WO2004106720A1 - 内燃エンジンの空燃比制御装置 - Google Patents

内燃エンジンの空燃比制御装置 Download PDF

Info

Publication number
WO2004106720A1
WO2004106720A1 PCT/JP2004/005214 JP2004005214W WO2004106720A1 WO 2004106720 A1 WO2004106720 A1 WO 2004106720A1 JP 2004005214 W JP2004005214 W JP 2004005214W WO 2004106720 A1 WO2004106720 A1 WO 2004106720A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
control
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2004/005214
Other languages
English (en)
French (fr)
Inventor
Satoshi Ichihashi
Original Assignee
Keihin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corporation filed Critical Keihin Corporation
Priority to EP04726914A priority Critical patent/EP1630389A1/en
Priority to US10/515,017 priority patent/US7007685B2/en
Publication of WO2004106720A1 publication Critical patent/WO2004106720A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques

Definitions

  • the present invention relates to an air-fuel ratio control device provided in an internal combustion engine to reduce unburned components in exhaust gas.
  • the oxygen concentration in the exhaust gas is detected by an oxygen concentration sensor provided in the exhaust system in order to reduce the unburned components in the exhaust gas, and the mixture supplied to the engine is determined according to the detected oxygen concentration.
  • An air-fuel ratio control device is provided that performs feedback control of the air-fuel ratio toward a target air-fuel ratio near the stoichiometric air-fuel ratio.
  • the exhaust system of an internal combustion engine is usually provided with a catalyzer using a ternary medium.
  • the catalyzer has a function to simultaneously reduce fc, HC, and NOx in exhaust gas by fc near the stoichiometric air-fuel ratio.
  • an object of the present invention is to reduce NOx as well as C ⁇ and HC in the exhaust gas of an internal combustion engine mounted on a vehicle that frequently uses the engine in a high speed range or a high load range.
  • An object of the present invention is to provide an air-fuel ratio control device that can be sufficiently achieved.
  • An air-fuel ratio control device for an internal combustion engine includes an oxygen concentration sensor that generates an output signal corresponding to the oxygen concentration in exhaust gas in an exhaust pipe of the internal combustion engine.
  • An air-fuel ratio control device that feedback-controls the air-fuel ratio of the supplied air-fuel mixture toward the target air-fuel ratio, and detects a predetermined high load and high rotation operation state of the internal combustion engine to generate a detection signal;
  • Control means for performing partition control for periodically oscillating the air-fuel ratio between the rich side and the lean side around the target air-fuel ratio in response to the output signal of the oxygen concentration sensor when the detection signal is generated.
  • the partition control is performed in a predetermined high load and high rotation speed region where the emission amount of N ⁇ x increases, and it is possible to sufficiently reduce NOx as well as CO and HC in exhaust gas.
  • FIG. 1 is a diagram showing an engine control system of an internal combustion engine to which the air-fuel ratio control device of the present invention is applied.
  • FIG. 2 is a block diagram showing the internal configuration of the ECU in the system of FIG.
  • FIG. 3 is a flowchart showing the air-fuel ratio control routine.
  • FIG. 4 is a diagram showing an air-fuel ratio feedback region.
  • FIG. 5 is a flowchart of the NOX feedback control execution permission determination.
  • FIG. 6 is a flowchart of the NOx feedback control process.
  • FIG. 7 is a flowchart of the ending feedback control ending process.
  • FIG. 8 is a diagram illustrating an operation example of the NOx feedback control.
  • FIG. 9 is a diagram showing an operation example at the end of the NOx feedback control.
  • FIG. 10 is a diagram showing an operation example at the end of NOx feedback control.
  • FIG. 1 shows a four-stroke internal combustion engine mounted on a motorcycle to which the air-fuel ratio control device according to the present invention is applied.
  • the intake pipe 1 of such an internal combustion engine is provided with a throttle valve 2.
  • the intake air is supplied to the intake port of the engine body 3 through the intake pipe 1.
  • An intake pipe 1 near the intake port of the engine body 3 is provided with an injector 4 for fuel injection.
  • a fuel supply pipe 7 is connected to the injector 4 from a fuel tank 6.
  • a plunger-type fuel pump 8 is provided in the fuel supply pipe 7.
  • the fuel pump 8 is driven by an ECU (electronic control unit) 10 to be described later, and draws the fuel in the fuel tank 6 through the fuel supply pipe 7 on the suction side and sends the fuel to the injector 4 via the fuel supply pipe 7 on the discharge side. I do.
  • the injector 4 injects fuel toward the intake port when driven by the ECU 10.
  • the exhaust pipe 13 of the internal combustion engine is provided with a catalyst 14 using a three-way catalyst.
  • An ignition plug 11 is fixed to the engine body 3, the ignition plug 11 is connected to the ignition device 12, and the ECU 10 is connected to the ignition device 12 by an ignition A spark discharge is generated in the cylinder of the engine body 3 by issuing a command for timing.
  • the ECU 10 includes an input interface circuit 20, a rotation speed counter 21, a CPU (central processing unit) 22, a memory 23, a drive circuit 24 to 25, It has.
  • the input interface circuit 20 includes a water temperature sensor 26 that detects the temperature of the engine cooling water, an intake pressure sensor 27 that detects the negative pressure in the intake pipe 1, and an oxygen concentration in the exhaust gas that is provided in the exhaust pipe 13.
  • Engine operating parameter detecting means such as an oxygen concentration sensor 28 for detection and a throttle valve opening sensor 31 for detecting the opening of the throttle valve 2 are connected.
  • the oxygen concentration sensor 28 is a binary output type sensor that indicates whether the air-fuel ratio is rich or lean using the stoichiometric air-fuel ratio as a threshold value according to the oxygen concentration. It goes without saying that an oxygen concentration proportional output type oxygen concentration sensor may be used instead of the binary output type sensor.
  • a crank angle sensor 29 for detecting an engine speed is connected to the speed counter 21.
  • the crank angle sensor 29 generates a crank pulse every time a rotating body (not shown) rotates by a predetermined angle (for example, 15 degrees) in association with the rotation of the crankshaft 3 a of the engine body 3.
  • a cam angle sensor 30 is provided near a rotating body (not shown) in association with the rotation of the cam shaft 3b.
  • the cam angle sensor 30 outputs a TDC signal indicating the compression top dead center of the piston of the representative cylinder or a reference position signal to the CPU 22 every time the crankshaft 3a rotates 20 degrees.
  • the rotation counter 21 is reset by the crank pulse output from the crank angle sensor 29, and the crank pulse output from the crank generator (not shown). Is counted, and a signal indicating the engine speed N e is generated by counting the number of generation pulses.
  • the CPU 22 receives the cooling water temperature Tw, the negative pressure PB in the intake pipe, the oxygen concentration O2, and the throttle valve opening TH detected by the sensors 26 to 28.
  • the number counter 21 supplies information on the engine speed Ne and the crank angle sensor 29 supplies a TDC signal and a reference position signal.
  • the CPU 22 sets the fuel pump drive start time, the fuel injection start time, and the ignition timing in synchronization with the reference position signal, and calculates the fuel injection time Tout and the fuel pump drive time.
  • the fuel pump driving start time and the fuel pump driving time are set by a fuel pump driving setting routine (not shown).
  • the memory 23 stores operation program data of the CPU 22.
  • the fuel injection time Tout is basically calculated using, for example, the following calculation formula.
  • Ti is a basic fuel injection time which is an air-fuel ratio reference control value determined by searching a data map from the memory 23 according to the engine speed and the negative pressure in the intake pipe.
  • KM is an air-fuel ratio correction coefficient calculated in the air-fuel ratio feedback control based on the output signal of the oxygen concentration sensor 28.
  • the air-fuel ratio correction coefficient ⁇ 2 is determined in an air-fuel ratio control routine described later.
