EP3388555B1 - Procédé de récupération sélective de l'argent en présence d'aluminium, par voie électrochimique et en solution aqueuse - Google Patents

Procédé de récupération sélective de l'argent en présence d'aluminium, par voie électrochimique et en solution aqueuse Download PDF

Info

Publication number
EP3388555B1
EP3388555B1 EP18166892.2A EP18166892A EP3388555B1 EP 3388555 B1 EP3388555 B1 EP 3388555B1 EP 18166892 A EP18166892 A EP 18166892A EP 3388555 B1 EP3388555 B1 EP 3388555B1
Authority
EP
European Patent Office
Prior art keywords
silver
process according
positive electrode
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18166892.2A
Other languages
German (de)
English (en)
Other versions
EP3388555A1 (fr
Inventor
Emmanuel BILLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3388555A1 publication Critical patent/EP3388555A1/fr
Application granted granted Critical
Publication of EP3388555B1 publication Critical patent/EP3388555B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals

Definitions

  • the present invention relates to a process for the selective recovery of silver in the presence of aluminum.
  • It relates more particularly to a process for the selective recovery of silver, electrochemically, and in aqueous solution.
  • the present invention finds particular application in the recycling and recovery of photovoltaic panels.
  • PV panels also called photovoltaic modules, are used to convert solar radiation into thermal or electrical energy.
  • the other photovoltaic panels are of the thin layer type (10%).
  • a crystalline silicon photovoltaic panel comprises several photovoltaic cells electrically connected to each other, encapsulated by transparent polymer layers, and arranged between glass plates, and an aluminum frame. Electrodes, for example made of copper or silver, make it possible to collect the electric current generated by the photovoltaic cells.
  • Each photovoltaic cell is, conventionally formed, of a silicon substrate, the front face of which is covered with silver metallizations and the rear face of which is covered with aluminum.
  • a silicon photovoltaic module is therefore mainly composed of glass (74% of the total weight), aluminum (10%), polymer (about 6.5%) and silicon (about 3%), metals (zinc, lead, copper and silver) representing only a negligible part of the mass.
  • the current processes consist in dismantling the modules by chemical and / or thermal means then in carrying out a series of treatments to dissolve the various metallic elements in solution, and finally to recover the silver.
  • the silver recovery process comprises the following stages: grinding of the cells, treatment of the powder obtained in a solution of H 2 SO 4 (15mol / L to 20mol / L) at a temperature ranging from 60 to 100 ° C. , recovery of the aluminum-containing filtrate and crystallization at 100-150 ° C to obtain metallic aluminum.
  • the powder residues containing silicon and silver are treated with HNO 3 (4 to 12 mol / L).
  • the silver-containing filtrate is recovered and the silver is reduced in the presence of hypophosphorous acid.
  • Treatment with boric acid at a temperature of 900-1100 ° C makes it possible to form silver ingots.
  • this silver recovery process is complex and requires the use of many acids at high concentrations and / or at high temperatures (above 100 ° C and up to 1100 ° C).
  • the document TW-A-200836850 proposes to remove silver and aluminum by contactless electrolysis by immersing a photovoltaic cell in a solution containing nitric acid, phosphoric acid, acetic acid and ferric chloride.
  • the anti-reflective layer of the cell is dissolved in phosphoric acid heated between 100 and 200 ° C.
  • the cell is rinsed with nitric acid to remove the last traces of silver. This process does not evoke the recovery of metals after dissolution by electrolysis. In addition, it uses many acids.
  • an object of the present invention to provide a simple method for recovering silver, making it possible to selectively and effectively dissolve silver, with respect to aluminum, bringing into play mild conditions in terms temperature, while limiting energy and reprocessing costs, so that it can be transposed to an industrial scale.
  • the substrate does not dissolve in the aqueous solution. It does not participate in electrochemical reactions.
  • the substrate has two main faces (the first face and the second face) parallel to each other. It is, for example, in the form of a plate.
  • the substrate does not come from a grinding operation. The process avoids a prior and energy-consuming grinding step.
  • Silver covers the first side of the substrate.
  • silver is present on the first face of the substrate. It is on the first face of the substrate and covers it at least partially.
  • the money is accessible so that it can be dissolved.
  • the money can be in the form of a continuous film, threads or even a grid. The same goes for aluminum.
  • the first face of the substrate forms a first positive electrode which acts as an anode.
  • the silver is oxidized and dissolved in solution.
  • the second face forms a first negative electrode which acts as a cathode.
  • an oxide is formed on the surface of aluminum, giving it cathodic protection and preventing its dissolution in the pH range of the electrolytic solution.
  • the process takes advantage of the presence of aluminum and silver, by simultaneously carrying out, in the same tank or container, the passivation of aluminum (reduction) and the oxidation of silver (oxidation). There is no need to protect, cover the aluminum before putting the substrate in solution.
  • step c) the aluminum is not dissolved in the acid electrolytic solution thanks to cathodic protection.
  • small quantities of aluminum may be found in solution, but these will be negligible quantities (less than 2% by mass and preferably less than 1% by mass relative to the mass of aluminum initially present).
  • the electrodes are connected to a device making it possible to control the potential of one of the two positive and negative electrodes and, more advantageously, to control the potential difference between the two positive and negative electrodes.
  • the device makes it possible to control the current of one of the two positive and negative electrodes and, more advantageously, to control the difference in current between the two positive and negative electrodes.
  • a potential or a current it is preferably meant a constant potential or a constant current.
  • the system further comprises a reference electrode, for example Ag / AgCl.
  • the potential applied to the first positive electrode ranges from -0.4 V to 0 V vs Ag / AgCl.
  • the complexing agent for example thiourea
  • the silver will be dissolved in the electrolytic solution, it will not be electrodeposited on the first negative electrode.
  • the choice of applied potential makes it possible to control the microstructure of the deposit.
  • the potential is applied to the first positive electrode for a period ranging from 30 minutes to 3 hours, and preferably from 30 minutes to 1 hour.
  • the process is easy to implement and makes it possible to control, via the application of a potential or a current, the rate of dissolution of silver.
  • Step f) makes it possible to deposit the silver on the second negative electrode and, at the same time, to regenerate the silver complexing agent.
  • the silver is recovered and the bath regenerated without dissolving the aluminum (cathodic protection).
  • steps a), b), c) can be repeated with another electrically conductive substrate, one side of which is covered with silver and the other side is covered with aluminum so as to selectively recover money.
  • the electrolytic solution can be the same.
  • the selective dissolution and silver recovery stages are advantageously carried out in the same tank, containing the electrolytic solution.
  • the solution does not need to be treated, to be transferred between the electrodissolution step and the electrodeposition step.
  • Different substrates can be recovered in the same electrolytic solution. This leads to a great simplification of the process, a greater compactness of the installations, a reduction in the number of pipes and other devices for conveying fluids and solids, etc.
  • the pH of the electrolytic solution ranges from -1 to 2, more advantageously from 0 to 1.
  • the method of the invention brings together the advantages of selectivity and of treatment efficiency. The lower the pH, the faster the dissolution of the silver in solution.
  • the acid is sulfuric acid H 2 SO 4 , nitric acid HNO 3 or one of their mixtures.
  • the complexing agent also called ligand or complexing agent, makes it possible to complex the dissolved silver element, in the form of a silver complex.
  • the complexing agent is chosen so as to be sufficiently complexing to favor the electrodissolution of the silver and facilitate the electrodeposition of the silver in the window of electrochemical stability of the solution.
  • the use of silver complexing agent makes it possible, via the formation of silver complex, to adjust the electrodeposition potential of silver.
  • the complexing agent must be soluble in the electrolytic solution and selective for silver. In addition, it should not degrade in the pH range used.
  • the complexing agent is thiourea or a derivative thereof.
  • Thiourea as complexing agent for the metal to be dissolved has many advantages in terms of chemistry, cost or process. It promotes the solubility and the stability of the complexing agent, while lowering the electrodeposition potential of the silver from 0.799 V to around 0.2 V. In addition, it is regenerated during the deposition of the silver. The process can be carried out in a closed cycle, thus limiting the release of chemicals, the cost of production and the environmental impact.
  • the concentration of complexing agent ranges from 0.01 mol / L to 1 mol / L, preferably from 0.05 mol / L to 1 mol / L, and even more preferably, is of the order of 0.5 mol / L.
  • concentrations make it possible to promote the kinetics of dissolution of the metal and the recovery of the silver.
  • This range of concentrations of complexing agent is particularly advantageous, since a concentration less than 0.01 mol / L decreases the complexing character, while a concentration greater than 1 mol / L generally corresponds to the saturation rate of the complexing agent solution. Even more advantageously, this concentration is equal to twice the stoichiometry of silver to be dissolved.
  • the solution also comprises an agent promoting the ion transport properties. It is, for example, a sulfate salt.
