WO2004104269A1 - Procede de recuperation du cuivre d'une solution de gravure ammoniacale usee et de regeneration d'un sel d'ammonium - Google Patents

Procede de recuperation du cuivre d'une solution de gravure ammoniacale usee et de regeneration d'un sel d'ammonium Download PDF

Info

Publication number
WO2004104269A1
WO2004104269A1 PCT/FR2004/050196 FR2004050196W WO2004104269A1 WO 2004104269 A1 WO2004104269 A1 WO 2004104269A1 FR 2004050196 W FR2004050196 W FR 2004050196W WO 2004104269 A1 WO2004104269 A1 WO 2004104269A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
electrolyser
ammonia
cathode
copper
Prior art date
Application number
PCT/FR2004/050196
Other languages
English (en)
Inventor
Jean-Philippe Bedos
Henri Jonca
Laurent Rizet
Jean-Claude Girardot
Original Assignee
Airbus France
Rvx Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France, Rvx Sa filed Critical Airbus France
Publication of WO2004104269A1 publication Critical patent/WO2004104269A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Definitions

  • the present invention relates to a process for recovering metallic copper from a spent ammonia etching solution, said process also making it possible to generate a solution for recharging the ammonia etching solution.
  • the general field of the invention can therefore be defined as that of chemical etching, in particular of copper etching.
  • Chemical etching is based on the following principle: a mask or mask, having a determined shape, is placed on a metal film of the part to be engraved, said metal film generally resting on an insulating substrate; the metallic film partially covered by the cover or mask is brought into contact with an attack agent (hereinafter called etching solution); - Following the action of the attacking agent, the metallic film of the part not covered by the cover is dissolved while the covered metallic film remains, whereby a part is obtained comprising a metallic pattern corresponding to the shape of the hidden.
  • etching solution an attack agent
  • the metallic film of the part not covered by the cover is dissolved while the covered metallic film remains, whereby a part is obtained comprising a metallic pattern corresponding to the shape of the hidden.
  • the part, before etching is a part having an insulating substrate, for example, ceramic, covered with a metal film, generally copper and the cover has
  • Etching solutions commonly used to etch copper are solutions of copper chloride in hydrochloric acid or also a solution of ferric chloride.
  • ferric chloride solution does not make it possible to selectively etch the copper, when the part to be etched comprises metallic elements other than copper such as iron.
  • etching solutions which include in particular an ammonia complex with cupric ions (called ammonia etching solutions).
  • ammonia etching solutions are generally ammonium chloride solutions containing cupric ion in ammonia, the cupric ions being in the form of a complex of formula [(Cu (NH 3 )) ++ , 2C1 ⁇ ].
  • the etching solution is also enriched with one mole of cupric complex [Cu (NH 3 ) 4 ) ++ , 2C1 ⁇ ].
  • the used etching solution cannot be discarded, for obvious reasons of respect for the environment. Rejection of copper, for example, is prohibited. In addition, the rejection of the used etching solution is not advantageous from an economic point of view, since this solution contains materials with intrinsic value. For example, the copper dissolved in the solution has a certain value as metallic waste.
  • the ammonia as well as the ammonium salts also have a certain value and it is therefore advantageous to recover them and / or to reuse them as raw material for the preparation of a new recharging solution.
  • 4,545,877 proposes to recover the copper from the etching solution while regenerating said solution in order to be able to reuse it for the etching, for example, of printed circuits.
  • this method consists in transferring the spent etching solution only at the cathode compartment of an electrolyser, while the anode compartment of this electrolyser is filled, for example, with a sulfuric acid solution.
  • part of the complexed Cu (II) ions of formula [(Cu (NH 3 ) 4 ) ++ , 2C1 ⁇ ] constituting part of the spent etching solution are reduced to copper metal (via the formation of intermediate copper complexes of formula [(Cu (NH 3 ) 2 + , Cl " ]), thus liberating ammonium chloride and ammonia while in the anode compartment, there is an evolution of oxygen resulting from oxidation of sulfuric acid.
  • the object of the present invention is to provide a process for recovering copper from a spent ammonia etching solution and for generating a solution for recharging the etching solution, said recharging solution comprising a mixture of halide of ammonium and ammonia, this process does not have the disadvantages of those of the prior art.
  • the process of the invention therefore makes it possible to overcome a certain number of drawbacks of the processes of the prior art and in particular the drawbacks of the process described in US Patent 4,545,877.
  • the ammonia added before and / or during the electrolysis in the etching solution to be treated produces, during this electrolysis, nitrogen by oxidation of a part of the ammonia added during the step b).
  • This gas will accumulate above the solution during electrolysis, which is particularly advantageous because it allows the surface of said solution to be isolated from the oxygen contained in the air, who limits the reoxidation of cuprous ions into cupric ions. Thanks to the nitrogen produced during electrolysis, the recovery of copper from the solution to be treated is thus facilitated, due to the limitation of the reoxidation phenomenon.
  • ammonia also makes it possible, as will be explained below, to generate a recharging solution as defined above.
  • a solution can be obtained at the end of the electrolysis. used as a solution for recharging an etching solution and nitrogen is produced, said production making it possible, during the electrolysis, to improve the efficiency of recovery of the copper from the spent etching solution.
  • FIG. 1 is a diagram representing the different reactions taking place in an electrolyser cell, during the implementation of the method of the invention, the spent solution comprising Cu (II) in the form of complex of formula [( Cu (NH 3 ) 4 ) ++ , 2C1 " ];
  • FIG. 2a and 2b show graphs illustrating the kinetics of the reactions of copper plating during the implementation of the method according to the invention
  • FIG. 3 shows a top view of an etching tank, in which the method of the invention can be implemented
  • FIG. 4 represents a top view of an etching tank, more complex than that shown in FIG. 3.
  • the method of the invention comprises the following steps: a) placing said spent etching solution in an electrolyser, comprising at least one cell, each cell comprising an anode and a cathode, said solution being placed in contact with both the cathode and the anode; b) ammonia is added to said spent etching solution; and c) the solution is subjected to electrolysis simultaneously and / or after the addition step b), at the end of which metallic copper is obtained at the cathode and a recharging solution comprising a mixture of 'an ammonium salt of formula (H4 + , X " ) and ammonia, X ⁇ representing a halide ion in the formula of the complex and the salt.
  • Cu (II) is present in the spent solution in the form of an ammonia complex with cupric ions, said complex corresponding to the formula [(Cu (NH 3 ) 4 ) ++ , 2X " ] and the ammonium salt of the recharging solution corresponds to the formula (NH 4 + , X " ), for which X " is generally chosen from halide ions, such as Cl " , the ammonium salt then being a halide of ammonium, while the ammonia corresponds to the formula (N ⁇ .4 + , OH " ).