  • various corrections such as acceleration correction and deceleration correction are usually applied to determine the fuel injection time Tout.
  • the CPU 22 in the ECU 10 executes the air-fuel ratio control routine at a predetermined cycle.
  • the CPU 22 first sets the air-fuel ratio as shown in FIG. It is determined whether or not it is in the fuel ratio feed pack control area (step Sl).
  • the air-fuel ratio feedback control region based on the output signal of the oxygen concentration sensor 28 is set according to the engine speed Ne and the throttle valve opening TH as shown in FIG.
  • the setting information is stored in the memory 23. Therefore, it is determined whether or not the air-fuel ratio is in the feedback control area according to the data in the air-fuel ratio feedback control area stored in the memory 23.
  • FIG. 4 shows that the air-fuel ratio feedback control region includes an air-fuel ratio feedback control region of PI control and a NOX reduction feedback control region.
  • perturbation control is performed in the NOx reduction feedback control region.
  • the N ⁇ x reduction feedback control region is further divided into three regions, that is, a first NOXFB region, a second NOXFB region, and a third NOXFB region.
  • the reason for dividing the NOx reduction feedback control region into three regions in this way is to perform more accurate control. That is, the addition value ⁇ INC of the air-fuel ratio correction coefficient Ko2 described later, and the subtraction values AKDEC and K. 2 Time of addition state timer TM INIT initial value RF NC, and ⁇ 02 Time of subtraction state timer TMDEC initial value RFM is set for each of the three areas.
  • a hysteresis component is provided at the boundary between the respective regions.
  • the next boundary value indicated by the solid line in FIG. 4 was used as the threshold to determine whether it was next in the air-fuel ratio feedback control region.
  • the value of the boundary indicated by the dashed line in Fig. 4 is used as the threshold value to determine whether or not the vehicle is within the air-fuel ratio feedback control region when it is within the air-fuel ratio feedback control region. .
  • ⁇ I control air-fuel ratio feedback control This is the same between the region and the NOx reduction feedback control region, and between the first NOXFB region, the second NOXFB region, and the third N ⁇ FB region.
  • the air-fuel ratio couple loop control region controls the air-fuel ratio regardless of the output signal of the oxygen concentration sensor 28. If the CPU 22 determines that the region is the air-fuel ratio couple loop control region, it performs an open control process (step S2).
  • open control process is an air-fuel ratio correction coefficient Ko2 is equal to 1, except for the air-fuel ratio correction coefficient kappa 02 in calculating the fuel injection time Tout was noted above, the acceleration compensation, and other compensation is added deceleration correction, The fuel injection time Tout is determined.
  • the CPU 22 determines that it is in the air-fuel ratio feedback control region, it reads the output signal of the oxygen concentration sensor 28 (step S3) and determines whether or not it is in the NOx reduction feedback control region (step S4). Since data indicating the range (including hysteresis) of each area as shown in FIG. 4 is stored in advance in the memory 23, the NOx reduction feed-pack control area is determined in step S4 using the data. In other words, in the previous discrimination, when the vehicle was within the air-fuel ratio feedback control region of PI control, it was next determined whether or not it was in the NOX reduction feedback control region by using the threshold value indicated by the solid line in Fig. 4 as the threshold.
  • the boundary value indicated by the dashed line in Fig. 4 was used as the threshold. Used.
  • the threshold value is the value immediately before the NO X amount in the exhaust gas rapidly increases for both the engine speed and the throttle valve opening.
  • step S5 If the CPU 22 determines that it is not in the NOx reduction feedback control area, the CPU 22 determines whether or not the NOx reduction feedback control was performed during the previous execution of this routine. It is determined (step S5). If NOx reduction feedback control was not performed during the previous execution of this routine, air-fuel ratio feedback control processing of PI control is performed (step S6).
  • step S7 When performing NOX reduction feeds pack control at the time of the previous execution of the present routine, since the transition from NO X reduction feedback control the air-fuel ratio feedback control, set the air-fuel ratio correction coefficient K 02 the learned value KREF or 1 (step S7) Then, the process proceeds to step S6, where the air-fuel ratio feedback control process of ⁇ I control is performed.
  • the learned value KREF of Sutetsu flop S 7 is averaged value of the air-fuel ratio correction coefficient kappa 02 at the output inversion of the oxygen concentration sensor 28 according to I (integral) term of [rho I control.
  • the air-fuel ratio feedback control process of the I control is publicly known, a detailed description thereof will be omitted.
  • the air-fuel ratio correction coefficient ⁇ 02 is reduced by ⁇ (proportional) term, After that, it is reduced by the I term at a predetermined period.
  • the air-fuel ratio correction coefficient ⁇ 2 is increased by ⁇ term, and thereafter, for a predetermined period. Is increased by the I term.
  • step S8 If the CPU 22 determines in the step S4 that it is in the NOx reduction feedback control area, the CPU 22 selects the NOx reduction feedback pack coefficient and the timer time (step S8). In step S8, it is determined whether the NO X reduction feedback control area is the first NO XFB area, the second NO XFB area, or the third NO XFB area, and the air-fuel ratio correction coefficient Ko2 is added accordingly.
  • AK I NC AK I NC 1 (for example, 0.03)
  • AKDEC AKDEC 1 (for example, 0.03)
  • RF P RF P 1 (for example, 250 msec)
  • RFM RFM1 (for example, 250 msec).
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 2 (for example, 0.08)
  • AKDEC AKDEC 2 (for example, 0.03)
  • RFP RFP 2 (for example, 2500 msec)
  • RFM RFM2 (For example, 130 msec).
  • KINC AKINC3 (for example, 0.08)
  • AKDEC AKDEC3 (for example, 0.08)
  • RFP RFP3 (for example, 80 msec)
  • RFM R FM3 (for example, 80 msec).
  • step S9 After the selection of the NOx reduction feedback pack coefficient and the timer time, it is determined whether the execution of the NOx reduction feedback control is permitted (step S9).
  • the execution permission determination of the NOx reduction feedback control is performed by first determining whether or not the rich Z lean match determination flag F1 is 1 indicating mismatch (step S21).
  • the direction of the air-fuel ratio correction of the current calculated value of the air-fuel ratio correction coefficient has a predetermined correspondence with the air-fuel ratio determined from the output signal of the oxygen concentration sensor 28.
  • F l l is the output signal level at which the oxygen concentration sensor 28 indicates rich.
  • step S22 it is determined whether the engine is in a stable operation state (step S22).
  • the determination of the stable operation state of the engine is based on the fact that at least one of the engine speed Ne, the throttle valve opening TH and the negative pressure PB in the intake pipe is set within a predetermined range for the current value, the previous value, and the value before the previous value. This is done by detecting when it is within.
  • Each of the current value, the previous value, and the value before the previous time is a detected value of an engine operation parameter detected at a timing of a predetermined cycle.
  • the determination of the stable operation state of the engine may be performed by a routine different from this routine, and the result may be determined by the stable state flag F6 in step S22.
  • the air-fuel ratio inversion counter counts down the count value COUNT every time the output signal level of the oxygen concentration sensor 28 is inverted from the level indicating richness to the level indicating lean.
  • the CPU 22 further sets the ⁇ 02 addition / decrease request flag F 2 to 0 (step S 25), the rich / lean match determination flag F1 is made equal to 0 (step S26), the NOx reduction feedpack control permission flag F3 is made equal to 0 (step S27), and the NOx reduction feedback control is performed.
  • the flag F4 is made equal to 1 (step S28).