  • the sulfate salt can be any water-soluble salt of the sulfate ion [SO4 2- ], alone or as a mixture.
  • the sulfate salt is a water-soluble salt of the sulfate ion [SO4 2- ]. he can in particular be chosen from the group comprising Na 2 SO 4 , K 2 SO 4 and CaSO 4 .
  • the solution may include 0.001 to 1 mol / L of sulfate salt, preferably 0.1 to 0.5 mol / L. Salt does not intervene in electrode reactions and does not react with the solvent.
  • the agent promoting the ion transport properties may be an additional acid.
  • the substrate is made of silicon.
  • the silicon is electrochemically inert during the electrodissolution and electrodeposition stages.
  • the electrically conductive substrate comes from a photovoltaic cell and the silver forms the metallizations of the front face of the photovoltaic cell.
  • Aluminum covers the rear face of the cell.
  • the process is carried out at a temperature ranging from 15 ° C to 60 ° C, and preferably being of the order of 20-25 ° C. These conditions also make it possible to reduce the amount of energy required and to improve safety compared to the processes of the prior art which can use boiling acid solutions.
  • the process can be carried out at room temperature (20-25 ° C) facilitating its use in an industrial environment.
  • the process can be carried out in air. It is particularly advantageous not to work in a controlled atmosphere and not to use inert gases.
  • the process can be industrialized.
  • the silver recovery process described above and detailed below makes it possible to selectively obtain the electrochemical dissolution of the silver present on a substrate, which also includes aluminum, and its recovery in metallic form.
  • the method is described for recovering the silver contained in photovoltaic cells, advantageously in crystalline or polycrystalline silicon, and more particularly for recovering the silver, present on the front face of a cell, selectively with respect to the aluminum present on the back of the cell.
  • the process could be used for any type of electrically conductive substrate, which does not dissolve naturally in the electrolytic solution.
  • the cells Prior to the implementation of the process, the cells are removed from the photovoltaic panel and separated from the cables, junction boxes, and metal frames.
  • the cells are subjected to a heat treatment to remove, by calcination, the polymer encapsulation materials, such as ethylene vinyl acetate (EVA).
  • EVA ethylene vinyl acetate
  • the calcination step is, for example, carried out in an air oven.
  • the heat treatment is, for example, carried out at a temperature between 400 ° C. and 700 ° C, more preferably between 450 and 550 ° C.
  • the duration of this treatment can be between 30 and 120 minutes, more advantageously between 60 and 90 minutes.
  • the photovoltaic cell consists of an electrically conductive silicon substrate covered by one or more silver electrodes.
  • the silver electrodes are conventionally formed from a silver paste which may comprise a glass powder SiO 2 , B 2 O 3 , PbO and ZnO, silver and a binding agent.
  • the cells can also be separated from the electrical connectors.
  • the electrical connectors composed of a copper core coated with Sn 62 Pb 36 Ag 2 , for example, and silver can be valued with the method of the invention.
  • the different metals copper, lead, tin
  • the deposit on the first negative electrode will essentially be silver. It is therefore particularly advantageous to be selective with regard to money.
  • the choice of the temperature of the heat treatment can help promote the selective dissolution of silver.
  • the substrate is not ground to carry out the process. It can, for example, be cut in the form of a plate of a few cm 2 or dm 2 .
  • the substrate has a first face and a second face.
  • the first face corresponding to the front face of the photovoltaic cell, is covered with silver.
  • the money is, for example, in the form of a grid.
  • the second face corresponds to the rear face of the photovoltaic cell.
  • the second side is covered with aluminum.
  • Aluminum forms, for example, a continuous film.
  • the first face of the substrate, covered with silver, is electrically connected to the control device. It plays the role of anode.
  • all of the silver connectors (bus, bar) on the surface of the substrate are electrically connected to the potentiostat.
  • the second face of the substrate is also electrically connected to the control device. It plays the role of cathode.
  • the control device is a source of voltage or current, like a potentiostat.
  • the potentiostat is preferably used in potentiostatic mode. It could be used in galvanostatic mode.
  • the substrate is immersed, at least partially, in the electrolytic solution, so as to bring the two faces of the substrate into contact with the electrolytic solution.
  • a potential or a current is imposed on the first positive or negative electrode, which simultaneously generates the electro-dissolution of the silver present on the first positive electrode and the cathodic protection of the aluminum present on the first negative electrode.
  • a reference electrode for example Ag / AgCl, can also be added to the assembly.
  • the potential applied to the first positive electrode to dissolve the silver in the electrolytic solution and passivate the aluminum ranges from -0.4 V to 0 V vs Ag / AgCl, for example -0.2 V vs Ag / AgCl.
  • the potential is applied for a period of 30 minutes to 3 hours, and preferably for a period of 30 minutes to 1 hour.
  • the duration will, in particular, be chosen according to the amount of silver to be valorized, the pH and the potential (or current) applied. The more acidic the electrolyte solution, the faster the dissolution.
  • the silver can be electrodeposited on another electrode (cathode), using a two-electrode assembly (a second positive electrode and a second negative electrode) or three electrodes (a second positive electrode, a second negative electrode and a reference electrode).
  • a two-electrode assembly a second positive electrode and a second negative electrode
  • three electrodes a second positive electrode, a second negative electrode and a reference electrode.
  • the potential applied to the second negative electrode goes, for example, from -0.4 V to -1 V vs Ag / AgCl. For example, choose a potential of -0.5 V.
  • the acid treatment solution can therefore be reused, possibly by adjusting its pH, which reduces the consumption of reagents.
  • the electrodes are extracted from the electrolytic solution and it is possible to carry out a new treatment cycle with a new substrate containing silver to be recovered.
  • the electrolytic solution has a pH of -1 to 6, preferably of -1 to 2, and even more preferably of 0 to 1. It comprises at least one acid, a silver complexing agent and, optionally, a sulfate salt. to improve ion transport within the solution.
  • the acid used has a pKa of between - 7 and 3. It is a Brönsted acid, that is to say an acid capable of releasing at least one proton.
  • a Brönsted acid that is to say an acid capable of releasing at least one proton.
  • sulfuric acid, nitric acid or a mixture of these acids will be used.
  • the pH of the acid solution can be controlled and, optionally, adjusted to these values, by addition of acid.
  • the complexing agent is preferably thiourea (CAS number 62-56-6).
  • the electrolytic solution is preferably devoid of any solvent other than water.
  • the acid solution is preferably devoid of an oxidizing agent such as, for example, hydrogen peroxide or also metal salts (iron or copper sulphate for example).
  • the solution may naturally contain dissolved oxygen. We will not add oxygen in addition to that naturally present in solution.
  • the naturally occurring oxygen can also be removed from the solution by bubbling with another gas, such as argon.
  • the solution has a low viscosity and good ionic conductivity.
  • the process is advantageously carried out with mechanical stirring, for example between 200 and 1000 revolutions / minute.
  • silicon cells derived from conventional photovoltaic panels, are used.
  • the photovoltaic cells are subjected to a heat treatment in order to burn the layers of EVA encapsulation. This step takes place in an air oven at 500 ° C for 1 hour. The cells are also separated from the connectors.
  • the solution is stirred, in air at 20 ° C., at 400 rpm.
  • the electrodissolution is carried out in potentiostatic mode.
  • a constant potential of -0.25 V is applied to the first positive electrode, causing the silver from the first positive electrode to dissolve and, simultaneously, the cathodic protection of the aluminum from the first negative electrode.
  • the potential is maintained for 0.8 hours ( figure 1 ) allowing to extract 9 Coulombs, that is 98% of the silver available in the silicon cell.
  • the composition of the electrolytic solution was analyzed, after electrodissolution, by inductively coupled plasma spectrometry (ICP).
  • ICP inductively coupled plasma spectrometry
  • the electrolytic solution of the selective electrodissolution was then used to deposit silver on a glassy carbon electrode.
  • a three-electrode assembly is used with, this time, a glassy carbon working electrode.
  • the potential is maintained at -0.5 V for one hour (potentiostatic mode), which reduces the silver on the electrode.
  • a deposit is visible on the glassy carbon electrode. This deposit was analyzed by SEM and Dispersive Energy X-ray (EDX) to determine its chemical composition. Observations at the MEB highlighted the presence of a deposit of silver (light areas). The presence of silver was confirmed by microanalysis by EDX. The microstructure of the deposit is of the “cauliflower” type. Some sulfur impurities are present in the silver deposit. Tin is also present at 3 atomic% in the deposit. Tin is one of the elements that make up the silver solder (Cu, Sn, Pb and Ag) of the cells. The absence of copper confirms the selectivity of the deposit
  • the semi-quantitative analysis by EDX indicates that the silver content is greater than 94% to reach a higher grade after washing the elements trapped in the silver deposit.
  • These residual impurities essentially sulfur can be removed after washing the silver deposit in water in which the deposit is insoluble.
  • This example shows that it is possible to recover silver selectively, in the presence of aluminum, by electrochemical dissolution then electrodeposition, under an uncontrolled atmosphere such as air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

    DOMAINE TECHNIQUE ET ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • La présente invention concerne un procédé de récupération sélective de l'argent en présence d'aluminium.
  • Elle se rapporte plus particulièrement à un procédé de récupération sélective de l'argent, par voie électrochimique, et en solution aqueuse.
  • La présente invention trouve notamment une application dans le recyclage et la valorisation des panneaux photovoltaïques.
  • Les panneaux photovoltaïques (PV), aussi appelés modules photovoltaïques, sont utilisés pour convertir le rayonnement solaire en énergie thermique ou électrique. Aujourd'hui, environ 90% des panneaux photovoltaïques sont en silicium cristallin. Les autres panneaux photovoltaïques sont de type couche mince (10%).
  • Typiquement, un panneau photovoltaïque en silicium cristallin comprend plusieurs cellules photovoltaïques électriquement connectées entre elles, encapsulées par des couches de polymère transparentes, et disposées entre des plaques de verre, et un cadre en aluminium. Des électrodes, par exemple en cuivre ou en argent, permettent de collecter le courant électrique généré par les cellules photovoltaïques.
  • Chaque cellule photovoltaïque est, classiquement formée, d'un substrat en silicium, dont la face avant est recouverte de métallisations en argent et dont la face arrière est recouverte d'aluminium.
  • Un module photovoltaïque en silicium est donc majoritairement composé de verre (74% du poids total), d'aluminium (10%), de polymère (environ 6,5%) et de silicium (environ 3%), les métaux (zinc, plomb, cuivre et argent) ne représentant qu'une part négligeable de la masse.
  • En raison du fort développement des panneaux photovoltaïques au cours des dernières années, la question de leur recyclage est fondamentale. Ainsi, depuis le 13 août 2012, la Directive relative aux Déchets d'Equipements Electriques et Electroniques (DEEE) a été étendue aux panneaux photovoltaïques (PV).
  • Les objectifs de valorisation et de recyclage de ces panneaux sont déjà aisément atteints par la seule récupération du verre et du cadre en aluminium des panneaux photovoltaïques.
  • La récupération des métaux (le cuivre, l'étain, le plomb, l'aluminium présent en face arrière de la cellule...), et plus particulièrement de l'argent, qui est le métal ayant la plus forte valeur ajoutée (près de 90% du prix de la cellule), représente un enjeu majeur pour pérenniser la filière de recyclage.
  • Pour valoriser l'argent, les procédés actuels consistent à démanteler les modules par voie chimique et/ou thermique puis à réaliser une série de traitements pour dissoudre les différents éléments métalliques en solution, et finalement à récupérer l'argent.
  • La dissolution des métaux est, souvent, réalisée dans des solutions acides très concentrées et parfois portées à ébullition (HF, HNO3, H2SO4).
  • Par exemple, dans le document TW-A-201328990 , le procédé de récupération de l'argent comprend les étapes suivantes : broyage des cellules, traitement de la poudre obtenue dans une solution de H2SO4 (15mol/L à 20mol/L) à une température allant de 60 à 100°C, récupération du filtrat contenant l'aluminium et cristallisation à 100-150°C pour obtenir de l'aluminium métallique. Les résidus de poudre contenant du silicium et de l'argent sont traités avec HNO3 (4 à 12 mol/L). Le filtrat contenant l'argent est récupéré et l'argent est réduit en présence d'acide hypophosphoreux. Un traitement avec de l'acide borique à une température de 900-1100°C permet de former des lingots d'argent. Cependant, ce procédé de récupération de l'argent est complexe et nécessite l'utilisation de nombreux acides à des concentrations et/ou à des températures élevées (supérieures à 100°C et jusqu'à 1100°C).
  • Le document TW-A-200836850 propose de retirer l'argent et l'aluminium par électrolyse sans contact en plongeant une cellule photovoltaïque dans une solution contenant de l'acide nitrique, de l'acide phosphorique, de l'acide acétique et du chlorure ferrique. La couche antireflet de la cellule est dissoute dans l'acide phosphorique chauffé entre 100 et 200°C. La cellule est rincée avec l'acide nitrique pour enlever les dernières traces d'argent. Ce procédé n'évoque pas la récupération des métaux après dissolution par électrolyse. De plus, il utilise de nombreux acides.
  • Tous ces procédés de l'art antérieur nécessitent plusieurs étapes, avec parfois l'utilisation d'acides à fortes concentrations et /ou à des températures proches de la température d'ébullition. Cela conduit à des procédés complexes et/ou nécessitant un coût supplémentaire pour le traitement des déchets. De plus, aucun des procédés de recyclage des cellules photovoltaïques en silicium ne permet la dissolution et la récupération sélective de l'argent, vis-à-vis de l'aluminium.
  • EXPOSÉ DE L'INVENTION
  • C'est, par conséquent, un but de la présente invention de proposer un procédé de récupération de l'argent simple, permettant de dissoudre sélectivement et efficacement l'argent, par rapport à l'aluminium, mettant en jeu des conditions douces en termes de température, tout en limitant les coûts énergétique et de retraitement, pour pouvoir être transposé à une échelle industrielle.
  • Ce but est atteint par un procédé de récupération sélective de l'argent d'un substrat électriquement conducteur, ledit procédé comprenant les étapes suivantes :
    1. a) fourniture d'un système comprenant :
      • ∘ un substrat électriquement conducteur, comprenant une première face recouverte par de l'argent et une seconde face recouverte par de l'aluminium, la première face formant une première électrode positive, et la seconde face formant une première électrode négative, et
      • ∘ un dispositif de contrôle, relié à la première électrode positive et à la première électrode négative, le dispositif de contrôle permettant de contrôler le potentiel ou le courant d'une électrode ;
    2. b) immersion de la première électrode positive et de la première électrode négative dans une solution électrolytique, la solution électrolytique étant une solution aqueuse comprenant au moins un acide et un agent complexant de l'argent, la solution électrolytique ayant un pH allant de -1 à 6 ; et
    3. c) application d'un potentiel ou d'un courant à la première électrode positive ou à la première électrode négative, de manière à dissoudre l'argent de la première électrode positive dans la solution électrolytique et à passiver l'aluminium de la première électrode négative.
  • Un procédé avec une telle succession d'étapes n'a pas été décrit dans l'art antérieur. Le procédé de l'invention est sélectif vis-à-vis de l'argent grâce à la protection cathodique de l'aluminium.
  • Le substrat ne se dissout pas dans la solution aqueuse. Il ne participe pas aux réactions électrochimiques. Le substrat comporte deux faces principales (la première face et la seconde face) parallèles entre elles. Il est, par exemple, sous la forme d'une plaque. Le substrat n'est pas issu d'une opération de broyage. Le procédé évite une étape de broyage préalable et énergivore.
  • L'argent recouvre la première face du substrat. Autrement dit, l'argent est présent sur la première face du substrat. Il est sur la première face du substrat et la recouvre au moins partiellement. L'argent est accessible pour pouvoir être dissous. L'argent peut être sous la forme d'un film continu, de fils ou encore d'une grille. Il en va de même pour l'aluminium.
  • La première face du substrat forme une première électrode positive qui joue le rôle d'anode. Lorsque le potentiel (ou le courant) est appliqué, l'argent est oxydé et dissous en solution. La seconde face forme une première électrode négative qui joue le rôle de cathode. Lorsque le potentiel (ou le courant) est appliqué, un oxyde se forme à la surface de l'aluminium, lui conférant une protection cathodique et empêchant sa dissolution dans la gamme de pH de la solution électrolytique. Le procédé tire profit de la présence de l'aluminium et de l'argent, en réalisant simultanément, dans une même cuve ou récipient, la passivation de l'aluminium (réduction) et l'oxydation de l'argent (oxydation). Il n'y a pas besoin de protéger, de couvrir l'aluminium avant de mettre le substrat en solution. Lors de l'étape c), l'aluminium n'est pas dissous dans la solution électrolytique acide grâce à la protection cathodique. Eventuellement, de faibles quantités d'aluminium peuvent se retrouver en solution, mais il s'agira de quantités négligeables (inférieures à 2% massique et de préférence inférieures à 1% massique par rapport à la masse d'aluminium présent initialement).
  • Avec une telle gamme de pH, il est possible de dissoudre l'argent tout en évitant la dégradation de l'agent complexant de l'argent.
  • Les électrodes sont reliées à un dispositif permettant de contrôler le potentiel de l'une des deux électrodes positive et négative et, plus avantageusement, de contrôler la différence de potentiel entre les deux électrodes positive et négative.
  • Dans une variante de l'invention, le dispositif permet de contrôler le courant de l'une des deux électrodes positive et négative et, plus avantageusement, de contrôler la différence de courant entre les deux électrodes positive et négative.
  • Par application d'un potentiel ou d'un courant, on entend, de préférence, un potentiel constant ou un courant constant.
  • Avantageusement, le système comprend, en outre, une électrode de référence, par exemple Ag/AgCl.
  • Avantageusement, pour réaliser en une seule étape l'électrodissolution de l'argent et la protection cathodique de l'aluminium, le potentiel appliqué à la première électrode positive va de -0,4 V à 0 V vs Ag/AgCl. Dans cette gamme de potentiels, l'agent complexant, par exemple la thio-urée, ne sera pas dégradée et l'argent sera dissous dans la solution électrolytique, il ne sera pas électrodéposé sur la première électrode négative. Le choix du potentiel appliqué permet de contrôler la microstructure du dépôt.
  • Avantageusement, le potentiel est appliqué à la première électrode positive pendant une durée allant de 30 minutes à 3 heures, et de préférence, de 30 minutes à 1 heure.
  • Le procédé est facile à mettre en œuvre et permet de contrôler, via l'application d'un potentiel ou d'un courant, la vitesse de dissolution de l'argent.
  • Après la dissolution de l'argent dans la solution électrolytique, celui-ci peut être récupéré par précipitation, cémentation ou électrodéposition. Avantageusement, l'argent est récupéré par électrodéposition. Le procédé comprend les étapes ultérieures suivantes :
    • d) retrait de la première électrode positive et de la première électrode négative de la solution électrolytique, et déconnexion de la première électrode positive et de la première électrode négative du dispositif de contrôle ;
    • e) immersion d'une deuxième électrode positive et d'une deuxième électrode négative, reliées au dispositif de contrôle, dans la solution électrolytique ; et
    • f) application d'un potentiel ou d'un courant à la deuxième électrode positive ou à la deuxième électrode négative, de manière à électrodéposer l'argent, dissous dans la solution électrolytique, sur la deuxième électrode négative et à régénérer l'agent complexant de l'argent.
  • L'étape f) permet de déposer l'argent sur la deuxième électrode négative et, en même temps, de régénérer le complexant de l'argent.
  • En deux étapes électrochimiques, on réalise la récupération de l'argent et la régénération du bain sans mise en solution de l'aluminium (protection cathodique).
  • Avantageusement, après l'étape f), les étapes a), b), c) peuvent être répétées avec un autre substrat électriquement conducteur dont une des faces est recouverte d'argent et l'autre face est recouverte d'aluminium de manière à récupérer sélectivement l'argent. La solution électrolytique peut être la même.
  • Les étapes de dissolution sélective et de récupération de l'argent sont, avantageusement, réalisées dans une même cuve, contenant la solution électrolytique. La solution n'a pas besoin d'être traitée, d'être transférée entre l'étape d'électrodissolution et l'étape d'électrodéposition. Différents substrats peuvent être valorisés dans la même solution électrolytique. Cela conduit à une grande simplification du procédé, à une plus grande compacité des installations, à une réduction du nombre des canalisations et autres dispositifs d'acheminement des fluides et des solides etc.
  • Avantageusement, le pH de la solution électrolytique va de -1 à 2, plus avantageusement de 0 à 1. Avec de tels pH, le procédé de l'invention rassemble les avantages de la sélectivité et de l'efficacité de traitement. Plus le pH sera faible et plus la dissolution de l'argent en solution sera rapide.
  • Avantageusement, l'acide est de l'acide sulfurique H2SO4, de l'acide nitrique HNO3 ou un de leurs mélanges.
  • L'agent complexant, aussi appelé ligand ou complexant, permet de complexer l'élément argent dissous, sous la forme d'un complexe d'argent. Le complexant est choisi de manière à être suffisamment complexant pour favoriser l'électrodissolution de l'argent et faciliter l'électrodéposition de l'argent dans la fenêtre de stabilité électrochimique de la solution. L'utilisation d'agent complexant de l'argent permet, via la formation de complexe d'argent, d'ajuster le potentiel d'électrodéposition de l'argent. L'agent complexant doit être soluble dans la solution électrolytique et sélectif vis-à-vis de l'argent. En outre, il ne devra pas se dégrader dans la gamme de pH utilisée.
  • Selon un mode de réalisation avantageux, l'agent complexant est la thio-urée ou un dérivé de celle-ci. La thio-urée comme complexant du métal à dissoudre présente de nombreux avantages en termes de chimie, de coût ou de procédé. Elle favorise la solubilité et la stabilité du complexant, tout en abaissant le potentiel d'électrodéposition de l'argent de 0,799 V à environ 0,2 V. De plus, elle est régénérée durant le dépôt de l'argent. Le procédé peut être réalisé en cycle fermé, limitant ainsi le rejet de produits chimiques, le coût de réalisation et l'impact environnemental.
  • Avantageusement, la concentration en agent complexant va de 0,01 mol/L à 1 mol/L, de préférence de 0,05 mol/L à 1 mol/L, et encore plus préférentiellement, est de l'ordre de 0,5 mol/L. De telles concentrations permettent de favoriser la cinétique de dissolution du métal et la récupération de l'argent. Cette gamme de concentrations d'agent complexant est particulièrement avantageuse, étant donné qu'une concentration inférieure à 0,01 mol/L diminue le caractère complexant, alors qu'une concentration supérieure à 1 mol/L correspond généralement au taux de saturation de la solution en agent complexant. De manière encore plus avantageuse, cette concentration est égale à deux fois stœchiométrie d'argent à dissoudre.
