WO2004108204A1 - 経皮投薬用パッドベースの製造方法及び経皮投薬用パッドベース、並びに注射針 - Google Patents

経皮投薬用パッドベースの製造方法及び経皮投薬用パッドベース、並びに注射針 Download PDF

Info

Publication number
WO2004108204A1
WO2004108204A1 PCT/JP2004/008514 JP2004008514W WO2004108204A1 WO 2004108204 A1 WO2004108204 A1 WO 2004108204A1 JP 2004008514 W JP2004008514 W JP 2004008514W WO 2004108204 A1 WO2004108204 A1 WO 2004108204A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad base
needle
skin
raw material
synthetic resin
Prior art date
Application number
PCT/JP2004/008514
Other languages
English (en)
French (fr)
Inventor
Shinya Maenosono
Yasushi Suzuki
Hiroshi Akitomo
Hidetoshi Hamamoto
Masaki Ishibashi
Original Assignee
Medrx Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medrx Co., Ltd. filed Critical Medrx Co., Ltd.
Priority to EP04736595A priority Critical patent/EP1632263A4/en
Priority to CA002528512A priority patent/CA2528512A1/en
Priority to US10/560,085 priority patent/US7347835B2/en
Priority to AU2004244909A priority patent/AU2004244909A1/en
Publication of WO2004108204A1 publication Critical patent/WO2004108204A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0038Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a channel at the side surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • the present invention relates to a method of manufacturing a pad base for transdermal administration, a pad base for transdermal administration, and an injection needle.
  • the present invention relates to a transdermal administration pad base used for transdermally administering a drug acting on a living body into a living body, a method for producing the same, and an injection needle.
  • the pad base is a portion of the transdermal administration pad that is responsible for transdermal administration of the drug.
  • the transdermal administration pad is a pad base that is covered from the side opposite to the skin with, for example, an adhesive sheet. Therefore, before use, attach the pad base surface to the skin.
  • the skin acts as a barrier that protects the body, preventing foreign substances from entering the body.
  • the outer stratum corneum which is in direct contact with foreign matter, plays a large role as a barrier.
  • the gastrointestinal tract is the same in that it comes into direct contact with foreign substances in vitro, the gastrointestinal tract does not have a barrier such as the stratum corneum like the skin, but rather actively excretes foreign substances, that is, nutrients from food. They are composed of nutrient-absorbing cells that have the function of taking up cells, and in this respect, they differ greatly.
  • the skin also has a function of excreting it outside the living body (insensitive evaporative function).
  • the skin is not a simple protective film but an organ having a function of regulating the passage of substances.
  • transdermal absorption type Pharmaceuticals such as nitroglycerin, isosorbide dinitrate, estradiol, llobuterol, nicotine, clonidine, scopolamine, phenynil, and lidocaine have been developed.
  • MicroPatch is a method of making micro perforations in the skin by applying a pad with a myriad of small needles to the skin and injecting a drug from the stimulus site.
  • the transdermal administration pad used in this micropatch method is a pyramid-shaped 10 to 50-m-thick solid and short needle (silicon, metal, or plastic). It is equipped with a plurality of tubes and a reservoir as a chemical solution tank.
  • the needle is pierced into the skin, and the contact surface between the needle and the skin is shaken with a vibration device (100 MHZ to 2000 MHZ) In this way, the gap is widened so that the drug solution from the reservoir can penetrate into the skin from the very small perforated portion of the skin (for example, see US Pat. No. 6,183,434).
  • Insulin, morphine, ⁇ -interferon, parathyroid hormone, erythropoietin, and the like have been developed as drugs to be administered by the micropatch method (Altea Therapeutics, Atlanta, USA). Now in phase one, research for practical application is underway. Other methods of administration include needle-free injection, which is in contrast to the above method.Specifically, injection is performed under a high pressure on the injection solution, or the drug powder is injected under high pressure. A method using high-pressure gas that is injected under the skin by applying gas has been proposed, and some of them have already been commercialized.
  • the micropatch method is an excellent method from the viewpoint that it does not require a dedicated device and can be easily used by anyone. Disclosure of the invention
  • the micropatch method involves puncturing with a solid needle and injecting the drug through the gap between the needle and the skin.For this injection, it is necessary to vibrate with a vibration device. Since a power source for this purpose is indispensable, a simpler method is desired.
  • an object of the present invention is to provide a pad base for transdermal administration which can dispense a drug into the skin without vibrating in a micropatch method.
  • Another object of the present invention is to provide a production method capable of easily obtaining such a pad base for transdermal administration.
  • a thin needle is required to relieve pain with a normal injection needle, but if it is too thin, there is a concern that it may break. If it breaks, it may remain in the skin and adversely affect the living body.
  • the percutaneous administration pad base according to the present invention is characterized in that fine needles are erected on the skin side of a base material to be adhered to the skin, wherein the fine needles are hollow tubular bodies, and the outer wall thereof is attached as described above. It is characterized in that the skirt spreads thicker toward the base material.
  • the fine needle itself is a hollow tubular material as described above, the hollow portion is filled with a drug to be administered (a liquid drug or the like), so that a transdermal administration pad having the pad base is provided.
  • a drug to be administered a liquid drug or the like
  • the microneedle pierces the skin, and the drug in the microneedle is injected into the skin.
  • the fine needles have a large width at the bottom, so they are not easily broken, and there is little concern that the fine needles remain in the skin.
  • administration can be carried out without performing the operation of shaking the contact surface between the needle and the skin to widen the gap as in the related art. Is unnecessary, and the drug can be administered more easily.
  • the method according to the present invention which can produce the pad base for transdermal administration as described above, comprises vertically immersing one end of a thin metal wire in a synthetic resin raw material solution to form the composite around the thin metal wire.
  • the method is characterized in that the resin raw material solution is adhered, and after the synthetic resin raw material solution is cured, the metal fine wire is pulled out to form the tubular fine needle. Further, a plurality of the fine metal wires may be provided, and a plurality of the fine needles may be formed.
  • the “curing” mentioned above includes a case where the solvent of the synthetic resin raw material solution evaporates to precipitate the raw resin component, a case where the liquid raw resin component is reacted and solidified, and the like.
  • a synthetic resin raw material solution a thin solution of synthetic resin dissolved in a solvent is used.
  • the liquid level of the raw material solution at a portion where there is no thin metal wire gradually drops, and around the thin metal wire, the raw material solution is placed at the initial liquid level position. Adheres and remains, and exhibits a flared shape toward the lowered liquid surface.
  • the synthetic resin cured by the evaporation of the solvent forms a tubular body (fine needle) with a flared flared portion formed by the thin metal wire as a hole.
  • thermoplastic idiot used as the synthetic resin
  • one end of the thin metal wire is immersed in a synthetic resin raw material solution that is a heated and melted resin, and the liquid surface of the synthetic resin raw material solution is a portion of the thin metal wire. And it hardens in this state.
  • a method of attaching the synthetic resin raw material solution so as to rise around the metal thin wire a method of once immersing the metal thin wire deeply in the synthetic resin raw material solution and then raising the metal thin wire is used.
  • a method in which the synthetic resin raw material solution is vibrated while it is immersed to cause the solution to propagate on the surface of the thin metal wire, and the viscosity of the synthetic resin raw material solution is appropriately adjusted so that the solution can propagate naturally. There are ways to do that.
  • the portion of the thin metal wire becomes a hole to form a tub-spread tubular body (fine needle).
  • the synthetic resin material in the synthetic resin raw material solution include polypropylene, polyurethane, aramide, and fluorinated polyimide. Particularly, a biodegradable resin is preferable.
  • the microneedle is made of a biodegradable shelf, even if the tip of the microneedle is chipped and remains in the skin, the microneedle made of a biodegradable resin is in vivo It is decomposed and has little adverse effect on living organisms.
  • the fine needles are made of a biodegradable resin and a drug to be administered, even if the fine needles are chipped and remain in the skin in the same manner as described above, they are degraded in the living body and have almost no adverse effect on the living body.
  • the drug is administered by dissolving (decomposing) the fine needle itself in the living body.
  • biodegradable resins include polylactic acid, polyethylene succinate, polybutylene succinate adipate, polybutylene succinate force-one-port, poly-force pro-lactone, polyesteramide, polyester-carbonate, polyvinyl alcohol, and polyalcohol. Hydroxybutyrate, mantriose, cellulose, cellulose acetate, collagen, and mixtures thereof are recommended, and in particular, polylactic acid or a copolymer of lactic acid and dalicholic acid is preferred. For example, lactic acid-glycolic acid copolymer, which is already used as a pharmaceutical, is hydrolyzed into lactic acid in tissues and gradually disappears.