  • ammonia carried out before and / or during the electrolysis step can be done by dissolving the ammonia gas NH 3 in the spent solution, to give an aqueous ammonia solution (NH 4 + , 0H " ) or by direct addition to the spent solution of an aqueous ammonia solution (NH 4 + , OH ⁇ ).
  • the amount of ammonia added is determined so as to allow, at the same time, a release of N 2 , during the electrolysis, and also to allow a sufficient supply of NH 4 + ions to generate the recharging solution such as defined above.
  • FIG. 1 represents the reactions used during the implementation of the process for a spent solution comprising Cu (II) in the form of complex [(Cu (NH 3 ) 4 ) ++ , 2C1 " ].
  • the addition of ammonia is done by adding ammonia gas NH 3 in the spent solution, the ammonia gas dissolving and ionizing spontaneously to form an aqueous ammonia solution of formula NH4 + OH ⁇ .
  • NH4 + ions produced by the dissolution of the ammonia gas is oxidized at the anode, to form nitrogen, in accordance with the following equation [5]:
  • This overall reaction corresponds, in practice, to two successive stages.
  • the complexed cupric ions [Cu (NH 3 ) 4 2+ , 2C1 ⁇ ] are reduced to metallic copper and the complexed cuprous ions [(Cu (NH 3 ) 2 ) + , 2C1 ⁇ ], then, in a second step, these are reduced to copper metal Cu.
  • This phenomenon is illustrated in particular in Figures 2a and 2b.
  • This cathodic reaction also generates an ammonium salt, more particularly in this case, of ammonium chloride by recombination of the Cl " ions released by the cathodic reaction and the NH 4 + ions produced by the dissolution of the ammonia gas in the solution of etching before electrolysis.
  • an ammonium salt more particularly in this case, of ammonium chloride by recombination of the Cl " ions released by the cathodic reaction and the NH 4 + ions produced by the dissolution of the ammonia gas in the solution of etching before electrolysis.
  • a recharging solution comprising an ammonium salt and ammonia (in particular ammonium chloride, in the case illustrated by FIG. 1), which can be directly reinjected into an engraving station.
  • ammonium salt and ammonia in particular ammonium chloride, in the case illustrated by FIG. 1
  • copper is also recovered, deposited on the cathode, this copper being sufficiently pure to be sold as is.
  • this phenomenon is also limited by the fact that electrolysis can be carried out without stirring and preferably at an electric field high enough to strongly attract the copper ions towards the cathode. More explicitly, the electrolysis is advantageously carried out under an electric field ranging from 0.75 to 3V / cm.
  • this reoxidation phenomenon can also be limited by the fact that the electrolyser, in which the solution is placed.
  • etching to be treated may include, in each cell, a separator, making it possible to separate the cell respectively into an anode compartment and a cathode compartment.
  • Each cell of one electrolyser is thus delimited in two respective compartments, which are the anode compartment and the cathode compartment.
  • This separator has the effect in particular of channeling the release of nitrogen and of limiting the circulation of the Cu + ions towards the anode where they could be reoxidized.
  • This separator can in particular be porous or consist of a cation exchange membrane, provided that it is permeable to cupric ions, even complexed.
  • a separator makes it possible to carry out the electrolysis with a less electric field than that applied in the embodiment without a separator.
  • the electrolysis is carried out, advantageously, in this case under an electric field ranging from 0.01 to 0.75 V / cm. Obviously, this electrolysis can also be carried out with an electric field of value higher than a value of the range mentioned above. It is understood that the separators must be permeable to cupric ions, so that they can migrate towards the cathode to be reduced to metallic copper.
  • the electrolyser implemented according to the invention is generally in the form a tank, which comprises at least one cell comprising two electrodes of opposite polarity, that is to say an anode and a cathode, whereby the electrolyser constitutes a single cell electrolyser.
  • the electrolyser is a multiple cell electrolyser, that is to say an electrolyser comprising a set of juxtaposed cells, the number and the surface of which are advantageously adapted to the flow of etching solution to be treated, each cell comprising a anode and a cathode.
  • the juxtaposition of cells to form the electrolyser contributes to increasing the active surface (that is to say the surface of the set of electrodes) compared to a single cell electrolyser, which makes it possible to treat a larger quantity of etching solution.
  • electrolyser used in the process according to the invention can be provided with means intended to isolate said electrolyser from the external atmosphere.
  • said electrolyser may include a cover, intended to isolate the atmosphere of the tank from the ambient atmosphere in order to limit the entry of oxygen from the air into this tank. Indeed, as has been mentioned several times, the presence of oxygen could lead to a phenomenon of reoxidation of the cuprous ions produced during the reduction of cupric ions.
  • Such an electrolyser is, for example, that shown, in top view, in FIG. 3.
  • This electrolyser comprises a rectangular tank 1 made of a material inert with respect to the solutions to be treated.
  • This tank has an inlet 3 intended for the introduction of the etching solution to be treated and an outlet 5 intended for the evacuation of the treated solution devoid of copper.
  • the tank 1 comprises a plurality of alternating electrodes 7 of opposite polarities. Each electrode, apart from the electrodes located at the ends of the tank, delimits two adjacent cells.
  • the etching solution is introduced into each of the cells of the electrolyser.
  • the electrolyser implemented in the method of the invention may comprise, in each of the cells, a separator intended to delimit in each cell an anode compartment of a cathode compartment.
  • this type of electrolyser advantageously comprises means for circulating the solution present in the anode compartment and in the cathode compartment, so as to limit the heating of the solution at the level of the anode and of the cathode, the presence of separators generating a phenomenon of resistance at the origin of the amplification of the effect
  • the spent etching solution present in the anode and cathode compartments is put into continuous circulation.
  • This type of electrolyser is shown in Figure 4.
  • This electrolyser comprises a tank 9 of parallelepiped shape, said tank 9 comprising a plurality of alternating electrodes 11 of opposite polarities. Each electrode, apart from the electrodes located at the ends of the tank, delimits two adjacent cells. Separators 13 delimit in each cell an anode compartment 15 of a cathode compartment 17.
  • openings 21 are provided for discharging the solution from the anode compartments. All of these openings are connected to a pipe 23 connected to a pump 25, which routes the solution from face 19 to opposite face 27, through openings 29.
  • openings 31 are also provided for evacuate the solution from the cathode compartments, all of these openings being connected to a pipe 33 connected to a pump 35, thus making it possible to convey the solution from one face to the other of the tank. Openings 37 allow the introduction of the solution through the opposite face 27 at the cathode compartments.
  • the solutions present respectively in the anode and cathode compartments can be circulated continuously, in order to limit the phenomena of heating by Joule effect inherent in a stagnation of the solutions in the electrolytic compartments.
  • Valves and other closing systems (not shown) allow the compartments to be filled and emptied before and after treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