  • Avantageusement, la solution comprend, en outre, un agent favorisant les propriétés de transport ionique. Il s'agit, par exemple, d'un sel de sulfate. Le sel de sulfate peut être tout sel hydrosoluble de l'ion sulfate [SO42-], seul ou en mélange. De manière générale, le sel de sulfate est un sel hydrosoluble de l'ion sulfate [SO42-]. Il peut notamment être choisi dans le groupe comprenant Na2SO4, K2SO4 et CaSO4. Par exemple, la solution peut comprendre 0,001 à 1 mol/L de sel de sulfate, de préférence de 0,1 à 0,5 mol/L. Le sel n'intervient pas dans les réactions aux électrodes et ne réagit pas avec le solvant.
  • Selon une variante, l'agent favorisant les propriétés de transport ionique peut être un acide additionnel.
  • Avantageusement, le substrat est en silicium. Le silicium est inerte électrochimiquement lors des étapes d'électrodissolution et d'électrodéposition.
  • Avantageusement, le substrat électriquement conducteur provient d'une cellule photovoltaïque et l'argent forme les métallisations de la face avant de la cellule photovoltaïque. L'aluminium recouvre la face arrière de la cellule.
  • Avantageusement, le procédé est réalisé à une température allant de 15°C à 60°C, et de préférence étant de l'ordre de 20-25°C. Ces conditions permettent également de diminuer la quantité d'énergie nécessaire et d'améliorer la sécurité par rapport aux procédés de l'art antérieur qui peuvent mettre en œuvre des solutions acides en ébullition. Le procédé peut être réalisé à température ambiante (20-25°C) facilitant son utilisation en milieu industriel.
  • Le procédé peut être réalisé sous air. C'est particulièrement avantageux de ne pas travailler sous atmosphère contrôlée et de ne pas utiliser des gaz inertes. Le procédé est industrialisable.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture du complément de description qui suit, qui se rapporte à un essai de récupération, par dissolution électrochimique et électrodéposition, d'argent présent dans une cellule photovoltaïque au moyen d'une solution électrolytique conforme à l'invention.
  • Il est précisé que cette description détaillée, qui se réfère notamment aux figures 1 à 3 telles qu'annexées, n'est donnée qu'à titre d'illustration de l'objet de l'invention et ne constitue en aucun cas une limitation de cet objet.
  • En particulier, le procédé de récupération d'argent décrit ci-dessus et détaillé ci-après permet d'obtenir sélectivement la dissolution électrochimique de l'argent présent sur un substrat, qui comprend également de l'aluminium, et sa récupération sous forme métallique.
  • BRÈVE DESCRIPTION DES DESSINS
  • La présente invention sera mieux comprise sur la base de la description qui va suivre et des dessins en annexe sur lesquels :
    • la figure 1 est une courbe courant-temps correspondant à l'étape d'électro-dissolution de connectiques en argent d'une des faces d'un substrat en silicium recouvert également, sur une autre face, par de l'aluminium, provenant d'une cellule photovoltaïque,
    • la figure 2 est un cliché obtenu par microscopie électronique à balayage, en électrons rétrodiffusés, du dépôt d'argent obtenu avec le procédé de l'invention, sur une électrode en carbone vitreux,
    • la figure 3 est un spectre d'une microanalyse par Energie Dispersive des rayons X de l'argent électrodéposé sur l'électrode en carbone vitreux.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Par la suite le procédé est décrit pour récupérer l'argent contenu dans des cellules photovoltaïques, avantageusement en silicium cristallin ou polycristallin, et plus particulièrement pour récupérer l'argent, présent en face avant d'une cellule, sélectivement vis-à-vis de l'aluminium présent en face arrière de la cellule.
  • Le procédé pourrait être utilisé pour tout type de substrat électriquement conducteur, ne se dissolvant pas naturellement dans la solution électrolytique.
  • Préalablement à la mise en œuvre du procédé, les cellules sont retirées du panneau photovoltaïque et séparées des câbles, boîtes de jonction, et cadres métalliques. Les cellules sont soumises à un traitement thermique pour éliminer, par calcination, les matériaux d'encapsulation en polymère, tel que l'éthylène-acétate de vinyle (EVA). L'étape de calcination est, par exemple, réalisée dans un four sous air. Le traitement thermique est, par exemple, réalisé à une température comprise entre 400°C et 700°C, plus avantageusement entre 450 et 550°C. La durée de ce traitement peut être comprise entre 30 et 120 minutes, plus avantageusement entre 60 et 90 minutes.
  • A l'issue de ce prétraitement, la cellule photovoltaïque consiste en un substrat électriquement conducteur en silicium recouvert par une ou plusieurs électrodes d'argent. Les électrodes d'argent sont classiquement formées à partir d'une pâte d'argent qui peut comprendre une poudre de verre SiO2, B2O3, PbO et ZnO, de l'argent et un agent liant.
  • Les cellules peuvent être, également, séparées des connecteurs électriques. Selon une variante, les connecteurs électriques, composés d'un cœur en cuivre enrobé de Sn62Pb36Ag2, par exemple, et l'argent peuvent être valorisés avec le procédé de l'invention. Les différents métaux (cuivre, plomb, étain) formant des complexes très stables avec l'agent complexant et/ou étant en quantité minime et/ou n'étant pas dissous et/ou n'étant pas électrodéposés avec le potentiel utilisé dans le procédé, le dépôt sur la première électrode négative sera essentiellement de l'argent. Il est donc particulièrement avantageux d'être sélectif vis-à-vis de l'argent. Le choix de la température du traitement thermique pourra aider à favoriser la dissolution sélective de l'argent.
  • Le substrat n'est pas broyé pour mettre en œuvre le procédé. Il peut, être, par exemple, découpé sous forme d'une plaque de quelques cm2 ou dm2.
  • Le substrat comporte une première face et une seconde face. La première face, correspondant à la face avant de la cellule photovoltaïque, est recouverte par de l'argent. L'argent est, par exemple, sous la forme d'une grille. La seconde face correspond à la face arrière de la cellule photovoltaïque. La seconde face est recouverte par de l'aluminium. L'aluminium forme, par exemple, un film continu.
  • La première face du substrat recouverte d'argent, est électriquement connectée au dispositif de contrôle. Elle joue le rôle d'anode. Avantageusement, la totalité des connectiques d'argent (bus, bar) en surface du substrat est électriquement connectée au potentiostat.
  • La seconde face du substrat est également électriquement connectée au dispositif de contrôle. Elle joue le rôle de cathode.
  • Le dispositif de contrôle est une source de tension ou de courant, comme un potentiostat. Le potentiostat est utilisé, de préférence, en mode potentiostatique. Il pourrait être utilisé en mode galvanostatique.
  • Le substrat est plongé, au moins partiellement, dans la solution électrolytique, de manière à mettre les deux faces du substrat en contact avec la solution électrolytique.
  • On impose un potentiel ou un courant à la première électrode positive ou négative, ce qui génère simultanément l'électro-dissolution de l'argent présent sur la première électrode positive et la protection cathodique de l'aluminium présent sur la première électrode négative.