  • the amount of adhesion to the above-mentioned thin metal wire during production becomes appropriate, and after the resin is cured. This is more preferable because the metal thin wire described above has good pull-out properties and the quality of the resulting film (tubular material) is excellent.
  • the synthetic resin raw material solution a solution obtained by adding a drug to be administered to a biodegradable resin was used. May be.
  • the injection needle according to the present invention is characterized in that the outer wall of the needle portion of the injection needle is widened toward the connecting point of the injection needle with the syringe so as to expand toward the bottom. In this way, the outer wall of the needle part is wide and wide at the hem, so it is hard to break and there is little concern about remaining in the skin.
  • FIG. 1 is a cross-sectional view for explaining the shape of the hollow portion of the fine needle in the pad base for transdermal administration according to the present invention.
  • FIG. 2 is a view showing a pad base for transdermal administration according to an embodiment of the present invention.
  • Figure 3 (a) is a micrograph of the fine needle in the transdermal dosing pad base of Example 10, and (b) is a schematic diagram thereof.
  • the pad base for transdermal administration and the method for producing the same according to the present invention will be specifically described with reference to the drawings showing examples.
  • the present invention is not necessarily limited to the illustrated examples. It is also possible to implement the present invention with appropriate modifications within a range that can be adapted to the gist of the following description, and all of them are included in the technical scope of the present invention.
  • a synthetic resin raw material solution for example, a solution prepared by dissolving polylactic acid in black form is prepared.
  • the raw material solution is poured into a shallow metal vat, and one end of each of the plurality of fine metal wires is immersed in the vertical direction, so that the raw material solution is attached to the peripheral surface of the fine metal wires.
  • the solvent-forming form is removed by drying, whereby the surface of the raw material solution is lowered with the raw material solution attached to the peripheral surface of the thin metal wire, and the polylactic acid is hardened. Thereafter, a thin metal wire is pulled out from the hardened polylactic acid and taken out from the metal vat.
  • transdermal administration as shown in FIG. 2 [(a): a cross-sectional view showing a pad base for transdermal administration according to an embodiment of the present invention, and (b): a top view of the pad base]
  • the pad base is obtained.
  • the obtained pad base has a large number of fine needles 1 erected on the bonding substrate 2, and the fine needles 1 are cylindrical with a bottom open on the skin surface side, and the outer wall thereof has a bonding substrate 2.
  • the hem spreads wide toward.
  • the upper side in Fig. 2 (a) is the surface to be attached to the skin.
  • the fine needle 1 and the application substrate 2 are depicted as being formed separately, but as can be seen from the above-described manufacturing method, they are manufactured by integral molding.
  • transdermal administration pad a pad in which an adhesive sheet is covered from the side opposite to the skin (the lower side in FIG. 2 (a)) of the above pad base can be used.
  • a drug is delivered from a hollow portion and injected as in the case of injection by piercing a needle by pressing against the skin without using an adhesive.
  • the hollow portion 3 of the fine needle 1 is filled in such a manner that the drug solution is sucked from the drug solution container, and the pad for transdermal administration provided with this pad base is attached to the skin.
  • the fine needle 1 is punctured into the living body, and the drug solution in the hollow portion 3 is injected into the living body from the tip of the fine needle 1.
  • the drug to be filled in the tube of the fine needle 1 may be any of liquid, cream, gel, suspension, and powder. Suitable for transdermal administration It is practically not restricted except for drugs that are not available.
  • the depth of the hollow portion 3 of the fine needle 1 may be deeper than that shown in FIG.
  • the height H of the fine needle 1 and the depth L of the hollow portion 3 are the same.
  • the one in Fig. 2 has a hollow part 3 higher than the height H of the fine needle 1.
  • H> L sin-hollow type: TY PE 1
  • the curvature is infinite here, that is, a flat shape.
  • the portion below this plane with the portion as the boundary surface is referred to as the attachment substrate 2, and the portion standing therefrom is referred to as the fine needle 1.
  • the depth of the hollow portion 3 of each microneedle 1 in the pad base having a plurality of microneedles 1 may be the same as shown in FIG. 2, or may be a combination of different depths.
  • a medicine storage tank is provided on the side opposite to the skin of the application substrate 2.
  • the medicine may be supplied from here to continuously administer the medicine.
  • the injection needle according to one embodiment of the present invention also has one end of a metal thin wire immersed in a synthetic resin raw material solution in the vertical direction to adhere the synthetic resin raw material solution around the metal thin wire. After the synthetic resin raw material solution is cured, it is preferable that the thin metal wire is pulled out to form a tubular needle portion. The outer wall of the needle portion of the injection needle obtained in this manner is flared.
  • the pad base for percutaneous administration which concerns on this invention, it is hard to be broken because a fine needle becomes thick at the skirt spread, and there is little concern that a fine needle remains in skin.
  • the drug can be filled into the hollow portion of the fine needle, the fine needle filled with the drug can be punctured into the skin, so that the drug can be administered into the skin without using a vibration device. It is simple and convenient.
  • the tubular fine needles are erected from the sticking substrate, and the outer walls of the fine needles are widened toward the sticking substrate so as to spread toward the bottom. Can be easily produced.
  • Each of Examples 1 to 3 above was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG. 1 (d).
  • the tip of the stainless steel wire of this mold was vertically contacted with the bottom of a stainless steel dish.
  • 3 ml of a formaldehyde solution of polylactic acid having a molecular weight of 67,400 was injected, and the polylactic acid was solidified by standing and air-drying. Thereafter, the stainless steel wire was pulled out and taken out of the stainless steel dish to obtain a transdermal administration pad base.
  • the polylactic acid concentrations of 10, 11, and 12 wt% in the above-mentioned solution of polylactic acid in the form of black mouth were adjusted, and the pad bases obtained for each were designated as Examples 4, 5, and 6, respectively.
  • Examples 7 to 9> Using the same fine needle mold material as in Examples 1 to 3 above, the tip of the stainless steel wire of this mold material was vertically contacted with the bottom of the stainless steel dish. To the stainless steel dish, 3 ml of a formaldehyde solution of polylactic acid having a molecular weight of 258, 700 was poured, and allowed to stand and air-dried to solidify the polylactic acid. Thereafter, the stainless steel wire was pulled out and taken out of the stainless steel dish to obtain a transdermal administration pad base. The polylactic acid concentrations of 1, 2, and 3 wt% in the above-mentioned polylactic acid-cloth form solution were adjusted, and the pad bases obtained for each were designated as Examples 7, 8, and 9, respectively.
  • Each of the above Examples 7 to 9 was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG. 1 (d).
  • the stainless steel wire tip of this mold was arranged so as to stand upright from the bottom of the stainless steel dish while leaving a little space from the bottom. .
  • a solution of polylactic acid (low molecular weight PLA) having a molecular weight of 101, 700 (high molecular weight PLA) was added 0.1 part by weight of the polylactic acid (low molecular weight PLA) having a molecular weight of 100,000. Then, 3 ml of this mixed solution was poured into the stainless steel dish so that one end of the stainless steel wire was immersed, and was allowed to stand and air-dried to solidify the polylactic acid.
  • transdermal administration pad base The polylactic acid concentrations of 5, 6, and 7 wt% in the above-mentioned high molecular weight PI in the form of black mouth were adjusted, and the pad bases obtained for each were designated as Examples 10, 11, and 12, respectively.
  • FIG. 3 (a) shows a microphotograph (magnification: 40) of the fine needle in Example 10 obtained.
  • Fig. 3 (b) shows a schematic diagram.
  • transdermal administration pad base The concentrations of polylactic acid in the above-mentioned high-molecular weight PLA black form solution were adjusted to 10, 11, and 12 wt%, and the pad bases obtained for each were designated as Examples 13, 14, and 15, respectively.
  • Each of the above Examples 13 to 15 was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG. 1 (c).
  • transdermal administration pad base The polylactic acid concentrations in the chloroform solution of high molecular weight PLA were adjusted to 1, 2, and 3 wt%, and the pad bases obtained for the respective samples were used as examples 16, 17, and 18.
  • Each of Examples 16 to 18 described above was a transdermal administration pad base having a plurality of fine needles having a shape as shown in FIG. 1 (c).
  • Example 1 0 101,700 5 ' ⁇ ⁇ Example 1 1 101,700 6 ⁇ ⁇ Example 1 2 101,700 7.. ⁇ Example 1 3 67,400 10 XX Example 1 4 67,400 11 XX Example 1 5 67,400 12 XX Example 1 6 258,700 1 ⁇ X Example 1 7 258,700 2 ⁇ X Example 1 8 258,700 3 ⁇ X :: extremely good
  • Examples 1 to 18 Somewhat poor As described above, in Examples 1 to 18, a transdermal administration pad base having fine needles as shown in FIGS. 1 (c) and (d) is obtained. In addition, since the pad bases (pasting base and fine needles) of Examples 1 to 18 are all made of polylactic acid, even if the fine needles break during use and remain in the skin, they are still biodegradable. is expected.

