WO2004104110A1 - Photostabilisierte effektpigmente - Google Patents

Photostabilisierte effektpigmente Download PDF

Info

Publication number
WO2004104110A1
WO2004104110A1 PCT/EP2004/004418 EP2004004418W WO2004104110A1 WO 2004104110 A1 WO2004104110 A1 WO 2004104110A1 EP 2004004418 W EP2004004418 W EP 2004004418W WO 2004104110 A1 WO2004104110 A1 WO 2004104110A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
oxide
vanadium
photo
shaped
Prior art date
Application number
PCT/EP2004/004418
Other languages
English (en)
French (fr)
Inventor
Ulrich Schoenefeld
Padma Kaviratna
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to JP2006529713A priority Critical patent/JP2007505987A/ja
Priority to EP04729647A priority patent/EP1633819A1/de
Priority to US10/557,476 priority patent/US7455726B2/en
Publication of WO2004104110A1 publication Critical patent/WO2004104110A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/014Stabilisers against oxidation, heat, light or ozone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0006Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black containing bismuth and vanadium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • C09D5/035Coloring agents, e.g. pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/36Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/436Interference pigments, e.g. Iridescent, Pearlescent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1004Interference pigments characterized by the core material the core comprising at least one inorganic oxide, e.g. Al2O3, TiO2 or SiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1087Interference pigments characterized by the core material the core consisting of bismuth oxychloride, magnesium fluoride, nitrides, carbides, borides, lead carbonate, barium or calcium sulfate, zinc sulphide, molybdenum disulphide or graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/301Thickness of the core
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/40Interference pigments comprising an outermost surface coating
    • C09C2200/401Inorganic protective coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/40Interference pigments comprising an outermost surface coating
    • C09C2200/402Organic protective coating
    • C09C2200/407Organosilicon materials, e.g. silanes, silicones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/40Interference pigments comprising an outermost surface coating
    • C09C2200/402Organic protective coating
    • C09C2200/407Organosilicon materials, e.g. silanes, silicones
    • C09C2200/408Organosilicon materials, e.g. silanes, silicones comprising additional functional groups, e.g. –NH2, -C=C- or -SO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to photostabilized effect pigments, one or more calcined and vanadium-containing oxide layers being applied to a substrate, alone or in a mixture with sulfates, borates or phosphates, processes for their preparation and their use in plastics, paints, paints, printing inks, cosmetics , Foils, in security printing, for laser marking, in heat protection or for seed coloring.
  • Plastic parts and layers of paint for outdoor applications are often exposed to extreme weather conditions and long-lasting intense light, which leads to an aging of the materials. This manifests itself in discoloration, embrittlement and reduced mechanical and chemical stability.
  • the causes for this are oxidative or photolytic decomposition of the binders or decomposition by the action of water in liquid form or water vapor.
  • the pigments used in particular pearlescent pigments containing titanium oxide layers, can also impair the resistance of the application media to the effects of light and weather. The reason for this is the special photoactivity of titanium dioxide layers, which accelerates the photolytic decomposition of the organic components of the application medium.
  • WO 98/58017 describes a composition containing a polyolefin, an antioxidant and a pearlescent pigment which is said to show a lower tendency to yellowing.
  • the antioxidant is an essential component of the mixture, which limits the applicability in application media, since the antioxidant has to be adapted to the other application components in order to avoid destruction of these compounds in the applications.
  • DE 2 545 243 describes a method for producing a titanium dioxide pigment with increased photochemical stability by adding water-containing titanium dioxide to metal ions from the group of vanadium, copper and / or manganese and then calcining at 600 to 1100 ° C. This process is limited to pure titanium dioxide pigments, which limits the range of applications for paints, varnishes or plastics.
  • photostabilized effect pigments with improved application properties, which can be used without restriction in all common application media and applications, without showing changes in the properties of the effect pigments.
  • the photostabilized effect pigments should be easily and inexpensively accessible, which means that the effort for their production should be low.
  • This complex object is achieved according to the present invention by a photostabilized effect pigment, one on a substrate or more calcined and vanadium-containing oxide layers, applied alone or in a mixture with sulfates, borates or phosphates.
  • the effect pigments according to the invention are notable for improved photostability, are easily accessible and can be incorporated into all conceivable application media and applications. They are chemically stable and inert and, in combination with the photostability, show the usual features of effect pigments, e.g. Gloss, color strength or variety of colors.
  • the pigments according to the invention can be produced in a simple process with a wide selection of substrates, and, depending on the embodiment, the process for producing the pigments according to the invention can be integrated directly into the production process of the effect pigments. This means less expenditure on equipment and allows better control of the desired pigment properties, e.g. Shine, color or opacity.
  • the addition of further photostabilizers to formulations or applications can be reduced or even dispensed with entirely, which likewise reduces the production outlay for these formulations and applications.
  • the substrate consists of a platelet-shaped, spherical or needle-shaped carrier and / or a layer coated with one or more transparent, semi-transparent and / or opaque layers containing metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials platelet-shaped, spherical or acicular carriers.
  • Substrates based on platelet-shaped supports are particularly preferably used.
  • platelet-shaped Ti0 2 synthetic or natural mica, glass platelets, metal platelets, platelet-shaped SiO 2 , Al 2 0 3 or platelet-shaped iron oxide.
  • the metal platelets can consist of aluminum, titanium, bronze, steel or silver, preferably aluminum and / or titanium.
  • the metal platelets can be passivated by appropriate treatment. In a preferred one
  • the carrier can be coated with one or more transparent, semitransparent and / or opaque layers containing metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials.
  • Metal nitride, metal oxynitride layers or the mixtures thereof can be low (refractive index ⁇ 1.8) or high refractive index (refractive index> 1.8).
  • Suitable metal oxides and metal oxide hydrates are all metal oxides or metal oxide hydrates known to the person skilled in the art, such as, for. B. aluminum oxide, aluminum oxide hydrate, silicon oxide, silicon oxide hydrate, iron oxide, tin oxide, cerium oxide, zinc oxide, zirconium oxide, chromium oxide, titanium oxide, in particular titanium dioxide, titanium oxide hydrate and mixtures thereof, such as e.g. Ilmenite or pseudobrookite.
  • the titanium suboxides can be used as metal suboxides.
  • Suitable metals are e.g. Chromium, aluminum, nickel, silver, gold, titanium, copper or alloys, as
  • Metal fluoride is suitable, for example, magnesium fluoride.
  • the nitrides or oxynitrides of the metals titanium, zirconium and / or tantalum can be used as metal nitrides or metal oxynitrides.
  • Metal oxide, metal, metal fluoride and / or metal oxide hydrate layers are preferred and very particularly preferably metal oxide and / or
  • Metal oxide hydrate layers applied to the carrier Furthermore, multilayer structures made of high and low refractive metal oxide, metal oxide hydrate, metal or metal fluoride layers can also be present, with high and low refractive layers alternating. Layer packages consisting of a high and a low refractive index layer are particularly preferred, it being possible for one or more of these layer packages to be applied to the support.
  • the order of high and low-index layers can be adapted to the carrier in order to include the carrier in the multilayer structure.
  • the metal oxide, metal oxide hydrate, metal suboxide, metal, metal fluoride, metal nitride, metal oxynitride layers can be mixed or doped with colorants or other elements. As
  • Colorants or other elements are suitable, for example, organic or inorganic color pigments such as colored metal oxides, e.g. Magnetite, chromium oxide or color pigments such as Berlin blue, ultramarine, bismuth vanadate, thenards blue, or organic color pigments such as Indigo, azo pigments, phthalocyanines or carmine red or
  • organic or inorganic color pigments such as colored metal oxides, e.g. Magnetite, chromium oxide or color pigments such as Berlin blue, ultramarine, bismuth vanadate, thenards blue
  • organic color pigments such as Indigo, azo pigments, phthalocyanines or carmine red or
  • Elements such as Yttrium or antimony, photostabilized effect pigments containing these layers show, in addition to photostability, a wide range of colors in relation to their body color and can in many cases show an angle-dependent change in color (color flop) due to interference.
  • the outer layer on the carrier is a high-index metal oxide.
  • This outer layer can additionally be part of a layer package on the above-mentioned layer packages or in the case of high-index supports and, for example, of T1O 2 , titanium suboxides, Fe 2 0 3 , Sn0 2) ZnO, ZrO 2 , Ce 2 0 3 , CoO, Co 3 0 4 , V 2 O 5 , Cr 2 O 3 and / or mixtures thereof, such as, for example, llmenite or pseudobrookite. TiO 2 is particularly preferred.
