EP3388555B1 - Verfahren zur selektiven rückgewinnung von silber in gegenwart von aluminium auf elektrochemische weise und in einer wässrigen lösung - Google Patents

Verfahren zur selektiven rückgewinnung von silber in gegenwart von aluminium auf elektrochemische weise und in einer wässrigen lösung Download PDF

Info

Publication number
EP3388555B1
EP3388555B1 EP18166892.2A EP18166892A EP3388555B1 EP 3388555 B1 EP3388555 B1 EP 3388555B1 EP 18166892 A EP18166892 A EP 18166892A EP 3388555 B1 EP3388555 B1 EP 3388555B1
Authority
EP
European Patent Office
Prior art keywords
silver
process according
positive electrode
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18166892.2A
Other languages
English (en)
French (fr)
Other versions
EP3388555A1 (de
Inventor
Emmanuel BILLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3388555A1 publication Critical patent/EP3388555A1/de
Application granted granted Critical
Publication of EP3388555B1 publication Critical patent/EP3388555B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals

Definitions

  • the present invention relates to a process for the selective recovery of silver in the presence of aluminum.
  • It relates more particularly to a process for the selective recovery of silver, electrochemically, and in aqueous solution.
  • the present invention finds particular application in the recycling and recovery of photovoltaic panels.
  • PV panels also called photovoltaic modules, are used to convert solar radiation into thermal or electrical energy.
  • the other photovoltaic panels are of the thin layer type (10%).
  • a crystalline silicon photovoltaic panel comprises several photovoltaic cells electrically connected to each other, encapsulated by transparent polymer layers, and arranged between glass plates, and an aluminum frame. Electrodes, for example made of copper or silver, make it possible to collect the electric current generated by the photovoltaic cells.
  • Each photovoltaic cell is, conventionally formed, of a silicon substrate, the front face of which is covered with silver metallizations and the rear face of which is covered with aluminum.
  • a silicon photovoltaic module is therefore mainly composed of glass (74% of the total weight), aluminum (10%), polymer (about 6.5%) and silicon (about 3%), metals (zinc, lead, copper and silver) representing only a negligible part of the mass.
  • the current processes consist in dismantling the modules by chemical and / or thermal means then in carrying out a series of treatments to dissolve the various metallic elements in solution, and finally to recover the silver.
  • the silver recovery process comprises the following stages: grinding of the cells, treatment of the powder obtained in a solution of H 2 SO 4 (15mol / L to 20mol / L) at a temperature ranging from 60 to 100 ° C. , recovery of the aluminum-containing filtrate and crystallization at 100-150 ° C to obtain metallic aluminum.
  • the powder residues containing silicon and silver are treated with HNO 3 (4 to 12 mol / L).
  • the silver-containing filtrate is recovered and the silver is reduced in the presence of hypophosphorous acid.
  • Treatment with boric acid at a temperature of 900-1100 ° C makes it possible to form silver ingots.
  • this silver recovery process is complex and requires the use of many acids at high concentrations and / or at high temperatures (above 100 ° C and up to 1100 ° C).
  • the document TW-A-200836850 proposes to remove silver and aluminum by contactless electrolysis by immersing a photovoltaic cell in a solution containing nitric acid, phosphoric acid, acetic acid and ferric chloride.
  • the anti-reflective layer of the cell is dissolved in phosphoric acid heated between 100 and 200 ° C.
  • the cell is rinsed with nitric acid to remove the last traces of silver. This process does not evoke the recovery of metals after dissolution by electrolysis. In addition, it uses many acids.
  • an object of the present invention to provide a simple method for recovering silver, making it possible to selectively and effectively dissolve silver, with respect to aluminum, bringing into play mild conditions in terms temperature, while limiting energy and reprocessing costs, so that it can be transposed to an industrial scale.