La présente invention a pour objet un procédé de récupération du cuivre à partir d'une solution de gravure ammoniacale usée le contenant sous forme de Cu(II), ledit procédé comprenant les étapes suivantes : a) On place ladite solution de gravure usée dans un électrolyseur, comprenant au moins une cellule, chaque cellule comprenant une anode et une cathode, ladite solution étant placée en contact à la fois de la cathode et de l'anode ; b) On ajoute de l'ammoniaque à ladite solution de gravure usée ; et c) On soumet la solution à une électrolyse simultanément et/ou postérieurement à l'étape d'ajout b), à l'issue de laquelle l'on obtient du cuivre métallique à la cathode et une solution de rechargement comprenant un mélange d'un sel d'ammonium de formule (NH4+, X-) et d'ammoniaque, X- représentant un ion halogénure dans la formule du complexe et du sel.

Description

PROCEDE DE RECUPERATION DU CUIVRE D'UNE SOLUTION DE GRAVURE AMMONIACALE USÉE ET DE RÉGÉNÉRATION D'UN SEL
D'AMMONIUM
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention a trait à un procédé de récupération de cuivre métallique à partir d'une solution de gravure ammoniacale usée, ledit procédé permettant, en outre, de générer une solution de rechargement de la solution de gravure ammoniacale.
ETAT DE LA TECHNIQUE ANTÉRIEURE
Le domaine général de l'invention peut être donc défini comme celui de la gravure chimique, en particulier de la gravure du cuivre. La gravure chimique est basée sur le principe suivant : un cache ou masque, ayant une forme déterminée est placée sur une pellicule métallique de la pièce à graver, ladite pellicule métallique reposant généralement sur un substrat isolant ; la pellicule métallique partiellement recouverte par le cache ou masque est mise en contact avec un agent d'attaque (appelée dans la suite de cet exposé, solution de gravure) ; - suite à l'action de l'agent d'attaque, la pellicule métallique de la pièce non recouverte par le cache est dissoute alors que la pellicule métallique recouverte subsiste, moyennant quoi on obtient une pièce comprenant un motif métallique correspondant à la forme du cache. Ainsi, la gravure chimique est particulièrement adaptée à la réalisation de circuits imprimés. Dans ce cas, la pièce, avant gravure, est une pièce présentant un substrat isolant, par exemple, en céramique, recouvert d'une pellicule de métal, généralement en cuivre et le cache présente une forme correspondant au dessin voulu de circuit.
Des solutions de gravure communément utilisées pour graver le cuivre sont des solutions de chlorure de cuivre dans de l'acide chlorhydrique ou également une solution de chlorure ferrique.
Toutefois, l'emploi d'une solution de chlorure ferrique ne permet pas de graver sélectivement le cuivre, lorsque la pièce à graver comporte des éléments métalliques autres que le cuivre tels que le fer.
Pour résoudre ce problème de sélectivité, des chercheurs ont proposé des solutions de gravure, qui comprennent notamment un complexe de l'ammoniaque avec des ions cuivriques (dites solutions de gravure ammoniacale) . Ces solutions sont généralement des solutions de chlorure d'ammonium contenant de l'ion cuivrique dans l'ammoniaque, les ions cuivriques étant sous forme de complexe de formule [ (Cu (NH3) ) ++, 2C1~] .
Lors de la gravure, les ions cuivriques interagissent avec le cuivre métal (que l'on souhaite supprimer de la pièce à graver) , selon la réaction [1] suivante :
Cu + Cu++ → 2Cu+ [1] En présence d'oxygène de l'air, les ions cuivreux Cu+ sont instables et se recombinent en ions cuivriques selon la réaction [2] suivante :
2Cu+ + H20 + (1/2) 02 → 2 Cu++ + 20H" [2]
En tenant compte de l'existence des ions cuivriques et cuivreux sous forme de complexes ammoniacaux, les réactions précédentes peuvent se réécrire de la façon suivante :
Cu + [ (Cu(NH3)4) 2C1~] → 2[(Cu(NH3)2)+, Cl"] [3]
2[ (Cu(NH3)2)+, Cl"] + 2 (NH4 +, Cl") + 2 (NH4 +, OH") + (1/2) 02→ 2[(Cu(NH3)4)++, 2C1"] + 3H20 [4]
Globalement, la gravure d'une mole de cuivre métal consomme donc deux moles de chlorure d'ammonium (NH4 +C1") et deux moles d'ammoniaque
(NH4 +0H") . La solution de gravure s'enrichit également d'une mole de complexe cuivrique [Cu (NH3) 4) ++, 2C1~] .
Au fur et à mesure que l'attaque du cuivre se poursuit, la concentration en cuivre dans la solution augmente jusqu'au point où la capacité de la solution de gravure de retenir le cuivre sous forme de complexe [ (Cu(NH3) 2)++, 2C1"] est épuisée, ceci ayant pour conséquence de diminuer considérablement la vitesse d'attaque d'une telle solution. La solution de gravure ammoniacale devient ainsi une solution de gravure usée.
Pour remédier à cela, on peut essayer de recharger ladite solution usée par une solution constituée d'un mélange de chlorure d'ammonium et d'ammoniaque (dite solution de rechargement). Toutefois, il est nécessaire, pour des raisons liées à la capacité de contenance des cuves de gravure, d' évacuer le surplus de solution résultant de cet ajout, la solution devenant ainsi au bout d'un certain temps inutilisable.
La solution de gravure usée ne peut être jetée, pour des raisons évidentes de respect de l'environnement. Le rejet du cuivre, par exemple, est prohibé. En outre, le rejet de la solution de gravure usée n'est pas intéressant du point de vue économique, car cette solution contient des matières ayant une valeur intrinsèque. Par exemple, le cuivre dissous dans la solution a une certaine valeur comme déchet métallique. L'ammoniaque ainsi que les sels d'ammonium présentent également une certaine valeur et il est donc intéressant de les récupérer et/ou de les réutiliser comme matière première pour la préparation d'une nouvelle solution de rechargement.
Divers procédés ont déjà été proposés, dans l'art antérieur, pour le traitement d'une solution de gravure usée. Par exemple, il a été proposé de récupérer le cuivre par précipitation de CuO. Toutefois, cette méthode présente l'inconvénient d'être destructrice de la solution de gravure.
Un autre procédé, décrit dans le brevet US
4,545,877, propose de récupérer le cuivre de la solution de gravure tout en régénérant ladite solution afin de pouvoir la réutiliser pour la gravure, par exemple, de circuits imprimés.