  • step S29 the CPU 22 determines whether or not the count value COUNT of the air-fuel ratio reversing force counter is 0 (step S29).
  • step S 29 the engine is in steady state operation, or One by the oxygen concentration sensor 28 state that the direction of change of the air-fuel ratio detection result and the air-fuel ratio correction coefficient K 02 corresponds at least I New I air-fuel-ratio reversal of the It is determined whether or not the number of times has been continued.
  • the count value C ⁇ U ⁇ of the air-fuel ratio reversing force counter has reached 0, it is determined whether or not the output signal level of the oxygen concentration sensor 28 indicates a richness (step S30).
  • Step S30 can also be determined according to the result of setting the oxygen concentration sensor flag F5 to 0 or 1 in the NOx reduction feedback control process described later.
  • the output signal level of the oxygen concentration sensor 28 indicates rich, it is determined whether or not the air-fuel ratio correction coefficient KM is equal to or less than the learning value KREF (step S31). K. If 2 ⁇ KREF, the N ⁇ x reduction feedback control permission flag F3 is made equal to 1 (step S32), whereby the NOx reduction feedback control is enabled.
  • the CPU 22 determines the result of the execution permission determination of the NOX reduction feedpack control by the NOX reduction feedback control permission flag F3 (step S10).
  • the NOx reduction feedback control processing in step S12 by the CPU 22 corresponds to control means for performing perturbation control.
  • the rich / lean match determination flag F1 is made equal to 0 (step S45).
  • a predetermined addition value ⁇ INC is added to the learning value KREF, and this is set as an air-fuel ratio correction coefficient ⁇ 2 (step S46).
  • ⁇ 2 set time TM I NC to a Jo Tokoro time RFP for adding state timer (Step S 4 7), further, makes equal the kappa 02 adjustment request flag F 2 to 1 (Step S 4 8).
  • the rich / lean match determination flag F1 is set to 0 (step S51). After that, it subtracts a predetermined subtraction value AKD EC from the learned value KRE F, make it air-fuel ratio correction coefficient K 02 (Step S 5 2).
  • ⁇ 2 Subtraction status timer time TMDE C specified The time RFM is set (step S53), and the Ko2 adjustment request flag F2 is made equal to 0 (step S54).
  • the CPU 22 first determines whether or not the engine is in a stable operation state as shown in FIG. 7 (step S61). The determination of the stable operation state of the engine is the same as the determination in step S22. If the engine is in a stable operation state, it is determined from the output signal of the oxygen concentration sensor 28 whether or not the actual air-fuel ratio is lean (step S62). If the actual air-fuel ratio is Ritsuchi, since the air-fuel ratio correction direction by the air-fuel ratio catching positive factor K 02 is in the lean, the learned value KREF by subtracting a predetermined subtraction value delta KDEC, it air-fuel ratio correction The coefficient is set to ⁇ 2 (step S63).
  • step S64 If the engine is not in a stable operation state, the air-fuel ratio correction coefficient ⁇ 02 is set to the learning value KREF (step S65). After execution of any of steps S63 to S65, the process proceeds to step S6 to perform the air-fuel ratio feedback control process of PI control.
  • the air-fuel ratio correction coefficient Ko2 set in the air-fuel ratio control routine is reflected in the calculation of the fuel injection time Tout, and as a result, the air-fuel ratio of the mixture supplied to the engine is controlled.
  • the fuel injection time Tout is increased, so that the air-fuel ratio of the supplied air-fuel mixture is rich, and the rich state is continued for a predetermined time RFP.
  • the fuel injection time Tout is reduced, so that the air-fuel ratio of the supplied air-fuel mixture is made lean, and the lean state is maintained for the predetermined time RFM. Therefore, the air-fuel ratio repeats the rich and the lean in a short cycle by the partition control.
  • FIG. 9 shows a change in the air-fuel ratio correction coefficient KM in the case where the transition from the partition control to the air-fuel ratio feedback control is performed because it has been detected that the engine operating state has become unstable.
  • the stable state flag F 6 is inverted from 1 to 0, and at time t 7 shown in FIG. 9, the air-fuel ratio correction coefficient K is obtained at step S 65.
  • the air-fuel ratio feedback control process is started.
  • the air-fuel ratio correction coefficient ⁇ 2 is changed stepwise thereafter.
  • step S4 At step 4, the flag F1 is set to 1. As a result, the flag F3 is inverted from 1 to 0 at step S27, and the execution of the partitioning control is not permitted. Therefore, the NOX reduction feedback control end processing of step S13 is executed instead of the partition control.
  • the air-fuel ratio correction coefficient K 02 is set to KREF- AKDEC in Sutetsu flop S 6 3 At this point, immediately ⁇ air-fuel ratio of the I control Fi Feedback control is started.
  • the value of the air-fuel ratio correction coefficient ⁇ 2 at the time when the partition control is stopped is used as it is.
  • the air-fuel ratio of the supplied air-fuel mixture is made lean, so that the air-fuel ratio correction coefficient ⁇ 2 further decreases stepwise.
  • the output voltage of the oxygen concentration sensor 28 falls below the reversal threshold voltage TH corresponding to the stoichiometric air-fuel ratio, and the count value COUNT of the air-fuel ratio reversal power counter starts counting.
  • the learned value KREF is a value obtained by averaging the air-fuel ratio correction coefficient K 02 of at the output inversion of the oxygen concentration sensor 2 8 as described above, gradually decreases during inversion from lean to Ritsuchi.
  • the partition control is restarted at time t 10 after the count value COUNT of the air-fuel ratio inversion counter reaches 0.
  • the air-fuel ratio correction coefficient Ko 2 and the learning value
  • the output voltage of the KREF and oxygen concentration sensor 28 has a waveform pattern opposite to that of the example shown in FIG.
  • air-fuel ratio feedback control of PI control is performed even in the air-fuel ratio feedback control region at relatively low load and low engine speed, and the air-fuel ratio feedback control region
  • partition control is performed to reduce NOX. This is based on the sudden increase in NOX emissions at high loads and high engine speeds.
  • the vibration of the vehicle caused by performing the perturbation control is masked by the vibration caused by the increase in the engine speed. The effect on sex can be minimized.
  • the emissions of .N ⁇ X In the low low load and low engine speed region, good and stable operability is obtained by the air-fuel ratio feedback control of the PI control, and in the high load and high engine speed region where the NOx emission is large, With the activation control, the three-way catalyst can sufficiently purify NOx in exhaust gas while minimizing deterioration of operability.
  • the air-fuel ratio periodically oscillates between the rich side and the lean side around the stoichiometric air-fuel ratio, so that unburned components in the rich exhaust gas and excess oxygen in the lean exhaust gas are mixed.
  • the air-fuel ratio control is executed by adjusting the fuel injection amount to the engine according to the air-fuel ratio correction coefficient Ko2, but the air amount supplied to the engine is adjusted.
  • the present invention can be applied to an air-fuel ratio control device of a system.
  • the present invention is applied to a motorcycle.
  • the present invention can be applied to other vehicles equipped with an engine such as a so-called light four-wheeled vehicle and three-wheeled vehicle.
  • the target air-fuel ratio is the stoichiometric air-fuel ratio, but is not limited to this.
  • the target air-fuel ratio may be different between the ⁇ I control air-fuel ratio feedback control and the ⁇ ⁇ ⁇ reduction feedback control.
  • the determination of each region shown in FIG. 4 is made according to the engine speed Ne and the throttle valve opening TH
  • the vehicle speed may be used instead of the engine speed Ne
  • a parameter indicating the engine load such as the negative pressure in the intake pipe or the amount of intake air to the engine can be used.
  • the partition control is executed in a state where the operation of the engine is stable. NOX can be reduced.
  • the basic hardware configuration of the air-fuel ratio control device can be used as it is, so that an increase in cost can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