  • the embodiment is titanium oxide or a substrate containing titanium oxide on the basis of a support coated with one or more transparent, semitransparent and / or opaque layers containing metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials.
  • the outer layer preferably contains one or more transparent, semi-transparent and / or opaque layers containing metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials coated platelet-shaped, spherical or acicular carrier titanium oxide.
  • substrates in particular are distinguished by a high photoactivity caused by the titanium oxide, which can have a disadvantageous effect on the stability of the application medium surrounding the pigment, such as, for example, the plastic.
  • substrates in particular can be photostabilized, which facilitates their applicability in numerous applications.
  • Substrates based on platelet-shaped carriers and / or a platelet-shaped carrier coated with one or more metal oxide, metal or metal fluoride layers generally have a thickness between 0.05 and 5 ⁇ m, in particular between 0.1 and 4.5 ⁇ m.
  • the extension in length or width is usually between 1 and 250 ⁇ m, preferably between 2 and 200 ⁇ m and in particular between 2 and 100 ⁇ m.
  • Substrates made of a spherical carrier and / or a spherical carrier coated with one or more metal oxide, metal or metal fluoride layers generally have average diameters of 10 nm to 100 ⁇ m, preferably between 500 nm and 50 ⁇ m and in particular between 1 and 20 ⁇ m on.
  • the thickness of the metal oxide, metal oxide hydrate, metal suboxide, metal, metal fluoride, metal nitride, metal oxynitride layers or a mixture thereof is usually 3 to 300 nm and in the case of the metal oxide, metal oxide hydrate, metal suboxide, metal fluoride, metal nitride , Metal oxynitride layers or a mixture thereof, preferably 20 to 200 nm.
  • the thickness of the metal layers is preferably 4 to 50 nm.
  • the oxides of Al, Ca, Sr, Zn, Si, Zr, Ce, Ti or mixtures thereof are suitable, preferably TiO 2 , Al 2 O. 3 , Ce O 3 , ZnO, ZrO and / or SiO 2 are used. Mixtures of the above are particularly preferred
  • Oxides are used, ZnO being a particularly suitable mixture component of the oxide layer or oxide layers. Layers of these oxides are characterized by high transparency, lack of or little inherent color and high gloss, so that the coloristic properties of the substrates are not changed. Furthermore, these materials result in anhydrous and chemically inert surfaces after calcining.
  • the oxide layer containing vanadium can be integrated into the multi-layer structure, which makes it easier to manufacture.
  • the outer layer of a multilayer pigment can contain a vanadium
  • Titanium oxide layer which in addition to increasing the photostability also influences the optical properties of the pigment, e.g. through interference.
  • the vanadium content of the vanadium-containing oxide layer is 0.002 to 0.2% by weight, calculated as V 2 O5 and based on the total pigment, preferably 0.01 to 0.1% by weight.
  • the vanadium concentration in the vanadium-containing oxide layer can increase or decrease in the form of a gradient in the direction of the surface of the vanadium-containing oxide layer.
  • the vanadium concentration in the vanadium-containing oxide layer preferably increases in the direction of the surface of the vanadium-containing oxide layer. This can further increase the photostability of the pigments, since the photoactivity of the surface of the pigment which is in contact with the application medium is reduced particularly strongly.
  • the amount of vanadium required can be reduced in this way, which is a possible change in the color and gloss properties of the pigment prevented.
  • an organic coating can additionally be applied to the calcined oxide layer containing vanadium, which additionally stabilizes the pigments according to the invention against further weather influences.
  • This enables the use of the pigments according to the invention e.g. in paints for outdoor applications that, in addition to photostability, also require high resistance to moisture.
  • the applied organic coating can also act as a coupling reagent to the surrounding medium of the formulation or application and thus the application properties such as improve dispersibility.
  • the organic coating can consist of organosilanes, aluminates, titanates and / or zirconates of the general formula
  • R alkyl, phenyl or hydrogen
  • B organic, at least bifunctional group (alkylene, alkyleneoxyalkylene)
  • the coupling reagents consist of an anchor group (X4- n -mZ) that binds to the surface, at least one hydrophobic group (R, B) and one or more functional groups (Y).
  • the anchor group preferably consists of alkoxysilanes which can be converted into corresponding hydroxyl groups by hydrolytic reaction conditions. The latter can bind to the calcined and vanadium-containing metal oxide surface and cause anchoring via oxygen bridges.
  • mixtures of different coupling reagents can be used, which can be applied as a mixture or individually.
  • the organic coating can be adapted to the medium used.
  • additional bonds between pigment and medium can be generated via the coupling reagent by reaction of the functional groups with corresponding functionalities in the application media.
  • the surface of the pigments according to the invention is modified with a combination of organic functionalities adapted to the feed medium.
  • the use of mixtures of different coupling agents within the organic coating is also suitable for this.
  • the hydrophobicity of the pigment surface can be adjusted by integrating alkyl-containing coupling reagents such as alkyl silanes.
  • organosilanes In addition to the organosilanes, the use of their hydrolysates and homogeneous and heterogeneous oligomers and / or polymers is also preferred, which can also be used as an organic coating, either alone or in combination with silanes, zirconates, aluminates, zirconium aluminates and / or carboxyzirconium aluminates.
  • An organic coating with mixtures of different coupling reagents, in particular with functional groups Y that differ from one another, is particularly preferred, which ensures a particular range of applications.
  • organosilanes are propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, n-octyltrimethoxysilane, i-octyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, dodecyltrimethoxysilanilysilane As oligomeric, alcohol-free
  • Organosilane are, among others, those sold under the trade name "Dynasylan ®" by the company. Sivento products, such. As Dynasylan HS 2926, Dynasylan HS 2909, Dynasylan HS2907, Dynasylan HS 2781, Dynasylan HS 2776, Dynasylan HS 2627. In addition, oligomeric vinylsilane and aminosilane hydrolyzate are suitable as organic coatings. Functionalized organosilanes are, for example, 3-aminopropyltrimethoxysilane, 3-
  • Ureidopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-methacryloxytrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, beta- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, gamma-isocyanatopropyltrimethoxysilane are preferred.
  • Examples of polymeric silane systems are described in WO 98/13426 and are described, for. B. from Sivento under the trademark Hydrosil ® .
  • the organic coating has a positive influence on the surface properties of the calcined oxide layers containing vanadium.
  • the surfaces coated with the organic coating are more hydrophobic and less polar than the untreated oxide surfaces and are therefore better wettable by binders and organic solvents. This results in better compatibility of the pigments according to the invention with the binder systems used in the application, in particular paints.
  • the organic coating also inhibits because of its steric shielding of the pigment surface the agglomeration of the pigment particles and thus improves their dispersibility.
  • the object of the present invention is achieved by a method for producing photo-stabilized effect pigments, with a
  • One or more hydroxide, oxide hydrate and / or oxide layers containing vanadium are applied alone or in a mixture with sulfates, phosphates and / or borates and the pigment obtained is then calcined.
  • the method according to the invention can be carried out in a one-step production process and is therefore inexpensive and simple. In the case of multilayer substrates, the method according to the invention can be directly integrated into the pigment production process.
  • Hydroxide, oxide hydrate and / or oxide layers can be carried out both wet-chemically and via sol-gel processes; the precipitation is preferably carried out wet-chemically.
  • the corresponding vanadium-containing oxides, hydroxides and / or oxide hydrates are coated.
  • the substrates are suspended in a solvent or solvent mixture, preferably water, and solutions with the metal salts suitable for the formation of hydroxide, hydrated oxide and / or oxide layers and one or more vanadium compounds are added.
  • the pH value required for the precipitation of the respective hydroxide, oxide hydrate and / or oxide is set and optimized professionally.
  • the vanadium compounds can be introduced at any time and in any form into the coating with the hydroxide, hydrated oxide and / or oxide layers, for example in solid form or as a solution of one or more vanadium compounds.
  • the vanadium compounds are preferably added in the form of a solution, this being done via the Solutions of the metal salts suitable for the formation of the hydroxide, oxide hydrate and / or oxide layers and / or by means of the auxiliary solutions required in the coating process when setting the coating parameters, such as pH value or amount of solvent.
  • the vanadium compounds are preferably added via the auxiliary solutions required for controlling the pH, the auxiliary solutions preferably being aqueous solutions of acids or bases, such as, for example, hydrochloric acid or sodium hydroxide solution.
  • the vanadium compound can be introduced into the hydroxide, oxide hydrate and / or oxide layer such that the vanadium concentration in the layer increases or decreases in the form of a gradient in the direction of the surface of the layer containing vanadium.