Pour cela, ce procédé consiste à transférer la solution de gravure usée uniquement au niveau du compartiment cathodique d'un électrolyseur, tandis que le compartiment anodique de cet électrolyseur est rempli, par exemple, par une solution d'acide sulfurique.
Dans le compartiment cathodique, une partie des ions Cu (II) complexés de formule [ (Cu (NH3) 4) ++, 2C1~] constituant une partie de la solution de gravure usée, sont réduits en cuivre métal (via la formation de complexes cuivreux intermédiaires de formule [ (Cu (NH3) 2 +, Cl"] ) , libérant ainsi du chlorure d'ammonium et de l'ammoniaque tandis que, dans le compartiment anodique, se produit un dégagement d'oxygène résultant de l'oxydation de l'acide sulfurique.
Ce procédé présente les inconvénients suivants du fait de l'utilisation de solutions différentes dans le compartiment anodique et dans le compartiment cathodique, il nécessite la mise en place impérative dans la cuve de l' électrolyseur, de séparateurs entre lesdits compartiments ; à défaut de précaution' particulière, l'oxygène dégagé au niveau du compartiment anodique peut par expansion être mis en contact avec la surface du compartiment cathodique et par conséquent favoriser la réoxydation des complexes cuivreux intermédiaires de formule [ (Cu (NH3) 2 +, Cl"] en complexes de formule [ (Cu (NH3) 4 ++, 2C1~] et gêner, de ce fait, la récupération du cuivre métal; pour remédier à cela, il est proposé dans ce brevet d' employer des cuves d' électrolyse à très grande profondeur pour minimiser la surface d'échange avec l'air éventuellement enrichi en oxygène dégagé à l'anode.
Toutefois, ces deux alternatives contribuent à rendre ce procédé très complexe et très coûteux.
EXPOSÉ DE L'INVENTION
Le but de la présente invention est de proposer un procédé de récupération du cuivre d'une solution de gravure ammoniacale usée et de génération d'une solution de rechargement de la solution de gravure, ladite solution de rechargement comprenant un mélange d'halogénure d'ammonium et d'ammoniaque, ce procédé ne présentant pas les inconvénients de ceux de l'art antérieur.
Ces buts sont atteints, conformément à l'invention, par un procédé de récupération du cuivre et de génération d'une solution de rechargement comprenant un mélange d'un sel d'ammonium de formule (NH4 +, X") et d'ammoniaque, à partir d'une solution de gravure ammoniacale usée contenant du cuivre sous forme de complexe de formule [ (Cu (NH3) 4)++, 2X~] , ledit procédé comprenant les étapes suivantes : a) On place ladite solution de gravure usée dans un électrolyseur, comprenant au moins une cellule, chaque cellule comprenant une anode et une cathode, ladite solution étant placée en contact à la fois de la cathode et de l'anode ; b) On ajoute de l'ammoniaque à ladite solution de gravure usée ; et c) On soumet la solution à une électrolyse simultanément et/ou postérieurement à l'étape d'ajout b) , à l'issue de laquelle l'on obtient du cuivre métallique à la cathode et une solution de rechargement comprenant un mélange d'un sel d'ammonium de formule (NH4 +, X") et d'ammoniaque, X" représentant un ion halogénure dans la formule du complexe et du sel.
Le procédé de l'invention permet donc de s'affranchir d'un certain nombre d'inconvénients des procédés de l'art antérieur et notamment des inconvénients du procédé décrit dans le brevet US 4,545,877.
En effet, l'ammoniaque ajoutée préalablement et/ou pendant l' électrolyse dans la solution de gravure à traiter, produit, lors de cette électrolyse, de l'azote par oxydation d'une partie de l'ammoniaque ajoutée au cours de l'étape b) . Ce gaz va s'accumuler au-dessus de la solution en cours d' électrolyse, ce qui est particulièrement avantageux, car il permet d'is.oler la surface de ladite solution par rapport à l'oxygène contenu dans l'air, ce qui permet de limiter la réoxydation des ions cuivreux en ions cuivriques. Grâce à l'azote produit au cours de 1' électrolyse, on facilite ainsi la récupération du cuivre de la solution à traiter, du fait de la limitation du phénomène de réoxydation.
L'ajout d'ammoniaque permet également, comme cela sera explicité par la suite, de générer une solution de rechargement telle que définie précédemment. Ainsi, en choisissant de façon appropriée la quantité d'ammoniaque à introduire notamment par une régulation du pH, ce qui est à la portée de l'homme du métier, on obtient, à l'issue de l' électrolyse, une solution pouvant être utilisée comme solution de rechargement d'une solution de gravure et on produit de l'azote, ladite production permettant pendant 1' électrolyse d'améliorer l'efficacité de récupération du cuivre de la solution de gravure usée.
De plus, dans le procédé de l'invention, on utilise la même solution au contact de l'anode et de la cathode, ce qui contribue à faciliter la mise en œuvre de ce procédé .
On se distingue des réalisations de l'art antérieur, qui nécessitait l'utilisation de solutions différentes à l'anode et à la cathode et, par conséquent, la mise en place impérative d'un séparateur au niveau de chaque cellule de l' électrolyseur, afin de délimiter un compartiment anodique et un compartiment cathodique . De plus, ce procédé est particulièrement avantageux du point de vue économique. En effet, il permet de récupérer le cuivre présent dans la solution usée et également de générer, comme mentionné ci- dessus, une solution de rechargement. Le cuivre, ainsi récupéré, peut être revendu et la solution de rechargement constituée d'un sel d'ammonium et d' ammoniaque peut être directement utilisée comme solution de rechargement d'une autre solution de gravure.
BRÈVE DESCRIPTION DES FIGURES
D'autres avantages et détails apparaîtront plus clairement à la lecture de la description détaillée ci-dessous, en référence aux dessins annexés dans lesquels :
- la figure 1 est un schéma représentant les différentes réactions ayant lieu dans une cellule d' électrolyseur, lors de la mise en œuvre du procédé de l'invention, la solution usée comprenant du Cu(II) sous forme de complexe de formule [ (Cu (NH3) 4) ++, 2C1"] ;
- les figures 2a et 2b représentent des graphiques illustrant la cinétique des réactions d' électrodéposition du cuivre lors de la mise en œuvre du procédé selon l'invention ; - la figure 3 représente une vue de dessus d'une cuve de gravure, dans laquelle le procédé de l'invention peut être mis en œuvre ;