内燃エンジンの排気管に備えられた酸素濃度センサの出力信号に応じて内燃エンジンの供給混合気の空燃比を目標空燃比に向けてフィードバック制御する空燃比制御装置であり、内燃エンジンの所定の高負荷及び高回転運転状態時には酸素濃度センサの出力信号に応じて目標空燃比を中心にして空燃比をリッチ側とリーン側とに周期的に振動させるパータベーション制御を行う。

Description

明細書 内燃エンジンの空燃比制御装置 技術分野
本発明は、 内燃ェンジンに排気ガス中の未燃焼成分を低減させるために備えら れる空燃比制御装置に関する。
背景技術
内燃ェンジンにおいては、 排気ガス中の未燃焼成分を低減させるために排気系 に設けられた酸素濃度センサによって排気中の酸素濃度を検出し、 その検出酸素 濃度に応じてエンジンへの供給混合気の空燃比を理論空燃比付近の目標空燃比に 向けてフィードバック制御する空燃比制御装置が設けられている。
また、 内燃エンジンの排気系.には、 通常、 三元 ^媒を用いたキヤタライザが設 けられている。 キヤタライザは排気ガス中の C〇, H C , N O Xを理論空燃比付 近において同時 fc低減させる機能を有している。
エンジンを高回転数領域や高負荷領域で比較的使用することが多い自動二輪車 等の軽重量の車両の場合には、排気ガス中の N O X量が多いことが知られている。 しかしながら、 空燃比を理論空燃比付近に収束させる方式の従来の空燃比制御装 置の使用下でのキヤタライザによる N O xの浄化率は、 他の C O, H C成分の浄 化率に比べて非常に低く、 N O Xの低減を十分に図ることができないという問題 点があった。
発明の開示 そこで、 本発明の目的は、 エンジンを高回転数領域或いは高負荷領域で比較的 使用することが多い車両に搭載された内燃エンジンの排気ガス中の C〇, H Cの みならず N O Xの低減を十分に図ることができる空燃比制御装置を提供すること である。
本発明の内燃エンジンの空燃比制御装置は、 内燃エンジンの排気管に排気ガス 中の酸素濃度に応じた出力信号を発生する酸素濃度センサを備え、 酸素濃度セン サの出力信号に応じて内燃エンジンの供給混合気の空燃比を目標空燃比に向けて フィードバック制御する空燃比制御装置であって、 内燃エンジンの所定の高負荷 及び高回転運転状態を検出して検出信号を発生する検出手段と、 検出信号の発生 時に酸素濃度センサの出力信号に応じて目標空燃比を中心にして空燃比をリツチ 側とリーン側とに周期的に振動させるパータベーシヨン制御を行う制御手段と、 を備えたことを特徴としている。
この結果、 N〇xの排出量が増大する所定の高負荷及び高回転数領域ではパー タベーシヨン制御が行われ、 排気ガス中の C O , H Cと共に N O Xの低減を十分 に図ることができる。
図面の簡単な説明
図 1は本発明の空燃比制御装置を適用した内燃エンジンのエンジン制御システ ムを示す図である。
図 2は図 1のシステム中の E C Uの内部構成を示すプロック図である。
図 3は空燃比制御ルーチンを示すフローチヤ一トである。
図 4は空燃比フィードバック領域を示す図である。
図 5は N O Xフィードバック制御実施許可判断のフローチャートである。 図 6は N O xフィードバック制御処理のフローチャートである。
図 7は N〇 Xフィードバック制御終了処理のフローチヤ一トである。
図 8は N O Xフィードバック制御の動作例を示す図である。
図 9は N O Xフィードバック制御終了時の動作例を示す図である。
図 1 0は N O Xフィードバック制御終了時の動作例を示す図である。
発明を実施するための形態
以下、 本発明の実施例を図面を参照しつつ詳細に説明する。
図 1は本発明による空燃比制御装置が適用された二輪車搭載 4サイクル内燃ェ かかる内燃エンジンの吸気管 1には、 スロッ トル弁 2が設けられ、 スロッ トル 弁 2の開度に応じた量の吸入空気が吸気管 1を介してエンジン本体 3の吸入ポー トに供給されるようになつている。 ェンジン本体 3の吸気ポート近傍の吸気管 1 には燃料噴射用のインジェクタ 4が設けられている。 インジェクタ 4には燃料タ ンク 6から燃料供給管 7が接続されている。 燃料供給管 7には、 プランジャ式燃 料ポンプ 8が設けられている。燃料ポンプ 8は後述の E C U (電子制御ュニット) 1 0による駆動によって燃科タンク 6内の燃料を吸入側の燃料供給管 7を介して 吸い込みィンジェクタ 4に吐出側の燃料供給管 7を介して圧送する。 ィンジェク タ 4は E C U 1 0による駆動によつて燃料を吸気ポートに向けて噴射する。
内燃エンジンの排気管 1 3には、 三元触媒を用いたキヤタライザ 1 4が設けら れている。
また、 エンジン本体 3には点火プラグ 1 1が固着されており、 点火プラグ 1 1 は点火装置 1 2に接続されており、 E C U 1 0が点火装置 1 2に対して点火タイ ミングの指令を発することによってエンジン本体 3のシリンダ内で火花放電を起 こす。
E C U 1 0は、 図 2に示すように、 入力インターフェース回路 2 0と、 回転数 カウンタ 2 1と、 C P U (中央演算ュニット) 2 2と、 メモリ 2 3と、 駆動回路 2 4 〜 2 5と、 を備えている。
入力インターフェース回路 2 0には、 エンジン冷却水温を検出する水温センサ 2 6、 吸気管 1内の負圧を検出する吸気圧センサ 2 7、 排気管 1 3に設けられ排 気ガス中の酸素濃度を検出する酸素濃度センサ 2 8、 スロットル弁 2の開度を検 出するスロットル弁開度センサ 3 1等のエンジン運転パラメータ検出手段が接続 されている。 酸素濃度センサ 2 8は酸素濃度に応じて理論空燃比を閾値として空 燃比がリツチ及びリーンのいずれであるかを示す 2値出力型のセンサである。 2 値出力型のセンサに代えて酸素濃度比例出力型の酸素濃度センサを用いても良い ことは勿論である。
回転数カウンタ 2 1には、 エンジン回転数を検出するクランク角センサ 2 9が 接続されている。 クランク角センサ 2 9はエンジン本体 3のクランク軸 3 aの回 転に連動して図示しない回転体が所定の角度 (例えば、 1 5度) だけ回転する毎 にクランクパルスが発生する。 また、 カム軸 3 bの回転に連動して図示しない回 転体の近傍にカム角センサ 3 0が設けられている。 カム角センサ 3 0は代表気筒 のビストンの圧縮上死点を示す T D C信号又はクランク軸 3 a力 2 0度回転す る毎に基準位置信号を C P U 2 2 へ出力する。
回転数カウンタ 2 1はクランク角センサ 2 9から出力されるクランクパルスに よってリセットされて図示しないク口ック発生器から出力されたク口ックパルス を計数し、 そのク口ックパルス発生数を計数することによりエンジン回転数 N e を示す信号を発生する。
C PU 2 2には、 入力インターフェース回路 2 0からはセンサ 2 6〜 2 8によ る冷却水温 Tw、 吸気管内負圧 P B、 酸素濃度 O 2及びスロッ トル弁開度 THの 各検出情報、 回転数カウンタ 2 1からはエンジン回転数 N eの情報並びにクラン ク角センサ 2 9から TDC信号及び基準位置信号が供給される。
C PU 2 2は基準位置信号に同期して燃料ポンプ駆動開始時点、 燃料噴射開始 時点及び点火時期を設定し、 また燃料噴射時間 Tout及び燃料ポンプ駆動時間を 算出する。 燃料ポンプ駆動開始時点及び燃料ポンプ駆動時間は図示しない燃料ポ ンプ駆動設定ルーチンで設定される。 メモリ 2 3には C PU 2 2の動作プロダラ ムゃデ一タが記憶されている。 燃料噴射時間 T outは例えば、 次の算出式を用レ、て基本的には算出される。
Figure imgf000007_0001
ここで、 T iはエンジン回転数と吸気管内負圧とに応じてメモリ 2 3からのデ ータマツプ検索により決定される空燃比基準制御値である基本燃料噴射時間であ る。 KMは酸素濃度センサ 2 8の出力信号に基づいた空燃比フィードパック制御 において算出された空燃比補正係数である。 空燃比補正係数 Κο2は後述の空燃比 制御ルーチンにおいて決定される。
なお、 燃料噴射時間 Toutの算出においては加速補正、 減速補正等の各種の補 正が加えられて燃料噴射時間 Toutが決定されることが普通である。