  • Une électrode de référence, par exemple Ag/AgCl, peut également être ajoutée au montage.
  • Le potentiel appliqué à la première électrode positive pour dissoudre l'argent dans la solution électrolytique et passiver l'aluminium va de -0,4 V à 0 V vs Ag/AgCl, par exemple -0,2 V vs Ag/AgCl.
  • Avantageusement, le potentiel est appliqué pendant une durée de 30 minutes à 3 heures, et de préférence pendant une durée de 30 minutes à 1 heure. La durée sera, notamment, choisie en fonction de la quantité d'argent à valoriser, du pH et du potentiel (ou du courant) appliqué. Plus la solution électrolytique sera acide et plus la dissolution sera rapide.
  • Une fois que l'argent est dissous en solution, l'argent peut être électrodéposé sur une autre électrode (cathode), en utilisant un montage à deux électrodes (une deuxième électrode positive et une deuxième électrode négative) ou à trois électrodes (une deuxième électrode positive, une deuxième électrode négative et une électrode de référence). Pour électrodéposer l'argent, le potentiel appliqué à la deuxième électrode négative va, par exemple, de -0,4 V à -1 V vs Ag/AgCl. On choisira par exemple un potentiel de -0,5 V.
  • À l'issue de l'électrodéposition, l'agent complexant est régénéré. La solution acide de traitement peut donc être réutilisée, éventuellement en ajustant son pH, ce qui réduit la consommation de réactifs.
  • Après électro-dissolution/électrodéposition du métal argent, les électrodes sont extraites de la solution électrolytique et il est possible de procéder à un nouveau cycle de traitement avec un nouveau substrat contenant de l'argent à récupérer.
  • La solution électrolytique a un pH de -1 à 6, de préférence, de -1 à 2, et encore plus préférentiellement de 0 à 1. Elle comprend au moins un acide, un agent complexant l'argent et, éventuellement un sel de sulfate pour améliorer le transport ionique au sein de la solution.
  • Selon un mode de réalisation particulier, l'acide utilisé présente un pKa compris entre - 7 et 3. Il s'agit d'un acide de Brönsted, c'est-à-dire un acide apte à libérer au moins un proton. On utilisera par exemple de l'acide sulfurique, de l'acide nitrique ou un mélange de ces acides.
  • Lors de la mise en œuvre du procédé selon l'invention, le pH de la solution acide peut être contrôlé et, éventuellement, ajusté à ces valeurs, par addition d'acide.
  • L'agent complexant est, de préférence, la thio-urée (numéro CAS 62-56-6).
  • La solution électrolytique est, de préférence, dépourvue de solvant autre que l'eau. La solution acide est, de préférence, dépourvue d'agent oxydant tel que, par exemple, le peroxyde d'hydrogène ou encore des sels métalliques (sulfate de fer ou de cuivre par exemple).
  • La solution peut contenir naturellement de l'oxygène dissous. On ne rajoutera pas d'oxygène en plus de celui naturellement présent en solution. L'oxygène naturellement présent peut également être évacué de la solution par bullage avec un autre gaz, tel que l'argon.
  • La solution présente une faible viscosité et une bonne conductivité ionique.
  • Le procédé est avantageusement réalisé sous agitation mécanique, par exemple entre 200 et 1000 tours/minute.
  • Les différentes étapes du procédé sont, avantageusement, réalisées sous air.
  • Exemple illustratif et non limitatif d'un mode de réalisation :
  • Dans cet exemple, des cellules en silicium, issues de panneaux photovoltaïques conventionnels, sont utilisées.
  • Dans un premier temps, les cellules photovoltaïques sont soumises à un traitement thermique afin de brûler les couches d'encapsulation en EVA. Cette étape a lieu dans un four sous air à 500°C pendant 1h. Les cellules sont également séparées des connecteurs.
  • Le système électrochimique utilisé dans le cadre de cette étude comprend trois électrodes :
    • une première électrode positive : la face avant de la cellule photovoltaïque recouverte par les métallisations en argent,
    • une première électrode négative : la face arrière de la cellule photovoltaïque recouverte par un film en aluminium,
    • une électrode de référence Ag/AgCl.
  • Les électrodes sont plongées dans une solution aqueuse de 200 mL comprenant 10-1 mol.L-1 d'acide sulfurique (pH=1) et 0,5 mol.L-1 de thio-urée. La solution est agitée, sous air à 20°C, à 400 tours/min.
  • L'électrodissolution est réalisée en mode potentiostatique. Un potentiel constant de -0,25 V est appliqué à la première électrode positive, provoquant la dissolution de l'argent de la première électrode positive et, simultanément, la protection cathodique de l'aluminium de la première électrode négative. Le potentiel est maintenu pendant 0,8 heures (figure 1) permettant d'extraire 9 Coulombs, soit 98% de l'argent disponible dans la cellule de silicium.
  • La composition de la solution électrolytique a été analysée, après l'électrodissolution, par spectrométrie à plasma à couplage inductif (ICP). Les résultats confirment que, avec la protection cathodique, l'argent est dissous et la concentration en aluminium en solution est résiduelle (∼1% de l'aluminium). Il s'agit bien d'une dissolution sélective de l'argent vis-à-vis de l'aluminium.
  • Cette composition a été comparée avec un substrat identique, comprenant sur une de ses faces de l'argent et sur l'autre face de l'aluminium, plongé dans la même solution électrolytique. La dissolution a été réalisée sans protection cathodique. Les résultats sont regroupés dans le tableau ci-dessous. Sans protection cathodique, on observe une très forte dissolution de l'aluminium et une très faible dissolution de l'argent.
    Résultats ICP
    Procédé Ag (mg/L) Al (mg/L)
    Electrodissolution sélective 105,6 9,5
    Dissolution sans protection cathodique 0,4 868,3
  • La solution électrolytique de l'électrodissolution sélective a, ensuite, servi pour faire un dépôt d'argent sur une électrode de carbone vitreux. Un montage à trois électrodes est utilisé avec, cette fois-ci, une électrode de travail en carbone vitreux. Le potentiel est maintenu à -0,5 V pendant une heure (mode potentiostatique), ce qui permet de réduire l'argent sur l'électrode.
  • A la fin du procédé, un dépôt est visible sur l'électrode de carbone vitreux. Ce dépôt a fait l'objet d'analyses par MEB et Energie Dispersive de rayon X (EDX) afin d'en déterminer la composition chimique. Les observations au MEB ont mis en évidence la présence d'un dépôt d'argent (zones claires). La présence d'argent a été confirmée par microanalyse par EDX. La microstructure du dépôt est de type « choux fleurs ». Quelques impuretés de soufre sont présentes dans le dépôt d'argent. L'étain est également présent à hauteur de 3% atomique dans le dépôt. L'étain est un des éléments qui composent la soudure argent (Cu, Sn, Pb et Ag) des cellules. L'absence de cuivre confirme la sélectivité du dépôt
  • Avant lavage, l'analyse semi-quantitative par EDX indique que la teneur en argent est supérieure à 94% pour atteindre un grade supérieur après lavage des éléments piégés dans le dépôt d'argent. Ces impuretés résiduelles (soufre essentiellement) peuvent être retirées après un lavage du dépôt d'argent dans de l'eau dans lequel le dépôt est insoluble.
  • Cet exemple montre qu'il est possible de récupérer l'argent de manière sélective, en présence d'aluminium, par dissolution électrochimique puis électrodéposition, sous une atmosphère non contrôlée telle que l'air.