- la figure 4 représente une vue de dessus d'une cuve de gravure, plus complexe que celle représentée sur la figure 3. DESCRIPTION DETAILLEE DE L'INVENTION
Ainsi, comme cela est défini précédemment, le procédé de l'invention comprend les étapes suivantes : a) On place ladite solution de gravure usée dans un électrolyseur, comprenant au moins une cellule, chaque cellule comprenant une anode et une cathode, ladite solution étant placée en contact à la fois de la cathode et de l'anode ; b) On ajoute de l'ammoniaque à ladite solution de gravure usée ; et c) On soumet la solution à une électrolyse simultanément et/ou postérieurement à l'étape d'ajout b) , à l'issue de laquelle l'on obtient du cuivre métallique à la cathode et une solution de rechargement comprenant un mélange d'un sel d'ammonium de formule ( H4+, X") et d'ammoniaque, X~ représentant un ion halogénure dans la formule du complexe et du sel .
Selon l'invention, le Cu(II) est présent dans la solution usée sous forme de complexe de l'ammoniaque avec des ions cuivriques, ledit complexe répondant à la formule [ (Cu (NH3) 4) ++, 2X"] et le sel d' ammonium de la solution de rechargement répond à la formule (NH4 +, X") , pour lesquelles X" est choisi généralement parmi les ions halogénures, tels que Cl", le sel d'ammonium étant alors un halogénure d'ammonium, tandis l'ammoniaque répond à la formule (NΗ.4+, OH").
L'ajout d'ammoniaque effectué préalablement et/ou pendant l'étape d' électrolyse, peut se faire par dissolution du gaz ammoniac NH3 dans la solution usée, pour donner une solution aqueuse d'ammoniaque (NH4 +,0H") ou par ajout direct dans la solution usée d'une solution aqueuse d'ammoniaque (NH4 +,OH~) .
La quantité d'ammoniaque ajoutée est déterminée de manière à permettre, à la fois, un dégagement de N2, lors de l' électrolyse, et à permettre également un apport suffisant d'ions NH4 + pour générer la solution de rechargement telle que définie ci- dessus .
La figure 1 représente les réactions mises en jeu lors de la mise en œuvre du procédé pour une solution usée comprenant du Cu(II) sous forme de complexe [ (Cu (NH3) 4) ++, 2C1"] .
Selon ce mode de réalisation de l'invention, l'ajout d'ammoniaque se fait par ajout de gaz ammoniac NH3 dans la solution usée, le gaz ammoniac se solubilisant et s' ionisant spontanément pour former une solution aqueuse d'ammoniaque de formule NH4+OH~. Une partie des ions NH4 + produits par la dissolution du gaz ammoniac est oxydée à l'anode, pour former de l'azote, conformément à l'équation [5] suivante :
2NH4 + → N2 + 8H+ + 6e" [5]
Une autre partie des ions NH4 + se combine avec les ions Cl" libérés à la cathode (conformément à la réaction [6] ci-dessous) pour former le chlorure d'ammonium régénéré. L'azote produit, comme cela est mentionné précédemment, va former une couche protectrice vis-à- vis de l'oxygène de l'air, au-dessus de la solution de gravure.
A la cathode, la réaction globale est la suivante :
3[Cu(NH3)4 2+, 2C1"]+12 H20+6e" →3Cu+12 (WH4 +0H") +6 Cl" [6]
Cette réaction globale correspond, en pratique, à deux étapes successives. Dans une première étape, les ions cuivriques complexés [Cu(NH3)4 2+, 2C1~] sont réduits en cuivre métallique et en ions cuivreux complexés [ (Cu (NH3) 2) +, 2C1~] , puis, dans une seconde étape, ces derniers sont réduits en cuivre métal Cu. Ce phénomène est illustré notamment sur les figures 2a et 2b.
La figure 2a représente l'évolution des concentrations de Cu2+ et Cu+ dans la solution de gravure en traitement au cours du temps pendant l' électrolyse . On constate que, de t=0 à environ tχ/2, la concentration de Cu++ diminue, jusqu'à atteindre une valeur sensiblement nulle, tandis que la concentration en Cu4" augmente. Cette période correspond à celle où les ions cuivriques complexés sont réduits en cuivre métal et en ions cuivreux complexés (première étape) . Enfin, de environ t^/2 à T, la concentration en Cu+ diminue jusqu'à atteindre une valeur sensiblement nulle, ce qui atteste de la réduction des ions cuivreux complexés en cuivre métal (seconde étape) . La figure 2b illustre la même évolution en représentant l'évolution de la concentration [Cu total], c'est-à-dire [Cu2+ + Cu+] en fonction du temps t. Ainsi, cette réaction cathodique entraîne un dépôt de cuivre métal sur la cathode. Ce cuivre peut être revendu.
Cette réaction cathodique génère également un sel d'ammonium, plus particulièrement dans ce cas, du chlorure d'ammonium par recombinaison des ions Cl" libérés par la réaction cathodique et des ions NH4 + produits par la dissolution du gaz ammoniac dans la solution de gravure avant électrolyse. Ainsi, en résumé, par rapport aux équations équilibrées précédemment mentionnées, pour une mole de cuivre récupéré, on régénère 4 moles d'ammoniaque et 2 moles de chlorure d'ammonium. Cette électrolyse permet donc de régénérer les substances consommées lors de la gravure avec un excès de deux moles d'ammoniaque. Cet excès d'ammoniaque est avantageux car il permet de compenser les pertes d' ammoniaque sous forme gazeuse par évaporation au dessus des bacs de gravure.
A l'issue du procédé de l'invention, on récupère ainsi une solution de rechargement comprenant un sel d'ammonium et de l'ammoniaque (en particulier du chlorure d'ammonium, dans le cas illustré par la figure 1) , qui peut être directement réinjectée dans une station de gravure. A l'issue de ce procédé, on récupère également du cuivre, déposé sur la cathode, ce cuivre étant suffisamment pur pour être revendu en l'état.
Comme cela est mentionné plus haut, lors de la récupération du cuivre, il peut y avoir un phénomène d' oxydation des ions cuivreux formés lors de la réduction des ions cuivriques . Ce phénomène est en partie jugulé, par l'ajout d'ammoniaque dans la solution de gravure à traiter, ledit ammoniaque produisant par électrolyse de l'azote.
De manière avantageuse, selon l'invention, ce phénomène est également limité par le fait que 1' électrolyse peut être réalisée sans agitation et de préférence à un champ électrique suffisamment élevé pour attirer fortement les ions cuivreux vers la cathode. Plus explicitement, l' électrolyse est réalisée, avantageusement, sous un champ électrique allant de 0,75 à 3V/cm. A titre d'exemple, l' électrolyse d'une solution de gravure usée sous un champ électrique d'environ lV/cm (correspondant à une densité de courant moyenne de 30A/dm2) , pendant approximativement 4 heures, a permis d'extraire 98% du cuivre contenu (avec un rendement faradique de 86%) et de générer une solution de rechargement telle que définie précédemment pouvant être utilisée pour diluer un bain de gravure ammoniacale.