  • the gradient formation is controlled via the time and the speed of the vanadium addition. For example, if the vanadium concentration is to increase toward the surface, this can be done, for example, by adding the vanadium compounds in a targeted manner at the end of the application of the hydroxide, oxide hydrate and / or oxide layer to the substrate.
  • the vanadium compounds can be introduced in the auxiliary solution necessary for controlling the pH, with which the precipitation of the hydroxide, oxide hydrate and / or oxide layer is completed.
  • the desired size of the gradient can be set by controlling the speed of the addition. All other possibilities of gradient control conceivable in connection with this invention are within the knowledge of the person skilled in the art.
  • Suitable vanadium compounds are in principle all vanadium compounds of various oxidation levels that are soluble in a solvent or solvent mixture, for example vanadium (IV) or vanadium (V) compounds.
  • Vanadyl (IV) salts for example vanadyl chloride or vanadyl sulfate, vanadates or Solutions of vanadium (V) oxide, especially sodium metavanadate, are used.
  • the corresponding halides, nitrates and / or sulfates are suitable as metal salts for the formation of the hydroxide, oxide hydrate and / or oxide layers; the corresponding halides and / or nitrates are preferably used.
  • the sulfates, phosphates and / or borates can be co-precipitated together with the oxides, hydroxides and / or oxide hydrates from suitable metal salts and from corresponding sulfate, phosphate or borate sources.
  • Suitable sulfate sources are sulfuric acid and all soluble sulfates such as.
  • sodium sulfate, potassium sulfate or lithium sulfate as phosphate sources phosphoric acid or all soluble phosphates such as. B. sodium phosphate, disodium hydrogen phosphate or potassium phosphate and as borate sources all soluble borates such as. B. sodium borate or sodium diborate.
  • the amount of sulfates, phosphates and / or borates and the precipitation conditions, such as. B. pH or temperature can be optimized in a professional manner.
  • the pigments obtained in this way are then calcined.
  • the calcination can take place at temperatures of 300-900 ° C, preferably at 600-900 ° C.
  • the precipitated oxides, hydroxides and / or oxide hydrates are dewatered, converted into the corresponding oxides and compressed.
  • an organic coating can additionally be applied to the calcined oxide layer containing vanadium, which additionally stabilizes the pigments according to the invention against further weather influences.
  • Coating takes place in solution at temperatures above 60 ° C, preferably above 70 ° C.
  • solvents organic solvents, water or mixtures thereof, water is preferably used.
  • the reaction time required for applying the organic coating is at least 5 minutes, preferably over a period of 10 to 90 minutes, but can also be extended as desired.
  • the pigment obtained is worked up and isolated by methods known to those skilled in the art, e.g. B. by filtration, drying and screening.
  • the photostabilized effect pigments according to the invention are notable for good application properties.
  • the calcination dehydrates and densifies the oxide layers, which leads to a reduction in the porosity of the pigment surface. Less water can be absorbed on the compacted surface and thus the disadvantageous effects of water adsorbed in the boundary layer in the lacquer can be reduced.
  • the calcination also removes water chemically bound in the form of hydroxides or oxide hydrates. This has advantages when using the pigments in plastics, since water present in thermoplastic polymers such as in polyesters, can lead to hydrolytic decomposition of the polymer at higher temperatures.
  • the photostabilized effect pigments described here are suitable for one
  • the invention thus furthermore relates to the use of the photostabilized agents according to the invention Effect pigments for pigmenting plastics, lacquers, such as hydraulic lacquers or powder lacquers, paints, printing inks, cosmetic formulations, paper, ceramic materials, glasses, foils, in security printing, in the agricultural sector, for example in seed coloring, for laser marking of, for example, paper or plastics, in Thermal protection and for the production of pigment preparations such as pearlets, pastes and pastes as well as dry preparations such as pellets, granules, chips etc, which are preferably used in printing inks and varnishes.
  • the toxicity of the materials used plays a role, e.g. in cosmetic
  • vanadium (IV) compounds for producing the vanadium-containing oxide layers is preferred.
  • the pigments according to the invention can be used in a large number of the known binders used in color systems and can be used both in aqueous and in solvent-based systems.
  • the pigments can be incorporated into the respective application media by all methods known to the person skilled in the art.
  • the effect pigments according to the invention are particularly suitable for products and formulations of decorative cosmetics, such as, for example, nail polishes, coloring powders, lipsticks or eyeshadows, soaps, toothpastes, etc.
  • decorative cosmetics such as, for example, nail polishes, coloring powders, lipsticks or eyeshadows, soaps, toothpastes, etc.
  • the pigments according to the invention can also be used in the formulations with any type of cosmetic raw and auxiliary materials can be combined. These include oils, fats, waxes, film formers, preservatives and auxiliary substances that determine general application properties, such as thickeners and rheological additives such as bentonites, hectorites, silicon dioxide, calcium silicates, gelatin, high-molecular carbohydrates and / or surface-active additives, etc.
  • Formulations containing pigments according to the invention can be of the lipophilic, hydrophilic or hydrophobic type.
  • the pigments according to the invention can each contain only one of the two phases or can be distributed over both phases.
  • the pH values of the aqueous formulations can be between 1 and 14, preferably between 2 and 11 and particularly preferably between 5 and 8. There are no limits to the concentrations of the pigments according to the invention in the formulation. Depending on the application, they can be between 0.001 (rinse-off products, e.g. shower gels) - 100% (e.g. gloss effect articles for special applications when using effect pigments as a substrate).
  • the pigments according to the invention can also be combined with cosmetic active ingredients. Suitable active ingredients are e.g. Insect repellents, UV A / BC protective filters (e.g. OMC, B3, MBC), anti-aging ingredients, vitamins and their derivatives (e.g.
  • vitamins A, C, E etc. vitamins A, C, E etc.
  • self-tanners e.g. DHA, erytrolosis etc.
  • others cosmetic active ingredients such as Bisaboloi, LPO, ectoin, emblica, allantoin, bioflavanoids and their derivatives.
  • the effect pigments according to the invention are particularly suitable for use in plastics, for example in agricultural foils, infrared-reflecting foils and disks, gift foils, plastic containers and moldings, for all applications known to the person skilled in the art, since the photostability of the effect pigments according to the invention, in particular in plastics, in order to extend the shelf life of them Leads products.
  • All common plastics are suitable as plastics for incorporating the effect pigments according to the invention, for example duromers or thermoplastic plastics.
  • the description of the possible uses and the plastics, processing methods and additives that can be used can be found, for example, in RD 472005 or in R. Glausch, M. Kieser, R. Maisch, G. Pfaff, J.
  • binders in particular water-soluble types, are suitable for the production of the printing inks, e.g. based on acrylates, methacrylates, polyesters, polyurethanes, nitrocellulose, ethyl cellulose, polyamide, polyvinyl butyrate, phenolic resins, maleic resins, starch or polyvinyl alcohol.
  • the lacquers can be water- or solvent-based lacquers, the selection of the lacquer components being subject to the general knowledge of the person skilled in the art.
  • the pigments of the invention are preferably used in paints such as in car paints or water-based paints that are suitable for all indoor and outdoor applications due to the special stability of the pigments.
  • Powder coating formulations allow the effect pigments according to the invention to be easily incorporated even without further organic coating and, in these applications, have a bright, metallic luster with a pronounced sparkle or glitter effect.
  • the so-called superdurable powder coatings When used in outdoor applications, the occurrence of chalking and graying is greatly delayed or largely avoided with highly weather-stable formulations, the so-called superdurable powder coatings.
  • silane-based weather stabilizations known from the prior art, there are often incompatibilities with the powder coating matrix, in particular in the area of so-called dry blending, which is often expressed in strong pigment associations in the baked powder coating layer. This disorder is in the invention
  • plastics, lacquers, paints, printing inks, cosmetic formulations, paper, ceramic materials, glasses, foils, seeds, pigment preparations and dry preparations containing one or more of the photostabilized effect pigments according to the invention are also an object of the present invention.
  • the pigment samples were worked into a plastic matrix and the extent of the reduction from Pb 2+ to Pb was determined visually.
  • the gray color is assessed according to ISO 105-Part A 02 (corresponds to DIN 54 001).
  • the test scale ranges from 5 (very good) to 1 (very bad).
  • the pigment is washed off from the supernatant by filtration. After drying at 120 ° C, the pigment is calcined at 800 ° C for 45 min and the effect pigment obtained is freed from coarse fractions by sieving (mesh size 63 ⁇ m) with blue interference color.