Claims (14)

  1. Procédé de récupération sélective de l'argent d'un substrat électriquement conducteur, ledit procédé comprenant les étapes successives suivantes :
    a) fourniture d'un système comprenant :
    ∘ un substrat électriquement conducteur, comprenant une première face recouverte par de l'argent et une seconde face recouverte par de l'aluminium, la première face formant une première électrode positive et la seconde face formant une première électrode négative, et
    ∘ un dispositif de contrôle, relié à la première électrode positive et à la première électrode négative, le dispositif de contrôle permettant de contrôler le potentiel ou le courant d'une électrode ;
    b) immersion de la première électrode positive et de la première électrode négative dans une solution électrolytique, la solution électrolytique étant une solution aqueuse comprenant au moins un acide et un agent complexant de l'argent, la solution électrolytique ayant un pH allant de -1 à 6 ; et
    c) application d'un potentiel ou d'un courant à la première électrode positive ou à la première électrode négative, de manière à dissoudre l'argent de la première électrode positive dans la solution électrolytique et à passiver l'aluminium de la première électrode négative.
  2. Procédé selon la revendication 1, caractérisé en ce que le procédé comprend les étapes ultérieures suivantes :
    d) retrait de la première électrode positive et de la première électrode négative de la solution électrolytique, et déconnexion de la première électrode positive et de la première électrode négative du dispositif de contrôle ;
    e) immersion d'une deuxième électrode positive et d'une deuxième électrode négative, reliées au dispositif de contrôle, dans la solution électrolytique ; et
    f) application d'un potentiel ou d'un courant à la deuxième électrode positive ou à la deuxième électrode négative, de manière à électrodéposer l'argent, dissous dans la solution électrolytique, sur la deuxième électrode négative et à régénérer l'agent complexant de l'argent.
  3. Procédé selon la revendication 2, caractérisé en ce que, après l'étape f), les étapes a), b), c) peuvent être répétées avec un autre substrat électriquement conducteur.
  4. Procédé selon l'un quelconque des revendications 1 à 3, caractérisé en ce que le système comprend, en outre, une électrode de référence, par exemple Ag/AgCl.
  5. Procédé selon la revendication 4, caractérisé en ce que le potentiel appliqué à la première électrode positive va de -0,4 V à 0 V vs Ag/AgCl.
  6. Procédé selon la revendication 5, caractérisé en ce que le potentiel est appliqué à la première électrode positive pendant une durée allant de 30 minutes à 3 heures, et de préférence, de 30 minutes à 1 heure.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la solution aqueuse a un pH allant de -1 à 2, et de préférence de 0 à 1.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'acide est de l'acide sulfurique, de l'acide nitrique ou un de leurs mélanges.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la concentration en agent complexant va de 0,01 à 1mol/L, de préférence de 0,05mol/L à 1mol/L, et encore plus préférentiellement, est de l'ordre de 0,5mol/L.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'agent complexant est la thio-urée.
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la solution comprend, en outre, un sel de sulfate, de préférence choisi parmi Na2SO4, CaSO4 et K2SO4.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le procédé est réalisé à une température allant de 15°C à 60°C, et de préférence, étant de l'ordre de 20-25°C.
  13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le substrat électriquement conducteur est en silicium.
  14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le substrat provient d'une cellule photovoltaïque, l'argent formant les métallisations de la face avant de la cellule photovoltaïque.
EP18166892.2A 2017-04-12 2018-04-11 Procédé de récupération sélective de l'argent en présence d'aluminium, par voie électrochimique et en solution aqueuse Active EP3388555B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1753194A FR3065229B1 (fr) 2017-04-12 2017-04-12 Procede de recuperation selective de l'argent en presence d'aluminium, par voie electrochimique et en solution aqueuse