De manière avantageuse, ce phénomène de réoxydation peut être également limité par le fait que 1' électrolyseur, dans lequel est placée la solution de gravure à traiter, peut comporter, dans chaque cellule, un séparateur, permettant de séparer la cellule respectivement en un compartiment anodique et un compartiment cathodique. Chaque cellule de 1' électrolyseur se trouve ainsi délimitée en deux compartiments respectifs, qui sont le compartiment anodique et le compartiment cathodique. Ce séparateur a pour effet notamment de canaliser le dégagement d'azote et de limiter la circulation des ions Cu+ vers l'anode où ils pourraient être réoxydés .
Ce séparateur peut être notamment poreux ou être constitué d'une membrane échangeuse de cations, sous réserve qu'elle soit perméable aux ions cuivriques même complexés . Dans ce cas, la présence d'un séparateur permet de réaliser l' électrolyse avec un champ électrique moindre que celui appliqué dans le mode de réalisation sans séparateur.
Plus particulièrement, l' électrolyse est réalisée, avantageusement, dans ce cas de figure sous un champ électrique allant de 0,01 à 0,75 V/cm. Bien évidemment, cette électrolyse peut aussi être réalisée avec un champ électrique de valeur plus élevée qu'une valeur de la gamme mentionnée ci-dessus. II est entendu, que les séparateurs devront être perméables aux ions cuivriques, afin qu'ils puissent migrer vers la cathode pour être réduits en cuivre métallique.
L' électrolyseur, mis en œuvre selon l'invention, se présente généralement sous la forme d'une cuve, qui comporte au moins une cellule comprenant deux électrodes de polarité opposée, c'est- à-dire une anode et une cathode, moyennant quoi 1' électrolyseur constitue un électrolyseur à cellule unique .
Avantageusement, l' électrolyseur est un électrolyseur à cellules multiples, c'est-à-dire un électrolyseur comportant un ensemble de cellules juxtaposées, dont le nombre et la surface sont avantageusement adaptés au flux de solution de gravure à traiter, chaque cellule comportant une anode et une cathode. La juxtaposition de cellules pour former 1' électrolyseur contribue à augmenter la surface active (c'est-à-dire la surface de l'ensemble des électrodes) par rapport à un électrolyseur à cellule unique, ce qui permet de traiter une plus grande quantité de solution de gravure .
On note, que l' électrolyseur mis en œuvre dans le procédé selon l'invention, peut être muni de moyens destinés à isoler ledit électrolyseur de l'atmosphère extérieure.
Par exemple, ledit électrolyseur peut comporter un couvercle, destiné à isoler l'atmosphère de la cuve de l'atmosphère ambiante afin de limiter l'entrée d'oxygène de l'air dans cette cuve. En effet, comme cela a été mentionné à plusieurs reprises, la présence d' oxygène pourrait entraîner un phénomène de réoxydation des ions cuivreux produits lors de la réduction d' ions cuivriques . Un tel électrolyseur est par exemple, celui représenté, en vue de dessus, sur la figure 3. Cet électrolyseur comporte une cuve 1 parallélépipédique constituée d'un matériau inerte vis-à-vis des solutions à traiter. Cette cuve comporte une entrée 3 destinée à l'introduction de la solution de gravure à traiter et une sortie 5 destinée à l'évacuation de la solution traitée dépourvue de cuivre. La cuve 1 comporte une pluralité d'électrodes 7 alternées de polarités opposées. Chaque électrode, hormis les électrodes situées aux extrémités de la cuve, délimite deux cellules adjacentes. La solution de gravure est introduite dans chacune des cellules de 1' électrolyseur .
Il est à noter que l' électrolyseur, mis en œuvre dans le procédé de l'invention peut comporter, dans chacune des cellules, un séparateur destiné à délimiter dans chaque cellule un compartiment anodique d'un compartiment cathodique. Dans ce cas de figure, ce type d' électrolyseur comporte avantageusement des moyens de circulation de la solution présente dans le compartiment anodique et dans le compartiment cathodique, de manière à limiter l' échauffement de la solution au niveau de l'anode et de la cathode, la présence de séparateurs engendrant un phénomène de résistance à l'origine de l'amplification de l'effet
Joule. Avantageusement, la solution de gravure usée présente dans les compartiments anodiques et cathodiques est mise en circulation continue.
Ce type d' électrolyseur est représenté sur la figure 4. Cet électrolyseur comporte une cuve 9 de forme parallélépipédique, ladite cuve 9 comportant une pluralité d'électrodes 11 alternées de polarités opposées. Chaque électrode, hormis les électrodes situées aux extrémités de la cuve, délimite deux cellules adjacentes. Des séparateurs 13 délimitent dans chacune des cellules un compartiment anodique 15 d'un compartiment cathodique 17.
Sur une face 19 de la cuve, des ouvertures 21 sont prévues pour évacuer la solution des compartiments anodiques . L' ensemble de ces ouvertures est raccordé à une canalisation 23 reliée à une pompe 25, qui achemine la solution de la face 19 à la face opposée 27, grâce à des ouvertures 29. Sur la face 19, des ouvertures 31 sont également prévues pour évacuer la solution des compartiments cathodiques, l'ensemble de ces ouvertures étant raccordé à une canalisation 33 reliée à une pompe 35, permettant ainsi d'acheminer la solution d'une face à l'autre de la cuve. Des ouvertures 37 permettent l'introduction de la solution par la face opposée 27 au niveau des compartiments cathodiques .
Ainsi, les solutions présentes respectivement dans les compartiments anodiques et cathodiques peuvent être mises en circulation de manière continue, afin de limiter les phénomènes de réchauffement par effet Joule inhérents à une stagnation des solutions dans les compartiments électrolytiques . Des vannes et autres systèmes de fermeture (non représentés) permettent de remplir et de vider les compartiments avant et après le traitement.