E CU 1 0内の C PU 2 2は、 所定の周期で空燃比制御ルーチンを実行する。 空燃比制御ルーチンの実行において C PU 2 2は、 図 3に示すように、 先ず、 空 燃比フィードパック制御領域であるか否かを判別する (ステップ S l)。 酸素濃 度センサ 28の出力信号に基づいた空燃比フィ一ドバック制御領域は図 4に示す ようにエンジン回転数 N eとスロットル弁開度 THに応じて設定される。 その設 定情報はメモリ 23に記憶されている。 よって、 メモリ 23に記憶された空燃比 フィードバック制御領域のデータに応じて空燃比フィ一ドバック制御領域である か否かは判別される。
なお、 図 4では空燃比フィードバック制御領域には P I制御の空燃比フィード バック制御領域と N O X低減フィードバック制御領域とがあることを示してい る。 NO X低減フィードバック制御領域ではパータベーション制御が行われる。 N〇x低減フィードバック制御領域は図 4に示したように、 更に 3つの領域、 す なわち第 1 NOXFB領域、 第 2NOXFB領域及び第 3NOXFB領域に区分 されている。 NOx低減フィードバック制御領域をこのように 3つの領域に区分 した理由は、 より高精度の制御をするためにである。 すなわち、 後述する空燃比 補正係数 Ko2の加算値 ΔΚ I NC、 減算値 AKDEC、 K。2加算状態タイマの時 間 TM I NCの初期値 RF Ρ、 及び Κ02減算状態タイマの時間 TMDECの初期 値 R FMは 3つの領域毎に設定される。
また、 各領域の境にはヒステリシス分が設けられている。 すなわち、 前回の判 別では空燃比フィードバック制御領域外にあつたときに次に空燃比フィードパッ ク制御領域にあるか否かの判別には図 4に実線で示した境界の値が閾値として用 いられ、 前回の判別では空燃比フィードパック制御領域内にあつたときに次に空 燃比フィードバック制御領域にあるか否かの判別には図 4に波線で示した境界の 値が閾値として用いられる。 このことは、 Ρ I制御の空燃比フィードバック制御 領域と NO x低減フィードバック制御領域との間、 また第 1 NOXFB領域、 第 2NOXFB領域及ぴ第 3 N〇 X F B領域の間でも同様である。
空燃比フィードバック制御領域以外では酸素濃度センサ 28の出力信号に無関 係に空燃比を制御する空燃比ォープルループ制御領域である。 CPU 22は、 空 燃比ォープルループ制御領域と判別した場合には、 オープン制御処理を行う (ス テツプ S 2)。 オープン制御処理では空燃比補正係数 Ko2は 1に等しくされ、 上 記した燃料噴射時間 Toutの算出においては空燃比補正係数 Κ02を除く、 加速補 正、 減速補正等の他の補正が加えられて燃料噴射時間 Toutが決定される。
CPU22は、 空燃比フィードバック制御領域と判別した場合には、 酸素濃度 センサ 28の出力信号を読み取り (ステップ S 3)、 NO X低減フィードバック 制御領域であるか否かを判別する (ステップ S 4)。 メモリ 23には図 4に示し た如き各領域の範囲 (ヒステリシスを含む) を示すデータが予め記憶されている ので、 そのデータを用いてステップ S 4では NOx低減フィードパック制御領域 が判別される。 すなわち、 前回の判別では P I制御の空燃比フィードバック制御 領域内にあつたときに次に N O X低減フィ一ドバック制御領域にあるか否かの判 別には図 4に実線で示した境界の値が閾値として用いられ、 前回の判別では N〇 X低減フィードバック制御領域内にあったときに次に N O X低減フィードバック 制御領域にあるか否かの判別には図 4に波線で示した境界の値が閾値として用い られる。 閾値はエンジン回転数及びスロットル弁開度共に排気ガス中の NO X量 が急増する直前の値である。
CPU 22は、 NO X低減フィードバック制御領域ではないと判別した場合に は、 前回の本ルーチン実行時に NO X低減フィードバック制御を行ったか否かを 判別する (ステップ S 5)。 前回の本ルーチン実行時に NOx低減フィードバッ ク制御を行っていない場合には、 P I制御の空燃比フィードパック制御処理を行 う (ステップ S 6)。
前回の本ルーチン実行時に N O X低減フィードパック制御を行った場合には、 NO X低減フィードバック制御から空燃比フィードバック制御に移行するので、 空燃比補正係数 K02を学習値 KREF又は 1に設定し (ステップ S 7)、 その後、 ステップ S 6に進んで Ρ I制御の空燃比フィードパック制御処理を行う。 ステツ プ S 7の学習値 KREFとは上記の Ρ I制御の I (積分) 項による酸素濃度セン サ 28の出力反転時の空燃比補正係数 Κ02を平均化した値である。
Ρ I制御の空燃比フィードバック制御処理については公知であるので、 ここで の詳細な説明は省略する。 概略的に説明すると、 酸素濃度センサ 28の出力信号 に応じて空燃比が例えば、 理論空燃比よりリッチと判断されると、 空燃比補正係 数 Κ02は Ρ (比例) 項分だけ減少され、 その後、 所定の周期で I項分だけ減少さ れる。 一方、 酸素濃度センサ 28の出力信号に応じて空燃比が例えば、 理論空燃 比よりリーンと判断されると、 空燃比補正係数 Κ ο 2は Ρ項分だけ増加され、 その 後、 所定の周期で I項分だけ増加される。
CPU22は、 ステップ S 4において NO X低減フィードバック制御領域であ ると判別した場合には、 N O X低減フィードパック用係数及ぴタィマ時間を選択 する (ステップ S 8)。 ステップ S 8では NO X低減フィードバック制御領域が 上記した第 1 NO X F B領域、 第 2 NO X F B領域及び第 3 NO X F B領域のい ずれであるかが判別され、それに応じて空燃比補正係数 Ko2の加算値 ΔΚ I NC、 減算値 AKDEC、 K。2加算状態タイマの時間 TM I NCの初期値 RF P、 及ぴ Ko 2減算状態タイマの時間 TMD E Cの初期値 R F Μが設定される。 すなわち、 第 1 NOXF Β領域の場合、 AK I NC = AK I NC 1 (例えば、 0. 03)、 AKDEC = AKDEC 1 (例えば、 0. 03)、 RF P=RF P 1 (例えば、 250 msec), RFM=RFM1 (例えば、 250msec) である。 第 2NOXF B領域の場合、 ΔΚ Ι Ν〇=ΔΚ Ι Ν〇 2 (例えば、 0. 08)、 AKDEC = AKDEC 2 (例えば、 0. 03)、 RFP = RFP 2 (例えば、 2500msec)、 RFM=RFM2 (例えば、 1 30msec) である。 第 3 N O X F B領域の場合、 厶 K I NC = AK I NC 3 (例えば、 0. 08)、 AKDEC = AKDEC 3 (例 えば、 0. 08)、 RFP=RF P 3 (例えば、 80msec)、 R FM=R FM3 (例えば、 80msec) である。
NOx低減フィ一ドパック用係数及ぴタィマ時間の選択後、 N O X低減フィ一 ドバック制御の実施許可を判断する (ステップ S 9 )。
NO X低減フィ一ドバック制御の実施許可判断は、 図 5に示すように、 先ず、 リツチ Zリーン一致判定フラグ F 1が不一致を示す 1であるか否かを判別する (ステップ S 21)。 リッチ Zリーン一致判定フラグ F 1は、 後述の NOx低減 フィードバック制御処理において設定される。 すなわち、 F 1 = 0は、 酸素濃度 センサ 28がリツチを示す出力信号レベルであるとき空燃比補正係数 K 02が減少 される状態であ.ること、 或いは酸素濃度センサ 28がリーンを示す出力信号レべ ルであるとき空燃比補正係数 Ko2が増加される状態であることが検出されたこと を表す。 すなわち、 空燃比補正係数の今回の算出値の空燃比補正の方向が酸素濃 度センサ 28の出力信号から判別された空燃比と所定の対応関係を有しているこ とを表す。 F l = lは、 酸素濃度センサ 28がリッチを示す出力信号レベルであ るとき空燃比補正係数 K02が増加される状態であること、 或いは酸素濃度センサ
28がリーンを示す出力信号レベルであるとき空燃比補正係数 Κο 2が減少される 状態であることが検出されたことを表す。
ステップ S 21において F 1=0と判別したならば、 エンジンは安定運転状態 であるか否かを判別する (ステップ S 22)。 エンジンの安定運転状態の判別は、 エンジン回転数 Ne、 スロットル弁開度 TH及び吸気管内負圧 PBのうちの少な くとも 1のエンジン運転パラメータの今回値、 前回値及ぴ前々回値が所定の範囲 内にあるときを検出することによって行われる。 なお、 今回値、 前回値及ぴ前々 回値の各々は所定の周期のタイミングで検出されるエンジン運転パラメータの検 出値である。 エンジンの安定運転状態の判別は、 本ルーチンとは別のルーチンで 行って、 その結果をステップ S 22では安定状態フラグ F 6によって判別しても 良い。
CPU 22は、 ステップ S 21において F 1 = 1と判別したならば、 或いはス テツプ S 22においてエンジンが不安定運転状態にあると判別したならば、 空燃 比反転カウンタの計数値 COUNTを初期値 I N I (例えば、 6) に等しくさせ (ステップ S 23)、 Ko2加算状態タイマの時間 TM I NC及ぴ Κ02減算状態タ イマの時間 TMD ECを 0に等しくさせる (ステップ S 24)。 空燃比反転カウ ンタは酸素濃度センサ 28の出力信号レベルがリツチを示すレベルからリーンを 示すレベルへ反転する毎に計数値 COUNTをカウントダウンする。 K 02加算状 態タイマ及び K02減算状態タイマ各々は時間値がセットされると、 時間計測して その時間値が 0に向けて減少するタイマである。
CPU22は、 更に、 Κ02加減要求フラグ F 2を 0に等しくさせ (ステップ S 25)、 リツチ/リーン一致判定フラグ F 1を 0に等しくさせ(ステップ S 26)、 NO X低減フィードパック制御許可フラグ F 3を 0に等しくさせ (ステップ S 2 7)、 NO X低減フィードバック制御実施フラグ F 4を 1に等しくさせる (ステ ップ S 28)。 F 2 = 0は空燃比補正係数 K。2の加算要求を示し、 F 1 =0は上 記したように酸素濃度センサ 28による空燃比検出結果と空燃比補正係数 Κο2の 今回の値の変化方向とが所定の対応関係を有していることを示す。 F 3 = 0は Ν Ο X低減フィ一ドバック制御の不許可を示し、 F4 = lは Ν〇χ低減フィ一ドバ ック制御が現在実際に行われていないことを示す。
CPU 22は、 ステップ S 22においてエンジンが安定運転状態にあると判別 したならば、 空燃比反転力ゥンタの計数値 COUNTが 0であるか否かを判別す る (ステップ S 29)。 ステップ S 29ではエンジンが安定運転状態にあり、 か つ酸素濃度センサ 28による空燃比検出結果と空燃比補正係数 K02の変化方向と が対応している状態が少なくとも I Ν Iの空燃比反転の回数だけ継続したか否か が判別される。 空燃比反転力ゥンタの計数値 C〇 U Ν Τが 0に達している場合に は酸素濃度センサ 28の出力信号レベルはリツチを示すか否かを判別する (ステ ップ S 30)。 ステップ S 30は後述の NO X低減フィードバック制御処理にお いて酸素濃度センサフラグ F 5が 0又は 1に設定された結果に応じて判別するこ ともできる。 酸素濃度センサ 28の出力信号レベルがリッチを示す場合には、 空 燃比補正係数 KMが学習値 KRE F以下であるか否かを判別する (ステップ S 3 1)。 K。2≤KRE Fである場合には、 N〇x低減フィードパック制御許可フラ グ F 3を 1に等しくさせ (ステップ S 32)、 これによつて NO X低減フィード バック制御を実施許可状態とする。 C P U 22は、 空燃比制御ルーチンのステップ S 9の実行後、 N O X低減フィ 一ドパック制御の実施許可判断の結果を N O X低減フィードバック制御許可フラ グ F 3によって判別する (ステップ S 1 0)。 F 3 = 1ならば、 NO X低減フィ 一ドパック制御の実施は許可されているので、 空燃比補正係数 K02を学習値 KR EFに設定し (ステップ S 1 1)、 その後、 ΝΟχ低減フィードバック制御処理 を実行する (ステップ S 1 2)。 F 3 = 0ならば、 NO X低減フィードバック制 御の実施は許可されていないので、 NO X低減フィードバック制御終了処理を行 う (ステップ S 1 3)。 その後、 NOx低減フィードバック制御終了処理で設定 された空燃比補正係数 K02を用いて P I制御の空燃比フィードパック制御処理を 行う (ステップ S 6)。
CPU22によるステップ S 1 2の NOx低減フィードバック制御処理がパー タベーション制御を行う制御手段に相当する。
ステップ S 12の NOx低減フィードバック制御処理において、 CPU22は 図 6に示すように、 先ず、 K。2加減要求フラグ F 2が 1であるか否かを判別する (ステップ S 41)。 F 2 = 0ならば、 空燃比補正係数 Κ02の加算要求時、 すな わち空燃比をリツチ化すべき時であり、 Κ02減算状態タイマの時間 TMDECが 0に到達したか否かを判別する (ステップ S 42)。 TMDEC>0ならば、 Ν Ox低減フィードバック制御処理をー且終了する。 TMDEC=0ならば、 減算 時間が終了したので酸素濃度センサ 28の出力信号から実際の空燃比がリーンで あるか否かを判別する (ステップ S 43)。 実際の空燃比がリッチであるならば、 酸素濃度センサ 28による空燃比検出結果と空燃比補正係数 Ko2の変化方向とが 対応した関係を有していないので、 リツチノリーン一致判定フラグ F 1を 1に等 しくさせる (ステップ S 44)。
一方、 実際の空燃比がリーンであるならば、 酸素濃度センサ 2 8による空燃比 検出結果と空燃比補正係数 KMによる空燃比補正方向との対応関係が一致するの で、 リッチ Ζリーン一致判定フラグ F 1を 0に等しくさせる (ステップ S 4 5)。 その後、 学習値 KRE Fに所定の加算値 Δ Κ I NCを加算し、 それを空燃比補正 係数 Κο2とする (ステップ S 4 6)。 Κο2加算状態タイマの時間 TM I NCに所 定時間 R F Pを設定し (ステップ S 4 7)、 更に、 Κ02加減要求フラグ F 2を 1 に等しくさせる (ステップ S 4 8)。
C PU 2 2はステップ S 4 1において F 2 = lと判別したならば、 空燃比補正 係数 Κθ2の減算要求時、 すなわち空燃比をリーン化すべき時であり、 Κθ2加算状 態タイマの時間 TM I NCが 0に到達したか否かを判別する (ステップ S 4 9)。 TM I NC> 0ならば、 NO X低減フィードバック制御処理を一旦終了する。 T M I NC= 0ならば、 加算時間が終了したので酸素濃度センサ 2 8の出力信号か ら実際の空燃比がリーンであるか否かを判別する (ステップ S 5 0)。 実際の空 燃比がリーンであるならば、 酸素濃度センサ 2 8による空燃比検出結果と空燃比 補正係数 K02による空燃比補正方向との対応関係が一致しないので、 リツチ リ ーン一致判定フラグ F 1を 1に等しくさせる (ステップ S 4 4)。
一方、 実際の空燃比がリッチであるならば、 酸素濃度センサ 2 8による空燃比 検出結果と空燃比補正係数 Κ。2による補正方向との対応関係が一致するので、 リ ツチ/リーン一致判定フラグ F 1を 0に等しくさせる (ステップ S 5 1)。 その 後、 学習値 KRE Fから所定の減算値 AKD E Cを減算し、 それを空燃比補正係 数 K02とする (ステップ S 5 2)。 Κο2減算状態タイマの時間 TMDE Cに所定 時間 RFMを設定し (ステップ S 53)、 更に、 Ko2加減要求フラグ F 2を 0に 等しくさせる (ステップ S 54)。
ステップ S 1 3の NO X低減フィードバック制御終了処理において、 CPU 2 2は図 7に示すように、 先ず、 エンジンは安定運転状態であるか否かを判別する (ステップ S 6 1)。 このエンジンの安定運転状態の判別は、 ステップ S 22の 判別と同様である。 エンジンが安定運転状態であれば、 酸素濃度センサ 28の出 力信号から実際の空燃比がリーンであるか否かを判別する (ステップ S 62)。 実際の空燃比がリツチであるならば、 空燃比捕正係数 K02による空燃比補正方向 がリーンとなっているので、 学習値 K R E Fから所定の減算値 Δ K D E Cを減算 し、 それを空燃比補正係数 Κο2とする (ステップ S 63)。 一方、 実際の空燃比 がリーンであるならば、 空燃比補正係数 Κ02の変化方向がリツチとなっているの で、 学習値 KREFに所定の加算値 ΔΚ I NCを加算し、 それを空燃比補正係数 Κ02とする (ステップ S 64)。 エンジンが安定運転状態ではないならば、 空燃 比補正係数 Κ02を学習値 KRE Fに設定する (ステップ S 65)。 ステップ S 6 3〜S 65のいずれかの実行後、 上記のステップ S 6に進んで P I制御の空燃比 フィードバック制御処理を行う。
このように空燃比制御ルーチンで設定された空燃比補正係数 Ko2が燃枓噴射時 間 Toutの算出に反映されることにより、 結果としてエンジンの供給混合気の空 燃比が制御される。
次に、 上記の空燃比制御ルーチンの実行による N〇 X低減フィードバック制御 の動作例を図 8に従って説明する。
図 8において、 F 3 = 0の N〇 X低減フィ一ドバック制御の不許可期間では、 空燃比反転力ゥンタの計数値 COUNTが段階的に減少して 0になるまでを示し ている。 この不許可期間では、 ステップ S 6の P I制御の空燃比フィードバック 制御処理によって空燃比補正係数 Ko2が減少し、 酸素濃度センサ 28の出力信号 レベルが空燃比のリッチからリーンに反転した時点 t 1, t 2, t 3, t 4の各 々で空燃比反転カウンタの計数値 C O U N Tが減少している。 時点 t 4で空燃比 反転カウンタの計数値 COUNTが 0に達すると、 空燃比反転カウンタは I N I 回のリツチからリーンへの空燃比反転を計測したことになる。 その後の時点 t 5 にてステップ S 31にて K02≤KREFの条件が満たされ、 ステップ S 32にて F 3 = 1と設定されることにより、 NOx低減フィ一ドバック制御の実施が許可 される。 すなわち、 この時点 t 5からパータベーシヨン制御が開始されることに なり、 先ず、 その開始時には F 2 = 0のためステップ S 46にて K02 = KREF + ΔΚ I NCと設定される。 その結果、 燃料噴射時間 Toutが増量されるので、 供給混合気の空燃比がリツチ化され、 そのリツチ化状態が所定時間 RFPだけ継 続される。 所定時間 RFPの経過後、 その時点では F 2= 1となるためステップ S 52に進んで K02 = KREF— AKDECと設定される。 その結果、 燃料噴射 時間 Toutが減量されるので、 供給混合気の空燃比がリーン化され、 そのリーン 化状態が所定時間 RFMだけ継続される。 よって、 パータベーシヨン制御によつ て空燃比がリツチとリーンとを短周期で繰り返すことになる。
図 8に示した動作例では、 パータベーシヨン制御継続中の時点 t 6にてェンジ ンの運転状態が不安定になったことが検出されたため、 安定状態フラグ F 6が 1 (安定) から 0 (不安定) に反転し、 その時点 t 6からパータベーシヨン制御は 中止されている。 また、 時点 t 6の直後に空燃比補正係数 K02は KREFにされ た後、 変化する。
図 9においてはエンジンの運転状態が不安定になったことが検出されたために パータベーシヨン制御から空燃比フィードバック制御に移行する場合の空燃比補 正係数 K Mの変化が示されている。 安定状態フラグ F 6が 1から 0に反転し、 図 9に示す時点 t 7においてステップ S 6 5にて空燃比補正係数 K。2は K R E Fに された後、 空燃比フィードバック制御処理が開始される。 Ρ I制御の空燃比フィ ードバック制御処理によって、 その後、 空燃比補正係数 Κο 2が段階的に変化され ることになる。
また、 パータベーシヨン制御中にステップ S 2 1にて F 1 = 1、 すなわち酸素 濃度センサ 2 8による空燃比検出結果と空燃比補正係数 Κο 2による空燃比補正方 向との対応関係が一致しない状態と判別された場合には、 パータベーション制御 は中止される。 パータベーシヨン制御中に実際の空燃比はリーン側であったにも 関わらず、 酸素濃度センサ 2 8による空燃比検出結果はリツチ側を示した場合に は、 図 1 0に示すように、 空燃比補正係数 Κ。2、 学習値 K R E F、 酸素濃度セン サ 2 8の出力電圧、 リッチ/リーン判定及ぴフラグ F 3は変化する。 図 1 0に示 す時点 t 8にて実際のパータベーション制御による空燃比はリーン側であつたに も関わらず、 酸素濃度センサ 2 8による空燃比検出結果はリツチ側を示したため にステップ S 4 4でフラグ F 1が 1にセットされ、 その結果、 ステップ S 2 7に てフラグ F 3が 1から 0に反転され、 パータベーシヨン制御は実施不許可とされ る。 よって、 パータベーシヨン制御に代わってステップ S 1 3の N O X低減フィ 一ドバック制御終了処理が実行される。 この時点で空燃比補正係数 K02はステツ プ S 6 3で K R E F— A K D E Cに設定された後、 直ちに Ρ I制御の空燃比フィ ードバック制御が開始される。 すなわち、 パータベーシヨン制御の中止時点の空 燃比補正係数 Κθ 2の値がそのまま用いられる。 その結果、 供給混合気の空燃比の リーン化が図られるので、 空燃比補正係数 Κ θ 2は段階的に更に減少する。 図 1 0 に示す時点 t 9では酸素濃度センサ 2 8の出力電圧は理論空燃比に対応した反転 閾値電圧 T Hを下回り、 空燃比反転力ゥンタの計数値 C O U N Tが計数を開始す る。 学習値 K R E Fは上記したように酸素濃度センサ 2 8の出力反転時の空燃比 補正係数 K02を平均化した値であるので、 リーンからリツチへの反転時に徐々に 低下する。 図 1 0に示した例では、 空燃比反転カウンタの計数値 C O U N Tが 0 に達した後の時点 t 1 0でパータベーシヨン制御が再度開始される。
なお、 パータベーシヨン制御中に実際の空燃比はリツチ側であったにも関わら ず、 酸素濃度センサ 2 8による空燃比検出結果はリーン側を示した場合には、 空 燃比補正係数 Ko 2、 学習値 K R E F及ぴ酸素濃度センサ 2 8の出力電圧について は図 1 0に示した例とは逆の波形パターンとなる。
力かる空燃比制御装置を用いた車載内燃エンジンにおいては、 空燃比フィード バック制御領域でも比較的低負荷及び低エンジン回転数領域では P I制御の空燃 比フィードバック制御が行われ、 空燃比フィードバック制御領域でも高負荷及び 高エンジン回転数領域では N O X低減のためにパータベーシヨン制御が行われ る。 これは、 高負荷及び高エンジン回転数領域で N O Xの排出量が急増すること に基づいている。 更に、 この領域では低負荷及び低エンジン回転数領域に比べて パータベーシヨン制御を行うことによる車両の振動がエンジン回転数の増加によ る振動によってマスキングされるので、 パータベーション制御による運転者の操 作性に与える影響を最小限に抑えることができる。 すなわち、 . N〇 Xの排出量が 少ない低負荷及ぴ低エンジン回転数領域では P I制御の空燃比フィ一ドバック制 御によって良好な安定した操作性が得られ、 また N O Xの排出量が多い高負荷及 び高エンジン回転数領域ではパータベーション制御によって操作性の悪化を最小 限に抑えつつ三元触媒による排気ガス中の N O Xの浄化を十分に図ることができ る。 パータベーシヨン制御は例えば、 理論空燃比を中心にして空燃比をリッチ側 とリーン側とに周期的に振動させるので、 リツチ排気ガス中の未燃焼成分とリー ン排気ガス中の過剰酸素とが混在する状態を作り出すため兰元触媒による排気ガ ス中の C O, H Cの浄化だけでなく N〇 Xの浄化がより活発に行われるのである。 なお、 上記した実施例においては、 エンジンへの燃料噴射量を空燃比補正係数 Ko 2に応じて調整することによつて空燃比制御が実行されるが、 エンジンに供給 される空気量を調整する方式の空燃比制御装置にも本発明を適用することができ る。
また、 上記した実施例においては、 本発明を二輪車に適用した場合について説 明したが、 いわゆる軽四輪車、 三輪車等の他のエンジン搭載車両にも適用するこ とができる。
また、 上記した実施例においては、 目標空燃比は理論空燃比であるが、 これに 限定されない。 目標空燃比は Ρ I制御の空燃比フィードバック制御時と Ν Ο χ低 減フィードバック制御時でと異なっても良い。
更に、 図 4に示した各領域の判別はエンジン回転数 N eとスロットル弁開度 T Hとに応じて行っているが、 エンジン回転数 N eに代えて車速を用いても良く、 また、 スロッ トル弁開度 T Hに代えて吸気管内負圧、 或いはエンジンへの吸入空 気量等のエンジン負荷を示すパラメータを用いることができる。 以上の如く、 本発明によれば、 空燃比フィードバック制御領域でもエンジンの 運転が安定した状態でパータベーシヨン制御が実行されるので、 良好な運転状態 を維持しつつ三元触媒によつて排気ガス中の N O Xの低減を図ることができる。 また、 本発明は空燃比制御装置の基本的なハードウェア構成をそのまま用いるこ とができるので、 コストアップを抑制することができる。

Claims

請求の範囲
1 . 内燃エンジンの排気管に排気ガス中の酸素濃度に応じた出力信号を発生す る酸素濃度センサを備え、 前記酸素濃度センサの出力信号に応じて前記内燃ェン ジンの供給混合気の空燃比を目標空燃比に向けてフィ一ドバック制御する空燃比 制御装置であって、
前記内燃エンジンの所定の高負荷及び高回転運転状態を検出して検出信号を発 生する検出手段と、
前記検出信号の発生時には前記酸素濃度センサの出力信号に応じて前記目標空 燃比を中心にして空燃比をリツチ側とリーン側とに周期的に振動させるパータべ ーション制御を行う制御手段と、 を備えたことを特徴とする空燃比制御装置。
2 . 前記検出手段は、 前記内燃エンジンのエンジン回転数を検出するエンジン 回転数検出手段と、 前記内燃エンジンのスロットル弁の開度を検出するスロット ル弁開度検出手段と、 を有し、
前記エンジン回転数検出手段及び前記スロットル弁開度検出手段各々の検出値 に応じて前記所定の高負荷及び高回転運転状態を検出することを特徴とする請求 項 1記載の空燃比制御装置。
3 . 前記検出手段は、 前記所定の高負荷及び高回転運転状態を検出するために 前記エンジン回転数検出手段及び前記スロットル弁開度検出手段各々の検出値に 対してヒステリシスを有することを特徴とする請求項 2記載の空燃比制御装置。
4 . 前記制御手段は、 前記内燃エンジンへ噴射供給されるべき燃料噴射量を補 正するための空燃比補正係数を前記酸素濃度センサの出力信号に応じて算出する ことにより空燃比フィ一ドパック制御を行い、 前記パータベーシヨン制御時には、 基準値に所定の加算値を加算して前記空燃 比補正係数を算出することと、 前記基準値から所定の減算値を減算して前記空燃 比補正係数を算出することを交互に実行することを特徴とする請求項 1記載の空 燃比制御装置。
5 . 前記制御手段は、 前記酸素濃度センサの出力信号に応じて前記内燃ェンジ ンに供給された混合気の空燃比を検出する空燃比検出手段を有し、
前記検出信号の発生時には、前記内燃エンジンの運転状態が安定していること、 前記空燃比検出手段によって検出された空燃比が前記目標空燃比に対してリッチ 側からリーン側へ反転したことが所定回数以上実行されたこと、 前記空燃比検出 手段によって検出された空燃比が前記目標空燃比よりリツチであること、 かつ前 記空燃比補正係数が基準値以下であることを検出したとき前記パータベーション 制御を開始することを特徴とする請求項 1又は 4記載の空燃比制御装置。
6 . 前記制御手段は、 前記パータベーシヨン制御中において、 前記内燃ェンジ ンの運転状態が不安定になったこと、 又は前記空燃比補正係数の算出の際に前記 空燃比補正係数の今回の算出による変化方向が前記空燃比検出手段によって検出 された空燃比と所定の対応関係を有していないことを検出したとき前記パータべ ーション制御を中止して前記空燃比フィードバック制御を行うことを特徴とする 請求項 1又は 4記載の空燃比制御装置。
7 . 前記制御手段は、 前記パータベーシヨン制御中に前記内燃エンジンの運転 状態が不安定になったことを検出したときに前記空燃比フィ一ドパック制御を行 う場合には、 前記空燃比補正係数を前記基準値に設定し、 前記空燃比補正係数の 今回の算出値の空燃比補正の方向が前記空燃比検出手段によって検出された空燃 比と所定の対応関係を有していないことを検出したときに前記空燃比フィ一ドバ ック制御を行う場合には、 前記空燃比補正係数をその時点の値から用いることを 特徴とする請求項 6記載の空燃比制御装置。
PCT/JP2004/005214 2003-05-30 2004-04-12 内燃エンジンの空燃比制御装置 WO2004106720A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04726914A EP1630389A1 (en) 2003-05-30 2004-04-12 Air-fuel ratio control device of internal combustion engine
US10/515,017 US7007685B2 (en) 2003-05-30 2004-04-12 Air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-154236 2003-05-30
JP2003154236A JP2004353598A (ja) 2003-05-30 2003-05-30 内燃エンジンの空燃比制御装置

Publications (1)

Publication Number Publication Date
WO2004106720A1 true WO2004106720A1 (ja) 2004-12-09

Family

ID=33487318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005214 WO2004106720A1 (ja) 2003-05-30 2004-04-12 内燃エンジンの空燃比制御装置

Country Status (4)

Country Link
US (1) US7007685B2 (ja)
EP (1) EP1630389A1 (ja)
JP (1) JP2004353598A (ja)
WO (1) WO2004106720A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095973B2 (ja) * 2006-09-25 2012-12-12 本田技研工業株式会社 多種類燃料エンジン用燃料噴射制御装置
US9038611B2 (en) * 2011-11-14 2015-05-26 Ford Global Technologies, Llc NOx feedback for combustion control
KR20130064309A (ko) * 2011-12-08 2013-06-18 현대자동차주식회사 Ffv를 위한 에탄올 중의 수분함량 판정 및 그에 따른 연료량 보정 방법
US9776134B2 (en) * 2012-11-29 2017-10-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP6387933B2 (ja) * 2015-09-14 2018-09-12 マツダ株式会社 エンジンの制御装置
JP6327223B2 (ja) * 2015-09-14 2018-05-23 マツダ株式会社 エンジンの制御装置
JP6387934B2 (ja) * 2015-09-14 2018-09-12 マツダ株式会社 エンジンの制御装置
CN113294266B (zh) * 2020-02-21 2022-07-05 中国石油天然气股份有限公司 压缩机的空燃比调控装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111647A (ja) * 1989-09-25 1991-05-13 Mitsubishi Motors Corp 排気ガス浄化装置
JPH08177571A (ja) * 1994-12-21 1996-07-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2002147236A (ja) * 2000-11-16 2002-05-22 Daihatsu Motor Co Ltd 筒内噴射式内燃機関のピストン頂面温度制御方法
JP2002285900A (ja) * 2001-03-27 2002-10-03 Honda Motor Co Ltd 吸気制御装置の故障検知システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182282A (ja) * 1997-12-16 1999-07-06 Sanshin Ind Co Ltd 筒内燃料噴射式エンジンの制御装置
JPH11182289A (ja) * 1997-12-18 1999-07-06 Sanshin Ind Co Ltd 筒内燃料噴射式2サイクルエンジンの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111647A (ja) * 1989-09-25 1991-05-13 Mitsubishi Motors Corp 排気ガス浄化装置
JPH08177571A (ja) * 1994-12-21 1996-07-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2002147236A (ja) * 2000-11-16 2002-05-22 Daihatsu Motor Co Ltd 筒内噴射式内燃機関のピストン頂面温度制御方法
JP2002285900A (ja) * 2001-03-27 2002-10-03 Honda Motor Co Ltd 吸気制御装置の故障検知システム

Also Published As

Publication number Publication date
US7007685B2 (en) 2006-03-07
US20050211234A1 (en) 2005-09-29
JP2004353598A (ja) 2004-12-16
EP1630389A1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JPH0571397A (ja) 内燃機関の空燃比制御装置
EP0924420B1 (en) Torque controller for internal combustion engine
US5311853A (en) Exhaust gas cleaning device for an internal combustion engine
WO2004106720A1 (ja) 内燃エンジンの空燃比制御装置
JP2010138705A (ja) 内燃機関の空燃比制御装置
JP2010043624A (ja) 内燃機関の触媒劣化判定装置
JP2947065B2 (ja) 内燃機関のリーンバーン制御装置
JP3231947B2 (ja) 内燃機関の燃焼異常検出方法
JP3973387B2 (ja) 内燃機関の吸気圧検出方法
JP2696444B2 (ja) 内燃機関の燃料供給制御装置
JP4276136B2 (ja) エンジンの診断装置
JP2009024496A (ja) 内燃機関の空燃比制御装置
JP2586413B2 (ja) 内燃機関の空燃比制御装置
JP3961414B2 (ja) 内燃機関の制御装置
JP3695070B2 (ja) エンジンの制御装置
JP4446873B2 (ja) 内燃機関の空燃比制御装置
JP2001065391A (ja) 内燃機関の空燃比制御装置
JP4024667B2 (ja) 内燃機関の制御装置
JP2750777B2 (ja) 内燃機関の電子制御燃料供給装置
JP2000240546A (ja) 内燃機関の点火制御装置
JPH0458025A (ja) クランクケース吸入方式の2サイクルエンジンの燃料噴射装置
JPH06129275A (ja) 2サイクルエンジンの燃料噴射補正制御装置
JP2010203407A (ja) 内燃機関の制御装置
JPH08312423A (ja) 内燃エンジンの空燃比フィードバック制御装置
JP2003239787A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10515017

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004726914

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004726914

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004726914

Country of ref document: EP