  • the substrate does not dissolve in the aqueous solution. It does not participate in electrochemical reactions.
  • the substrate has two main faces (the first face and the second face) parallel to each other. It is, for example, in the form of a plate.
  • the substrate does not come from a grinding operation. The process avoids a prior and energy-consuming grinding step.
  • Silver covers the first side of the substrate.
  • silver is present on the first face of the substrate. It is on the first face of the substrate and covers it at least partially.
  • the money is accessible so that it can be dissolved.
  • the money can be in the form of a continuous film, threads or even a grid. The same goes for aluminum.
  • the first face of the substrate forms a first positive electrode which acts as an anode.
  • the silver is oxidized and dissolved in solution.
  • the second face forms a first negative electrode which acts as a cathode.
  • an oxide is formed on the surface of aluminum, giving it cathodic protection and preventing its dissolution in the pH range of the electrolytic solution.
  • the process takes advantage of the presence of aluminum and silver, by simultaneously carrying out, in the same tank or container, the passivation of aluminum (reduction) and the oxidation of silver (oxidation). There is no need to protect, cover the aluminum before putting the substrate in solution.
  • step c) the aluminum is not dissolved in the acid electrolytic solution thanks to cathodic protection.
  • small quantities of aluminum may be found in solution, but these will be negligible quantities (less than 2% by mass and preferably less than 1% by mass relative to the mass of aluminum initially present).
  • the electrodes are connected to a device making it possible to control the potential of one of the two positive and negative electrodes and, more advantageously, to control the potential difference between the two positive and negative electrodes.
  • the device makes it possible to control the current of one of the two positive and negative electrodes and, more advantageously, to control the difference in current between the two positive and negative electrodes.
  • a potential or a current it is preferably meant a constant potential or a constant current.
  • the system further comprises a reference electrode, for example Ag / AgCl.
  • the potential applied to the first positive electrode ranges from -0.4 V to 0 V vs Ag / AgCl.
  • the complexing agent for example thiourea
  • the silver will be dissolved in the electrolytic solution, it will not be electrodeposited on the first negative electrode.
  • the choice of applied potential makes it possible to control the microstructure of the deposit.
  • the potential is applied to the first positive electrode for a period ranging from 30 minutes to 3 hours, and preferably from 30 minutes to 1 hour.
  • the process is easy to implement and makes it possible to control, via the application of a potential or a current, the rate of dissolution of silver.
  • Step f) makes it possible to deposit the silver on the second negative electrode and, at the same time, to regenerate the silver complexing agent.
  • the silver is recovered and the bath regenerated without dissolving the aluminum (cathodic protection).
  • steps a), b), c) can be repeated with another electrically conductive substrate, one side of which is covered with silver and the other side is covered with aluminum so as to selectively recover money.
  • the electrolytic solution can be the same.
  • the selective dissolution and silver recovery stages are advantageously carried out in the same tank, containing the electrolytic solution.
  • the solution does not need to be treated, to be transferred between the electrodissolution step and the electrodeposition step.
  • Different substrates can be recovered in the same electrolytic solution. This leads to a great simplification of the process, a greater compactness of the installations, a reduction in the number of pipes and other devices for conveying fluids and solids, etc.
  • the pH of the electrolytic solution ranges from -1 to 2, more advantageously from 0 to 1.
  • the method of the invention brings together the advantages of selectivity and of treatment efficiency. The lower the pH, the faster the dissolution of the silver in solution.
  • the acid is sulfuric acid H 2 SO 4 , nitric acid HNO 3 or one of their mixtures.
  • the complexing agent also called ligand or complexing agent, makes it possible to complex the dissolved silver element, in the form of a silver complex.
  • the complexing agent is chosen so as to be sufficiently complexing to favor the electrodissolution of the silver and facilitate the electrodeposition of the silver in the window of electrochemical stability of the solution.
  • the use of silver complexing agent makes it possible, via the formation of silver complex, to adjust the electrodeposition potential of silver.
  • the complexing agent must be soluble in the electrolytic solution and selective for silver. In addition, it should not degrade in the pH range used.
  • the complexing agent is thiourea or a derivative thereof.
  • Thiourea as complexing agent for the metal to be dissolved has many advantages in terms of chemistry, cost or process. It promotes the solubility and the stability of the complexing agent, while lowering the electrodeposition potential of the silver from 0.799 V to around 0.2 V. In addition, it is regenerated during the deposition of the silver. The process can be carried out in a closed cycle, thus limiting the release of chemicals, the cost of production and the environmental impact.
  • the concentration of complexing agent ranges from 0.01 mol / L to 1 mol / L, preferably from 0.05 mol / L to 1 mol / L, and even more preferably, is of the order of 0.5 mol / L.
  • concentrations make it possible to promote the kinetics of dissolution of the metal and the recovery of the silver.
  • This range of concentrations of complexing agent is particularly advantageous, since a concentration less than 0.01 mol / L decreases the complexing character, while a concentration greater than 1 mol / L generally corresponds to the saturation rate of the complexing agent solution. Even more advantageously, this concentration is equal to twice the stoichiometry of silver to be dissolved.
  • the solution also comprises an agent promoting the ion transport properties. It is, for example, a sulfate salt.
  • the sulfate salt can be any water-soluble salt of the sulfate ion [SO4 2- ], alone or as a mixture.
  • the sulfate salt is a water-soluble salt of the sulfate ion [SO4 2- ]. he can in particular be chosen from the group comprising Na 2 SO 4 , K 2 SO 4 and CaSO 4 .
  • the solution may include 0.001 to 1 mol / L of sulfate salt, preferably 0.1 to 0.5 mol / L. Salt does not intervene in electrode reactions and does not react with the solvent.
  • the agent promoting the ion transport properties may be an additional acid.
  • the substrate is made of silicon.
  • the silicon is electrochemically inert during the electrodissolution and electrodeposition stages.
  • the electrically conductive substrate comes from a photovoltaic cell and the silver forms the metallizations of the front face of the photovoltaic cell.
  • Aluminum covers the rear face of the cell.
  • the process is carried out at a temperature ranging from 15 ° C to 60 ° C, and preferably being of the order of 20-25 ° C. These conditions also make it possible to reduce the amount of energy required and to improve safety compared to the processes of the prior art which can use boiling acid solutions.
  • the process can be carried out at room temperature (20-25 ° C) facilitating its use in an industrial environment.
  • the process can be carried out in air. It is particularly advantageous not to work in a controlled atmosphere and not to use inert gases.
  • the process can be industrialized.
  • the silver recovery process described above and detailed below makes it possible to selectively obtain the electrochemical dissolution of the silver present on a substrate, which also includes aluminum, and its recovery in metallic form.
  • the method is described for recovering the silver contained in photovoltaic cells, advantageously in crystalline or polycrystalline silicon, and more particularly for recovering the silver, present on the front face of a cell, selectively with respect to the aluminum present on the back of the cell.
  • the process could be used for any type of electrically conductive substrate, which does not dissolve naturally in the electrolytic solution.
  • the cells Prior to the implementation of the process, the cells are removed from the photovoltaic panel and separated from the cables, junction boxes, and metal frames.
  • the cells are subjected to a heat treatment to remove, by calcination, the polymer encapsulation materials, such as ethylene vinyl acetate (EVA).
  • EVA ethylene vinyl acetate
  • the calcination step is, for example, carried out in an air oven.
  • the heat treatment is, for example, carried out at a temperature between 400 ° C. and 700 ° C, more preferably between 450 and 550 ° C.
  • the duration of this treatment can be between 30 and 120 minutes, more advantageously between 60 and 90 minutes.
  • the photovoltaic cell consists of an electrically conductive silicon substrate covered by one or more silver electrodes.
  • the silver electrodes are conventionally formed from a silver paste which may comprise a glass powder SiO 2 , B 2 O 3 , PbO and ZnO, silver and a binding agent.
  • the cells can also be separated from the electrical connectors.
  • the electrical connectors composed of a copper core coated with Sn 62 Pb 36 Ag 2 , for example, and silver can be valued with the method of the invention.
  • the different metals copper, lead, tin
  • the deposit on the first negative electrode will essentially be silver. It is therefore particularly advantageous to be selective with regard to money.
  • the choice of the temperature of the heat treatment can help promote the selective dissolution of silver.
  • the substrate is not ground to carry out the process. It can, for example, be cut in the form of a plate of a few cm 2 or dm 2 .
  • the substrate has a first face and a second face.
  • the first face corresponding to the front face of the photovoltaic cell, is covered with silver.
  • the money is, for example, in the form of a grid.
  • the second face corresponds to the rear face of the photovoltaic cell.
  • the second side is covered with aluminum.
  • Aluminum forms, for example, a continuous film.
  • the first face of the substrate, covered with silver, is electrically connected to the control device. It plays the role of anode.
  • all of the silver connectors (bus, bar) on the surface of the substrate are electrically connected to the potentiostat.
  • the second face of the substrate is also electrically connected to the control device. It plays the role of cathode.
  • the control device is a source of voltage or current, like a potentiostat.
  • the potentiostat is preferably used in potentiostatic mode. It could be used in galvanostatic mode.
  • the substrate is immersed, at least partially, in the electrolytic solution, so as to bring the two faces of the substrate into contact with the electrolytic solution.
  • a potential or a current is imposed on the first positive or negative electrode, which simultaneously generates the electro-dissolution of the silver present on the first positive electrode and the cathodic protection of the aluminum present on the first negative electrode.
  • a reference electrode for example Ag / AgCl, can also be added to the assembly.
  • the potential applied to the first positive electrode to dissolve the silver in the electrolytic solution and passivate the aluminum ranges from -0.4 V to 0 V vs Ag / AgCl, for example -0.2 V vs Ag / AgCl.
  • the potential is applied for a period of 30 minutes to 3 hours, and preferably for a period of 30 minutes to 1 hour.
  • the duration will, in particular, be chosen according to the amount of silver to be valorized, the pH and the potential (or current) applied. The more acidic the electrolyte solution, the faster the dissolution.
  • the silver can be electrodeposited on another electrode (cathode), using a two-electrode assembly (a second positive electrode and a second negative electrode) or three electrodes (a second positive electrode, a second negative electrode and a reference electrode).
  • a two-electrode assembly a second positive electrode and a second negative electrode
  • three electrodes a second positive electrode, a second negative electrode and a reference electrode.
  • the potential applied to the second negative electrode goes, for example, from -0.4 V to -1 V vs Ag / AgCl. For example, choose a potential of -0.5 V.
  • the acid treatment solution can therefore be reused, possibly by adjusting its pH, which reduces the consumption of reagents.
  • the electrodes are extracted from the electrolytic solution and it is possible to carry out a new treatment cycle with a new substrate containing silver to be recovered.
  • the electrolytic solution has a pH of -1 to 6, preferably of -1 to 2, and even more preferably of 0 to 1. It comprises at least one acid, a silver complexing agent and, optionally, a sulfate salt. to improve ion transport within the solution.
  • the acid used has a pKa of between - 7 and 3. It is a Brönsted acid, that is to say an acid capable of releasing at least one proton.
  • a Brönsted acid that is to say an acid capable of releasing at least one proton.
  • sulfuric acid, nitric acid or a mixture of these acids will be used.
  • the pH of the acid solution can be controlled and, optionally, adjusted to these values, by addition of acid.
  • the complexing agent is preferably thiourea (CAS number 62-56-6).
  • the electrolytic solution is preferably devoid of any solvent other than water.
  • the acid solution is preferably devoid of an oxidizing agent such as, for example, hydrogen peroxide or also metal salts (iron or copper sulphate for example).
  • the solution may naturally contain dissolved oxygen. We will not add oxygen in addition to that naturally present in solution.
  • the naturally occurring oxygen can also be removed from the solution by bubbling with another gas, such as argon.
  • the solution has a low viscosity and good ionic conductivity.
  • the process is advantageously carried out with mechanical stirring, for example between 200 and 1000 revolutions / minute.
  • silicon cells derived from conventional photovoltaic panels, are used.
  • the photovoltaic cells are subjected to a heat treatment in order to burn the layers of EVA encapsulation. This step takes place in an air oven at 500 ° C for 1 hour. The cells are also separated from the connectors.
  • the solution is stirred, in air at 20 ° C., at 400 rpm.
  • the electrodissolution is carried out in potentiostatic mode.
  • a constant potential of -0.25 V is applied to the first positive electrode, causing the silver from the first positive electrode to dissolve and, simultaneously, the cathodic protection of the aluminum from the first negative electrode.
  • the potential is maintained for 0.8 hours ( figure 1 ) allowing to extract 9 Coulombs, that is 98% of the silver available in the silicon cell.
  • the composition of the electrolytic solution was analyzed, after electrodissolution, by inductively coupled plasma spectrometry (ICP).
  • ICP inductively coupled plasma spectrometry
  • the electrolytic solution of the selective electrodissolution was then used to deposit silver on a glassy carbon electrode.
  • a three-electrode assembly is used with, this time, a glassy carbon working electrode.
  • the potential is maintained at -0.5 V for one hour (potentiostatic mode), which reduces the silver on the electrode.
  • a deposit is visible on the glassy carbon electrode. This deposit was analyzed by SEM and Dispersive Energy X-ray (EDX) to determine its chemical composition. Observations at the MEB highlighted the presence of a deposit of silver (light areas). The presence of silver was confirmed by microanalysis by EDX. The microstructure of the deposit is of the “cauliflower” type. Some sulfur impurities are present in the silver deposit. Tin is also present at 3 atomic% in the deposit. Tin is one of the elements that make up the silver solder (Cu, Sn, Pb and Ag) of the cells. The absence of copper confirms the selectivity of the deposit
  • the semi-quantitative analysis by EDX indicates that the silver content is greater than 94% to reach a higher grade after washing the elements trapped in the silver deposit.
  • These residual impurities essentially sulfur can be removed after washing the silver deposit in water in which the deposit is insoluble.
  • This example shows that it is possible to recover silver selectively, in the presence of aluminum, by electrochemical dissolution then electrodeposition, under an uncontrolled atmosphere such as air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Claims (14)

  1. Verfahren zur selektiven Wiedergewinnung von Silber von einem elektrisch leitenden Substrat, wobei das Verfahren die folgenden aufeinanderfolgenden Schritte umfasst:
    a) Bereitstellen eines Systems, umfassend:
    ∘ ein elektrisch leitendes Substrat, umfassend eine erste Fläche, die mit Silber bedeckt ist, und eine zweite Fläche, die mit Aluminium bedeckt ist, wobei die erste Fläche eine erste positive Elektrode bildet und die zweite Fläche eine erste negative Elektrode bildet, und
    ∘ eine Steuervorrichtung, die mit der ersten positiven Elektrode und mit der ersten negativen Elektrode verbunden ist, wobei die Steuervorrichtung eine Steuerung des Potentials oder des Stroms einer Elektrode ermöglicht;
    b) Eintauchen der ersten positiven Elektrode und der ersten negativen Elektrode in eine elektrolytische Lösung, wobei die elektrolytische Lösung eine wässrige Lösung ist, umfassend wenigstens eine Säure und ein Komplexierungsmittel für Silber, wobei die elektrolytische Lösung einen pH hat, der von -1 bis 6 geht; und
    c) Anlegen eines Potentials oder eines Stroms an die erste positive Elektrode oder an die erste negative Elektrode derart, dass das Silber von der ersten positiven Elektrode in die elektrolytische Lösung aufgelöst wird, und das Aluminium von der ersten negativen Elektrode passiviert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren die folgenden weiteren Schritte umfasst:
    d) Entfernen der ersten positiven Elektrode und der ersten negativen Elektrode aus der elektrolytischen Lösung, und Lösen der Verbindung von der ersten positiven Elektrode und der ersten negativen Elektrode zur Steuervorrichtung;
    e) Eintauchen einer zweiten positiven Elektrode und einer zweiten negativen Elektrode, die mit der Steuervorrichtung verbunden sind, in die elektrolytische Lösung; und
    f) Anlegen eines Potentials oder eines Stroms an die zweite positive Elektrode oder an die zweite negative Elektrode derart, dass das Silber, das in der elektrolytischen Lösung aufgelöst ist, elektrisch auf die zweite negative Elektrode abgeschieden wird und das Komplexierungsmittel für Silber regeneriert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nach dem Schritt f) die Schritte a), b), c) mit einem anderen elektrisch leitenden Substrat wiederholt werden können.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das System ferner eine Referenzelektrode umfasst, beispielsweise Ag/AgCl.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Potential, das an die erste positive Elektrode angelegt wird, von -0,4 V bis 0 V vs Ag/AgCl geht.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Potential an die erste positive Elektrode während einer Dauer angelegt wird, die von 30 Minuten bis 3 Stunden geht, und vorzugsweise von 30 Minuten bis 1 Stunde.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die wässrige Lösung einen pH hat, der von -1 bis 2 geht, und vorzugsweise von 0 bis 1.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Säure Schwefelsäure, Salpetersäure oder eine ihrer Mischungen ist.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Konzentration des Komplexierungsmittels von 0,01 bis 1 mol/L geht, vorzugsweise von 0,05 mol/L bis 1 mol/L, und weiter bevorzugt in der Größenordnung von 0,5 mol/L ist.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Komplexierungsmittel Thioharnstoff ist.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Lösung ferner ein Sulfatsalz umfasst, vorzugsweise ausgewählt aus Na2SO4, CaSO4 und K2SO4.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Verfahren bei einer Temperatur realisiert wird, die von 15°C bis 60°C geht, und vorzugsweise in der Größenordnung von 20-25°C ist.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das elektrisch leitende Substrat aus Silizium ist.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Substrat von einer photovoltaischen Zelle stammt, wobei das Silber die Metallisierungen der Vorderfläche der photovoltaischen Zelle bildet.
EP18166892.2A 2017-04-12 2018-04-11 Verfahren zur selektiven rückgewinnung von silber in gegenwart von aluminium auf elektrochemische weise und in einer wässrigen lösung Active EP3388555B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1753194A FR3065229B1 (fr) 2017-04-12 2017-04-12 Procede de recuperation selective de l'argent en presence d'aluminium, par voie electrochimique et en solution aqueuse

Publications (2)

Publication Number Publication Date
EP3388555A1 EP3388555A1 (de) 2018-10-17
EP3388555B1 true EP3388555B1 (de) 2020-02-12

Family

ID=59031188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18166892.2A Active EP3388555B1 (de) 2017-04-12 2018-04-11 Verfahren zur selektiven rückgewinnung von silber in gegenwart von aluminium auf elektrochemische weise und in einer wässrigen lösung

Country Status (3)

Country Link
EP (1) EP3388555B1 (de)
ES (1) ES2790253T3 (de)
FR (1) FR3065229B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127760A1 (fr) * 2021-10-01 2023-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de recuperation de l’argent contenu dans les particules provenant, par exemple, de cellules photovoltaiques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616332A (en) * 1969-12-17 1971-10-26 Texas Instruments Inc Process for recovering silver from scrap materials and electrolyte composition for use therein
DE2025211A1 (en) * 1970-05-23 1971-12-02 Kraft J Selective anodic recovery of silver - from scrap by electro - -deposition from aq soln
US4606797A (en) * 1985-09-12 1986-08-19 Engelhard Corporation Method for recovery of high grade gold alloy from karat gold-clad base metal substrates
JP2017506702A (ja) * 2014-02-26 2017-03-09 グリーン リヨン グループ, インコーポレーテッドGreene Lyon Group, Inc. スクラップからの金および/または銀の回収
FR3028433B1 (fr) * 2014-11-18 2016-11-11 Commissariat Energie Atomique Procede de recuperation de metaux contenus dans un substrat en silicium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2790253T3 (es) 2020-10-27
FR3065229A1 (fr) 2018-10-19
FR3065229B1 (fr) 2019-06-14
EP3388555A1 (de) 2018-10-17

Similar Documents

Publication Publication Date Title
EP3178576B1 (de) Verfahren zum recycling von in einer photovoltaikzelle enthaltenem silber
EP3023158B1 (de) Verfahren zur rückgewinnung von silber, das in einem siliziumsubstrat enthalten ist
TWI475712B (zh) 太陽電池用晶圓的製造方法、太陽電池單元的製造方法以及太陽電池模組的製造方法
WO2017100443A1 (en) Recovery of valuable or toxic metals from silicon solar cells
FR2471424A1 (fr) Cathodes a faible surtension d'hydrogene, prodede pour leur production et cellules electrolytiques les comprenant
EP3388555B1 (de) Verfahren zur selektiven rückgewinnung von silber in gegenwart von aluminium auf elektrochemische weise und in einer wässrigen lösung
WO2014049172A2 (fr) Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaïque
FR3065230B1 (fr) Procede de recuperation de l'argent present sur un substrat, par voie electrochimique, en presence d'un liquide ionique
FR3065228B1 (fr) Procede de recuperation de l'argent present sur un substrat, par voie electrochimique et en solution aqueuse
FR3053364A1 (fr) Procede de recuperation de platine, par voie electrochimique, a partir d'un materiau dans lequel il est contenu
JP7466182B2 (ja) 電極とこの電極を用いた過酸化水素の製造方法
Kois et al. Electrochemical etching of copper indium diselenide surface
JP5724718B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
EP3555345B1 (de) Elektrolytisches verfahren zur extraktion von zinn oder gleichzeitig zinn und blei enthalten in einem elektrisch leitenden gemisch
EP4279191A1 (de) Verfahren zur rückgewinnung von indium aus einem substrat mit indiumzinnoxid und einer metallschicht
FR3133789A1 (fr) Procede de recuperation de l’indium a partir d’un subtrat comprenant de l’oxyde d’indium-etain et une couche metallique par voie de chimie verte
EP4159882A1 (de) Verfahren zur rückgewinnung von silber aus partikeln, z.b. fotovoltaikzellen
JP5724614B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
FR3099492A1 (fr) Procede de recuperation de rhodium par voie electrochimique
WO2011069500A2 (de) Verfahren zur herstellung von solarzellen und verfahren zur herstellung von solarmodulen
JP5703780B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5880055B2 (ja) 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
EP4151763A1 (de) Verfahren zur selektiven rückgewinnung von gold durch grüne chemie aus einem element, das gold und ein platinoid enthält
CN105633201B (zh) 钝化铜铟镓硒薄膜表面缺陷的电化学处理方法
EP3815762A1 (de) Verfahren zur rückgewinnung von platinoidteilchen, die in einem elektrisch isolierenden trägerelement enthalten sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 1/20 20060101AFI20190806BHEP

INTG Intention to grant announced

Effective date: 20190906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018002334

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2790253

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018002334

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1232211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 6

Ref country code: ES

Payment date: 20230517

Year of fee payment: 6

Ref country code: DE

Payment date: 20230418

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230425

Year of fee payment: 6