Abstract

従来のマイクロパッチ法は中実の針で穿刺し、バイブレーション装置により振動させて皮膚との隙間を広げて薬剤を投与するものである。そこで本発明は、振動させなくても薬剤を皮膚内に投与することのできる経皮投薬用パッドベースを提供すること、及び該バッドベースを容易に得ることのできる製造方法を提供することを目的とする。合成樹脂原料溶液に金属製細線の一方端を縦方向に浸漬して金属製細線周りに合成樹脂原料溶液を付着させ、合成樹脂原料溶液を硬化させた後、金属製細線を引き抜く。貼付基材2における皮膚側面に、管状でその外壁が裾広がりに太くなった微細針1が立設したものが得られる。微細針1の中空部3内の薬剤を皮膚に注入し、経皮投薬に供することができる。また微細針1は裾広がりであるから折れ難い。

Description

経皮投薬用パッドベースの製造方法及び経皮投薬用パッドベース、 並びに注射針 技術分野
本発明は、 生体に作用する薬剤を生体内に経皮的に投与する際に用いる経皮投薬 用パッドベース、 及びその製造方法、 並びに注射針に関するものである。 尚該パッ ドベースとは、 経皮投薬用パッドにおける薬剤の経皮的投与を担う部分であり、 経 皮投薬用パッドとはこのパッドベースをその反皮膚側面から例えば粘着シートで覆 つたもの等であって、 使用にあたってはパッドベース面を皮膚に貼り付ける様にす る。 背景技術
皮膚は身体を保護するバリァ一としての機能を担っており、 生体内への異物の侵 入を阻止している。 殊に、 異物と直接接触する再外層の角質層は、 バリアーとして の役割が大きい。 尤も、 生体外の異物と直接接触するという点では消化管も同じで あるが、 消化管には皮膚のような角質層といったバリアーがなく、 むしろ生体外の '異物、 すなわち食物から栄養成分を積極的に取り込む機能を有する栄養吸収細胞か ら構成され、 この点で両者は大きく異なる。
一方において皮膚は生体外に排出する機能 (不感蒸泄機能) も有しており、 この 様に皮膚は単純な保護膜というのではなぐ 物質が透過する調節機能を有する器官 であると考えられる。
ところで生体への薬剤の投与手法としては、 筋肉注射や経口からの投与、 また座 剤による結腸からの投与が知られているが、 上記の様な皮膚の機能に着目し、 皮膚 から投与する経皮吸収法が提案されている。 この経皮吸収法によれば殆ど無痛であ り、 投薬のコントロールが容易で副作用も生じ難く、 また投与形態の利便性から患 者の QOUQuality Of Lifeも飛躍的に向上することが期待される。そして経皮吸収型 医薬品としてはニトログリセリンを始めとし、 硝酸イソソルビド、 ェストラジオ一 ル、 ッロブテロール、 ニコチン、 クロ二ジン、 スコポラミン、 フェン夕ニル、 リド 力インなどが開発されるに至っている。
上記経皮吸収型製剤の登場によつて薬剤の経皮吸収の研究が進み、 この進展に伴 つてどの様にしても経皮吸収させることができない薬剤が多くあることが判った。 そこで、 これまでの様に薬剤を角質層から皮膚内へ単純に拡散 · P及収させるとい う手法ではなく、 次世代の経皮吸収法として、 細胞内への遺伝子導入に用いられる エレクトロボレ一シヨン (Electoroporation) の手法を利用し、 皮膚に瞬間的に極微 小な穿孔を開けることで薬剤を導入する方法や、 電気泳動の技術を用いてイオン化 した薬剤を皮膚へ導入するイオンフォーレ一シス (Iontophordss) といった方法、 ま たこれらを組み合わせた投与方法が考案された。
更に、 エレクトロポレーシヨンと同様に皮膚に微小な穿孔を開ける手段として、 無数の小さな針がついたパッドを皮膚に当て、 その剌針部位から薬剤を注入するマ イク口パッチ (MicroPatch) という方法が提案された。
マイク口パッチ法についてより詳しく説明すると、 このマイクロパッチ法で用い る経皮投薬用パッドは、ピラミツド型に尖った 1 0— 5 0 mの太短い中実の針(シ リコン, 金属, あるいはプラスチック製) 複数本と、 薬液槽であるリザーパ一を備 えたものであり、 使用に際しては上記針を皮膚に刺した状態とし、 この針と皮膚と の接触面をバイブレーション装置 (100MHZ~2000MHZ) で揺さぶることにより隙 間を広げ、 この皮膚の極微小穿孔箇所から上記リザ一バーよりの薬液を皮内へ侵入 させる様にしたものである (例えば、 米国特許第 6,183,434号参照) 。
このマイクロパッチ法による投与薬剤としては、インスリン、モルヒネ、 α -イン ターフェロン、 副甲状腺ホルモン、 エリスロポイエチン等が開発されており (Altea Therapeutics社、 アトランタ、 米国) 、 インスリンなどは既に臨床試験の第 1相に入 り、 実用化に向けた研究が進んでいる。 投与方法としてはその他に、上記方法とは対照的な無針注射法も提案されており、 具体的には注射液に高圧をかけて皮下に投与する方法、 あるいは薬剤の粉体をその まま高圧ガスをかけて皮下に打ち込む高圧ガスを使用する方法等が提案され、 実際 にその一部は既に商品化されている。
これらいずれの投与方法も一長一短があるものの、 マイクロパッチ法は専用の機 器を必要とせず、誰もが容易に使用できるという観点からすると優れた方法である。 発明の開示
上述の様にマイクロパッチ法は中実の針で穿刺し、 この針と皮膚の隙間から薬剤 を注入するものであることから、 この注入にあたってはバイブレーション装置によ り振動させることが必要であり、 この為の電源等が必須であることから、 より簡便 な手法が望まれる。
そこで本発明は上記の様な事情に着目してなされたものであって、 その目的は、 マイクロパッチ法において振動させなくても薬剤を皮膚内に投 することのできる 経皮投薬用パッドベースを提供することにある。 またこの様な経皮投薬用パッドべ ースを容易に得ることのできる製造方法を提供することを目的とする。
また通常の注射針において痛みを和らげる為に、 細いものが要望されているが、 あまりに細いと折れる懸念があり、 仮に折れると、 皮膚内に残存して生体に悪影響 を及ぼす懸念がある。
そこで本発明の注射針においては、 針が容易に折れることにないものを提供する ことを目的とする。
