122] その結果、 Lーグノレタミン酸発酵収率は、パントテン酸カルシウム及びパントテン酸 ナトリウムのそれぞれで同等であった。従って、収率向上要因は、パントテン酸のカウ
-イオンではなくパント'テン酸そのものであることが明らかとなった。
[0123] [表 3]
Λ'ントテン酸カルシウム添加 1\°ントテン酸ナトリウム添加
( 1 2mg/L) ( 1 2. 1 5mg/L)
L一グルタミン酸 5 2 . 8 5 2 . 5
発酵収率 (%)
産業上の利用の可能性
[0124] 本発明により、パントエア属細菌等の細菌を用いて、従来技術よりもさらに効率的 Lーグノレタミン酸を生産することができる。

Claims

請求の範囲
[1] 特定の pHにおレ、て飽和濃度の L-グノレタミン酸及び炭素源を含む液体培地で同 炭素源を代謝することができ、かつ、前記 pHの液体培地中に L一グルタミン酸の飽和 濃度を超える量の L一グルタミン酸を蓄積する能力を有する微生物を、 pHが L一ダル タミン酸が析出する条件に調整され、かつ、パントテン酸を含む培地に培養し、該培 地中に L一グルタミン酸を析出させながら生成蓄積させることを特徴とする発酵法によ る L一グルタミン酸の製造法。
[2] 前記微生物がパントエア属に属することを特徴とする請求項 1に記載の方法。
[3] 前記微生物がパントエア'アナナティスである請求項 2に記載の方法。
[4] 培地中のパントテン酸がパントテン酸塩であり、同塩の濃度が lmg/L以上である 請求項 1一 3のいずれか一項に記載の方法。
PCT/JP2004/008140 2003-06-10 2004-06-10 L−グルタミン酸の製造法 WO2004111258A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04745770.0A EP1655374B1 (en) 2003-06-10 2004-06-10 Process for producing l-glutamic acid
BRPI0411086-2A BRPI0411086B1 (pt) 2003-06-10 2004-06-10 Método para produzir ácido l-glutâmico por fermentação
AU2004248005A AU2004248005A1 (en) 2003-06-10 2004-06-10 Process for producing L-glutamic acid
JP2005506924A JPWO2004111258A1 (ja) 2003-06-10 2004-06-10 L−グルタミン酸の製造法
US11/297,383 US7354744B2 (en) 2003-06-10 2005-12-09 Process for producing L-glutamic acid
US12/033,374 US7879583B2 (en) 2003-06-10 2008-02-19 Process for producing L-glutamic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-165545 2003-06-10
JP2003165545 2003-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/297,383 Continuation US7354744B2 (en) 2003-06-10 2005-12-09 Process for producing L-glutamic acid

Publications (1)

Publication Number Publication Date
WO2004111258A1 true WO2004111258A1 (ja) 2004-12-23

Family

ID=33549216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008140 WO2004111258A1 (ja) 2003-06-10 2004-06-10 L−グルタミン酸の製造法

Country Status (9)

Country Link
US (2) US7354744B2 (ja)
EP (1) EP1655374B1 (ja)
JP (1) JPWO2004111258A1 (ja)
KR (1) KR20060023550A (ja)
CN (1) CN100510092C (ja)
AU (1) AU2004248005A1 (ja)
BR (1) BRPI0411086B1 (ja)
RU (1) RU2005138514A (ja)
WO (1) WO2004111258A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117078A (ja) * 2005-03-10 2007-05-17 Ajinomoto Co Inc プリン系物質生産菌及びプリン系物質の製造法
JP2007181436A (ja) * 2006-01-10 2007-07-19 Univ Kansai 共生微生物を用いた醤油粕の分解方法
WO2008090770A1 (ja) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2010027045A1 (ja) 2008-09-08 2010-03-11 味の素株式会社 L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
EP1870476A4 (en) * 2005-04-12 2011-11-16 Kyowa Hakko Bio Co Ltd PROCESS FOR PRODUCING AN AMINO ACID
WO2012114802A1 (ja) 2011-02-22 2012-08-30 味の素株式会社 L-システイン生産菌及びl-システインの製造法
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
WO2022092018A1 (ja) 2020-10-28 2022-05-05 味の素株式会社 L-アミノ酸の製造法
EP4345166A2 (en) 2022-09-30 2024-04-03 Ajinomoto Co., Inc. Method for producing l-amino acid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427878B2 (ja) 1999-08-20 2010-03-10 味の素株式会社 析出を伴う発酵法によるl−グルタミン酸の製造法
JP4599726B2 (ja) 2001-02-20 2010-12-15 味の素株式会社 L−グルタミン酸の製造法
AU2004248005A1 (en) * 2003-06-10 2004-12-23 Ajinomoto Co., Inc. Process for producing L-glutamic acid
US7501282B2 (en) * 2005-02-25 2009-03-10 Ajinomoto Co., Inc. Plasmid autonomously replicable in Enterobacteriaceae family
JP2010110216A (ja) * 2007-02-20 2010-05-20 Ajinomoto Co Inc L−アミノ酸または核酸の製造方法
CN115927325B (zh) * 2022-09-20 2024-07-09 中国科学院天津工业生物技术研究所 柠檬酸合酶启动子突变体及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139398A (ja) * 1984-12-12 1986-06-26 Kyowa Hakko Kogyo Co Ltd L−グルタミン酸の製造法
JP2001333769A (ja) * 1999-08-20 2001-12-04 Ajinomoto Co Inc 析出を伴う発酵法によるl−グルタミン酸の製造法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU756507B2 (en) * 1998-03-18 2003-01-16 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
AU746542B2 (en) * 1998-03-18 2002-05-02 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
MY127948A (en) 1998-10-19 2007-01-31 Ajinomoto Kk L-glutamic acid producing bacterium and process for producing l-glutamic acid
JP4599725B2 (ja) * 2001-02-20 2010-12-15 味の素株式会社 L−グルタミン酸の製造法
JP4599726B2 (ja) 2001-02-20 2010-12-15 味の素株式会社 L−グルタミン酸の製造法
JP2002238592A (ja) * 2001-02-20 2002-08-27 Ajinomoto Co Inc L−グルタミン酸の製造法
JP3932945B2 (ja) 2002-03-27 2007-06-20 味の素株式会社 L−アミノ酸の製造法
AU2003205041A1 (en) 2002-07-12 2004-01-29 Ajinomoto Co., Inc. Method for producing target substance by fermentation
JP2004265512A (ja) * 2003-02-28 2004-09-24 Toshiba Corp 光ヘッド装置および光ヘッド装置を用いた光ディスク装置ならびに放熱機構
AU2004248005A1 (en) * 2003-06-10 2004-12-23 Ajinomoto Co., Inc. Process for producing L-glutamic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139398A (ja) * 1984-12-12 1986-06-26 Kyowa Hakko Kogyo Co Ltd L−グルタミン酸の製造法
JP2001333769A (ja) * 1999-08-20 2001-12-04 Ajinomoto Co Inc 析出を伴う発酵法によるl−グルタミン酸の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1655374A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
JP2007117078A (ja) * 2005-03-10 2007-05-17 Ajinomoto Co Inc プリン系物質生産菌及びプリン系物質の製造法
JP5138368B2 (ja) * 2005-04-12 2013-02-06 協和発酵バイオ株式会社 アミノ酸の製造法
EP1870476A4 (en) * 2005-04-12 2011-11-16 Kyowa Hakko Bio Co Ltd PROCESS FOR PRODUCING AN AMINO ACID
KR101357345B1 (ko) * 2005-04-12 2014-02-11 교와 핫꼬 바이오 가부시키가이샤 아미노산의 제조법
JP4693169B2 (ja) * 2006-01-10 2011-06-01 学校法人 関西大学 共生微生物を用いた醤油粕の分解方法
JP2007181436A (ja) * 2006-01-10 2007-07-19 Univ Kansai 共生微生物を用いた醤油粕の分解方法
WO2008090770A1 (ja) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
WO2010027045A1 (ja) 2008-09-08 2010-03-11 味の素株式会社 L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2012114802A1 (ja) 2011-02-22 2012-08-30 味の素株式会社 L-システイン生産菌及びl-システインの製造法
WO2022092018A1 (ja) 2020-10-28 2022-05-05 味の素株式会社 L-アミノ酸の製造法
EP4345166A2 (en) 2022-09-30 2024-04-03 Ajinomoto Co., Inc. Method for producing l-amino acid

Also Published As

Publication number Publication date
RU2005138514A (ru) 2006-06-10
EP1655374B1 (en) 2014-10-15
CN1806048A (zh) 2006-07-19
BRPI0411086A (pt) 2006-07-25
CN100510092C (zh) 2009-07-08
US7354744B2 (en) 2008-04-08
AU2004248005A1 (en) 2004-12-23
KR20060023550A (ko) 2006-03-14
EP1655374A4 (en) 2011-06-29
US20100003726A1 (en) 2010-01-07
EP1655374A1 (en) 2006-05-10
BRPI0411086B1 (pt) 2014-04-08
US7879583B2 (en) 2011-02-01
US20060110813A1 (en) 2006-05-25
JPWO2004111258A1 (ja) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4427878B2 (ja) 析出を伴う発酵法によるl−グルタミン酸の製造法
US7354744B2 (en) Process for producing L-glutamic acid
US6596517B2 (en) Method for producing L-glutamic acid
AU756507B2 (en) L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP4599726B2 (ja) L−グルタミン酸の製造法
US7294491B2 (en) Method for producing L-glutamic acid
JP4292724B2 (ja) 有機態窒素含有組成物及びそれを含む肥料
JP3921866B2 (ja) L−グルタミン酸生産菌及びl−グルタミン酸の製造法
JP4599725B2 (ja) L−グルタミン酸の製造法
WO2005007847A1 (ja) L−グルタミン酸の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004248005

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004745770

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004248005

Country of ref document: AU

Date of ref document: 20040610

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2005506924

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004248005

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11297383

Country of ref document: US

Ref document number: 1020057023636

Country of ref document: KR

Ref document number: 2005138514

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 20048162176

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1200600033

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1020057023636

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004745770

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11297383

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0411086

Country of ref document: BR