Claims

REVENDICATIONS
1. Procédé de récupération du cuivre et de génération d'une solution de rechargement comprenant un mélange d'un sel d'ammonium- de formule (NH4 +, X") et d'ammoniaque, à partir d'une solution de gravure ammoniacale usée contenant du cuivre sous forme de complexe de formule [ (Cu (NH3) 4) ++, 2X"] , ledit procédé comprenant les étapes suivantes : a) On place ladite solution de gravure usée dans un électrolyseur, comprenant au moins une cellule, chaque cellule comprenant une anode et une cathode, ladite solution étant placée en contact à la fois de la cathode et de l'anode ; b) On ajoute de l'ammoniaque à ladite solution de gravure usée ; et c) On soumet la solution à une électrolyse simultanément et/ou postérieurement à l'étape d'ajout b) , à l'issue de laquelle l'on obtient du cuivre métallique à la cathode et une solution de rechargement comprenant un mélange d'un sel d'ammonium de formule (NH4 4", X") et d'ammoniaque, X" représentant un ion halogénure dans la formule du complexe et du sel .
2. Procédé selon la revendication 1, dans lequel l' électrolyseur est un électrolyseur à cellule unique .
3. Procédé selon la revendication 1, dans lequel l' électrolyseur est un électrolyseur à cellules multiples.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l' électrolyseur est un électrolyseur muni de moyens destinés à isoler ledit électrolyseur de l'atmosphère extérieure.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l' électrolyse est effectuée sous un champ électrique de 0,75 à 3V/cm.
6. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l' électrolyseur comporte, dans chaque cellule, un séparateur, permettant de séparer la cellule respectivement en un compartiment anodique et en un compartiment cathodique.
7. Procédé selon la revendication 6, dans lequel la solution de gravure usée présente dans les compartiments anodique et cathodique est mise en circulation continue.
8. Procédé selon la revendication 6 ou 7, dans lequel l' électrolyse est effectuée sous un champ électrique de 0,01 à 0,75 V/cm.
PCT/FR2004/050196 2003-05-16 2004-05-17 Procede de recuperation du cuivre d'une solution de gravure ammoniacale usee et de regeneration d'un sel d'ammonium WO2004104269A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0305879 2003-05-16
FR0305879A FR2854905B1 (fr) 2003-05-16 2003-05-16 Procede de recuperation du cuivre d'une solution de gravure ammoniacale usee et de regeneration d'un sel d'ammonium

Publications (1)

Publication Number Publication Date
WO2004104269A1 true WO2004104269A1 (fr) 2004-12-02

Family

ID=33306398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050196 WO2004104269A1 (fr) 2003-05-16 2004-05-17 Procede de recuperation du cuivre d'une solution de gravure ammoniacale usee et de regeneration d'un sel d'ammonium

Country Status (2)