本発明に係る経皮投薬用パッドベースは、 皮膚への貼付基材における皮膚側面に 微細針を立設したものであって、 前記微細針が中空の管状体であり、 その外壁が前 記貼付基材に向かって裾広がりに太くなつたものであることを特徴とする。
上記の如く微細針自身が中空の管状物であるから、 この中空部分に投与薬剤 (液 状の薬剤等) を充填しておくことで、 このパッドべ一スを有する経皮投薬用パッド を皮膚に貼付した際、 上記微細針が皮膚に刺さり、 該微細針内の薬剤が皮膚内に投 与されることとなる。 しかも微細針は裾広がりに太くなつているから折れ難く、 微 細針が皮膚内に残存する懸念が少ない。 この様に本発明の経皮投薬用パッドベース によれば、 従来の様に針と皮膚との接触面を揺さぶって隙間を広げるという操作を 行わなくても投与でき、 従ってバイブレーション装置やその電源等が不要であり、 より簡便に薬剤を投与できる。
そして上記の様な経皮投薬用パッドベースを製造することのできる本発明に係る 方法は、 合成樹脂原料溶液に金属製細線の一方端を縦方向に浸漬して該金属製細線 周りに前記合成樹脂原料溶液を付着させ、 該合成樹脂原料溶液を硬化させた後、 前 記金属製細線を引き抜いて管状の前記微細針を形成することを特徴とする。 また前 記金属製細線が複数本であり、 前記微細針が複数形成される様にしても良い。 尚上 記 「硬化」 とは、 合成樹脂原料溶液の溶媒が蒸発して原料樹脂成分が析出する場合 や、 液状原料樹脂成分を反応させて固化する場合等を含む。
上記の方法により、 裾広がりに太くなった微細針が得られる機構について説明す ると、 例えば合成樹脂原料溶液として、 合成樹脂を溶媒に薄めに溶解したものを用 い、 これに金属製細線の一方端を縦方向に浸漬した状態で上記溶媒を蒸発させると 、 金属製細線のない箇所の原料溶液の液面が次第に下がると共に、 金属製細線の周 りでは当初の液面の位置に原料溶液が付着して残る様になって上記下がった液面に 向かって裾広がりの形状を呈することとなる。 この様にして溶媒の蒸発により硬化 した合成樹脂は、 金属製細線の部分が穴となって裾広がりの管状体 (微細針) を形 成することとなる。
また合成樹脂として熱可塑性翩旨を用いた場合には、 加熱溶融した樹脂である合 成樹脂原料溶液に金属製細線の一方端を浸潰し、 合成樹脂原料溶液の液面が金属製 細線の部分においてせり上がる様な形体とし、 この状態で硬化する。 尚金属製細線 周りに合成樹脂原料溶液がせり上がる様に付着させる手法としては、 金属製細線を 合成樹脂原料溶液に一旦深めに漬けてから上昇させる方法、 金属製細線の一方端を 漬けた状態で合成樹脂原料溶液を振動させて金属製細線表面に該溶液を伝い上げさ せる方法、 また合成樹脂原料溶液の粘度を適当に調整し、 自然に該溶液が伝い上が る様にする方法等がある。 そして樹脂の硬ィ匕後、 金属製細線を引き抜くと、 該金属 製細線の部分が穴となって裾広がりの管状体 (微細針) を形成することとなる。 前記合成樹脂原料溶液における合成樹脂材料としては、 ポリプロピレン、 ポリウ レタン、 ァラミド、 含フッ素ポリイミド等が挙げられ、 殊に生分解性樹脂が好適で ある。
前記微細針が生分解性棚旨からなるものであれば、 仮に微細針の先端等が欠けて 皮膚内に残存する様なこととなっても、 生分解性樹脂からなる微細針は生体内で分 解され、 生体に悪影響を殆ど及ぼさない。 また前記微細針が生分解性樹脂と投与薬 剤からなるものであれば、 上記と同様に欠けて皮膚内に残存することとなっても生 体内で分解され、 生体に悪影響を殆ど及ぼさない上、 微細針自身が生体で解ける ( 分解する) ことによつて薬剤が投与されることにもなる。
生分解性樹脂としては、 ポリ乳酸、 ポリエチレンサクシネート、 ポリブチレンサ クシネート ·アジペート、 ポリブチレンサクシネート ·力一ポネ一ト、 ポリ力プロ ラクトン、 ポリエステルアミド、 ポリエステルカーポネ一ト、 ポリビニルアルコー ル、 ポリヒドロキシブチレート、 マントリオ一ス、 セルロース、 酢酸セルロース、 コラーゲン、 並びにこれらの混合物が推奨され、 殊にポリ乳酸、 または乳酸とダリ コール酸の共重合体であることが好ましい。 例えば、 乳酸'グリコール酸共重合体 は、 医薬品として既に使用されており、 組織内で加水分解されて乳酸になり、 徐々 に消失する。
更にポリ乳酸の場合にその分子量が 1 0 0 0 0 0〜 5 0 0 0 0 0であるものの場 合は、 製造にあたって上記金属製細線への付着量が適当なものとなり、 また樹脂の 硬化後における上記金属製細線の引き抜き性が良く、 出来上がりの膜 (管状物) の 品質も優れていることから、 より好ましい。
尚前記合成樹脂原料溶液として、 生分解性樹脂に投与薬剤を添加したものを用い ても良い。
また本発明に係る注射針は、 注射針の針部分の外壁が、 注射針におけるシリンジ との接続箇所に向かつて裾広がりに太くなつたものであることを特徴とする。 この 様に針部分の外壁が裾広がりに太くなつているから折れ難く、 皮膚内に残存する懸 念が少ない。 図面の簡単な説明
図 1 :本発明に係る経皮投薬用パッドベースにおける微細針の中空部の形状を説 明する為の断面図である。
図 2 :本発明の一実施形態に係る経皮投薬用パッドベースを表す図である。 図 3: ( a)は例 1 0の経皮投薬用パッドベースにおける微細針の顕微鏡写真で、 (b) はその模式図ある。 発明を実施するための最良の形態
以下、 本発明に係る経皮投薬用パッドベース及びその製造方法に関して、 例を示 す図面を参照しつつ具体的に説明するが、 本発明はもとより図示例に限定される訳 ではなく、 前 ·後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも 可能であり、 それらはいずれも本発明の技術的範囲に包含される。
先ず本発明に係る経皮投薬用パッドベースの製造方法の一例について説明する。 合成樹脂原料溶液として例えばポリ乳酸をクロ口ホルムに溶解したものを準備す る。 浅めの金属製バットに上記原料溶液を注ぎ入れ、 これに複数の金属製細線の一 方端をそれぞれ縦方向に浸漬し、 これら金属製細線の周表面に上記原料溶液を付着 させる様にする。 溶媒であるクロ口ホルムを乾燥により除去し、 これにより金属製 細線の周表面に原料溶液が付着した状態で原料溶液液面を下げ、 ポリ乳酸を硬化さ せる。 その後この硬ィ匕したポリ乳酸から金属製細線を引き抜き、 金属製バットから 取り出す。 これにより図 2 [ ( a) :本発明の一実施形態に係る経皮投薬用パッドべ一スを 表す断面図、 (b) :該パッドべ一スの上面図] に示す様な経皮投薬用パッドべ一 スが得られる。 得られたパッドべ一スは、 多数の微細針 1が貼付基材 2に立設した ものであり、 該微細針 1は皮膚面側が開口した有底円筒状で、 その外壁が貼付基材 2に向かって裾広がりに太くなつている。 尚図 2 ( a) における上側が皮膚への貼 付面となる。 また図 2では微細針 1と貼付基材 2が別体に構成されたものの様に描 かれているが、 上述の製造方法から分かる様にこれらは一体成形で製造されたもの である。
経皮投薬用パッドとしては、 上記パッドベースの反皮膚面側 (図 2 ( a) におけ る下側) から粘着シートを覆ったものが挙げられ、 この粘着シートによって皮膚に 貼り付けて用いる。 もしくは粘着剤なしで皮膚に押さえつけることによつて針を刺 して注射の様に中空部分より薬剤を送り込み投薬する場合もある。
使用にあたっては、 予め薬液容器から薬液を吸い取る様にして微細針 1の中空部 3に充填しておき、 このパッドベースを備えた経皮投薬用パッドを皮膚に貼付する 。 貼付基材 2に圧力をかけることにより、 微細針 1が生体内に穿刺されると共に微 細針 1の先端から中空部 3内の薬液が生体内に注入される。 尚微細針 1の管内 (中 空部 3内) に充填する投与薬剤としては、 液状、 クリーム状、 ゲル状、 懸濁液状、 粉末状のいずれであっても良ぐ 経皮的な投与に適さない薬剤を除き、 実質的に制 限されるものではない。
また微細針 1の中空部 3の深さとしては図 2に示すよりも深いものであっても良 い。 具体的には図 1 [微細針の中空部の形体を説明する為の断面図] の (b) に示 す様に、 微細針 1の高さ Hと中空部 3の深さ Lが同じもの [H=L (全中空型: TY P E 2 ) ] 、 図 1の (c ) に示す様に貼付基材 2の厚み hの途中まで中空部 3が至る もの [Hく Lく H+ h (半貫通型: TY P E 3 ) ] 、 図 1の (d ) に示す様に中空部 3が貼付基材 2を貫通するもの [H+ h =L (全貫通型: TY P E 4) ] であっても 良い。 尚図 2のものは図 1の (a) に示す様に、 微細針 1の高さ Hよりも中空部 3 の深さ Lが浅いものである [H>L (半中空型: TY P E 1 ) ] 。 尤も微細針 1と貼 付基材 2がー体成形により作製されたものは、 微細針 1と支持部 2を明確に分ける 境界を定義しにくいが、 ここでは曲率が無限大、 即ち平面状の部分を境界面として この平面上以下の部分を貼付基材 2、 ここから立設する部分を微細針 1と言うこと とする。
複数の微細針 1を備えるパッドベースにおける各微細針 1の中空部 3の深さとし ては、 図 2に示す様に全て同じとしても良く、 或いは異なる深さのものを組み合わ せても良い。 また上記 TY P E 4の様に (図 1 (d) ) 、 中空部 3が微細針 1から 貼付基材 2を貫通するものの場合は、 貼付基材 2の反皮膚側面に薬剤収容槽を設け ておき、 ここから薬剤を供給して連続的に薬剤投与を行える様にしても良い。 本発明の一実施形態に係る注射針としても、 上記と同様に、 合成樹脂原料溶液に 金属製細線の一方端を縦方向に浸漬して該金属製細線周りに前記合成樹脂原料溶液 を付着させ、 該合成樹脂原料溶液を硬化させた後、 前記金属製細線を引き抜いて管 状の針部分を形成すると良い。 この様にして得られた注射針の針部分はその外壁が 裾広がりとなる。
本発明に係る経皮投薬用パッドベースによれば、 微細針が裾広がりに太くなつて いるから折れ難ぐ 従って微細針を皮膚内に残存させる懸念が少ない。 また微細針 の中空部に薬剤を充填可能であるので、 この薬剤を充填した微細針を皮膚に穿刺す ることで、 ノ fブレーション装置等を用いずとも薬剤を皮膚内に投与することがで き、 簡便である。
また本発明に係る経皮投薬用パッドベースの製造方法によれば、 管状の微細針が 貼付基材から立設し、 且つ微細針の外壁が貼付基材に向かって裾広がりに太くなつ たものを容易に作製することができる。
本発明に係る注射針によれば、 針部分が折れ難く、 皮膚内に残存する懸念が少な い。
[実施例] <例 1〜3 >
微細針を成形する為の型材として、 長さ約 3 0 mm, 太さ φ 2 8 0 ΐηのステン レス鋼線 (金属製細線) をゴム板に 2 mm間隔で縦に 5本、 横に 6本ずつ格子状に 差し込んだものを作製した。 次に、 ステンレス鋼製の皿の底に上記型材のステンレ ス鋼線先端を垂直に接触させる様にし、 このステンレス鋼製皿に分子量 1 0 1 , 7 0 0のポリ乳酸のクロ口ホルム溶液 (合成樹脂原料溶液) 3 m lを注入した。 これ を静置し、 自然乾燥によりクロ口ホルムを蒸発させ、 これによりステンレス鋼線の 周表面にポリ乳酸のクロロホルム溶液を付着させた状態で該溶液の液面を下げ、 ポ リ乳酸を固化させた。 その後、 ステンレス鋼線を抜き取り、 ステンレス鋼製皿から 取り出して経皮投薬用パッドベースを得た。 尚上記ポリ乳酸のクロ口ホルム溶液に おけるポリ乳酸の濃度として 5、 6、 7wt%のものを調整し、 それぞれについて得 たパッドべ一スを例 1、 2、 3とした。
上記例 1〜3はいずれも図 1の (d) に示す様な形状の微細針を複数有する経皮 投薬用パッドベースであった。
く例 4〜6 >
上記例 1〜 3と同様の微細針の型材を用い、 この型材のステンレス鋼線先端をス テンレス鋼製皿の底に垂直に接触させた。 該ステンレス鋼製皿に分子量 6 7, 4 0 0のポリ乳酸のクロ口ホルム溶液 3 m lを注入し、 静置して自然乾燥することによ りポリ乳酸を固化させた。 その後、 ステンレス鋼線を抜き取り、 ステンレス鋼製皿 から取り出して経皮投薬用パッドベースを得た。 尚上記ポリ乳酸のクロ口ホルム溶 液におけるポリ乳酸の濃度として 1 0、 1 1、 1 2wt%のものを調整し、 それぞれ について得たパッドべ一スを例 4、 5、 6とした。
上記例 4〜6はいずれも図 1の (d) に示す様な形状の微細針を複数有する経皮 投薬用パッドベースであった。
<例 7〜 9 > 上記例 1〜 3と同様の微細針の型材を用い、 この型材のステンレス鋼線先端をス テンレス鋼製皿の底に垂直に接触させた。 該ステンレス鋼製皿に分子量 2 5 8, 7 0 0のポリ乳酸のクロ口ホルム溶液 3 m lを注入し、 静置して自然乾燥することに よりポリ乳酸を固化させた。 その後、 ステンレス鋼線を抜き取り、 ステンレス鋼製 皿から取り出して経皮投薬用パッドベースを得た。 尚上記ポリ乳酸のクロ口ホルム 溶液におけるポリ乳酸の濃度として 1、 2、 3wt%のものを調整し、 それぞれにつ いて得たパッドべ一スを例 7、 8、 9とした。
上記例 7〜 9はいずれも図 1の (d) に示す様な形状の微細針を複数有する経皮 投薬用パッドベースであった。
<例 1 0〜 1 2 >
上記例 1〜 3と同様の微細針の型材を用い、 この型材のステンレス鋼線先端をス テンレス鋼製皿の底面から少し空間を空ける様にしつつ該底に対して垂直に立てる 様に配置した。 分子量 1 0 1, 7 0 0のポリ乳酸 (高分子量 PLA) のクロ口ホルム 溶液に分子量 1 0, 0 0 0のポリ乳酸(低分子量 PLA)を上記高分子量 PLAの 0. 1重量部添加し、 この混合溶液 3 m 1を上記ステンレス鋼製皿に注入してステンレ ス鋼線の一方端が浸かる様にし、 静置して自然乾燥することによりポリ乳酸を固化 させた。 その後、 ステンレス鋼線を抜き取り、 ステンレス鋼製皿から取り出して経 皮投薬用パッドベースを得た。尚上記高分子量 PI のクロ口ホルム溶液におけるポ リ乳酸の濃度として 5、 6、 7wt%のものを調整し、 それぞれについて得たパッド ベースを例 1 0、 1 1、 1 2とした。
上記例 1 0〜1 2はいずれも図 1の (c ) に示す様な形状の微細針を複数有する 経皮投薬用パッドべ一スであった。 得られた例 1 0における微細針の顕微鏡写真 ( 倍率 4 0 ) を図 3 ( a) に示す。 また図 3 ( b) にその模式図を示す。
<例 1 3〜 1 5 >
上記例 1〜 3と同様の微細針の型材を用い、 この型材のステンレス鋼線先端をス テンレス鋼製皿の底に対して隙間を空けつつ垂直に立てる様に配置した。 分子量 6 7 , 4 0 0のポリ乳酸 (高分子量 PLA) のクロ口ホルム溶液に分子量 1 0 , 0 0 0 のポリ乳酸 (低分子量 PLA) を上記高分子量 PLAの 0 . 1重量部添加し、 この混 合溶液 3 m lを上記ステンレス鋼製皿に注入し、 該溶液にステンレス鋼線の一方端 を漬けると共に該ステンレス鋼線表面にせり上がらせ、 静置して自然乾燥すること によりポリ乳酸を固化させた。 その後、 ステンレス鋼線を抜き取り、 ステンレス鋼 製皿から取り出して経皮投薬用パッドベースを得た。尚上記高分子量 PLAのクロ口 ホルム溶液におけるポリ乳酸の濃度として 1 0、 1 1、 1 2wt%のものを調整し、 それぞれについて得たパッドベースを例 1 3、 1 4、 1 5とした。
上記例 1 3〜1 5はいずれも図 1の (c ) に示す様な形状の微細針を複数有する 経皮投薬用パッドベースであった。
<例 1 6〜 1 8 >
上記例 1〜 3と同様の微細針の型材を用い、 この型材のステンレス鋼線先端をス テンレス鋼製皿の底に対して隙間を空けつつ垂直に立てる様に配置した。 分子量 2 5 8, 7 0 0のポリ乳酸 (高分子量 PLA) のクロ口ホルム溶液に分子量 1 0 , 0 0 0のポリ乳酸 (低分子量 PIA) を上記高分子量 PIAの 0. 1重量部添カ卩し、 この 混合溶液 3 m 1を上記ステンレス鋼製皿に注入してステンレス鋼線の一方端を漬け ると共に、 該溶液をステンレス鋼線にせり上がらせ、 静置して自然乾燥することに よりポリ乳酸を固化させた。 その後、 ステンレス鋼線を抜き取り、 ステンレス鋼製 皿から取り出して経皮投薬用パッドベースを得た。尚上記高分子量 PLAのクロロホ ルム溶液におけるポリ乳酸の濃度として 1、 2、 3wt%のものを調整し、 それぞれ について得たパッドベースを例 1 6、 1 7、 1 8とした。
上記例 1 6〜: 1 8はいずれも図 1の (c ) に示す様な形状の微細針を複数有する 経皮投薬用パッドベースであった。
尚上記例;!〜 9を表 1に、 上記例 1 0〜1 8を表 2にまとめて示すと共に、 ポリ 乳酸のクロ口ホルム溶液 (合成樹脂原料溶液) のステンレス鋼線 (金属製細線) へ の付着性、 及びポリ乳酸硬化後におけるステンレス鋼線の引き抜き易さについての それぞれの評価を記載する。
Figure imgf000014_0001
〇:より良好
△ :良好
X :やや不良 表 2
高分子量 PLA 高分子量 金属細線への PLA付着量 金属細線の の分子量 PLA濃度 あよび 品質 引抜き易さ
. (wt%)
例 1 0 101,700 5 ' Δ 〇 例 1 1 101,700 6 〇 ◎ 例 1 2 101,700 7 . 〇 ◎ 例 1 3 67,400 10 X X 例 1 4 67,400 11 X X 例 1 5 67,400 12 X X 例 1 6 258,700 1 Δ X 例 1 7 258,700 2 △ X 例 1 8 258,700 3 △ X ◎:極めて良好
〇:より良好
△:良好
X:やや不良 上述の如く例 1〜1 8において図 1の (c ) , ( d) に示す様な微細針を有する 経皮投薬用パッドベースが得られる。 また上記例 1〜 1 8のパッドベース (貼付基 材及び微細針) はいずれもポリ乳酸で構成されているから、 使用時に微細針が折れ て皮膚内に残存しても、 生分解されると予想される。
尚上記表 1, 2から分かる様に、 ステンレス鋼線へのポリ乳酸の付着量や膜品質 、 またステンレス鋼線の引き抜きやすさの観点から、 上記各例のうち例 1〜3, 1 0〜1 2がより好ましい。

Claims

請求の範囲
1 . 皮膚への貼付基材における皮膚側面に微細針を立設した経皮投薬用パッドべ ースを製造する方法であって、
合成樹脂原料溶液に金属製細線の一方端を縦方向に浸漬して該金属製細線周りに 前記合成樹脂原料溶液を付着させ、 該合成樹脂原料溶液を硬化させた後、 前記金属 製細線を引き抜いて管状の前記微細針を形成することを特徴とする経皮投薬用パッ ドベースの製造方法。
2 . 前記金属製細線が複数本であり、 前記微細針が複数形成される請求項 1に記 載の経皮投薬用パッドベースの製造方法。
3 . 皮膚への貼付基材における皮膚側面に微細針を立設した経皮投薬用パッドべ —スであって、
前記微細針が中空の管状体であつて、 その外壁が前記貼付基材に向かって裾広が りに太くなつたものであることを特徴とする経皮投薬用パッドベース。
4. 前記微細針が生分解性樹脂、 または生分解性樹脂と投与薬剤からなる請求項 3に記載の経皮投薬用パッドベース。
5 . 前記生分解性樹脂がポリ乳酸、 または乳酸とグリコール酸の共重合体である 請求項 4に記載の経皮投薬用パッドベース。
6. 注射針の針部分の外壁が、 注射針のシリンジとの接続箇所に向かって裾広が りに太くなつたものであることを特徵とする注射針。
PCT/JP2004/008514 2003-06-10 2004-06-10 経皮投薬用パッドベースの製造方法及び経皮投薬用パッドベース、並びに注射針 WO2004108204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04736595A EP1632263A4 (en) 2003-06-10 2004-06-10 METHOD FOR THE PRODUCTION OF A REFERENCE BASIS FOR TRANSDERMAL MEDICINAL ADMINISTRATION, BASIC BASIS FOR TRANSDERMAL ADMINISTRATIVE ADMINISTRATION AND NEEDLE
CA002528512A CA2528512A1 (en) 2003-06-10 2004-06-10 Process for producing pad base for transdermal drug administration, pad base for transdermal drug administration and needle
US10/560,085 US7347835B2 (en) 2003-06-10 2004-06-10 Process for producing pad base for endermism, and pad base for endermism, and injection needle
AU2004244909A AU2004244909A1 (en) 2003-06-10 2004-06-10 Process for producing pad base for transdermal drug administration, pad base for transdermal drug administration and needle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-165250 2003-06-10
JP2003165250 2003-06-10

Publications (1)

Publication Number Publication Date
WO2004108204A1 true WO2004108204A1 (ja) 2004-12-16

Family

ID=33508846

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/008514 WO2004108204A1 (ja) 2003-06-10 2004-06-10 経皮投薬用パッドベースの製造方法及び経皮投薬用パッドベース、並びに注射針
PCT/JP2004/008513 WO2004108203A1 (ja) 2003-06-10 2004-06-10 経皮投薬用パッドベース、及び注射針

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008513 WO2004108203A1 (ja) 2003-06-10 2004-06-10 経皮投薬用パッドベース、及び注射針

Country Status (5)

Country Link
US (2) US20060127465A1 (ja)
EP (1) EP1632263A4 (ja)
AU (1) AU2004244909A1 (ja)
CA (1) CA2528512A1 (ja)
WO (2) WO2004108204A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077742A1 (ja) * 2004-12-28 2006-07-27 Nabtesco Corporation 皮膚用針製造装置および皮膚用針製造方法
JP2006345983A (ja) * 2005-06-14 2006-12-28 Nabtesco Corp 皮膚用針集合体

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786580B1 (en) * 2004-08-16 2010-12-01 Functional Microstructures Limited Method of producing a microneedle or microimplant
WO2006101459A1 (en) * 2005-03-23 2006-09-28 Agency For Science, Technology And Research Microneedles
EP2062612A4 (en) * 2006-08-18 2010-01-06 Toppan Printing Co Ltd MICRO NEEDLE AND MICRO NEEDLE STAMP
JP2008284318A (ja) * 2007-05-15 2008-11-27 Kosumedei Seiyaku Kk 生体由来物質からなる投薬用微細針
AU2008283896A1 (en) 2007-08-06 2009-02-12 Transderm, Inc. Microneedle arrays formed from polymer films
KR101578420B1 (ko) * 2008-06-30 2015-12-17 히사미쓰 세이야꾸 가부시키가이샤 마이크로니들 디바이스 및 마이크로니들 디바이스에 의한 인플루엔자 백신의 주공성을 상승시키는 방법
CA2964564C (en) 2008-08-21 2019-10-22 Ninepoint Medical, Inc. Device for drug evaluation and local treatment
CN105999538A (zh) * 2008-11-18 2016-10-12 3M创新有限公司 空心微针阵列和方法
ES2691259T3 (es) * 2009-06-10 2018-11-26 Hisamitsu Pharmaceutical Co., Inc. Dispositivo de microagujas
ES2826882T3 (es) * 2009-07-23 2021-05-19 Hisamitsu Pharmaceutical Co Matriz de microagujas
KR101152486B1 (ko) 2009-07-31 2012-06-01 (주)테라젝코리아 마이크로니들 패드 제조방법 및 이를 위한 제조장치
WO2011156641A2 (en) * 2010-06-09 2011-12-15 Kaspar Roger L Microneedle arrays for active agent delivery
AU2012362318B2 (en) 2011-12-30 2015-09-17 Kibur Medical, Inc. Implantable devices and methods for the evaluation of active agent
US20150005595A1 (en) 2011-12-30 2015-01-01 Kibur Medical, Inc. Implantable devices and methods for evaluation of active agents
KR102187985B1 (ko) 2012-11-09 2020-12-07 도판 인사츠 가부시키가이샤 바늘 형상 구조체 및 그 제조 방법
US20160279401A1 (en) 2015-03-27 2016-09-29 Allergan, Inc. Dissolvable microneedles for skin treatment
JP6565906B2 (ja) 2014-05-20 2019-08-28 凸版印刷株式会社 針状体の製造方法、及び針状体
JPWO2016072060A1 (ja) * 2014-11-05 2017-09-14 凸版印刷株式会社 マイクロニードルセット
EP3216483B1 (en) 2014-11-07 2019-03-20 Toppan Printing Co., Ltd. Needle assembly for transdermal administration and method for manufacturing same
CN107206220A (zh) 2015-02-16 2017-09-26 凸版印刷株式会社 微针
WO2018151832A1 (en) 2017-02-17 2018-08-23 Allergan, Inc. Microneedle array with active ingredient
KR102188397B1 (ko) * 2018-07-04 2020-12-08 주식회사 지엘캄퍼니 마이크로 니들
CN110279935B (zh) * 2019-07-11 2022-01-07 上海揽微医学科技有限公司 棱形硅微针及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392588A (en) * 1977-01-22 1978-08-14 Shiyuuichi Sakai Syringe needle
WO2002007813A1 (en) * 2000-07-21 2002-01-31 Smithkline Beecham Biologicals S.A. Vaccines
JP2002517300A (ja) * 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション 微小針デバイスおよび製造方法ならびにそれらの使用
US20020193754A1 (en) * 2001-06-13 2002-12-19 Cho Steve T. Microneedles for minimally invasive drug delivery
JP2003501163A (ja) * 1999-06-09 2003-01-14 ザ プロクター アンド ギャンブル カンパニー 皮内用刃状ミクロ針構造体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647098B2 (ja) * 1997-12-31 2011-03-09 メドトロニック ミニメド インコーポレイテッド 挿入セットのための挿入装置
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US6623457B1 (en) * 1999-09-22 2003-09-23 Becton, Dickinson And Company Method and apparatus for the transdermal administration of a substance
US6511463B1 (en) * 1999-11-18 2003-01-28 Jds Uniphase Corporation Methods of fabricating microneedle arrays using sacrificial molds
US6565532B1 (en) * 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
WO2001091846A2 (en) * 2000-05-26 2001-12-06 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
FR2809625B1 (fr) * 2000-06-05 2002-08-09 Ussel Bernard D Nouvelle aiguille pour dispositif medical et dispositif en comportant
US9302903B2 (en) * 2000-12-14 2016-04-05 Georgia Tech Research Corporation Microneedle devices and production thereof
WO2002074173A1 (en) * 2001-03-16 2002-09-26 Alza Corporation Method and apparatus for coating skin piercing microprojections
US6686299B2 (en) * 2001-06-21 2004-02-03 Carlo D. Montemagno Nanosyringe array and method
CA2500453A1 (en) * 2001-09-28 2003-04-03 Biovalve Technologies, Inc. Microneedle with membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392588A (en) * 1977-01-22 1978-08-14 Shiyuuichi Sakai Syringe needle
JP2002517300A (ja) * 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション 微小針デバイスおよび製造方法ならびにそれらの使用
JP2003501163A (ja) * 1999-06-09 2003-01-14 ザ プロクター アンド ギャンブル カンパニー 皮内用刃状ミクロ針構造体
WO2002007813A1 (en) * 2000-07-21 2002-01-31 Smithkline Beecham Biologicals S.A. Vaccines
US20020193754A1 (en) * 2001-06-13 2002-12-19 Cho Steve T. Microneedles for minimally invasive drug delivery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077742A1 (ja) * 2004-12-28 2006-07-27 Nabtesco Corporation 皮膚用針製造装置および皮膚用針製造方法
US7588705B2 (en) 2004-12-28 2009-09-15 Nabtesco Corporation Skin needle manufacturing apparatus and skin needle manufacturing method
JP2014012202A (ja) * 2004-12-28 2014-01-23 Nabtesco Corp 皮膚用針製造装置および皮膚用針製造方法
JP2014131762A (ja) * 2004-12-28 2014-07-17 Nabtesco Corp 皮膚用針
JP2015186581A (ja) * 2004-12-28 2015-10-29 ナブテスコ株式会社 皮膚用針製造装置および皮膚用針製造方法
JP5882556B2 (ja) * 2004-12-28 2016-03-09 ナブテスコ株式会社 皮膚用針、皮膚用針製造装置および皮膚用針製造方法
JP2006345983A (ja) * 2005-06-14 2006-12-28 Nabtesco Corp 皮膚用針集合体

Also Published As

Publication number Publication date
EP1632263A4 (en) 2008-04-30
WO2004108203A1 (ja) 2004-12-16
EP1632263A1 (en) 2006-03-08
US20060163215A1 (en) 2006-07-27
US20060127465A1 (en) 2006-06-15
US7347835B2 (en) 2008-03-25
AU2004244909A1 (en) 2004-12-16
CA2528512A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
WO2004108204A1 (ja) 経皮投薬用パッドベースの製造方法及び経皮投薬用パッドベース、並びに注射針
JP2005021677A (ja) 経皮投薬用パッドベース、及び注射針
JP5063544B2 (ja) 経皮吸収シート及びその製造方法
JP2005021678A (ja) 経皮投薬用パッドベースの製造方法及び経皮投薬用パッドベース、並びに注射針
US20200121901A1 (en) Microneedle patch and production method therefor
WO2008020632A1 (fr) Micro-aiguille et timbre à micro-aiguilles
JP6709562B2 (ja) 薬剤でコーティングされたマイクロニードルアレイの製造方法
EP2090331A1 (en) Microneedle array and process for production thereof
JP2005533625A (ja) マイクロニードルデバイスおよびマイクロニードル送達装置
JP2010233673A (ja) 経皮吸収シート及びその製造方法
JP2010233674A (ja) マイクロニードルシート及びその使用方法並びに製造方法
KR101724654B1 (ko) 마이크로 니들 패치 및 그의 제조 방법
JP2004065775A (ja) 針状構造体を備えたデバイス
JP5063543B2 (ja) 経皮吸収シートの製造方法
CN112295100A (zh) 微针阵列的制造方法、微针阵列及微针阵列单元
US11160964B2 (en) Microneedle patch and fabrication device for production of multilayered microneedles
JP2011224308A (ja) マイクロニードル溶着法
CN105434332A (zh) 水溶性生物大分子微针膜的制备方法
JP6681378B2 (ja) マイクロニードルとその製造方法
KR102249513B1 (ko) 캔들형 마이크로 구조체 및 이의 제조 방법
CN110897996B (zh) 可溶性利多卡因高聚物微针的制备方法
JP6003338B2 (ja) 針状体パッケージ
JP6255759B2 (ja) マイクロニードル
CN108969879B (zh) 一种复合微针及微针贴片
CN215387005U (zh) 具外露针尖的含药微针贴片

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2528512

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004736595

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006163215

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10560085

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004244909

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004244909

Country of ref document: AU

Date of ref document: 20040610

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004244909

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004736595

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560085

Country of ref document: US