  • Example 1 The vanadium-containing pigment is produced as in
  • Example 2 The base pigment suspension is prepared as in
  • Comparative Example 1 described. The pH is then adjusted to 6.5 with sodium hydroxide solution. A solution of 3.35 g of zinc chloride in 60 ml of water is added within one hour, the pH being kept constant with 5% sodium hydroxide solution in which 53 mg of sodium vanadate has been dissolved. The pigment is worked up as described in Comparative Example 1. The pigment therefore contains 2% zinc oxide and 0.025%
  • Vanadium oxide based on the total weight.
  • the pigment suspension is generally prepared as described in Comparative Example 1. Following the assignment, the pH of the suspension is adjusted to 5.0 with sodium hydroxide solution. A solution of 9.5 g of aluminum chloride * 6 H 2 O in 100 ml of water is added over the course of an hour, the pH being kept constant with 5% sodium hydroxide solution in which 100 mg of vanadium (V) oxide has been dissolved.
  • the pigment is worked up as described in Comparative Example 1. The pigment therefore contains 2% aluminum oxide and 0.1% vanadium oxide, based on the total weight. The body color of the pigment is yellowish. The photoactivity of this pigment is rated 3-4.
  • the pigment suspension is generally prepared as described in Comparative Example 1. During the first 75% of the occupancy, the pH is kept constant with 32% sodium hydroxide solution. 64 mg of sodium vanadate are dissolved in the sodium hydroxide solution, which is used for the remaining coating. The pigment is worked up as described in Comparative Example 1.
  • the pigment therefore contains a calculated 0.025% vanadium oxide based on the total weight. Due to the manufacturing conditions, the doping takes place in the form of a gradient and primarily in the outer TiO 2 layer.
  • the photoactivity of this pigment is rated 3-4.
  • Example 6 The vanadium-containing pigment is produced as in
  • Vanadyl (IV) sulfate can be dissolved.
  • the pigment therefore contains a doping of 0.03% vanadium (calculated as V 2 O 5 ) based on the total weight.
  • the photoactivity of this pigment is rated 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Cosmetics (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

Die vorliegende Erfindung betriffi photostabilisierte Effektpigmente, wobei auf einem Substrat eine oder mehrere kalzinierte und Vanadium enthaltende Oxidschichten, allein oder in Mischung mit Sulfaten, Boraten oder Phosphaten aufgebracht sind, Verfahren zu ihrer Herstellung sowie deren Verwendung in Kunststoffen, Lacken, Farben, Druckfarben, Kosmetika, Folien, im Sicherheitsdruck, zur Lasermarkierung, im Mrmeschutz oder zur Saatguteinfärbung.

Description

Photostabilisierte Effektpigmente
Die vorliegende Erfindung betrifft photostabilisierte Effektpigmente, wobei auf einem Substrat eine oder mehrere kalzinierte und Vanadium enthaltende Oxidschichten, allein oder in Mischung mit Sulfaten, Boraten oder Phosphaten aufgebracht sind, Verfahren zu ihrer Herstellung sowie deren Verwendung in Kunststoffen, Lacken, Farben, Druckfarben, Kosmetika, Folien, im Sicherheitsdruck, zur Lasermarkierung, im Wärmeschutz oder zur Saatguteinfärbung.
Kunststoffteile und Lackschichten für Außenanwendungen sind oft über längere Zeit extremen Witterungsverhältnissen und langanhaltender intensiver Lichteinwirkung ausgesetzt, was zu einer Alterung der Materialien führt. Dies äußert sich in Verfärbungen, Versprödung sowie verminderter mechanischer und chemischer Stabilität. Ursachen hierfür sind oxidative oder photolytische Zersetzungen der Bindemittel oder Zersetzungen durch die Einwirkung von Wasser in flüssiger Form oder Wasserdampf. Darüber hinaus können auch die eingesetzten Pigmente, insbesondere Perlglanzpigmente enthaltend Titanoxidschichten, die Beständigkeit der Applikationsmedien gegenüber Licht- und Witterungseinflüssen verschlechtern. Der Grund dafür liegt in der besonderen Photoaktivität von Titandioxidschichten, die die photolytische Zersetzung der organischen Bestandteile des Applikationsmediums beschleunigt.
Um diese Alterungsprozesse zu hemmen, werden Formulierungen für Außenanwendungen Stabilisatoren, z.B. UV-Licht absorbierende Stoffe, zugesetzt. Weiterhin können die Pigmente mit zusätzlichen anorganischen Schichten versehen werden. So beschreibt die WO 98/58017 eine Zusammensetzung enthaltend ein Polyolefin, ein Antioxidans und ein Perlglanzpigment, die eine geringere Tendenz zum Vergilben zeigen soll. Hierbei ist das Antioxidans ein wesentlicher Bestandteil der Mischung, was die Anwendbarkeit in Applikationsmedien einschränkt, da das Antioxidans an die übrigen Applikationsbestandteile angepasst werden muss, um eine Zerstörung dieser Verbindungen in den Anwendungen zu vermeiden.
Die Erhöhung der Photostabilität von Titandioxid-Pigmenten durch Zusatz von Dotierungsmitteln ist lange bekannt. So beschreibt die DE 2407429 die Auffällung von Vanadinverbindungen auf Titandioxidpigmentsuspensionen, wobei das Pigment auf keinen Fall kalziniert werden darf, um die Bildung farbiger Verbindungen oder ein Nachdunkeln des Pigmentes zu vermeiden. Unkalzinierte Pigmente zeichnen sich aber durch eine geringere Stabilität aus, was besonders in Anwendungen mit langer Lebensdauer, wie z.B. Lacken oder Kunststoffen, von Nachteil ist.
Aus der DE 2 545 243 ist ein Verfahren zur Herstellung eines Titandioxid- Pigmentes mit erhöhter photochemischer Stabilität durch Versetzen von wasserhaltigem Titandioxid mit Metallionen aus der Gruppe von Vanadium, Kupfer und/oder Mangan und anschließendes Kalzinieren bei 600 bis 1100°C. Dieses Verfahren ist auf reine Titandioxid-Pigmente beschränkt, was die Anwendungsbreite für Farben, Lacke oder Kunststoffe einschränkt.
Es bestand daher die Aufgabe, photostabilisierte Effektpigmente mit verbesserten anwendungstechnischen Eigenschaften bereitzustellen, die ohne Einschränkung in allen gängigen Applikationsmedien und Anwendungen eingesetzt werden können, ohne dabei Veränderungen der Eigenschaften der Effektpigmente zu zeigen. Darüber hinaus sollen die photostabilisierten Effektpigmente leicht und kostengünstig zugänglich sein, das heißt, der Aufwand zu deren Herstellung soll gering sein.
Diese komplexe Aufgabe wird gemäß der vorliegenden Erfindung gelöst durch ein photostabilisiertes Effektpigment, wobei auf einem Substrat eine oder mehrere kalzinierte und Vanadium enthaltende Oxidschichten, allein oder in Mischung mit Sulfaten, Boraten oder Phosphaten aufgebracht sind.
Die erfindungsgemäßen Effektpigmente zeichnen sich durch eine verbesserte Photostabilität aus, sind leicht zugänglich und können in alle denkbaren Applikationsmedien und Anwendungen eingearbeitet werden. Sie sind chemisch stabil und inert und zeigen in Kombination mit der Photostabilität die bei Effektpigmenten üblichen Merkmale, wie z.B. Glanz, Farbstärke oder Farbenvielfalt. Darüber hinaus lassen sich die erfindungsgemäßen Pigmente in einem einfachen Verfahren mit einer breiten Auswahl an Substraten herstellen, wobei, je nach Ausführungsform, das Verfahren zur Herstellung der erfindungsgemäßen Pigmente direkt in den Herstellungsprozess der Effektpigmente integriert werden kann. Dies bedeutet einen geringeren apparativen Aufwand und erlaubt eine bessere Kontrolle der gewünschten Pigmenteigenschaften, wie z.B. Glanz, Farbe oder Deckkraft. Durch den Einsatz der erfindungsgemäßen Pigmente kann der Zusatz weiterer Photostabilisatoren zu Formulierungen oder Anwendungen reduziert werden oder sogar ganz darauf verzichtet werden, was den Herstellungsaufwand dieser Formulierungen und Anwendungen ebenfalls reduziert.
Die erfindungsgemäßen Effektpigmente basieren auf Substraten, wobei diese jede regelmäßige oder unregelmäßige Form aufweisen können. In einer bevorzugten Ausführungsform besteht das Substrat aus einem plättchenförmigen, sphärischen oder nadeiförmigen Träger und/oder einem mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichteten plättchenförmigen, sphärischen oder nadeiförmigen Träger. Insbesondere bevorzugt eingesetzt werden Substrate auf der Basis plättchenförmiger Träger. Beispielsweise eignen sich plättchenförmiges Ti02, synthetischer oder natürlicher Glimmer, Glasplättchen, Metallplättchen, plättchenförmiges SiO2, Al203 oder plättchenförmiges Eisenoxid. Die Metallplättchen können unter anderem aus Aluminium, Titan, Bronze, Stahl oder Silber bestehen, vorzugsweise Aluminium und/oder Titan. Die Metallplättchen können dabei durch entsprechende Behandlung passiviert sein. In einer bevorzugten
Ausführungsform kann der Träger mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet sein. Die Metalloxid-, Metalloxidhydrat-, Metallsuboxid-, Metall-, Metallfluorid-,
Metallnitrid-, Metalloxynitridschichten oder die Mischungen hieraus können niedrig- (Brechzahl < 1.8) oder hochbrechend (Brechzahl > 1.8) sein. Als Metalloxide und Metalloxidhydrate eignen sich alle dem Fachmann bekannten Metalloxide oder Metalloxidhydrate, wie z. B. Aluminiumoxid, Aluminiumoxidhydrat, Siliziumoxid, Siliziumoxidhydrat, Eisenoxid, Zinnoxid, Ceroxid, Zinkoxid, Zirkoniumoxid, Chromoxid, Titanoxid, insbesondere Titandioxid, Titanoxidhydrat sowie Mischungen hieraus, wie z.B. Ilmenit oder Pseudobrookit. Als Metallsuboxide können beispielsweise die Titansuboxide eingesetzt werden. Als Metalle eignen sich z.B. Chrom, Aluminium, Nickel, Silber, Gold, Titan, Kupfer oder Legierungen, als
Metallfluorid eignet sich beispielsweise Magnesiumfluorid. Als Metallnitride oder Metalloxynitride können beispielsweise die Nitride oder Oxynitride der Metalle Titan, Zirkonium und/oder Tantal eingesetzt werden. Bevorzugt werden Metalloxid-, Metall-, Metallfluorid und/oder Metalloxidhydrat- schichten und ganz besonders bevorzugt Metalloxid- und/oder
Metalloxidhydratschichten auf den Träger aufgebracht. Weiterhin können auch Mehrschichtaufbauten aus hoch- und niedrigbrechenden Metalloxid-, Metalloxidhydrat-, Metall- oder Metallfluoridschichten vorliegen, wobei sich vorzugsweise hoch- und niedrigbrechende Schichten abwechseln. Insbesondere bevorzugt sind Schichtpakete aus einer hoch- und einer niedrigbrechenden Schicht, wobei auf dem Träger eine oder mehrere dieser Schichtpakete aufgebracht sein können. Die Reihenfolge der hoch- und niedrigbrechenden Schichten kann dabei an den Träger angepasst werden, um den Träger in den Mehrschichtaufbau mit einzubeziehen. In einer weiteren Ausführungsform können die Metalloxid-, Metalloxidhydrat-, Metallsuboxid-, Metall-, Metallfluorid-, Metallnitrid-, Metalloxynitridschichten mit Farbmitteln oder anderen Elementen versetzt oder dotiert sein. Als
Farbmittel oder andere Elemente eignen sich beispielsweise organische oder anorganische Farbpigmente wie farbige Metalloxide, z.B. Magnetit, Chromoxid oder Farbpigmente wie z.B. Berliner Blau, Ultramarin, Bismutvanadat, Thenards Blau, oder aber organische Farbpigmente wie z.B. Indigo, Azopigmente, Phthalocyanine oder auch Karminrot oder
Elemente wie z.B. Yttrium oder Antimon, Photostabilisierte Effektpigmente enthaltend diese Schichten zeigen neben der Photostabilität eine,hohe Farbenvielfalt in bezug auf ihre Körperfarbe und können in vielen Fällen eine winkelabhängige Änderung der Farbe (Farbflop) durch Interferenz zeigen.
Die äußere Schicht auf dem Träger ist in einer bevorzugten Ausführungsform ein hochbrechendes Metalloxid. Diese äußere Schicht kann zusätzlich auf den oben genannten Schichtpaketen oder bei hochbrechenden Trägern Teil eines Schichtpaketes sein und z.B. aus T1O2, Titansuboxiden, Fe203, Sn02) ZnO, ZrO2, Ce203, CoO, Co304, V2O5, Cr2O3 und/oder Mischungen davon, wie zum Beispiel llmenit oder Pseudobrookit, bestehen. Tiθ2 ist besonders bevorzugt.
In einer in der vorliegenden Erfindung besonders bevorzugten
Ausführungsform ist das Substrat Titanoxid oder ein Titanoxid enthaltendes Substrat auf der Basis eines mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichteten Trägers. Vorzugsweise enthält die äußere Schicht des mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichteten plättchenförmigen, sphärischen oder nadeiförmigen Trägers Titanoxid. Insbesondere diese Substrate zeichnen sich durch eine durch das Titanoxid bedingte hohe Photoaktivität aus, die sich nachteilig auf die Stabilität im Pigment umgebenden Applikationsmedium, wie z.B. den Kunststoff, auswirken kann. Gemäß der vorliegenden Erfindung können insbesondere solche Substrate photostabilisiert werden, was ihre Anwendbarkeit in zahlreichen Anwendungen erleichtert.
Die Größe der Substrate ist an sich nicht kritisch und abhängig von der Form der Substrate und vom jeweiligen Anwendungsbereich. Substrate auf der Basis plättchenförmigen Träger und/oder einem mit einer oder mehreren Metalloxid-, Metall- oder Metallfluoridschichten beschichteten plättchenförmigen Träger weisen in der Regel eine Dicke zwischen 0.05 und 5 μm, insbesondere zwischen 0.1 und 4.5 μm auf. Die Ausdehnung in der Länge bzw. Breite beträgt üblicherweise zwischen 1 und 250 μm, vorzugsweise zwischen 2 und 200 μm und insbesondere zwischen 2 und 100 μm. Substrate aus einem sphärischen Träger und/oder einem mit einer oder mehreren Metalloxid-, Metall- oder Metallfluoridschichten beschichteten sphärischen Träger weisen in der Regel durchschnittliche Durchmesser von 10 nm bis 100 μm, vorzugsweise zwischen 500 nm und 50 μm und insbesondere zwischen 1 und 20 μm auf.
Die Dicke der Metalloxid-, Metalloxidhydrat-, Metallsuboxid-, Metall-, Metallfluorid-, Metallnitrid-, Metalloxynitridschichten oder einer Mischung daraus beträgt üblicherweise 3 bis 300 nm und im Falle der Metalloxid-, Metalloxidhydrat-, Metallsuboxid-, Metallfluorid-, Metallnitrid-, Metalloxynitridschichten oder einer Mischung daraus vorzugsweise 20 bis 200 nm. Die Dicke der Metallschichten beträgt vorzugsweise 4 bis 50 nm. Für die kalzinierte und Vanadium enthaltende Oxidschicht bzw. Oxidschichten, die auf das Substrat aufgebracht werden, eignen sich die Oxide von AI, Ca, Sr, Zn, Si, Zr, Ce, Ti oder Mischungen hieraus, vorzugsweise werden TiO2, AI2O3, Ce O3, ZnO, ZrO und/oder SiO2 eingesetzt. Besonders bevorzugt werden Mischungen der oben genannten
Oxide verwendet, wobei ZnO ein besonders geeigneter Mischungsbestandteil der Oxidschicht bzw. Oxidschichten ist. Schichten dieser Oxide zeichnen sich durch hohe Transparenz, fehlende oder geringe Eigenfarbe und hohen Glanz aus, so dass die coloristischen Eigenschaften der Substrate nicht verändert werden. Weiterhin ergeben diese Materialien nach dem Kalzinieren wasserfreie und chemisch inerte Oberflächen. Die Vanadium enthaltende Oxidschicht kann im Falle der mehrfach beschichteten Träger in den mehrschichtigen Aufbau mit integriert sein, was die Herstellbarkeit erleichtert. So kann beispielsweise die äußere Schicht eines mehrschichtigen Pigmentes eine Vanadium enthaltende
Titanoxidschicht sein, die neben der Erhöhung der Photostabilität auch die optischen Eigenschaften des Pigmentes mit beeinflusst, z.B. durch Interferenz.
Der Vanadiumgehalt der Vanadium enthaltenden Oxidschicht beträgt 0.002 bis 0.2 Gew.-%, berechnet als V2O5 und bezogen auf das Gesamtpigment, vorzugsweise 0.01 bis 0.1 Gew.-%. Dabei kann die Vanadiumkonzentration in der Vanadium enthaltenden Oxidschicht in Form eines Gradienten in Richtung der Oberfläche der Vanadium enthaltenden Oxidschicht hin zu- oder abnehmen. Vorzugsweise nimmt die Vanadiumkonzentration in der Vanadium enthaltenden Oxidschicht in Richtung der Oberfläche der Vanadium enthaltenden Oxidschicht hin zu. Dadurch kann die Photostabilität der Pigmente weiter gesteigert werden, da die Photoaktivität der mit dem Applikationsmedium in Kontakt stehenden Oberfläche des Pigmentes besonders stark reduziert wird. Darüber hinaus kann die benötigte Vanadiummenge auf diese Weise reduziert werden, was eine mögliche Veränderung der Färb- und Glanzeigenschaften des Pigmentes verhindert.
In einer weiteren Ausführungsform kann zusätzlich auf der kalzinierten Vanadium enthaltenden Oxidschicht eine organische Beschichtung aufgebracht werden, die die erfindungsgemäßen Pigmente zusätzlich gegen weitere Witterungseinflüsse stabilisiert. Dies ermöglicht den Einsatz der erfindungsgemäßen Pigmente z.B. in Lacken für Außenanwendungen, die neben der Photostabilität auch eine hohe Beständigkeit gegen Feuchtigkeit erfordern. Die aufgebrachte organische Beschichtung kann weiterhin als Kupplungsreagenz zum umgebenden Medium der Formulierung oder Anwendung agieren und damit die anwendungstechnischen Eigenschaften wie z.B. die Dispergierbarkeit verbessern.
Die organische Beschichtung kann aus Organosilanen, -aluminaten, -titanaten und/oder -zirkonaten der allgemeinen Formel
X4-n-mZ-Rn(-B-Y)m
mit X = OH, Halogen, Alkoxy, Aryloxy Z = Si, AI, Ti, Zr
R = Alkyl, Phenyl oder Wasserstoff B = organische, zumindest bifunktionelle Gruppe (Alkylen, Alkylenoxyalkylen)
Y = Alkyl-, Amino-, substituierte Amino-, Hydroxy-, Hydroxyalkyl-, Siloxan-, Acetoxy, Isocyanat-, Vinyl-, Acryloyl-, Epoxy-, Epoxypropyloxy-, Imidazol- oder Ureidogruppe n, m = 0,1 ,2,3 mit n+m < 3 bestehen.
Die Kupplungsreagenzien bestehen aus einer Ankergruppe (X4-n-mZ), die an die Oberfläche bindet, wenigstens einer hydrophoben Gruppe (R,B) sowie einer oder mehrerer funktioneller Gruppe (Y). Vorzugsweise handelt es sich bei den Kupplungsreagenzien um Verbindungen mit Z = Si. Bevorzugt besteht die Ankergruppe aus Alkoxysilanen, die durch hydrolytische Reaktionsbedingungen in entsprechende Hydroxygruppen überführt werden können. Letztere können an die kalzinierte und Vanadium-haltige Metalloxidoberfläche binden und die Verankerung über Sauerstoff brücken bewirken. Darüber hinaus können auch Mischungen verschiedener Kupplungsreagenzien eingesetzt werden, die als Mischung oder einzeln aufgebracht werden können.
Durch die Wahl geeigneter funktioneller Gruppen kann die organische Beschichtung dem Einsatzmedium angepasst werden. Darüber hinaus können durch Reaktion der funktioneilen Gruppen mit entsprechenden Funktionalitäten in den Applikationsmedien zusätzliche Bindungen zwischen Pigment und Medium über das Kupplungsreagenz erzeugt werden. In einer besonderen Ausführungsform wird die Oberfläche der erfindungsgemäßen Pigmente mit einer dem Einsatzmedium angepassten Kombination von organischen Funktionalitäten modifiziert. Hierzu eignet sich auch der Einsatz von Mischungen verschiedener Kupplungsreägenzien innerhalb der organischen Beschichtung. Die Hydrophobie der Pigmentoberfläche kann durch Integration von alkylhaltigen Kupplungsreagenzien wie z.B. Alkylsilanen angepasst werden. Neben den Organosilanen ist auch der Einsatz ihrer Hydrolysate sowie homogener und heterogener Oligomere und/oder Polymere bevorzugt, die ebenfalls alleinig oder in Kombination mit Silanen, Zirkonaten, Aluminaten, Zirkonaluminaten und/oder Carboxyzirkonaluminaten als organische Beschichtung eingesetzt werden können. Im besonderen bevorzugt ist eine organische Beschichtung mit Mischungen verschiedener Kupplungsreagenzien, insbesondere mit voneinander unterschiedlichen funktioneilen Gruppen Y, die eine besondere Anwendungsbreite gewährleistet. Beispiele für Organosilane sind Propyltrimethoxysilan, Propyltriethoxysilan, Isobutyltrimethoxysilan, n-Octyltrimethoxysilan, i-Octyltrimethoxysilan, n- Octyltriethoxysilan, n-Decyltrimethoxysilan, Dodecyltrimethoxysilan, Hexadecyltrimethoxysilan, Vinyltrimethoxysilan, vorzugsweise n- Octyltrimethoxysiian und n-Octyltriethoxysilan. Als oligomere, alkoholfreie
Organosilanhydrolysate eignen sich unter anderem die unter dem Handelsnamen „Dynasylan®" von der Fa. Sivento vertriebenen Produkte, wie z. B. Dynasylan HS 2926, Dynasylan HS 2909, Dynasylan HS2907, Dynasylan HS 2781, Dynasylan HS 2776, Dynasylan HS 2627. Darüber hinaus eignet sich oligomeres Vinylsilan als auch Aminosilanhydroiysat als organische Beschichtung. Funktionalisierte Organosilane sind beispielsweise 3-Aminopropyltrimethoxysilan, 3-
Methacryloxytrimethoxysilan, 3-Glycidyloxypropyltrimethoxysilan, beta-(3,4- Epoxycyc!ohexyl)-ethyltrimethoxysilan, gamma-lsocyanatopropyltri- methoxysilan, 1 ,3-bis(3-glycidoxypropyl)-1 ,1 ,3,3,-tetramethyldisiloxan,
Ureidopropyltriethoxysilan, bevorzugt sind 3-AminopropyItrimethoxysilan, 3- Methacryloxytrimethoxysilan, 3-Glycidyloxypropyltrimethoxysilan, beta-(3,4- Epoxycyclohexyl)-ethyltrimethoxysilan, gamma-lsocyanatopropyltri- methoxysilan. Beispiele für polymere Silansysteme sind in WO 98/13426 beschrieben und werden z. B. von der Fa. Sivento unter dem Warenzeichen Hydrosil® vertrieben.
Durch die organische Beschichtung werden die Oberflächeneigenschaften der kalzinierten Vanadium enthaltenden Oxidschichten positiv beeinflusst. Die mit der organischen Beschichtung nächbeschichteten Oberflächen sind hydrophober und weniger polar als die unbehandelten Oxidoberflächen und sind damit von Bindemitteln und organischen Lösungsmitteln besser benetzbar. Daraus resultiert eine bessere Verträglichkeit der erfindungsgemäßen Pigmente mit den bei der Anwendung verwendeten Bindemittelsystemen, insbesondere Lacken. Femer hemmt die organische Beschichtung wegen ihrer sterischen Abschirmung der Pigmentoberfläche die Agglomeration der Pigmentpartikel und verbessert so deren Dispergierbarkeit.
Weiterhin wird die Aufgabe der vorliegenden Erfindung gelöst durch ein Verfahren zur Herstellung photostabilisierter Effektpigmente, wobei auf ein
Substrat eine oder mehrere Vanadium enthaltende Hydroxid-, Oxidhydrat- und/oder Oxidschichten allein oder in Mischung mit Sulfaten, Phosphaten und/oder Boraten aufgebracht werden und das erhaltene Pigment anschließend kalziniert wird. Das erfindungsgemäße Verfahren kann in einem einstufigen Produktionsprozess durchgeführt werden und ist damit kostengünstig und einfach. Im Falle von mehrschichtigen Substraten kann das erfindungsgemäße Verfahren direkt in den Produktionsprozess des Pigmentes mit eingebunden werden.
Die Beschichtung mit einer oder mehreren Vanadium enthaltenden
Hydroxid-, Oxidhydrat- und/oder Oxidschichten kann sowohl nasschemisch als auch über Sol-Gel-Verfahren erfolgen, vorzugsweise erfolgt die Auffällung nasschemisch. Bei nasschemischer Aufbringung erfolgt eine Beschichtung mit den entsprechenden Vanadium enthaltenden Oxiden, Hydroxiden und/oder Oxidhydraten. Dazu werden die Substrate in einem Lösungsmittel oder Lösungsmittelgemisch, vorzugsweise Wasser, suspendiert und mit Lösungen der für die Bildung von Hydroxid-, Oxidhydrat- und/oder Oxidschichten geeigneter Metallsalze und einer oder mehreren Vanadiumverbindungen versetzt. Der für die Fällung des jeweiligen Hydroxides, Oxidhydrates und/oder Oxides erforderliche pH- Wert wird fachmännisch eingestellt und optimiert.
Die Vanadiumverbindungen können zu jedem Zeitpunkt und in jeder Form in die Beschichtung mit den Hydroxid-, Oxidhydrat- und/oder Oxidschichten eingebracht werden, wie z.B. in fester Form oder als Lösung einer oder mehrerer Vanadiumverbindungen. Vorzugsweise erfolgt die Zugabe der Vanadiumverbindungen in Form einer Lösung, wobei dies über die Lösungen der für die Bildung der Hydroxid-, Oxidhydrat- und/oder Oxidschichten geeigneten Metailsalze und/oder über die im Beschichtungsprozess bei der Einstellung der Beschichtungsparameter, wie z.B. pH-Wert oder Lösungsmittelmenge nötigen Hilfslösungen erfolgen kann. Vorzugsweise erfolgt die Zugabe der Vanadiumverbindungen über die für die Steuerung des pH-Wertes nötigen Hilfslösungen, wobei es sich bei den Hilfslösungen vorzugsweise um wässrige Lösungen von Säuren oder Basen handelt, wie z.B. Salzsäure oder Natronlauge. Die Vanadiumverbindung kann in einer weiteren Ausführungsform derart in die Hydroxid-, Oxidhydrat- und/oder Oxidschicht eingebracht werden, dass die Vanadiumkonzentration in der Schicht in Form eines Gradienten in Richtung der Oberfläche der Vanadium enthaltenden Schicht hin zu- oder abnimmt. Die Steuerung der Gradientenausbildung erfolgt über den Zeitpunkt und die Geschwindigkeit der Vanadiumzugabe. Soll beispielsweise die Vanadiumkonzentration in Richtung der Oberfläche hin zunehmen, so kann dies z.B. durch gezielte Zugabe der Vanadiumverbindungen am Ende der Aufbringung der Hydroxid-, Oxidhydrat- und/oder Oxidschicht auf das Substrat erfolgen. Die Vanadiumverbindungen können dabei in der für die Steuerung des pH- Wertes nötigen Hilfslösung eingebracht werden, mit der die Fällung der Hydroxid-, Oxidhydrat und/oder Oxidschicht vervollständigt wird. Über die Steuerung der Geschwindigkeit der Zugabe kann die gewünschte Größe des Gradienten eingestellt werden. Alle anderen im Zusammenhang mit dieser Erfindung denkbaren Möglichkeiten der Gradientensteuerung liegen im Bereich des Wissens des Fachmanns.
Als Vanadiumverbindungen eignen sich grundsätzlich alle in einem Lösungsmittel oder Lösungsmittelgemisch löslichen Vanadiumverbindungen verschiedener Oxidationsstufen, z.B. Vanadium(IV)- oder Vanadium(V)-Verbindungen. Vorzugsweise werden, Vanadyl(IV)-Salze, z.B. Vanadylchlorid oder Vanadylsulfat, Vanadate oder Lösungen von Vanadium(V)-oxid, insbesondere Natrium-metavanadat, eingesetzt.
Als Metallsalze für die Bildung der Hydroxid-, Oxidhydrat- und/oder Oxidschichten eignen sich die entsprechenden Halogenide, Nitrate und/oder Sulfate, vorzugsweise werden die entsprechenden Halogenide und/oder Nitrate eingesetzt. Die Sulfate, Phosphate und/oder Borate können zusammen mit den Oxiden, Hydroxiden und/oder Oxidhydraten aus geeigneten Metallsalzen sowie aus entsprechenden Sulfat-, Phosphat oder Boratquellen mit aufgefällt werden. Als Sulfatquellen eignen sich Schwefelsäure und alle löslichen Sulfate wie z. B. Natriumsulfat, Kaliumsulfat oder Lithiumsulfat, als Phosphatquellen Phosphorsäure oder alle löslichen Phosphate wie z. B. Natriumphosphat, Dinatriumhydrogenphosphat oder Kaliumphosphat und als Boratquellen alle löslichen Borate wie z. B. Natriumborat oder Natriumdiborat. Die Menge der Sulfate, Phosphate und/oder Borate sowie die Fällungsbedingungen, wie z. B. pH-Wert oder Temperatur können in fachmännischer Weise optimiert werden.
Die auf diese Weise erhaltenen Pigmente werden anschließend kalziniert. Die Kalzinierung kann bei Temperaturen von 300-900°C, vorzugsweise bei 600-900°C erfolgen. Durch die Kalzinierung werden die aufgefällten Oxide, Hydroxide und/oder Oxidhydrate entwässert, in die entsprechenden Oxide überführt und verdichtet.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens kann zusätzlich auf der kalzinierten Vanadium enthaltenden Oxidschicht eine organische Beschichtung aufgebracht werden, die die erfindungsgemäßen Pigmente zusätzlich gegen weitere Witterungseinflüsse stabilisiert. Die Aufbringung der organischen
Beschichtung erfolgt in Lösung bei Temperaturen oberhalb von 60°C, vorzugsweise oberhalb von 70°C. Als Lösungsmittel eignen sich organische Lösungsmittel, Wasser oder Mischungen hieraus, bevorzugt wird Wasser verwendet. Die für die Aufbringung der organischen Beschichtung nötige Reaktionszeit liegt bei mindestens 5 Minuten, vorzugsweise erfolgt sie über einen Zeitraum von 10 bis 90 Minuten, kann aber auch beliebig verlängert werden. Das erhaltene Pigment wird nach für den Fachmann gebräuchlichen Methoden aufgearbeitet und isoliert, z. B. durch Filtration, Trocknung und Siebung.
Die erfindungsgemäßen photostabilisierten Effektpigmente zeichnen sich neben der guten Photostabilität durch gute anwendungstechnische Eigenschaften aus. Durch die Kalzinierung werden die Oxidschichten dehydratisiert und verdichtet, was zu einer Verminderung der Porosität der Pigmentoberfläche führt. An der verdichteten Oberfläche kann weniger Wasser absorbiert werden und damit können die nachteiligen Wirkungen von in der Grenzschicht adsorbiertem Wasser im Lack vermindert werden. Durch die Kalzinierung wird auch chemisch in Form von Hydroxiden oder Oxidhydraten gebundenes Wasser entfernt. Dies hat Vorteile bei der Anwendung der Pigmente in Kunststoffen, da vorhandenes Wasser in thermoplastischen Polymeren wie z.B. in Polyestern, bei höheren Temperaturen zur hydrolytischen Zersetzung des Polymers führen kann. Im Falle von mit Hydroxiden bzw. Oxidhydraten beschichteten Pigmenten kann es bei der Kunststoffverarbeitung zur Freisetzung von Wasser kommen, das den unerwünschten Abbau der Polymerketten initiiert. Bei den erfindungsgemäßen Pigmenten kann durch die Kalzinierung der Oxidschicht auch bei der Verarbeitung der Pigmente in Kunststoffen kein Wasser austreten, so dass sie für diesen Anwendungsbereich besonders geeignet sind.