Country Link
FR (1) FR2854905B1 (fr)
WO (1) WO2004104269A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147094A (zh) * 2013-02-07 2013-06-12 李东 一种电积深度脱铜的工艺生产方法
RU2568225C1 (ru) * 2014-06-10 2015-11-10 Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств"(АО "КНИИТМУ") Способ извлечения меди (+2) из отработанных растворов
RU2620228C1 (ru) * 2016-04-18 2017-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И.Менделеева" (РХТУ им. Д. И. Менделеева) Способ электрохимической регенерации медно-аммиачного травильного раствора
RU2622072C1 (ru) * 2016-01-11 2017-06-09 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Способ утилизации отработанного медно-аммиачного раствора
RU2696380C1 (ru) * 2018-08-20 2019-08-01 Дмитрий Юрьевич Тураев Реагентно-электролизный метод регенерации медно-аммиачного раствора травления меди
CN114182299A (zh) * 2021-11-17 2022-03-15 深圳市宏达秋科技有限公司 一种电路板微蚀废液再生循环工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2179267A1 (en) * 1972-04-05 1973-11-16 Hoellmueller Maschbau H Etching copper - with alkaline soln contg ammonium salt for dissolving copper, and complex former
DE3608516A1 (de) * 1986-03-14 1987-09-17 Markus Maria Dipl In Bringmann Vorrichtung zum kontinuierlichen elektrolytischen regenerieren einer zumindest teilweise verbrauchten kupfertetraminkomplex-aetzloesung
SU1407994A1 (ru) * 1986-05-05 1988-07-07 Ярославский политехнический институт Электрохимический способ регенерации отработанных щелочных растворов дл травлени меди
EP0448870A1 (fr) * 1990-03-21 1991-10-02 Macdermid Incorporated Système et procédé pour décaper à l'aide de solutions de décapage alcalines et ammoniacales et leur régénération
DE4218843A1 (de) * 1991-11-09 1993-05-13 Hoellmueller Maschbau H Verfahren zur regeneration eines ammoniakalischen aetzmittels sowie vorrichtung zur durchfuehrung dieses verfahrens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2179267A1 (en) * 1972-04-05 1973-11-16 Hoellmueller Maschbau H Etching copper - with alkaline soln contg ammonium salt for dissolving copper, and complex former
DE3608516A1 (de) * 1986-03-14 1987-09-17 Markus Maria Dipl In Bringmann Vorrichtung zum kontinuierlichen elektrolytischen regenerieren einer zumindest teilweise verbrauchten kupfertetraminkomplex-aetzloesung
SU1407994A1 (ru) * 1986-05-05 1988-07-07 Ярославский политехнический институт Электрохимический способ регенерации отработанных щелочных растворов дл травлени меди
EP0448870A1 (fr) * 1990-03-21 1991-10-02 Macdermid Incorporated Système et procédé pour décaper à l'aide de solutions de décapage alcalines et ammoniacales et leur régénération
DE4218843A1 (de) * 1991-11-09 1993-05-13 Hoellmueller Maschbau H Verfahren zur regeneration eines ammoniakalischen aetzmittels sowie vorrichtung zur durchfuehrung dieses verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Derwent World Patents Index; Class M11, AN 1989-021940, XP002269017 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147094A (zh) * 2013-02-07 2013-06-12 李东 一种电积深度脱铜的工艺生产方法
CN103147094B (zh) * 2013-02-07 2015-07-01 李东 一种电积深度脱铜的工艺生产方法
RU2568225C1 (ru) * 2014-06-10 2015-11-10 Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств"(АО "КНИИТМУ") Способ извлечения меди (+2) из отработанных растворов
RU2622072C1 (ru) * 2016-01-11 2017-06-09 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Способ утилизации отработанного медно-аммиачного раствора
RU2620228C1 (ru) * 2016-04-18 2017-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И.Менделеева" (РХТУ им. Д. И. Менделеева) Способ электрохимической регенерации медно-аммиачного травильного раствора
RU2696380C1 (ru) * 2018-08-20 2019-08-01 Дмитрий Юрьевич Тураев Реагентно-электролизный метод регенерации медно-аммиачного раствора травления меди
CN114182299A (zh) * 2021-11-17 2022-03-15 深圳市宏达秋科技有限公司 一种电路板微蚀废液再生循环工艺
CN114182299B (zh) * 2021-11-17 2023-01-17 珠海市宏达秋科技有限公司 一种电路板微蚀废液再生循环工艺

Also Published As

Publication number Publication date
FR2854905A1 (fr) 2004-11-19
FR2854905B1 (fr) 2006-07-14

Similar Documents

Publication Publication Date Title
EP3459138B1 (fr) Procédé pour le recyclage de matériaux d'électrode de batterie au lithium
CA1254170A (fr) Procede d'oxydation electrolytique et ensemble d'electrolyse pour sa mise en oeuvre
CA2009130A1 (fr) Methode de regeneration des agents de separation des depots d'alliages d'antimoine ou d'antimoine-plomb
JP2007297662A (ja) アンモニア系銅エッチング廃液から高純度電気銅を製造する方法
FR2471424A1 (fr) Cathodes a faible surtension d'hydrogene, prodede pour leur production et cellules electrolytiques les comprenant
WO2004104269A1 (fr) Procede de recuperation du cuivre d'une solution de gravure ammoniacale usee et de regeneration d'un sel d'ammonium
JP4658053B2 (ja) 溶融塩電解による金属の製造方法および製造装置
EP0020661B1 (fr) Procede de dessalement des eaux, en particulier de l'eau de mer
EP0127492B1 (fr) Procédé de traitement d'une solution de purge notamment destinée à un procédé d'extraction de zinc par voie électrolytique
EP3388555B1 (fr) Procédé de récupération sélective de l'argent en présence d'aluminium, par voie électrochimique et en solution aqueuse
CA1055882A (fr) Procede de recuperation electrolytique de gallium ou de metax alcalins
WO2018115706A1 (fr) Procede electrolytique pour extraire de l'etain et/ou du plomb compris dans un melange électriquement conducteur
FR2471426A1 (fr) Procede d'electrodeposition de palladium et bain electrolytique pour la mise en oeuvre de ce procede
FR2569205A1 (fr) Procede destine a l'enlevement de films de cuivre sur des plaquettes ou cartes de circuits imprimes avec recuperation par electrolyse du cuivre contenu dans la solution caustique
WO2005097686A1 (fr) Procede et equipement electrochimique d'elimination des ions nitrates et ammonium contenus dans des effluents liquides
FR2614903A1 (fr) Cellule d'electrolyse pour la recuperation de metaux, notamment de cuivre
EP0105896B1 (fr) Installation pour la production continue de tole electrozinguee
CA1193996A (fr) Procede et appareil pour la recuperation du zinc de dechets zinciferes industriels
Maizelis et al. Electrochemical treatment of waste in the form of copper coating on non-conductive substrate to obtain marketable products
WO2016071655A1 (fr) Utilisation d'un reacteur electrochimique comportant au moins une electrode poreuse, et procede de mise en oeuvre correspondant
FR2977804A1 (fr) Procede de traitement d'effluents liquides en milieu chlorure et separation du zinc et du nickel, installation pour sa mise en oeuvre et application aux effluents industriels metalliferes
RU2294401C1 (ru) Способ регенерации олова из отходов белой жести
BE1001404A6 (fr) Materiau combustible ferreux pour un element d'une pile a combustible et son procede d'utilisation.
EP0715605B1 (fr) Procede et dispositif pour epurer l'eau et preparer des hydroxydes metalliques solides par electrolyse
FR2798677A1 (fr) Procede d'epuration/regenaration d'un bain de nickelage chimique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase