WO2004110977A1 - 光学活性1−アルキル置換−2,2,2−トリフルオロエチルアミンの製造方法 - Google Patents

光学活性1−アルキル置換−2,2,2−トリフルオロエチルアミンの製造方法 Download PDF

Info

Publication number
WO2004110977A1
WO2004110977A1 PCT/JP2004/007955 JP2004007955W WO2004110977A1 WO 2004110977 A1 WO2004110977 A1 WO 2004110977A1 JP 2004007955 W JP2004007955 W JP 2004007955W WO 2004110977 A1 WO2004110977 A1 WO 2004110977A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
formula
acid
secondary amine
represented
Prior art date
Application number
PCT/JP2004/007955
Other languages
English (en)
French (fr)
Inventor
Akihiro Ishii
Yokusu Kuriyama
Manabu Yasumoto
Masatomi Kanai
Kenjin Inomiya
Takashi Ootsuka
Koji Ueda
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Priority to DE602004030571T priority Critical patent/DE602004030571D1/de
Priority to EP04745665A priority patent/EP1642884B1/en
Priority to US10/560,251 priority patent/US7393979B2/en
Publication of WO2004110977A1 publication Critical patent/WO2004110977A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/52Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of imines or imino-ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/15Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a method for producing an optically active monoalkyl-substituted 1,2,2,2-trifluoroethylamine, which is an important intermediate of medicines and agricultural chemicals.
  • optically active 1-alkyl-substituted 2,2,2-trifluoroethylamine which is an object of the present invention, is an important intermediate of pharmaceuticals and agricultural chemicals.
  • TMSCF methyl (trifluoromethyl) silane
  • Non-Patent Document 2 A method of hydrolysis (Non-Patent Document 2) has been reported.
  • Patent Document 1 Japanese Patent No. 3005669
  • Patent Document 2 US Pat. No. 6,204,269
  • Patent Document 3 European Patent Application No. 0323637
  • Non-Patent Document 1 J. Org. Chem., (USA), 1997, Vol. 62, No. 10, p. 3030-3030
  • Non-Patent Document 2 Angewandte Chemie, International Edition, (Germany), 2001, Vol. 40, No. 3, p. 589-590
  • optically active imine which is the object of the present invention, is converted to optically active secondary amine by asymmetric reduction under a hydrogen atmosphere using a Group VIII (Group 8-10) metal catalyst.
  • a method for producing an optically active 1-alkyl-substituted 2,2,2-trifluoroethylamine or a salt thereof by hydrogenolyzing a secondary amine or a salt thereof has been reported.
  • An object of the present invention is to provide an industrial method for producing optically active monoalkyl-substituted 1,2,2,2_trifluoroethylamine, which is an important intermediate of pharmaceuticals and agricultural chemicals. is there.
  • R represents a lower alkyl group having 1 to 6 carbon atoms
  • Ph represents a phenyl group
  • a wavy line represents an E-form or a Z-form
  • * represents an asymmetric carbon.
  • R represents a lower alkyl group having 1 to 6 carbon atoms
  • Ph represents a phenyl group
  • * represents an asymmetric carbon
  • R represents a lower alkyl group having 1 to 6 carbon atoms, and * represents an asymmetric carbon atom.
  • the optically active 1_alkyl-substituted 1,2,2,2-trifluoroethylamine or A method for producing the salt is provided.
  • optically active imine represented by the formula [1]
  • R represents a lower alkyl group having 1 to 6 carbon atoms
  • Ph represents a phenyl group and * represents an asymmetric carbon.
  • An optically active imine obtained by dehydrating and condensing optically active 1-phenylethylamine in the presence of an acid catalyst. There may be.
  • (S) _N_ (1-phenyl-2,2,2_trifluoroethylidene) _1-phenylethylamine is hydrogenated using a Pd catalyst in a hydrogen atmosphere.
  • a method for conversion to the corresponding optically active secondary amine by asymmetric reduction under the following conditions has been reported. Ci. Org. Chem., (USA), 1977, Vol. 42, No. 14, p. — 2439).
  • the present inventors have found that when optically active N- (1-alkyl-substituted 1,2,2,2-trifluoroethylidene) -1-phenylphenylamine is used as a reaction substrate, the reaction is not possible. It was found that the diastereoselectivity in the simultaneous reduction was greatly affected by the temperature conditions, and the diastereoselectivity was reversed by the reaction temperature employed.
  • R—R or S—S the absolute configuration shown before the diphen is the absolute configuration on the 1-alkyl-substituted 1,2,2,2-trifluoroethyl group side, which is advantageous for recrystallization purification of the salt described below
  • the absolute configuration shown after ⁇ and ⁇ indicates the absolute configuration of the 1-phenylethyl group derived from the chiral auxiliary group.
  • the optically active secondary amine has a high diastereoselectivity. (See Table 1).
  • the obtained optically active secondary amine or salt thereof is hydrolyzed to give the desired optically active 1-alkyl-substituted 1,2,2,2-trifluoroethylamine or a salt thereof. It has also been found that high chemical purity can be derived at a high yield without lowering the purity.
  • PdZC A palladium-carbon powder carrying 5 g of Pd (in terms of metal atoms) per 100 g of activated carbon, mixed with the same weight of water, and conditioned.
  • run5 2 wt.% of 5% PdZC was further added, and the reaction was continued for 16 hours.
  • run8 3 wt.% of 5% PdZC was further added, and the reaction was continued for 21 hours.
  • optically active secondary amine obtained by asymmetric reduction can be purified to a high diastereomer excess (d.e.) by derivatizing the salt into its salt and purifying it by recrystallization.
  • optically active 1-alkyl-substituted 2,2,2-trifluoroethylamine can be obtained with high optical purity.
  • the present inventors have found a novel method for producing optically active 1-alkyl-substituted 1,2,2,2-trifluoroethylamine as described above, and have completed the present invention.
  • This production method has high selectivity in each reaction step, makes separation difficult, and produces almost no impurities as a by-product. Therefore, the optically active monoalkyl-substituted 1,2,2 is an important intermediate for pharmaceuticals and agricultural chemicals.
  • 2_ trifluorethylamine is an extremely effective method for industrial production.
  • the method for producing the optically active 1-alkyl-substituted 1,2,2,2-trifluoroethylamine of the present invention will be described in detail.
  • the production process of the present invention can be composed of four steps of (1) dehydration condensation, (2) asymmetric reduction, (3) salt purification, and (4) hydrogenolysis (see scheme 1).
  • Patent Literature 1 and Non-Patent Literature 1 described above show examples of performing dehydration condensation without a catalyst.
  • an example is shown in which a similar dehydration condensation is carried out and a reaction is performed using paratoluenesulfonic acid (PTS) as an acid catalyst.
  • PTS paratoluenesulfonic acid
  • R is methyl, ethyl, 1-propyl, 2_propyl, cyclopropyl, 1-butyl, 2-butyl, 2-methyl-1_pro. Pill, tert-butyl, cyclobutyl, 1_pentyl, 2_pentyl, 3_pentyl, neopentyl, tert-amyl, cyclopentyl, 1-hexyl, 2-hexyl, 3-hexyl, cyclohexyl, etc. No.
  • New compounds are also included in the trifluoromethyl alkyl ketones shown here, but refer to J. Org. Chem., (USA), 1987, Vol. 52, No. 22, p. Then, by using an organometallic reagent having a different alkyl group, the same production can be performed.
  • the amount of the trifluoromethyl alkyl ketone represented by the formula [4] to be used is 1 mol or more based on 1 mol of the optically active 1-phenylethylamine represented by the formula [5]. Normally, 11 to 10 mol is preferred, and especially 115 to 5 mol is more preferred.
  • the optical activity of 1-phenylethylamine shown by the formula [5] is generally not less than 97% ee if the optical purity of 95% enantiomeric excess (ee) or more is used. Preferably, it is more preferably 99% ee or more.
  • Examples of the acid catalyst include formic acid, acetic acid, propionic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid (PTS), and pyridinium paratoluenesulfonate (PPTS). ), Organic acids such as 10-camphorsulfonic acid, ion exchange resins such as Amberlyst H-15 and Dowex 50W-X8, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, zinc chloride, and tetrachloride titanium Acids.
  • Organic acids such as 10-camphorsulfonic acid, ion exchange resins such as Amberlyst H-15 and Dowex 50W-X8, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, zinc chloride, and tetrachloride titanium Acids.
  • pyridinum paratoluenesulfonate is more preferred.
  • the reaction rate is slow without the catalyst used in Patent Document 1 and Non-patent Document 1 mentioned above. J. Org. Chem., (USA), 1977, Vol. 42, No. 14, p.
  • PTS noratonorensenoleonic acid
  • the amount of the acid catalyst to be used is usually 0.0001 0.5 as long as a catalyst amount is used per 1 mol of optically active 1-phenylethylamine represented by the formula [5]. Especially preferred by moles 0. 01—0.25 Monoreca S, more preferred than S.
  • this reaction is a dehydration condensation of trifluoromethyl alkyl ketone and optically active 1-phenylethylamine
  • a reaction solvent that is not miscible with water and has a specific gravity lower than that of water and azeotropes with water to remove water by-produced using a Dean 'Stark tube under reflux conditions, or use synthetic zeolite (trade name). : Molecular sieves), using a drying agent such as phosphoric anhydride, anhydrous magnesium sulfate, and anhydrous sodium sulfate to remove by-product water.
  • a sufficient reaction rate can be obtained without intentionally performing the above-mentioned water removal operation.
  • reaction solvent aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and mesitylene are preferable, and toluene is more preferable. These reaction solvents can be used alone or in combination.
  • the amount of the reaction solvent to be used is usually 0. OIL (liter) or more per 1 mol of the optically active 1-phenylethylamine represented by the formula [5].
  • OIL liter
  • 05-20L is preferred, especially 0.1-10L is more preferred.
  • the temperature condition is 0 to 200 ° C, usually 3 to 175 ° C, particularly 5 to 150 ° C.
  • ° C is more preferred.
  • a pressure-resistant reaction vessel can be used.
  • reaction time varies depending on the reaction substrate and the reaction conditions, which is 0.1 to 72 hours
  • the progress of the reaction is tracked by analytical means such as gas chromatography, liquid chromatography, and NMR, and the raw materials are used. It is preferable that the time when almost disappeared is the end point.
  • the post-treatment is not particularly limited, but a crude product can be obtained by performing ordinary post-treatment operations after the completion of the reaction.
  • unreacted optically active 1-phenylethylamine is
  • reaction-terminated liquid or the organic layer containing the desired optically active imine represented by the formula [1] can be selectively removed by washing with an aqueous solution of ammonium chloride.
  • the desired optically active imine represented by the formula [1] can be obtained with high purity and high purity. it can.
  • the reaction-terminated liquid can be directly used for the asymmetric reduction in the second step without performing any post-treatment operation.
  • the geometric isomerism at the double bond of the desired optically active imine represented by the formula [1] includes an E-isomer or a Z-isomer, but the formation ratio varies depending on the reaction substrate and reaction conditions.
  • the absolute configuration of the newly asymmetrically induced asymmetric carbon of the optically active secondary amine represented by the target formula [2] may be an R-form or an S-form, but depending on the reaction substrate and reaction conditions. Its formation ratio is different.
  • As the combination of the absolute configurations of two asymmetric carbons there are an RR form, an SR form, an RS form or an SS form.
  • Group VIII (Group 810) metal catalysts include platinum oxide, platinum / activated carbon, platinum catalysts such as platinum black, nickel catalysts such as reduced nickel, Raney nickel, Raney nickel with platinum, and cobalt catalysts such as Raney cobalt. , Ruthenium oxide, ruthenium catalysts such as ruthenium / activated carbon, rhodium / activated carbon, rhodium / alumina, rhodium catalysts such as rhodium monooxide platinum, iridium catalysts such as iridium black, palladium / activated carbon, palladium hydroxide, palladium Black, noradium / barium sulfate, palladium / strontium carbonate, palladium / calcium carbonate, palladium / calcium carbonate-lead diacetate, palladium / barium sulfate—quinoline, palladium / alumina, palladium sponge, palladium chloride, palladium acetate
  • platinum catalysts nickel catalysts, ruthenium catalysts, rhodium catalysts and palladium catalysts are preferred, and platinum Z activated carbon, Raney nickel, ruthenium / activated carbon, rhodium / activated carbon and palladium Z activated carbon are more preferred.
  • These Group VIII metal catalysts can be used alone or in combination .
  • the supported amount is 0.1 to 50% by weight, and usually 0.5 to 30% by weight is preferable, and particularly, 120 to 20% by weight is preferable. More preferred. It can also be used in water or mineral oil to enhance handling safety or to prevent oxidation of metal surfaces.
  • the amount of the Group VIII metal catalyst used is preferably 0.000001 0.1 lg in terms of metal, as long as a catalytic amount is used for the optically active imine lg represented by the formula [1]. 0.00005- 0.05g force S better than S.
  • the amount of hydrogen used may be 1 mol or more per 1 mol of the optically active imine represented by the formula [1], but usually the reaction is carried out in a hydrogen atmosphere and a large excess is used. .
  • the hydrogen pressure of the hydrogen atmosphere and at 5MPa or less, usually rather preferably is 0. 01- 3 MPa, preferably from particular 0. 05- 2 MPa force S Le, 0
  • reaction solvent examples include aliphatic hydrocarbons such as n-pentane, n-hexane, cyclohexane, and n-heptane, and aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and mesitylene.
  • ester such as ethyl acetate, n-butyl acetate, methanol, ethanol,
  • Acidic aqueous solutions of acetic acid, hydrochloric acid, and acidic aqueous solutions of hydrobromic acid are preferred.
  • methanol, ethanol, n-propanol, i-propanol, n-butanol, n-pentanol, n-hexanol, and cyclohexanol are preferred.
  • Acidic aqueous solutions of xanol, n-heptanol, n-octanol, hydrochloric acid and acidic aqueous solutions of hydrobromic acid are more preferred.
  • These reaction solvents can be used alone or in combination.
  • the amount of the reaction solvent used is 0.01 per mol of the optically active imine represented by the formula [1]. If L (liter) or more is used, it is usually preferable to use 0.05-20L force S, especially 0.1-10L force.
  • the temperature condition is usually -50 to + 100 ° C, preferably 40 to + 60 ° C, and more preferably _30 to + 10 ° C.
  • this temperature condition is particularly important. At a low temperature of 10 ° C. or lower, an optically active secondary amine having a relative configuration of R—R or S—S which is advantageous for salt purification in the third step is produced. In addition to being able to obtain high diastereoselectivity, it is possible to control almost completely the by-products of 1,2,2,2-trifluoroethylamine substituted by 1,2-alkylyl-substituted 1,2,2-trifluoroethylamine due to excess reaction. See Table 1). On the other hand, the lower the reaction temperature, the better the results obtained. Under extremely low temperature conditions of less than _50 ° C, the reaction rate becomes extremely slow, which is not always a practical temperature condition.
  • an optically active secondary amine having a relative configuration of R—R or S—S which is advantageous for salt purification in the third step, cannot be obtained with high diastereoselectivity and further excess This is not an effective temperature condition because the reaction involves by-products of 1-alkyl-substituted 2,2,2-trifluoroethylamine with low optical purity.
  • the reaction time is usually 0.1 to 240 hours, but varies depending on the reaction substrate and reaction conditions. Therefore, the progress of the reaction is monitored by analytical means such as gas chromatography, liquid chromatography, and NMR. It is preferable that the time when the raw material almost disappears is the end point.
  • the post-treatment is not particularly limited, but a crude product can be obtained by performing ordinary post-treatment operations after the reaction. If the desired optically active secondary amine represented by the formula [2] has a low boiling point or a high volatility, and if the volatility is high, the filtrate obtained by removing the Group VIII metal catalyst from the reaction completed solution by celite filtration or the like. In addition, an acid corresponding to the salt derived in the third step may be added in advance, and post-treatment operations such as concentration may be performed to recover in the form of a salt.
  • the desired optically active secondary amine represented by the formula [2] has a high boiling point and low volatility
  • inorganic By neutralizing with a basic aqueous solution of a base and extracting with an organic solvent, the desired optically active secondary amine represented by the formula [2] can be efficiently recovered as a free base.
  • the crude product can be By performing purification operations such as activated carbon treatment, distillation, and recrystallization, the desired optically active secondary amine represented by the formula [2] can be obtained with high chemical purity.
  • the salt purification in the third step is performed by deriving the optically active secondary amine represented by the formula [2] into its salt and purifying it by recrystallization.
  • Examples of the acid include an inorganic acid and an organic acid.
  • Examples of the inorganic acid include carbonic acid, hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, hydroiodic acid, phosphoric acid, boric acid, perchloric acid and the like. Among them, hydrochloric acid and hydrobromic acid are preferred, and particularly, hydrobromic acid is more preferred.
  • organic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, heptanoic acid, cyclohexanecarboxylic acid, octanoic acid, phenylacetic acid, and 3_phenylene Aliphatic carboxylic acids such as propionic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, bromoacetic acid, odoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid, etc.
  • Aliphatic carboxylic acids such as propionic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, bromoacetic acid, odoace
  • Unsaturated carboxylic acids such as haloalkyl carboxylic acids, acrylic acid, crotonic acid, citraconic acid, maleic acid, fumaric acid, cis or trans cinnamic acid, benzoic acid, o—, m or p toluic acid, o—, m Or p-fluorobenzoic acid, ⁇ -, m or p-chlorobenzoic acid, o—, m or p-bromobenzoic acid, o-1, m or p-eodobenzoic acid, o—, m Or p-hydroxybenzoic acid, o—, m or p-anisic acid, ⁇ -, m or p-aminobenzoic acid, o—, m or p—dinitrobenzoic acid, o—, m or p_cyano Benzoic acid, o-, m- or p-benzenedicarboxylic acid (phthalic
  • Aromatic carboxylic acids methanesulfonic acid, chloromethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, sulfonic acids such as ⁇ -tonolenesulfonic acid, ⁇ -phenolsulfonic acid, lactic acid, malic acid, tartaric acid
  • Optically active carboxylic acids such as dibenzoyltartaric acid, 2-phenylpropionic acid, mandelic acid, camphoric acid, and cis- 1-benzamidocyclohexanecarboxylic acid;
  • Optically active sulfonic acids such as ethanes-nolefonic acid and 10-camphorsulfonic acid; optically active phosphoric acids such as 2,2 ⁇ - (1,1 ⁇ -binaphthyl) phosphoric acid; optical such as 4-aminobutyric acid, phenyldaricin, and aspartic acid Active amino acids, pyrogluta
  • Optically active carboxylic acids, optically active sulfonic acids, optically active phosphoric acids, optically active amino acids and optically active N-acyl amino acids have optical isomers, and both optical isomers can be used. Among them, optically active 10-camphorsulfonic acid is more preferable.
  • the amount of the acid to be used is preferably 0.3 to 5 mol per mol of the optically active secondary amine represented by the formula [2], and usually 0.4 to 5 mol is preferable. In particular, 0.5-3 mol is more preferable.
  • the method for preparing the salt may be appropriately determined according to the combination of the optically active secondary amine represented by the formula [2] and the acid, and usually the optically active secondary amine represented by the formula [2] is used in a recrystallization solvent. It can be prepared by directly adding and mixing the amine and the acid, or by preparing the respective solutions in advance and mixing the solutions. Crystal precipitation can be carried out directly from the prepared salt solution, or it can be carried out after the prepared salt solution is once concentrated and dissolved again in the recrystallization solvent.
  • the recrystallization solvent is not particularly limited as long as it does not react with the optically active secondary amine represented by the formula [2], the acid or a salt prepared therefrom, but the diastereomer excess before purification (De) or the target diastereomer excess after purification (de), recovery rate, etc., as appropriate.
  • recrystallization solvent examples include aliphatic hydrocarbons such as n-pentane, n-hexane, cyclohexane, and n-heptane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and mesitylene; Halogenated hydrocarbons such as methylene chloride, chlorophonolem and 1,2-dichloroethane, ethers such as getyl ether, tetrahydrofuran, tert-butyl methyl ether and 1,4-dioxane, acetone, methyl ethyl ketone and methyl isobutyl ketone Ketones such as ethyl acetate, n -butyl acetate, etc., nitriles such as acetonitrile and propionitrile, alcohols such as methanol, ethanol, n-propanol
  • These recrystallization solvents can be used alone or in combination.
  • the amount of the recrystallization solvent to be used is not particularly limited as long as the salt before purification completely or partially dissolves when heated, but the diastereomer excess (de) before purification, or the like. Alternatively, it may be appropriately determined according to the target diastereomer excess (de) and the recovery rate after purification. It is sufficient to use at least 0.3 OIL (liter) per mole of the salt of the optically active secondary amine represented by the formula [2] before purification. 10 L is more preferred.
  • the relative configuration of the two asymmetric carbons of the optically active secondary amine represented by the formula [2] to be subjected to salt purification is not particularly limited, but is preferably the R-R form or the SS form. It can be purified more advantageously than S—R or R—S form.
  • (d.e.) is not particularly limited, but is usually preferably 5% d.e. or more, and particularly preferably 10% d.e. or more.
  • the addition of a seed crystal can enhance the ability to precipitate crystals smoothly and efficiently. It is usually 97 if the diastereomer excess (de) of the seed crystal is 95% de or more. / 0 de or more is preferred, and especially 99% de or more is more preferred.
  • the amount of seed crystal to be used is usually 0.0001g or more per mole of the salt of the optically active secondary amine of the formula [2] before purification. 20g is preferred, especially 0.01-more preferred than 10g power.
  • the temperature conditions can be appropriately determined depending on the boiling point and the freezing point of the recrystallization solvent to be used. Usually, the salt before purification is dissolved at a temperature from room temperature (25 ° C) to a temperature near the boiling point of the recrystallization solvent, It is preferred that the temperature be gradually lowered to sufficiently precipitate crystals at -20 to + 20 ° C. It is usually preferable to add the seed crystal during the cooling.
  • the diastereomer excess (de) of the precipitated crystals is usually improved. Therefore, by collecting the precipitated crystals by filtration or the like, a salt having a high diastereomer excess (d.e.) can be obtained. Can be Further, depending on the combination of the optically active secondary amine represented by the formula [2] and the acid, the diastereomer excess (de) in the mother liquor may be improved. By removing the precipitated crystals by filtration or the like, a high diastereomer excess is obtained. A solution containing the salt at a rate (de) is obtained. Further, by repeating these purification operations, it is possible to purify to a higher diastereomer excess (d.e.).
  • the obtained salt can be used as it is or after being neutralized and returned to a free base.
  • the free base can be efficiently recovered by neutralizing with a basic aqueous solution of an inorganic base and extracting with an organic solvent.
  • the hydrogenolysis in the fourth step is carried out by hydrolyzing the optically active secondary amine represented by the formula [2] or a salt thereof.
  • the R—R or R—S form of the optically active secondary amine represented by the formula [2] or a salt thereof is converted to the optically active 1 alkyl-substituted 2 represented by the formula [3].
  • 2,2 Trifluoroethylamine or its salt R physical strength It can be obtained without lowering the optical purity.
  • the S form can be obtained without lowering the optical purity.
  • the hydrogenolysis can be carried out in a hydrogen atmosphere using a Group VIII metal catalyst. Accordingly, the present reaction conditions can be carried out by using the reaction conditions employed in the asymmetric reduction in the second step in the same manner.
  • the optically active imine represented by the formula [1] is replaced with the optically active secondary amine represented by the formula [2]
  • the optically active secondary amine represented by the formula [2] is represented by the formula [3].
  • the reaction condition includes a temperature condition, which will be described in detail below.
  • the temperature condition is 20 to 200 ° C, usually 30 to 150 ° C is preferable, and particularly 40 to 100 ° C is more preferable.
  • the post-processing will be described in detail.
  • the post-treatment is not particularly limited, and a crude product can be obtained by performing ordinary post-treatment operations after completion of the reaction.
  • the reaction-terminated liquid is filtered through celite or the like.
  • the acid described in the third step, salt purification may be added to the filtrate in advance, followed by a post-treatment operation such as concentration to recover the salt in the form of a salt.
  • the formula [2] when the reaction is carried out using the salt of the optically active secondary amine shown in, or the reaction is carried out using an acidic aqueous solution of an acid as the reaction solvent, the reaction is neutralized with a basic aqueous solution of an inorganic base, and the organic solvent is used. By the extraction, the desired optically active monoalkyl-substituted 1,2,2,2-trifluoroethylamine represented by the formula [3] can be efficiently recovered as a free base.
  • the crude product is subjected to purification operations such as activated carbon treatment, distillation, and recrystallization, if necessary, to obtain the desired optically active monoalkyl-substituted -2,2,2_trifluoro represented by the formula [3].
  • Loethylamine can be obtained with high chemical purity.
  • Run 9 in Table 1 is shown below as a representative example. Runl-8 was performed in the same manner as mn9 under the reaction conditions shown in Table 1.
  • a part of the filtrate obtained through celite filtration was concentrated under reduced pressure, dried in vacuo, and the following formula was obtained by 'H-NMR spectrum and 19 F-NMR spectrum.
  • a toluene solution of PPTS prepared by stirring and preparing 57.64 g (0.303 mol, 0.05 eq) of PTS'-hydrate and 24.00 g (0.303 mol, 0.05 eq) of pyridine in 460 ml of toluene in advance , And the mixture was stirred at an internal temperature of 60 to 84 ° C for 7 hours and 30 minutes. The conversion of the reaction was determined by gas chromatography and was greater than 85%.
  • reaction-finished solution is washed once with 1000 ml of 1N aqueous sodium hydroxide solution, four times with 1500 ml of 3N aqueous ammonium chloride solution, then once with 1000 ml of 10% saline, and the recovered organic layer is subjected to reduced pressure. Concentrate, vacuum dry, and
  • a crude optically active imine product represented by the following formula was obtained.
  • the gas chromatography purity of the crude product was 82.7%.
  • the total yield of the first purified crystal, the second purified crystal, and the third crude crystal was 90%.
  • the enantiomeric excess (ee) is determined by chiral gas chromatography by deriving a salt of optically active 1-alkyl-substituted-2,2,2-trifluoroethylamine into a benzamide derivative using excess benzoyl chloride and pyridine. did.
  • the H-NMR spectrum and 19 F-NMR spectrum are shown below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
光学活性 1一アルキル置換一 2, 2, 2—トリフルォロェチルァミンの製造方 法
技術分野
[0001] 本発明は、医薬および農薬の重要中間体である光学活性 1一アルキル置換一 2, 2, 2_トリフルォロェチルァミンの製造方法に関する。
発明の背景
[0002] 本発明で対象とする光学活性 1 アルキル置換 2, 2, 2-トリフルォロェチルァミン は医薬および農薬の重要中間体である。
[0003] 光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンの製造方法としては 、(1) (S) _N_ (1_アルキル— 2, 2, 2_トリフルォロェチリデン) _1_フエニルェチル アミンを塩基の存在下、 [1, 3]—プロトンシフト反応に付し、引き続いて加水分解する 方法(特許文献 1、非特許文献 1)、(2) 1—メチルー 2, 2, 2_トリフルォロェチルァミン のラセミ体を D—酒石酸で光学分割する方法(特許文献 2)、 (3) Lーァラニンのカルボ キシル基を SFでフッ素化する方法(特許文献 3)、 (4) (R)—スルフィニルイミンをトリ
4
メチル(トリフルォロメチル)シラン (TMSCF )で不斉トリフルォロメチル化し、引き続
3
レ、て加水分解する方法 (非特許文献 2)が報告されてレ、る。
[0004] 特許文献 1 :日本特許第 3005669号公報
特許文献 2:米国特許第 6204269号明細書
特許文献 3:欧州特許出願公開第 0323637号明細書
非特許文献 1 :J. Org. Chem. , (米国), 1997年,第 62卷,第 10号, p. 3030— 3 031
非特許文献 2 :Angewandte Chemie, International Edition, (独国), 2001 年,第 40卷,第 3号, p. 589-590
[0005] 特許文献 1および非特許文献 1の方法では、高い不斉誘起を得るためには高価な DBU (1 , 8—ジァザビシクロ [5, 4, 0]ゥンデセ _7 ェン)を、反応基質 1モルに対し て 1モル以上を使用する必要があり、またその除去にはシリカゲルカラムクロマトダラ フィ一による精製を必要とした。
[0006] 特許文献 2の方法では、分割剤の酒石酸は非天然型が高価であり、また水溶性の ため回収して再利用することが困難であった。また光学分割であるために理論収率 は 50%を越えることがなぐ不要な異性体をラセミィ匕するには煩雑な操作を必要とし た。特許文献 3の方法では、危険な SFを使用する必要があり、また収率もあまり高く なかった。非特許文献 2の方法では、工業的に入手困難な光学活性スルフィニルイミ ンを使用する必要があり、またトリメチル(トリフルォロメチル)シラン (TMSCF )も非 常に高価な試薬であった。