Publications (2)

Publication Number Publication Date
EP3388555A1 EP3388555A1 (fr) 2018-10-17
EP3388555B1 true EP3388555B1 (fr) 2020-02-12

Family

ID=59031188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18166892.2A Active EP3388555B1 (fr) 2017-04-12 2018-04-11 Procédé de récupération sélective de l'argent en présence d'aluminium, par voie électrochimique et en solution aqueuse

Country Status (3)

Country Link
EP (1) EP3388555B1 (fr)
ES (1) ES2790253T3 (fr)
FR (1) FR3065229B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127760A1 (fr) * 2021-10-01 2023-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de recuperation de l’argent contenu dans les particules provenant, par exemple, de cellules photovoltaiques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616332A (en) * 1969-12-17 1971-10-26 Texas Instruments Inc Process for recovering silver from scrap materials and electrolyte composition for use therein
DE2025211A1 (en) * 1970-05-23 1971-12-02 Kraft J Selective anodic recovery of silver - from scrap by electro - -deposition from aq soln
US4606797A (en) * 1985-09-12 1986-08-19 Engelhard Corporation Method for recovery of high grade gold alloy from karat gold-clad base metal substrates
CN106029573B (zh) * 2014-02-26 2018-12-11 格林里昂集团有限公司 废料中金和/或银的回收
FR3028433B1 (fr) * 2014-11-18 2016-11-11 Commissariat Energie Atomique Procede de recuperation de metaux contenus dans un substrat en silicium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2790253T3 (es) 2020-10-27
FR3065229A1 (fr) 2018-10-19
EP3388555A1 (fr) 2018-10-17
FR3065229B1 (fr) 2019-06-14

Similar Documents

Publication Publication Date Title
EP3178576B1 (fr) Procédé de recyclage de l' argent présent dans une cellule photovoltaïque
EP3023158B1 (fr) Procede de recuperation de l'argent contenu dans un substrat en silicium
TWI475712B (zh) 太陽電池用晶圓的製造方法、太陽電池單元的製造方法以及太陽電池模組的製造方法
WO2017100443A1 (fr) Récupération de métaux précieux ou toxiques à partir de cellules solaires au silicium
FR2471424A1 (fr) Cathodes a faible surtension d'hydrogene, prodede pour leur production et cellules electrolytiques les comprenant
CH679158A5 (fr)
EP3388555B1 (fr) Procédé de récupération sélective de l'argent en présence d'aluminium, par voie électrochimique et en solution aqueuse
WO2014049172A2 (fr) Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaïque
WO2023180673A1 (fr) Procede de recuperation de l'indium a partir d'un subtrat comprenant de l'oxyde d'indium-etain et une couche metallique par voie de chimie verte
FR3065230B1 (fr) Procede de recuperation de l'argent present sur un substrat, par voie electrochimique, en presence d'un liquide ionique
FR3065228B1 (fr) Procede de recuperation de l'argent present sur un substrat, par voie electrochimique et en solution aqueuse
FR3053364A1 (fr) Procede de recuperation de platine, par voie electrochimique, a partir d'un materiau dans lequel il est contenu
JP7466182B2 (ja) 電極とこの電極を用いた過酸化水素の製造方法
Kois et al. Electrochemical etching of copper indium diselenide surface
JP5724718B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
EP4279191A1 (fr) Procede de recuperation de l'indium a partir d'un substrat comprenant de l'oxyde d'indium-etain et une couche metallique
EP4159882A1 (fr) Procédé de récupération de l'argent contenu dans des particules provenant, par exemple, de cellules photovoltaïques
EP3555345A1 (fr) Procede electrolytique pour extraire de l'etain et/ou du plomb compris dans un melange électriquement conducteur
JP5724614B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
FR3099492A1 (fr) Procede de recuperation de rhodium par voie electrochimique
JP5703780B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
FR3050215A1 (fr) Procede de modification d'une surface en oxyde conducteur de l'electricite, utilisation pour l'electrodeposition de cuivre sur cette derniere
JP5880055B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
EP4151763A1 (fr) Procédé de récupération sélective de l'or par voie de chimie verte a partir d'un élément contenant de l'or et un platinoide
CN105633201B (zh) 钝化铜铟镓硒薄膜表面缺陷的电化学处理方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 1/20 20060101AFI20190806BHEP

INTG Intention to grant announced

Effective date: 20190906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018002334

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2790253

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018002334

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1232211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240517

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240422

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20240426

Year of fee payment: 7