[0007] このように光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンを工業的 に製造できる方法が強く望まれてレ、た。
発明の概要
[0008] 本発明で対象とする、光学活性イミンを VIII族(8— 10族)の金属触媒を用いて水 素雰囲気下で不斉還元することにより、光学活性二級ァミンに変換し、該二級アミン またはその塩を加水素分解することにより、光学活性 1 アルキル置換 2, 2, 2-トリ フルォロェチルァミンまたはその塩を製造する方法は未だ報告されてレ、なレ、。
[0009] 本発明の目的は、医薬および農薬の重要中間体である、光学活性 1一アルキル置 換一 2, 2, 2_トリフルォロェチルァミンの工業的な製造方法を提供することにある。
[0010] 本発明に依れば、式 [1]
[化 1]
Figure imgf000004_0001
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 Phはフエ二ル基を表し、波線は E体または Z体を表し、 *は不斉炭素を表す]で示される光学活性イミンを、 VIII族の 金属触媒を用いて、水素雰囲気下で不斉還元することにより、式 [2]
[化 2]
Figure imgf000005_0001
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 Phはフヱニル基を表し、 *は不 斉炭素を表す]で示される光学活性二級ァミンに変換し、該二級アミンまたはその塩 を加水素分解することにより、式 [3]
[化 3]
CF3" 、NH2 【3]
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 *は不斉炭素を表す]で示され る光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンまたはその塩を製造 する方法が提供される。
さらに、本発明に依れば、式 [1]で示される光学活性ィミンが、式 [4]
[化 4]
CF3- ヽ 0 [4]
[式中、 Rは炭素数 1から 6の低級アルキル基を表す]で示されるトリフルォロメチルァ ノレキノレケトンと、式 [5]
[化 5]
Figure imgf000005_0002
[5]
[式中、 Phはフエ二ル基を表し、 *は不斉炭素を表す]で示される光学活性 1-フエ二 ルェチルァミンを、酸触媒の存在下、脱水縮合することにより得られる光学活性イミン であってもよい。 詳細な説明
[0012] 本発明に関連する技術として、 (S)_N_ (1—フエ二ルー 2, 2, 2_トリフルォロェチリ デン )_1一フエニルェチルァミンを、 Pd触媒を用いて水素雰囲気下で不斉還元する ことにより、対応する光学活性二級ァミンに変換する方法が報告されている Ci. Org. Chem., (米国), 1977年,第 42卷,第 14号, p. 2436— 2439)。し力しな力 Sら本 手法が適用できる基質範囲や詳細な反応条件については殆ど検討されておらず、 本発明で対象とする、光学活性 N—(1-アルキル置換一 2, 2, 2-トリフルォロェチリデ ン)一 1一フエニルェチルァミンを反応基質とする不斉還元については全く開示されて いなかった。
[0013] 本発明者らは、光学活性 N—(1-アルキル置換一 2, 2, 2-トリフルォロェチリデン) - 1—フエニルェチルァミンを反応基質とした場合には、不斉還元のジァステレオ面選 択性が温度条件に大きく影響され、採用する反応温度によってジァステレオ面選択 性が逆転する現象を見出した。特に低温では、後述する塩の再結晶精製に有利な R —Rまたは S—S (ノヽィフンの前に示した絶対配置は 1_アルキル置換一 2, 2, 2_トリフ ルォロェチル基側の絶対配置を表し、ノ、ィフンの後に示した絶対配置はキラル補助 基に由来する 1一フエニルェチル基側の絶対配置を表す)の相対配置を持つ光学活 性二級アミンカ 高いジァステレオ面選択性で得られることを明らかにした(テーブル 1参照)。また得られた光学活性二級アミンまたはその塩は、加水素分解することによ り、 目的とする光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンまたは その塩に光学純度を低下することなぐ高い化学純度で収率良く誘導できることも見 出した。
[0014] [表 1] C
Figure imgf000007_0001
run sub. Pd/C solvent temp. time conv. d.r. (SS RS) o.r.
1 1.08g (5.02mmol) 5%Pd/C (2wl.%) THF(1M) 60*C 8h 73% 43: :57 8.3%
2 1.08g (5.02mmol) 5%Pd/C (2wt.%) MeOH (1 ) 60 8h 92% 48: :52 2.2%
3 1.08g (5.02mmol) 5%Pd/C (2wl.%) THF(1M) 30t: 8h 24% 49: :51 1,7%
4 1.08g (5.02mmol) 5%Pd/C (2wt.%) MeOH (1 ) 30 : 8h 47% 60: :40 0.9%
5 6.00g (27.88mmol) 5%Pd/C (2wt.%) MeOH (1M) 20 : 3days 80% 66: :34 0.8% addition 5%Pd/C (2wt.%) +16h 93% 68 :32 1.1%
6 2.00g (9.29mmol) 5°/oPd/C (5wt.%) MeOH (1M) 24h 93% 60: :40 1.2%
7 53.80g (249.99mmol) 5 Pd/C (5wt.%) MeOH (1M) 24h 96% 60 : :40 0.9%
8 2.00g (9.29mmol) 5%Pd/C (2wt.%) MeOH (1 ) o 18h 20% 79 : :21 0.0% addition 5%Pd/C (3wt.%) +21 h 61% 77: :23 0.0%
9 4.30g (19.98mmol) 5°/oPd/C (5wt.%) MeOH (1M) ot: 3days 95% 75: :25 0.2%
[0015] 表 1の略語の説明は次のとおりである。
sub. :光学活性ィミン。
temp. :反応温度。
conv. :変換率。
d. r. :ジァステレオマー比。
o. r. :過剰反応生成物 1ーメチルー 2, 2, 2_トリフルォロェチルァミンの組成比。 wt. :皇里。
5%PdZC:活性炭 lOOgあたり、 5gの Pd (金属原子換算)が担持された「パラジウム —カーボン粉末」に対し、これと同重量の水を混合し、調湿したもの。
1M: lmmol/ml0
addition: run5では、さらに 5%PdZCを 2wt. %追加して、 16時間反応を続行し た。 run8では、さらに 5%PdZCを 3wt. %追加して、 21時間反応を続行した.
[0016] さらに不斉還元で得られた光学活性二級アミンをその塩に誘導して再結晶精製す ることにより、高いジァステレオマー過剰率(d. e. )に精製できることも見出した。
[0017] 従って上記の新たに見出した製造方法と該精製方法を組み合わせることにより、 目 的とする光学活性 1-アルキル置換 2, 2, 2-トリフルォロェチルァミンを高い光学純 度で得ること力 Sできる。
[0018] また光学活性 1_アルキル置換 2, 2, 2_トリフルォロェチルァミンの製造方法にお いて、有用な中間体として新規化合物である光学活性二級ァミンとその塩を見出した
[0019] 本発明者らは上記のように光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチル アミンを製造するための新規な方法を見出し、本発明を完成した。
[0020] 本製造方法は各反応工程ともに選択性が高ぐ分離の難しレ、不純物を殆ど副生し ないことから、医薬および農薬の重要中間体である光学活性 1一アルキル置換一 2, 2 , 2_トリフルォロェチルァミンを工業的に製造するための極めて有効な方法である。
[0021] 本発明の光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンの製造方 法について詳細に説明する。本発明の製造工程は、(1)脱水縮合、(2)不斉還元、 ( 3)塩精製、(4)加水素分解の四工程から構成され得る(スキーム 1参照)。
[0022] [化 6] スキーム
? ?Π3 脱水縮合 ?"3 不斉還元
CF3-" 、0 Η2Ν' 、Ph Ph
Figure imgf000008_0001
[0023] 初めに第一工程の脱水縮合について詳細に説明する。第一工程の脱水縮合は、 式 [4]で示されるトリフルォロメチルアルキルケトンと、式 [5]で示される光学活性 1_ フヱニルェチルァミンを、酸触媒の存在下、脱水縮合することによりなる。上記の特許 文献 1および非特許文献 1では、無触媒で脱水縮合を行う例が示されている。また本 発明で対象とするトリフルォロメチルアルキルケトンの脱水縮合ではないが、類似の 脱水縮合にぉレ、てパラトルエンスルホン酸 (PTS)を酸触媒に用いて反応を行う例も 示されてレヽる i. Org. Chem., (米国), 1977年,第 42卷,第 14号, p. 2436—2 439)。 [0024] 式 [4]で示されるトリフルォロメチルアルキルケトンの Rとしては、メチル、ェチル、 1 —プロピル、 2_プロピル、シクロプロピル、 1—ブチル、 2—ブチル、 2—メチルー 1_プロ ピル、 tert—ブチル、シクロブチル、 1_ペンチル、 2_ペンチル、 3_ペンチル、ネオペ ンチル、 tert—ァミル、シクロペンチル、 1—へキシル、 2—へキシル、 3—へキシル、シク 口へキシル等が挙げられる。ここで示したトリフルォロメチルアルキルケトンの中には 新規化合物も含まれるが、 J. Org. Chem., (米国), 1987年,第 52卷,第 22号, p . 5027 5030等を参考にして、アルキル基の異なる有機金属試薬を用いることによ り、同様に製造することができる。
[0025] 式 [4]で示されるトリフルォロメチルアルキルケトンの使用量としては、式 [5]で示さ れる光学活性 1—フエニルェチルァミン 1モルに対して 1モル以上を使用すればよぐ 通常は 1一 10モルが好ましぐ特に 1一 5モルがより好ましい。
[0026] 式 [5]で示される光学活性 1 -フエニルェチルァミンの不斉炭素の絶対配置として は、 R体または S体の両方が採れ、 目的とする光学活性 1一アルキル置換一 2, 2, 2—ト リフルォロェチルァミンの絶対配置に応じて適宜使い分ければ良い。
[0027] 式 [5]で示される光学活性 1一フエニルェチルァミンの光学純度としては、 95%ェナ ンチォマー過剰率(e. e. )以上を使用すればよぐ通常は 97%e. e.以上が好ましく 、特に 99%e. e.以上がより好ましい。
[0028] 酸触媒としては、ギ酸、酢酸、プロピオン酸、トリフルォロ酢酸、メタンスルホン酸、ト リフルォロメタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸(PTS)、ピ リジニゥムパラトルエンスルホネート(PPTS)、 10—カンファースルホン酸等の有機酸 、 Amberlyst H - 15、 Dowex 50W - X8等のイオン交換樹脂、塩酸、臭化水素酸 、硫酸、リン酸、塩化亜鉛、四塩ィ匕チタン等の無機酸が挙げられる。その中でも特に ピリジニゥムパラトルエンスルホネート(PPTS)がより好ましレ、。上記の特許文献 1およ び非特許文献 1で採用された無触媒では反応速度が遅ぐ J. Org. Chem., (米国 ) , 1977年,第 42卷,第 14号, p. 2436一 2439で採用されたノ ラトノレエンスノレホン 酸 (PTS)では酸強度が強過ぎ収率が低下する。
[0029] 酸触媒の使用量としては、式 [5]で示される光学活性 1一フエニルェチルァミン 1モ ルに対して触媒量を使用すればよぐ通常は 0. 001 0. 5モルが好ましぐ特に 0. 01—0. 25モノレカ Sより好ましレ、。
[0030] 本反応は、トリフルォロメチルアルキルケトンと光学活性 1-フエニルェチルァミンの 脱水縮合であるため、酸性条件下で副生する水を除きながら反応を行うことが好まし レ、。例えば、水と混和せず、水よりも比重が小さぐ水と共沸する反応溶媒を用いて還 流条件下でディーン 'スターク管を用いて副生する水を除くか、合成ゼォライト(商品 名:モレキュラーシーブス)、無水リン酸、無水硫酸マグネシウム、無水硫酸ナトリウム 等の乾燥剤を用いて副生する水を除く。本発明で対象とするトリフルォロメチルアル キルケトンと光学活性 1_フヱニルェチルァミンの脱水縮合では、上記の除水操作を 敢えて行わなくても十分な反応速度が得られる。
[0031] 反応溶媒としては、ベンゼン、トルエン、ェチルベンゼン、キシレン、メシチレン等の 芳香族炭化水素系が好ましぐ特にトルエンがより好ましい。これらの反応溶媒は単 独または組み合わせて用いることができる。
[0032] 反応溶媒の使用量としては、式 [5]で示される光学活性 1一フエニルェチルァミン 1 モルに対して 0· OIL (リットル)以上を使用すればよぐ通常は 0· 05— 20Lが好まし 特に 0· 1一 10Lがより好ましい。
[0033] 温度条件としては、 0— 200°Cであり、通常は 3— 175°Cが好ましぐ特に 5— 150
°Cがより好ましい。用いるトリフルォロメチルアルキルケトンの沸点以上の温度条件で 反応を行う場合には耐圧反応容器を使用することもできる。
[0034] 反応時間としては、 0. 1一 72時間である力 反応基質および反応条件により異なる ため、ガスクロマトグラフィー、液体クロマトグラフィー、 NMR等の分析手段により反応 の進行状況を追跡して原料が殆ど消失した時点を終点とすることが好ましい。
[0035] 後処理としては、特に制限はないが、反応終了後、通常の後処理操作を行うことに より粗生成物を得ることができる。特に未反応の光学活性 1ーフヱニルェチルァミンは
、反応終了液または目的の式 [1]で示される光学活性イミンを含む有機層を塩化ァ ンモニゥムの水溶液で洗浄することにより選択的に除去できる。粗生成物は、必要に 応じて、活性炭処理、蒸留、再結晶等の精製操作を行うことにより、 目的の式 [1]で 示される光学活性イミンを高レ、ィ匕学純度で得ることができる。また後処理操作を一切 行わずに反応終了液を第二工程の不斉還元に直接用レ、ることもできる。 [0036] 目的の式 [1]で示される光学活性ィミンの二重結合における幾何異性としては、 E 体または Z体が存在するが、反応基質および反応条件によりその生成比は異なる。
[0037] 次に第二工程の不斉還元について詳細に説明する。第二工程の不斉還元は、式 [
1]で示される光学活性イミンを、 VIII族の金属触媒を用いて、水素雰囲気下で不斉 還元することによりなる。
[0038] 目的の式 [2]で示される光学活性二級ァミンの新たに不斉誘起された不斉炭素の 絶対配置としては、 R体または S体が存在するが、反応基質および反応条件によりそ の生成比は異なる。また二つの不斉炭素による絶対配置の組み合わせとしては、 R- R体、 S— R体、 R— S体または S— S体が存在する。
[0039] VIII族(8 10族)の金属触媒としては、酸化白金、白金/活性炭、白金黒等の白 金触媒、還元ニッケル、ラネーニッケル、白金付きラネーニッケル等のニッケノレ触媒、 ラネーコバルト等のコバルト触媒、酸化ルテニウム、ルテニウム/活性炭等のルテニ ゥム触媒、ロジウム/活性炭、ロジウム/アルミナ、ロジウム一酸ィ匕白金等のロジウム 触媒、イリジウム黒等のイリジウム触媒、パラジウム/活性炭、水酸化パラジウム、パラ ジゥム黒、ノ ラジウム/硫酸バリウム、パラジウム/炭酸ストロンチウム、パラジウム/ 炭酸カルシウム、パラジウム/炭酸カルシウム-二酢酸鉛、パラジウム/硫酸バリウム —キノリン、パラジウム/アルミナ、パラジウムスポンジ、塩化パラジウム、酢酸パラジゥ ム、パラジウムァセチルァセトナート、ビス(ジベンジリデンアセトン)パラジウム、テトラ キス(トリフエニルホスフィン)パラジウム、ジクロロ [ビス(トリフエニルホスフィン)]パラジ ゥム、ジクロロ [ビス(ジフエニルホスフイノ)メタン]パラジウム、ジクロロ [ビス(ジフエ二 ノレホスフイノ)ェタン]パラジウム、ジクロロ [1 , 3_ビス(ジフエニルホスフイノ)プロパン] パラジウム、ジクロロ [1, 4_ビス(ジフエニルホスフイノ)ブタン]パラジウム、ジクロロ(1 , 5—シクロォクタジェン)パラジウム、ジクロロ [ビス(ベンゾニトリル)]パラジウム、ジク ロロ [ビス(ァセトニトリル)]パラジウム、酢酸 [ビス(トリフエニルホスフィン)]パラジウム 等のパラジウム触媒等が挙げられる。その中でも白金触媒、ニッケノレ触媒、ルテニゥ ム触媒、ロジウム触媒およびパラジウム触媒が好ましぐ特に白金 Z活性炭、ラネー ニッケル、ルテニウム/活性炭、ロジウム/活性炭およびパラジウム Z活性炭がより 好ましレ、。これらの VIII族の金属触媒は単独または組み合わせて用いることができる 。金属を担体に担持させた触媒を用いる場合には、その担持量としては、 0. 1一 50 重量%であり、通常は 0. 5— 30重量%が好ましぐ特に 1一 20重量%がより好ましい 。また取り扱いの安全性を高めるために、または金属表面の酸化を防ぐために水また は鉱油中で保存したものを用いることもできる。
[0040] VIII族の金属触媒の使用量としては、式 [1]で示される光学活性イミン lgに対して 触媒量を使用すればよぐ通常は金属換算で 0. 00001 0. lgが好ましぐ特に 0. 00005— 0. 05g力 Sより好ましレヽ。
[0041] 水素の使用量としては、式 [1]で示される光学活性イミン 1モルに対して 1モル以上 を使用すればよいが、通常は反応を水素雰囲気下で行い、大過剰を使用する。
[0042] 水素雰囲気の水素圧としては、 5MPa以下であり、通常は 0. 01— 3MPaが好まし く、特に 0. 05— 2MPa力 Sより好ましレ、0
[0043] 反応溶媒としては、 n-ペンタン、 n-へキサン、シクロへキサン、 n—ヘプタン等の脂 肪族炭化水素系、ベンゼン、トルエン、ェチルベンゼン、キシレン、メシチレン等の芳 香族炭化水素系、ジェチルエーテル、テトラヒドロフラン、 tert—ブチルメチルエーテ ノレ、 1 , 4ージォキサン等のエーテル系、酢酸ェチル、酢酸 n—ブチル等のエステル系 、メタノーノレ、エタノール、 n-プロパノール、 i-プロパノール、 n-ブタノール、 n-ペン タノール、 n—へキサノール、シクロへキサノール、 n—ヘプタノール、 n—ォクタノール 等のアルコール系、酢酸、プロピオン酸、酪酸等のカルボン酸系、塩酸、硫酸、臭化 水素酸、パラトルエンスルホン酸、 10—カンファースルホン酸等の酸性水溶液、水等 が挙げられる。その中でもトルエン、テトラヒドロフラン、酢酸ェチル、メタノーノレ、エタ ノーノレ、 n-プロパノーノレ、 i-プロパノーノレ、 n-ブタノーノレ、 n-ペンタノ一ノレ、 n_へキ サノール、シクロへキサノール、 n—へプタノール、 n—ォクタノール、酢酸、塩酸の酸 性水溶液および臭化水素酸の酸性水溶液が好ましぐ特にメタノール、エタノール、 n—プロパノーノレ、 i—プロパノーノレ、 n—ブタノーノレ、 n—ペンタノ一ノレ、 n_へキサノーノレ 、シクロへキサノール、 n—へプタノール、 n—ォクタノール、塩酸の酸性水溶液および 臭化水素酸の酸性水溶液がより好ましい。これらの反応溶媒は単独または組み合わ せて用いることができる。
[0044] 反応溶媒の使用量としては、式 [1]で示される光学活性イミン 1モルに対して 0. 01 L (リットル)以上を使用すればよぐ通常は 0· 05— 20L力 S好ましく、特に 0. 1— 10L 力はり好ましい。
[0045] 温度条件としては、通常 _50— + 100°Cであり、 40— + 60°C力 S好ましく、特に _3 0— + 10°Cがより好ましい。
[0046] 本反応においては、この温度条件が特に重要で、 10°C以下の低温では第三工程 の塩精製に有利な R— Rまたは S—Sの相対配置を持つ光学活性二級ァミンが高いジ ァステレオ面選択性で得られるだけでなぐ過剰反応による光学純度の低い 1ーァノレ キル置換一 2, 2, 2_トリフルォロェチルァミンの副生も殆ど完全に制御することができ る(テーブル 1参照)。一方で反応温度が低ければ低い程、より好ましい結果が得ら れると言うわけではない。 _50°C未満の極端に低い温度条件では反応速度が非常に 遅くなり、必ずしも実用的な温度条件とは言えない。また 100°Cよりも高い温度条件 では、第三工程の塩精製に有利な R— Rまたは S—Sの相対配置を持つ光学活性二 級ァミンが高いジァステレオ面選択性で得られず、さらに過剰反応による、光学純度 の低い 1-アルキル置換 2, 2, 2-トリフルォロェチルァミンの副生を伴うため、有効 な温度条件とは言えない。
[0047] 反応時間としては、通常は 0. 1— 240時間であるが、反応基質および反応条件に より異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、 NMR等の分析手段 により反応の進行状況を追跡して原料が殆ど消失した時点を終点とすることが好まし レ、。
[0048] 後処理としては、特に制限はないが、反応終了後、通常の後処理操作を行うことに より粗生成物を得ることができる。 目的の式 [2]で示される光学活性二級ァミンの沸 点が低レ、場合または揮発性が高レ、場合には、反応終了液からセライト濾過等で VIII 族の金属触媒を除いた濾液に、第三工程で誘導する塩に対応する酸を予め加えて 力 濃縮等の後処理操作を行い塩の形で回収することもできる。また逆に、 目的の式 [2]で示される光学活性二級ァミンの沸点が高ぐ揮発性も低い場合で、且つ反応 溶媒として酸の酸性水溶液を用いて反応を行った場合には、無機塩基の塩基性水 溶液で中和し、有機溶媒で抽出することにより、 目的の式 [2]で示される光学活性二 級ァミンを遊離塩基として効率良く回収することができる。粗生成物は、必要に応じて 、活性炭処理、蒸留、再結晶等の精製操作を行うことにより、 目的の式 [2]で示される 光学活性二級アミンを高い化学純度で得ることができる。
[0049] 次に第三工程の塩精製について詳細に説明する。第三工程の塩精製は、式 [2]で 示される光学活性二級アミンを、その塩に誘導して再結晶精製することによりなる。
[0050] 酸としては、無機酸および有機酸が挙げられる。
[0051] 無機酸としては、炭酸、塩酸、硫酸、硝酸、臭化水素酸、ヨウ化水素酸、リン酸、ホ ゥ酸、過塩素酸等が挙げられる。その中でも塩酸および臭化水素酸が好ましぐ特に 臭化水素酸がより好ましい。
[0052] 有機酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、へキサ ン酸、ヘプタン酸、シクロへキサンカルボン酸、オクタン酸、フヱニル酢酸、 3_フエ二 ルプロピオン酸等の脂肪族カルボン酸類、クロ口酢酸、ジクロロ酢酸、トリクロ口酢酸、 フルォロ酢酸、ジフルォロ酢酸、トリフルォロ酢酸、ブロモ酢酸、ョード酢酸、 2_クロ口 プロピオン酸、 3—クロ口プロピオン酸等のハロアルキルカルボン酸類、アクリル酸、ク 口トン酸、シトラコン酸、マレイン酸、フマル酸、 cisまたは trans ケィ皮酸等の不飽和 カルボン酸類、安息香酸、 o—, m または p トルィル酸、 o—, m または p フルォロ 安息香酸、 ο-, m または p クロ口安息香酸、 o—, m または p ブロモ安息香酸、 o 一, m または p ョード安息香酸、 o—, m または p—ヒドロキシ安息香酸、 o—, m ま たは p—ァニス酸、 ο-, m または p—アミノ安息香酸、 o—, m または p—二トロ安息香 酸、 o—, m または p_シァノ安息香酸、 o—, m または p—ベンゼンジカルボン酸(フタ ル酸,イソフタル酸,テレフタル酸)、 a ~, —または γ—ピコリン酸、 2, 6—ピリジンジ カルボン酸、 1 または 2—ナフトェ酸等の芳香族カルボン酸類、メタンスルホン酸、ク ロロメタンスルホン酸、トリフルォロメタンスルホン酸、ベンゼンスルホン酸、 ρ—トノレエン スルホン酸、 ρ—フヱノールスルホン酸等のスルホン酸類、乳酸、リンゴ酸、酒石酸、ジ ベンゾィル酒石酸、 2_フエニルプロピオン酸、マンデル酸、カンファー酸、シス一 2_ ベンズアミドシクロへキサンカルボン酸等の光学活性カルボン酸類、フエニルエタンス ノレホン酸、 10—カンファースルホン酸等の光学活性スルホン酸類、 2, 2≡- (1 , 1≡ —ビナフチル)リン酸等の光学活性リン酸類、 4ーァミノ酪酸、フエニルダリシン、ァスパ ラギン酸等の光学活性アミノ酸類、ピログルタミン酸、 Ν—ァセチルー 3, 5—ジブロモ— チロシン、 N—ァシルーフエ二ルァラニン、 N—ァシルーァスパラギン酸、 N—ァシルグル タミン酸、 N—ァシルプロリン等の光学活性 N—ァシルアミノ酸類(N—ァシル基としては 、ァセチル基、ベンジルォキシカルボニル基、ベンゾィル基、ベンゼンスルホニル基、 p—トルエンスルホニル基等を表す)、その他の有機酸としては、ギ酸、シユウ酸、マロ ン酸、コハク酸、アジピン酸、ピメリン酸、シァノ酢酸、クェン酸、グリコール酸、ダリオ キシル酸、ピルビン酸、レブリン酸、ォキサ口酢酸、メルカプト酢酸、フヱノキシ酢酸、 ピクリン酸等が挙げられる。光学活性カルボン酸類、光学活性スルホン酸類、光学活 性リン酸類、光学活性アミノ酸類および光学活性 N -ァシルアミノ酸類には、光学異 性体が存在するが両方の光学異性体を用いることができる。その中でも特に光学活 性 10—カンファースルホン酸がより好ましい。
[0053] 酸の使用量としては、式 [2]で示される光学活性二級アミン 1モルに対して 0. 3モ ル以上を使用すればよぐ通常は 0. 4— 5モルが好ましぐ特に 0. 5— 3モルがより好 ましい。
[0054] 塩の調製方法としては、式 [2]で示される光学活性二級ァミンと酸の組み合わせに より適宜決めればよぐ通常は再結晶溶媒に式 [2]で示される光学活性二級ァミンと 酸を直接加え混合することにより、またはそれぞれの溶液を予め準備し溶液同士を 混合することにより調製することができる。結晶の析出は、調製した塩の溶液から直接 行うこともできるが、調製した塩の溶液を一度濃縮して再び再結晶溶媒に溶解してか ら行うこともできる。
[0055] 再結晶溶媒としては、式 [2]で示される光学活性二級ァミン、酸またはこれらから調 製される塩と反応しないものであれば特に制限はないが、精製前のジァステレオマー 過剰率(d. e. )、または目標とする精製後のジァステレオマー過剰率(d. e. )および 回収率等により適宜決めればょレ、。
[0056] 再結晶溶媒としては、 n-ペンタン、 n-へキサン、シクロへキサン、 n-ヘプタン等の 脂肪族炭化水素系、ベンゼン、トルエン、ェチルベンゼン、キシレン、メシチレン等の 芳香族炭化水素系、塩化メチレン、クロロホノレム、 1 , 2—ジクロロェタン等のハロゲン ィ匕炭化水素系、ジェチルエーテル、テトラヒドロフラン、 tert—ブチルメチルエーテル、 1 , 4ージォキサン等のエーテル系、アセトン、メチルェチルケトン、メチルイソブチルケ 等のケトン系、酢酸ェチル、酢酸 n—ブチル等のエステル系、ァセトニトリル、プロ ピオ二トリル等の二トリル系、メタノール、エタノール、 n—プロパノール、 i一プロパノー ノレ、 n—ブタノール等のアルコール系、水等が挙げられる。その中でも n—へキサン、 n —ヘプタン、トルエン、塩化メチレン、テトラヒドロフラン、 tert—ブチルメチルエーテル、 アセトン、メチルェチルケトン、酢酸ェチル、ァセトニトリル、メタノーノレ、エタノール、 n —プロパノール、 i一プロパノールおよび n—ブタノールが好ましぐ特に n—へキサン、 n —ヘプタン、トルエン、メタノーノレ、エタノール、 n—プロパノール、 i—プロパノールおよ び n—ブタノールがより好ましい。これらの再結晶溶媒は単独または組み合わせて用 レ、ることができる。
[0057] 再結晶溶媒の使用量としては、精製前の塩が熱時、完全にまたは部分的に溶解す る範囲であれば特に制限はないが、精製前のジァステレオマー過剰率 (d. e. )、ま たは目標とする精製後のジァステレオマー過剰率(d. e. )および回収率等により適 宜決めればよい。式 [2]で示される光学活性二級ァミンの精製前の塩 1モルに対して 0. OIL (リットル)以上を使用すればよく、通常は 0. 03— 20Lが好ましく、特に 0. 05 一 10Lがより好ましい。
[0058] 塩精製に供される式 [2]で示される光学活性二級ァミンの二つの不斉炭素の相対 配置としては、特に制限はないが、 R— R体または S—S体の方力 S—R体または R— S 体よりも有利に精製できる。
[0059] 塩精製に供される式 [2]で示される光学活性二級ァミンのジァステレオマー過剰率
(d. e. )としては、特に制限はないが、通常は 5%d. e.以上が好ましく、特に 10%d • e.以上がより好ましい。
[0060] 塩精製においては、種結晶を添加することにより円滑に且つ効率良く結晶を析出さ せること力 Sできる。種結晶のジァステレオマー過剰率(d. e. )としては、 95%d. e.以 上を使用すればよぐ通常は 97。/0d. e.以上が好ましぐ特に 99%d. e.以上がより 好ましい。
[0061] 種結晶の使用量としては、式 [2]で示される光学活性二級ァミンの精製前の塩 1モ ルに対して 0. OOOlg以上を使用すればよぐ通常は 0. 001— 20gが好ましぐ特に 0. 01— 10g力より好ましレ、。 [0062] 温度条件としては、使用する再結晶溶媒の沸点および凝固点により適宜決めること ができ、通常は室温(25°C)から再結晶溶媒の沸点付近の温度で精製前の塩を溶解 し、徐々に降温し、 -20— + 20°Cで充分に結晶を析出させることが好ましい。種結晶 の添加は、通常は降温中に行うことが好ましい。
[0063] 本精製では、通常は析出した結晶のジァステレオマー過剰率(d. e. )が向上する ため、析出した結晶を濾過等で回収することにより、高いジァステレオマー過剰率(d . e. )の塩が得られる。また式 [2]で示される光学活性二級ァミンと酸の組み合わせ によっては、母液のジァステレオマー過剰率(d. e. )が向上する場合もあり、析出し た結晶を濾過等で取り除くことにより、高いジァステレオマー過剰率(d. e. )の塩を含 む溶液が得られる。さらにこれらの精製操作を繰り返すことにより、さらに高いジァス テレオマー過剰率(d. e. )に精製できる。
[0064] 第四工程の加水素分解には、得られた塩をそのままで、または中和して遊離塩基 に戻してから用いることができる。遊離塩基に戻す方法としては、無機塩基の塩基性 水溶液で中和し、有機溶媒で抽出することにより、遊離塩基を効率良く回収すること ができる。
[0065] 最後に第四工程の加水素分解について詳細に説明する。第四工程の加水素分解 は、式 [2]で示される光学活性二級アミンまたはその塩を加水素分解することにより なる。
[0066] 本加水素分解では、式 [2]で示される光学活性二級アミンまたはその塩の R— R体 または R— S体からは、式 [3]で示される光学活性 1 アルキル置換 2, 2, 2 トリフル ォロェチルァミンまたはその塩の R体力 光学純度を低下することなく得られる。一方 で S— R体または S—S体からは、 S体が光学純度を低下することなく得られる。
[0067] 本加水素分解は、 VIII族の金属触媒を用いて水素雰囲気下で行うことができる。従 つて本反応条件は、第二工程の不斉還元で採用した反応条件を同様に用いることに より行うことができる。この場合に、式 [1]で示される光学活性イミンを式 [2]で示され る光学活性二級ァミンに、式 [2]で示される光学活性二級アミンを式 [3]で示される 光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンに読み替えて行う。よ つて同様の記載 (例えば、 VIII族の金属触媒、 VIII族の金属触媒の使用量、水素の 使用量、水素圧、反応溶媒、反応溶媒の使用量、反応時間、後処理)は省略するが 、第四工程の加水素分解と第二工程の不斉還元の間で大きく異なり、且つ重要な反 応条件としては温度条件があり、以下に詳細に説明する。
[0068] 加水素分解は、不斉還元よりも高い温度条件で行う方がより効率的で且つ実用的 である。温度条件としては、 20 200°Cであり、通常は 30 150°Cが好ましぐ特に 40— 100°Cがより好ましい。
[0069] また後処理について詳細に説明する。後処理としては、特に制限はなぐ反応終了 後、通常の後処理操作を行うことにより粗生成物を得ることができる。 目的の式 [3]で 示される光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンの沸点が低い 場合または揮発性が高い場合には、反応終了液からセライト濾過等で VIII族の金属 触媒を除レ、た濾液に、第三工程の塩精製で記載した酸を予め加えてから濃縮等の 後処理操作を行い塩の形で回収することもできる。また逆に、 目的の式 [3]で示され る光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンの沸点が高ぐ揮発 性も低い場合で、且つ式 [2]で示される光学活性二級ァミンの塩を用いて反応を行 つたり、反応溶媒として酸の酸性水溶液を用いて反応を行った場合には、無機塩基 の塩基性水溶液で中和し、有機溶媒で抽出することにより、 目的の式 [3]で示される 光学活性 1一アルキル置換一 2, 2, 2—トリフルォロェチルァミンを遊離塩基として効率 良く回収することができる。粗生成物は、必要に応じて、活性炭処理、蒸留、再結晶 等の精製操作に付すことにより、 目的の式 [3]で示される光学活性 1一アルキル置換 -2, 2, 2_トリフルォロェチルァミンを高い化学純度で得ることができる。
[0070] 以下、実施例により本発明の実施の形態を具体的に説明するが、本発明はこれら の実施例に限定されるものではない。
[0071] [実施例 1] 脱水縮合一 1
1 , 1, 1_トリフノレ才ロアセトン 239. 23g (2. 135mol、 1. 96eq)のトノレェン溶:?夜( 卜ノレェン使用量 700ml) こ、氷冷下、(S) _l_フエニノレエチノレアミン 132. 00g (l . 089mol、 1. OOeq)のトルエン溶液(トルエン使用量 300ml)をカロえ、内温 10— 2 2。Cで 2時間 40分撹拌した。さらに、 PPTS 13. 69g (0. 054mol、 0. 05eq)をカロ え、内温 82— 113°Cで 18時間 5分撹拌し、副生する水をディーン 'スターク管で除い た。反応の変換率は、ガスクロマトグラフィーにより決定し、 88. 1 %であった。反応終 了液を飽和の塩化アンモニゥム水溶液 250mlで 4回洗浄し、回収有機層を減圧下 濃縮し、真空乾燥し、下記式
[0072] [化 7]
Figure imgf000019_0001
[0073] で示される光学活性ィミンの粗生成物 239. 67gを得た。粗生成物の有機物の回 収率は定量的であった。粗生成物のガスクロマトグラフィー純度は 90. 6%であった。 粗生成物の全量を蒸留精製することにより、蒸留精製品 167. l lgを得た(80—84 。C/l600Pa 2130Pa)。蒸留精製品のガスクロマトグラフィー純度は 94. 6%であ つた。脱水縮合と蒸留精製のトータル収率は 67%であった。 -NMRスぺクトノレと19 F—NMRスぺクトルを下に示す。 H—NMRスぺクトルと19 F—NMRスぺクトルにより二 重結合の立体化学は、 E体と決定された。
H—NMR (基準物質: TMS,溶媒: CDC1 )、 δ ppm: l . 50 (d, 6. 8Hz, 3H) , 2
. 03 (s, 3H) , 4. 71 (q, 6. 8Hz, 1H) , 7. 20-7. 40 (Ar_H, 5H) .
19F-NMR (基準物質: C F ,溶媒: CDC1 )、 δ ppm : 87. 01 (s, 3F)。
[0074] [実施例 2] 不斉還元一 1
テーブル 1の run9について代表例として下に示す。 runl— 8はテーブル 1に示さ れた反応条件で mn9と同様に実施した。
[0075] メタノーノレ 20mlに、実施例 1で製造した光学活性ィミンの蒸留精製品 4. 30g (l 9. 98mmolとする)と、 5%Pd/C (50wt. % wet) (活性炭 100gあたり、 5gの Pd (金属原子換算)が担持された「パラジウム一カーボン粉末」に対し、これと同重量の 水を混合し、調湿したものをいう。以下同じ) 0. 22g (光学活性ィミンに対して 5wt. %)をカ卩え、内温を 0°Cに冷却し、水素圧を 0. 5MPaに設定し、 0°Cで 3日間撹拌し た。反応終了液をセライト濾過し、 ^—NMRスペクトルにより変換率およびジァステレ ォマー比を、またガスクロマトグラフィーにより過剰反応生成物 1ーメチルー 2, 2, 2—ト リフルォロェチルァミンの組成比を決定し、それぞれ 95%、 S_S : R_S = 75 : 25、 0. 2%であった。セライト濾過した濾液の一部を減圧下濃縮し、真空乾燥し、 'H-NMR スペクトルと19 F—NMRスペクトルにより下記式
[0076] [化 8]
Figure imgf000020_0001
[0077] で示される光学活性二級ァミンの生成を確認した。 ^—NMRスペクトルと19 F—NMR スペクトルを下に示す。
^—NMR (基準物質: TMS,溶媒: CDC1 )
S— S体(メジャー)/ δ ppm: l . 11 (d, 6. 6Hz, 3H) , 1. 32 (d, 6. 6Hz, 3H) , 2 . 94 (septet, 6. 6Hz, 1H) , 4. 05 (q, 6. 6Hz, 1H) , 7. 20—7. 43 (Ar-H, 5H ) , _NHに由来するブロードピークは帰属できず。
R— S体(マイナー)/ δ ppm : l . 22 (d, 6. 6Hz, 3H) , 1. 36 (d, 6. 6Hz, 3H), 2. 99 (septet, 6. 6Hz, 1H) , 3. 97 (q, 6. 6Hz, 1H) , 7. 20—7. 43 (Ar— H, 5 H) , _NHに由来するブロードピークは帰属できず。
F-NMR (基準物質: C F ,溶媒: CDC1 )
S— S体(メジャー)/ δ ppm: 85. 58 (d, 6. 6Hz, 3F) . R— S体(マイナー)/ δ p pm : 84. 33 (d, 6. 6Hz, 3F)。
[0078] [実施例 3] 脱水縮合一 2
1 , 1, 1—卜リフノレ才ロアセトン 1158. 56g (10. 340mol、 1. 71eq)のトノレェン溶 液(トルエン使用量 4600ml)に、氷冷下、(S)— 1—フエニルェチルァミン 734· 38 g (6. 060mol、 1. OOeq)のトノレェン溶夜(トノレェン使用量 1000ml)をカロえ、内温 3 2— 34。Cで 2時間撹拌した。さらに、予め、トルエン 460mlに、 PTS '—水和物 57 . 64g (0. 303mol、 0. 05eq)とピリジン 24. 00g (0. 303mol、 0. 05eq)をカロえて 撹拌調製した PPTSのトルエン溶液を加え、内温 60— 84°Cで 7時間 30分撹拌した。 反応の変換率は、ガスクロマトグラフィーにより決定し、 85%以上であった。反応終了 液を 1N水酸化ナトリウム水溶液 1000mlで 1回、 3N塩化アンモニゥム水溶液 150 0mlで 4回、引き続いて 10%食塩水 1000mlで 1回洗浄し、回収有機層を減圧下 濃縮し、真空乾燥し、下記式
[0079] [化 9]
Figure imgf000021_0001
[0080] で示される光学活性ィミンの粗生成物を得た。粗生成物のガスクロマトグラフィー純 度は 82. 7%であった。
[0081] また、 1 , 1 , 1_トリフノレ才ロアセトン 1148. 18g (10. 247mol、 1. 70eq)、(S) _ 1_フエニノレエチノレアミン 730. 43g (6. 028mol) , PTS ·一水禾ロ物 57. 33g (0. 301mol、 0. 05eq)、ピリジン 23. 73g (0. 300mol、 0. 05eq)とトノレェン(トータノレ 使用量) 6000mlを用いて同様に製造した。
[0082] これらの粗生成物の全量を合わせて蒸留精製することにより、蒸留精製品 2213.
03gを得た(79— 85。C/l 200Pa— 1330Pa)。蒸留精製品のガスクロマトグラフィ 一純度は 85. 6%であった。脱水縮合と蒸留精製のトータル収率は 73%であった。 1 H—NMRスペクトルと19 F—NMRスペクトルは実施例 1と同様であった。 H—NMRス ぺクトルと19 F - NMRスペクトルにより二重結合の立体化学は、 E体と決定された。
[0083] [実施例 4] 不斉還元一 2
メタノーノレ 48. 382Lに、実施例 3と同様に製造した光学活性ィミンの蒸留精製品 10. 41 lkg (41. 023mol、ガスクロマトグラフィー純度は 84. 8%)と、 5%Pd/C ( 50wt. % wet) 0. 521kg (光学活性ィミンに対して 5. 9wt. %)を加え、内温を 0 °C以下に冷却し、水素圧を 0. 50-0. 52MPaに設定し、 -1一 0°Cで 53時間 40分 撹拌した。反応終了液をセライト濾過し、残查をメタノール 13. 148Lで洗浄した。 濾液の1 H—NMRスペクトルにより変換率およびジァステレオマー比を、またガスクロ マトグラフィ一により過剰反応生成物 1ーメチルー 2, 2, 2—トリフルォロェチルァミンの 組成比を決定し、それぞれ 94%、 S_S : R_S = 70 : 30、 0. 1 %であった。濾液(実 施例 5のために一部(427. 56g)を使用する)を減圧下濃縮し、下記式 [0084] [化 10]
Figure imgf000022_0001
[0085] で示される光学活性二級ァミンの粗生成物 11. 196kgを得た。 19 F— NMRスぺタト ルの内部標準法による、粗生成物中の目的物の定量値は 6. 867kgであった。収率 は 77%であった。 H—NMRスペクトルと19 F—NMRスペクトルは実施例 2と同様であ つた。
[0086] [実施例 5] 塩精製一 1
実施例 4のセライト濾過した濾液 427. 56gを使用した。含量を19 F— NMRスぺタト ルの内部標準法により定量したところ、光学活性二級アミン 54. 33g (250. 10mm ol 1. OOeq)であった。爐 ί夜全量に、氷冷下、 48%臭ィ匕水素酸 46. 35g (274. 9 7mmol 1. 10eq)を加え、メタノールと水を減圧下濃縮し、真空乾燥し、下記式
[0087] [化 11]
Figure imgf000022_0002
[0088] で示される精製前の光学活性二級ァミンの塩を得た。精製前の光学活性二級アミン の塩の全量に、 i一プロパノール 112mlをカ卩え、加熱還流下、撹拌しながら溶解した 。撹拌しながら徐々に降温し、 67°Cで種結晶 0. 10gをカ卩え、終夜をかけて室温(2 5°C)まで冷却した。さらに、氷冷下、 1時間撹拌した。析出した結晶を濾過し、 i一プロ パノール 12mlと n キサン 10mlの混合液で析出した結晶を洗浄し、減圧下乾 燥し、真空乾燥し、下記式 [0089] [化 12]
CH3 CH,„
CF3 -N
d H火' 、Ph
- HBr
[0090] で示される精製後の光学活性二級ァミンの塩(1回目再結晶品) 38· 57gを得た。 1 回目再結晶品を 1N水酸化ナトリウム水溶液で中和し、酢酸ェチルで抽出して、ガス クロマトグラフィーによりジァステレオマー過剰率(d. e. )を決定し、 94. 9%d. e.で あった。
[0091] 1回目再結晶品の全量に、 i-プロパノール 193mlを加え、加熱還流下、撹拌しな 力 ¾溶解した。撹拌しながら徐々に降温し、 65°Cで種結晶 0. 10gを加え、終夜を 力、けて室温(25°C)まで冷却した。さらに、氷冷下、 1時間撹拌した。析出した結晶を 濾過し、 i一プロパノール 10mlと n—へキサン 10mlの混合液で析出した結晶を洗 浄し、減圧下乾燥し、真空乾燥し、上記式で示される精製後の光学活性二級アミン の塩 (2回目再結晶品) 33. 55gを得た。 S—S体に対しての再結晶精製のトータノレ 回収率は、 64%であった。 2回目再結晶品を 1N水酸化ナトリウム水溶液で中和し、 酢酸ェチルで抽出して、ガスクロマトグラフィーにより化学純度およびジァステレオマ 一過剰率(d. e. )を決定し、それぞれ 100· 0%、 99. 4%d. e.であった。 'Η-ΝΜ Rスペクトルと19 F—NMRスペクトルを下に示す。
H—NMR (基準物質: TMS,溶媒: DMSO_d )、 δ ppm : l . 32 (d, 6. 4Hz, 3H
6
) , 1. 56 (d, 6. 4Hz, 3H) , 3. 97 (br, 3H) , 4. 45 (br, 1H) , 7. 32-7. 66 (Ar- H, 5H) .
19F_NMR (基準物質: C F ,溶媒: DMS〇_d )、 5 ppm : 90. 78 (br-d, 3F)。
6 6 6
[0092] [実施例 6] 加水素分解一 1
実施例 5で製造した光学活性二級ァミンの塩 (臭化水素酸塩、 2回目再結晶品、 化学純度 100. 0%、ジァステレオマー過剰率(d. e. ) 99. 4%d. e. ) 9. 06g (3 0. 39mmol、 1. OOeq)を IN水酸ィ匕ナトリウム水溶 f夜 50. 00ml (50. 00mmol、 1 . 65eq)で中和し、酢酸ェチル 20mlで 2回抽出し、回収有機層を飽和の食塩水 1 0mlで 1回洗浄し、無水硫酸ナトリウムで乾燥し、減圧下濃縮し、下記式 [0093] [化 13]
Figure imgf000024_0001
[0094] で示される光学活性二級ァミンの遊離塩基 7. 58g (抽出溶媒を一部含有、理論回 収量 6. 60g)を得た。メタノール 30mlに、光学活性二級ァミンの遊離塩基全量 7 . 58g (30. 39mmolとする)と 5%Pd/C (50wt. % wet) 0. 33g (光学活性二級 ァミンの理論回収量に対して 5. Owt. %)を加え、水素圧を 0. 5— 0. 6MPaに設定 し、 60— 62°Cで 15時間撹拌した。反応終了液をセライト濾過し、残查をメタノール 5mlで洗浄した。濾液のガスクロマトグラフィーにより変換率を決定し、 100%であつ た。濾液に、 10%塩酸メタノーノレ 40mlをカ卩え、 pHを 1とし、減圧下濃縮し、下記式
[0095] [化 14]
CH3
三 S
CF 'ΝΗ2 · HCI
[0096] で示される光学活性 1 アルキル置換 2, 2, 2 トリフルォロェチルァミンの塩の粗結 晶 2. 61gを得た。減圧下濃縮した時の留出液に、 1N塩酸水溶液 20mlを加え、 減圧下濃縮し、上記式で示される光学活性 1 -アルキル置換 - 2, 2, 2_トリフルォロ ェチルァミンの塩の粗結晶 2. 85gを得た。前者を第 1粗結晶、後者を第 2粗結晶と する。第 1粗結晶全量 2. 61gにトルエン 10mlをカ卩え、室温で撹拌し、濾過し、結 晶を少量のトルエンで洗浄し、減圧下乾燥し、真空乾燥し、上記式で示される光学活 性 1一アルキル置換一 2, 2, 2_トリフルォロェチルァミンの塩の精製結晶 1. 63gを 得た(第 1精製結晶とする、収率 36%、ガスクロマトグラフィーによる化学純度 99. 5 %、ェナンチォマー過剰率(e. e. ) 99. 3%e. e. )。第 2粗結晶全量 2. 85gにトル ェン 10mlをカ卩え、室温で撹拌し、濾過し、結晶を少量のトルエンで洗浄し、減圧下 乾燥し、真空乾燥し、上記式で示される光学活性 1 -アルキル置換 - 2, 2, 2_トリフル ォロェチルァミンの塩の精製結晶 0· 90gを得た(第 2精製結晶とする、収率 20%、 ガスクロマトグラフィーによる化学純度 99· 4%、ェナンチォマー過剰率(e. e. ) 99. 3%e. e. )。第 1粗結晶と第 2粗結晶をトルエンで撹拌洗浄した時の濾液を合わせて 、減圧下濃縮し、上記式で示される光学活性 1一アルキル置換一 2, 2, 2-トリフルォロ ェチルァミンの塩の粗結晶 2. 75gを得た (第 3粗結晶とする)。第 3粗結晶の19 F— N MRスぺタトノレの内部標準法による定量値は 1. 54gであった(収率 34%、ガスクロマ トグラフィ一による化学純度 94. 6%、ェナンチォマー過剰率(e. e. ) 99. l%e. e. )
[0097] 第 1精製結晶、第 2精製結晶および第 3粗結晶を合計した収率は 90%であった。ェ ナンチォマー過剰率(e. e. )は、光学活性 1_アルキル置換—2, 2, 2_トリフルォロェ チルァミンの塩を過剰のベンゾイルク口ライドとピリジンを用いてベンズアミド誘導体に 誘導し、キラルガスクロマトグラフィーにより決定した。 H—NMRスペクトルと19 F—NM Rスペクトルを下に示す。
H—NMR (基準物質: TMS,溶媒: DMSO_d )、 δ ppm : l . 37 (d, 7. 2Hz, 3H
6
) , 4. 24 (septet, 7. 2Hz, 1H) , 9. 24 (br, 3H) .
19F— NMR (基準物質: C F ,溶媒: DMS〇_d )、 5 ppm : 88. 03 (d, 7. 2Hz, 3
6 6 6
F)。
[0098] [実施例 7] 塩精製一 2
i一プロパノール 10mlに、実施例 2または実施例 4と同様に製造した光学活性二 級ァミン 2. 00g (9. 207mmol、 1. 00eq、ジァステレオマー過剰率(d. e. ) 42. 9 %d. e. )と(IS)— ( + )—10—カンファースノレホン酸 2. 14g (9. 212mmol、 1. 00e q)を加え、 80°Cで撹拌しながら溶解した。さらに、 n—ヘプタン 3. 5mlを加え、室温 (25°C)まで冷却し、終夜撹拌した。析出した結晶を濾過し、少量のトプロパノールと n—ヘプタンの混合液で析出した結晶を洗浄し、減圧下乾燥し、真空乾燥し、下記式 [0099] [化 15]
Figure imgf000026_0001
[0100] で示される光学活性二級ァミンの塩 2.09gを得た。 S-S体に対しての再結晶精製 の回収率は、 71%であった。本品を 1N水酸化ナトリウム水溶液で中和し、酢酸ェチ ルで抽出して、ガスクロマトグラフィーによりジァステレオマー過剰率(d. e. )を決定し 、 97.3%d. e.であった。 H—NMRスペクトルと19 F—NMRスペクトルを下に示す。
-NMR (基準物質: TMS,溶媒: CDC1)、 δ ppm:0.88(s, 3H) , 1.16(s, 3
H), 1.44 (m, 1H), 1.68 (d, 6.8Hz, 3H) , 1.81 (m, 1H), 1.92 (d, 19.6H z, IH), 1.93 (d, 6.8Hz, 3H) , 2.06 (m, 1H), 2.10 (m, IH), 2.35 (dt, 1 8. OHz, 3.8Hz, IH), 2.76 (m, IH), 2.87 (d, 14.8Hz, IH), 3.40 (d, 14 .8Hz, 1H), 3.41 (septet, 6.8Hz, IH), 4.57 (q, 6.8Hz, 1H), 7.40 (Ar- H, 3H), 7.60(Ar-H, 2H) ,—NHおよび— SO Hに由来するブロードピークは帰 属できず。
19F_NMR (基準物質: C F,溶媒: CDC1)、 δ ppm:91.23(br-d, 3F)。

Claims

請求の範囲
[1] 式 [1]
[化 16]
Figure imgf000027_0001
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 Phはフヱニル基を表し、波線は E体または Z体を表し、 *は不斉炭素を表す]で示される光学活性イミンを、 VIII族の 金属触媒を用いて、水素雰囲気下で不斉還元することにより、式 [2]
[化 17]
Figure imgf000027_0002
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 Phはフヱニル基を表し、 *は不 斉炭素を表す]で示される光学活性二級ァミンに変換し、該二級アミンまたはその塩 を加水素分解することにより、式 [3]
[化 18]
CF3" NH2 [3]
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 *は不斉炭素を表す]で示され る光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンまたはその塩を製造 する方法。
[2] 不斉還元を 10°C以下の温度条件で行うことを特徴とする、請求項 1に記載した製造 方法。
[3] 式 [1]で示される光学活性ィミン、式 [2]で示される光学活性二級ァミンおよび式 [3] で示される光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンの Rがメチ ル基である、請求項 1または請求項 2に記載した製造方法。
[4] 式 [1]で示される光学活性ィミンが、式 [4]
[化 19]
R
CF3, 、0 [4]
[式中、 Rは炭素数 1から 6の低級アルキル基を表す]で示されるトリフルォロメチルァ ノレキノレケトンと、式 [5]
[化 20]
Figure imgf000028_0001
[5]
[式中、 Phはフエ二ル基を表し、 *は不斉炭素を表す]で示される光学活性 1-フエ二 ルェチルァミンを、酸触媒の存在下、脱水縮合することにより得られる光学活性イミン である、請求項 1乃至請求項 3の何れかに記載した製造方法。
[5] 式 [2]
[化 21]
Figure imgf000028_0002
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 Phはフヱニル基を表し、 *は不 斉炭素を表す]で示される光学活性二級アミンを、その塩に誘導して再結晶精製す ることを特徴とする精製方法。
[6] 式 [2]で示される光学活性二級ァミンの Rカ チル基であり、その塩が臭化水素酸塩 である、請求項 5に記載した精製方法。
[7] 式 [2]で示される光学活性二級ァミンの Rカ チル基であり、その塩が光学活性 10— カンファースルホン酸塩である、請求項 5に記載した精製方法。
[8] 請求項 1乃至請求項 4の何れかの製造方法によって、式 [2]で示される光学活性二 級ァミンを得た後、該二級アミンを請求項 5乃至請求項 7の何れかの精製方法によつ て精製することを特徴とする、請求項 1乃至請求項 4の何れかに記載の、式 [3]で示 される光学活性 1_アルキル置換一 2, 2, 2_トリフルォロェチルァミンまたはその塩を 製造する方法。
[9] 式 [2]
[化 22]
Figure imgf000029_0001
[式中、 Rは炭素数 1から 6の低級アルキル基を表し、 Phはフヱニル基を表し、 *は不 斉炭素を表す]で示される光学活性二級ァミン。
[10] 式 [2]で示される光学活性二級ァミンの Rカ チル基である、請求項 9に記載の光学 活性二級ァミン。
[11] 式 [2]で示される光学活性二級ァミンの Rカ チル基である、請求項 9に記載の光学 活性二級ァミンの臭化水素酸塩。
[12] 式 [2]で示される光学活性二級ァミンの Rカ チル基である、請求項 9に記載の光学 活性二級ァミンの光学活性 10-カンファースルホン酸塩。
PCT/JP2004/007955 2003-06-11 2004-06-08 光学活性1−アルキル置換−2,2,2−トリフルオロエチルアミンの製造方法 WO2004110977A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004030571T DE602004030571D1 (de) 2003-06-11 2004-06-08 Verfahren zur herstellung optisch aktiven 1-alkyl-substituierter 2,2,2-trifluorethylamins
EP04745665A EP1642884B1 (en) 2003-06-11 2004-06-08 Process for producing optically active 1-alkyl-substituted 2,2,2-trifluoroethylamine
US10/560,251 US7393979B2 (en) 2003-06-11 2004-06-08 Process for producing optically active 1-alkyl-substituted 2,2,2-trifluoroethylamine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003166525A JP4287703B2 (ja) 2003-06-11 2003-06-11 光学活性1−アルキル置換−2,2,2−トリフルオロエチルアミンの製造方法
JP2003-166525 2003-06-11

Publications (1)

Publication Number Publication Date
WO2004110977A1 true WO2004110977A1 (ja) 2004-12-23

Family

ID=33549261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007955 WO2004110977A1 (ja) 2003-06-11 2004-06-08 光学活性1−アルキル置換−2,2,2−トリフルオロエチルアミンの製造方法

Country Status (6)

Country Link
US (1) US7393979B2 (ja)
EP (1) EP1642884B1 (ja)
JP (1) JP4287703B2 (ja)
CN (1) CN100422138C (ja)
DE (1) DE602004030571D1 (ja)
WO (1) WO2004110977A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297395A (ja) * 2006-05-05 2007-11-15 Softgel Formulators Inc 高吸収性コエンザイムq10組成物及びその製造方法
WO2009080511A1 (de) * 2007-12-21 2009-07-02 Basf Se Verfahren zur diastereoselektiven umsetzung von chiralen iminen
JP5902575B2 (ja) * 2012-07-20 2016-04-13 国立大学法人お茶の水女子大学 光学活性含フッ素アミン化合物の製造方法並びに光学活性含フッ素アミン化合物
JP6912997B2 (ja) * 2016-10-27 2021-08-04 三洋化成工業株式会社 含フッ素脂肪族アミン塩酸塩の製造方法
JP6889646B2 (ja) * 2016-10-27 2021-06-18 三洋化成工業株式会社 含フッ素脂肪族アミン塩酸塩の製造方法
CN110681386B (zh) * 2019-10-23 2022-04-22 东北大学秦皇岛分校 一种FeOOH包覆铜酸镨纳米催化粉体的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182578A (ja) * 1996-12-19 1998-07-07 Agency Of Ind Science & Technol 不斉な含フッ素一級アミンの製造法
JP2002030048A (ja) * 2000-05-11 2002-01-29 Central Glass Co Ltd 光学活性α−メチル−ビス−3,5−(トリフルオロメチル)ベンジルアミンの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182578A (ja) * 1996-12-19 1998-07-07 Agency Of Ind Science & Technol 不斉な含フッ素一級アミンの製造法
JP2002030048A (ja) * 2000-05-11 2002-01-29 Central Glass Co Ltd 光学活性α−メチル−ビス−3,5−(トリフルオロメチル)ベンジルアミンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1642884A4 *

Also Published As

Publication number Publication date
US7393979B2 (en) 2008-07-01
EP1642884A1 (en) 2006-04-05
CN1832918A (zh) 2006-09-13
EP1642884B1 (en) 2010-12-15
CN100422138C (zh) 2008-10-01
EP1642884A4 (en) 2007-12-26
JP2005002036A (ja) 2005-01-06
DE602004030571D1 (de) 2011-01-27
US20060281950A1 (en) 2006-12-14
JP4287703B2 (ja) 2009-07-01

Similar Documents

Publication Publication Date Title
JP5343925B2 (ja) (2r)−2−プロピルオクタン酸の製造方法
WO2008062460A2 (en) Crystalline forms of pregabalin
CN1216033C (zh) 亚环己基胺的顺式选择性催化氢化方法
WO2004110977A1 (ja) 光学活性1−アルキル置換−2,2,2−トリフルオロエチルアミンの製造方法
JP5211876B2 (ja) 高純度2’−トリフルオロメチルプロピオフェノンの製造方法
US6635773B2 (en) Process for preparing citalopram
WO2005085174A1 (ja) 光学活性1−アリール−2−フルオロ置換エチルアミン類およびその製造方法
JP2008063335A (ja) カルボニル化合物から1,2−ジオールを製造する方法
JP3982993B2 (ja) 光学活性1−(トリフルオロメチルモノ置換フェニル)エチルアミンの精製方法
JP3982991B2 (ja) 光学活性1−(トリフルオロメチルモノ置換フェニル)エチルアミンの製造方法
JP5233299B2 (ja) 光学活性1−(2−トリフルオロメチルフェニル)エタノールの精製方法
US6797842B2 (en) Process for producing optically active 1-(fluoro- or trifluoromethyl-substituted phenyl) ethylamine and process for purifying same
WO2008001719A1 (fr) Procédé de production d'un dérivé optiquement actif de 1-(phényle à substitution fluoro, trifluorométhyle ou trifluorométhoxy)alkylamine n-monoalkyle
JP3902384B2 (ja) 光学活性α−メチル−ビス−3,5−(トリフルオロメチル)ベンジルアミン類の精製方法
JP4049548B2 (ja) 光学活性1−(フルオロフェニル)エチルアミンの精製方法
JP4308155B2 (ja) δ−イミノマロン酸誘導体の製造方法、及びそのための触媒
JP3830727B2 (ja) 光学活性α−メチル−ビス−3,5−(トリフルオロメチル)ベンジルアミンの製造方法
JP4049544B2 (ja) 光学活性1−(フルオロフェニル)エチルアミンの製造方法
JP4437648B2 (ja) 光学活性1−(2−トリフルオロメチルフェニル)エチルアミンの製造方法
JP3738470B2 (ja) 光学活性 1−(ジクロロ置換フェニル) エチルアミン類の製造方法
IE59990B1 (en) New process for the enantiospecific preparation of (s)-2-ethylamino-1-[3-(trifluoromethyl)phenyl]propane
JP2002088040A (ja) ω―シアノアルデヒド化合物の製造法
JP2003335737A (ja) 光学活性(r)−1−(4−トリフルオロメチルフェニル)エチルアミン
JP2002308842A (ja) エナミド及び光学活性アミン誘導体の製造方法
KR20070023782A (ko) 3-아미노메틸테트라히드로푸란 유도체의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022700.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004745665

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004745665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006281950

Country of ref document: US

Ref document number: 10560251

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10560251

Country of ref document: US