Aufgrund der verbesserten anwendungstechnischen Eigenschaften eignen sich die hier beschriebenen photostabilisierten Effektpigmente für eine
Vielzahl von Anwendungen. Gegenstand der Erfindung ist damit weiterhin die Verwendung der erfindungsgemäßen photostabilisierten Effektpigmente zur Pigmentierung von Kunststoffen, Lacken, wie z.B. Hydrolacken oder Pulverlacken, Farben, Druckfarben, kosmetischen Formulierungen, Papier, keramischen Materialien, Gläsern, Folien, im Sicherheitsdruck, im Agrarbereich, z.B. bei der Saatguteinfärbung, zur Lasermarkierung von z.B. Papier oder Kunststoffen, im Wärmeschutz sowie für die Herstellung von Pigmentpräparationen wie beispielsweise Pearlets, Pasten und Anteigungen sowie von Trockenpräparaten, wie z.B. Pellets, Granulaten, Chips etc, die vorzugsweise in Druckfarben und Lacken verwendet werden. In Anwendungen, bei denen die Toxizität der eingesetzten Materialien eine Rolle spielt, z.B. bei kosmetischen
Formulierungen, ist die Verwendung von Vanadium(IV)-Verbindungen zur Herstellung derVanadium-enthaltenden Oxidschichten bevorzugt. Die erfindungsgemäßen Pigmente lassen sich in einer Vielzahl der bekannten, in Farbsystemen angewendeten Bindemittel einsetzen und sind sowohl in wässrigen als auch in Systemen auf Lösungsmittelbasis anwendbar. Die Einarbeitung der Pigmente in die jeweiligen Applikationsmedien kann nach allen dem Fachmann bekannten Verfahren erfolgen.
Im Falle von Kosmetika eignen sich die erfindungsgemäßen Effektpigmente besonders für Produkte und Formulierungen der dekorativen Kosmetik, wie z.B. Nagellacke, farbgebende Puder, Lippenstifte oder Lidschatten, Seifen, Zahnpasten etc. Selbstverständlich können die erfindungsgemäßen Pigmente in den Formulierungen auch mit jeder Art von kosmetischen Roh- und Hilfsstoffen kombiniert werden. Dazu gehören u.a. Öle, Fette, Wachse, Filmbildner, Konservierungsmittel und allgemein anwendungstechnische Eigenschaften bestimmende Hilfsstoffe, wie z.B. Verdicker und rheologische Zusatzstoffe wie etwa Bentonite, Hektorite, Siliziumdioxid, Ca-Silikate, Gelatine, hochmolekulare Kohlenhydrate und/oder oberflächenaktive Hilfsmittel, etc. Die erfindungsgemäßen Pigmente enthaltenden Formulierungen können dem lipophilen, hydrophilen oder hydrophoben Typ angehören. Bei heterogenen Formulierungen mit diskreten wässrigen und nicht-wässrigen Phasen können die erfindungsgemäßen Pigmente in jeweils nur einer der beiden Phasen enthalten oder auch über beide Phasen verteilt sein.
Die pH-Werte der wässrigen Formulierungen können zwischen 1 und 14, bevorzugt zwischen 2 und 11 und besonders bevorzugt zwischen 5 und 8 liegen. Den Konzentrationen der erfindungsgemäßen Pigmente in der Formulierung sind keine Grenzen gesetzt. Sie können -je nach Anwendungsfall - zwischen 0,001 (rinse-off-Produkte, z.B. Duschgele) - 100 % (z.B. Glanzeffekt-Artikel für besondere Anwendungen bei Verwendung von Effektpigmenten als Substrat) liegen. Die erfindungsgemäßen Pigmente können weiterhin auch mit kosmetischen Wirkstoffen kombiniert werden. Geeignete Wirkstoffe sind z.B. Insect Repellents, UV A/BC-Schutzfilter (z.B. OMC, B3, MBC), Anti-Ageing- Wirkstoffe, Vitamine und deren Derivate (z.B. Vitamin A, C, E etc.), Selbstbräuner (z.B. DHA, Erytrolose u.a.) sowie weitere kosmetische Wirkstoffe wie z.B. Bisaboloi, LPO, Ectoin, Emblica, Allantoin, Bioflavanoide und deren Derivate.
Besonders geeignet sind die erfindungsgemäßen Effektpigmente für den Einsatz in Kunststoffen, so z.B. in Agrarfolien, infrarotreflektierenden Folien und Scheiben, Geschenkfolien, Kunststoffbehältnissen und Formkörpern für alle dem Fachmann bekannten Anwendungen, da besonders in Kunststoffen die Photostabilität der erfindungsgemäßen Effektpigmente zu einer Verlängerung der Haltbarkeit daraus hergestellter Produkte führt. Als Kunststoffe eignen sich alle gängigen Kunststoffe für die Einarbeitung der erfindungsgemäßen Effektpigmente, z.B. Duromere oder thermoplastische Kunststoffe. Die Beschreibung der Anwendungsmöglichkeiten und der einsetzbaren Kunststoffe, Verarbeitungsverfahren und Additive finden sich z.B. in der RD 472005 oder in R. Glausch, M. Kieser, R. Maisch, G. Pfaff, J. Weitzel, Perlglanzpigmente, Curt R. Vincentz Verlag, 1996, 83 ff., deren Offenbarungsgehalt hier mit umfasst ist. Die Einarbeitung kann in allen bekannten Kunststoffen erfolgen und auf allen dem Fachmann bekannten Arten und Weisen erfolgen, z.B. rein physikalisch durch Mischung als auch chemisch durch Reaktion entsprechender funktioneller Gruppen einer eventuell aufgebrachten organischen Beschichtung mit dem Kunststoff. Insbesondere eignen sich die erfindungsgemäßen Effektpigmente bei Anwendungen mit einem hohen Eintrag an Scherenergie, wie dies z.B. bei einigen Kunststoffanwendungen gefordert wird. So wurde überraschenderweise gefunden, dass die erfϊndungsgemäße Photostabilisierung auch noch nach sehr intensiven mechanischen Belastungen vorliegt. Dies liegt an den sehr starken Wechselwirkungen der Stabilisierungsagenzien mit der maßgeblichen Interferenzschicht.
Bei Einsatz der Pigmente in Lacken und Farben sind alle dem Fachmann bekannten Anwendungsbereiche möglich, wie z.B. Pulverlacke, Hydrolacke, Automobillacke, Druckfarben für den Tief-, Offset-, Sieb- oder Flexodruck sowie für Lacke in Außenanwendungen. Für die Herstellung der Druckfarben ist eine Vielzahl von Bindern, insbesondere wasserlösliche Typen, geeignet, z.B. auf der Basis von Acrylaten, Methacrylaten, Polyestem, Polyurethanen, Nitrocellulose, Ethylcellulose, Polyamid, Polyvinylbutyrat, Phenolharzen, Maleinharzen, Stärke oder Polyvinylalkohol. Bei den Lacken kann es sich um wasser- oder lösemittelbasierte Lacke handeln, wobei die Auswahl der Lackbestandteile dem Allgemeinwissen des Fachmanns unterliegt. Bevorzugt eingesetzt werden die erfindungsgemäßen Pigmente in Lacken wie z.B. in Autolacken oder Wasserlacken, die aufgrund der besonderen Stabilität der Pigmente für alle Innen- und Außenanwendungen geeignet sind. In
Pulverlackformulierungen lassen sich die erfindungsgemäßen Effektpigmente auch ohne weitere organische Beschichtung einfach einarbeiten und zeigen in diesen Anwendungen einen hellen, metallischen Glanz mit ausgeprägtem Sparkle- oder Glitzereffekt. Bei Verwendung in Außenanwendungen wird das Auftreten einer Kreidung und Vergrauung stark hinausgezögert bzw. bei hochwetterstabilen Formulierungen, den sogenannten Superdurable Powder Coatings, weitestgehend vermieden. lm Falle von aus dem Stand der Technik bekannten silanbasierenden Wetterstabilisierungen kommt es oft zu Unverträglichkeiten mit der Pulverlackmatrix insbesondere im Bereich des sogenannten Dry Blending, was sich oftmals in starken Pigmentassoziationen in der eingebrannten Pulverlackschicht äußert. Diese Störung wird bei den erfindungsgemäßen
Effektpigmenten, aufgrund der vornehmlich rein anorganischen wetterstabilisierenden Schicht, kaum beobachtet
Wegen der breiten Anwendbarkeit sind Kunststoffe, Lacke, Farben, Druckfarben, kosmetische Formulierungen, Papier, keramische Materialien, Gläser, Folien, Saatgut, Pigmentpräparationen sowie Trockenpräparate enthaltend ein oder mehrere der erfindungsgemäßen photostabilisierten Effektpigmente ebenfalls Gegenstand der vorliegenden Erfindung.
Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, ohne sie jedoch zu begrenzen.
Beispiele:
Bestimmung der Photoaktivität:
Die Pigmentproben wurden in eine Kunststoff matrix eingearbeitet und der Umfang der Reduktion von Pb2+ zu Pb visuell bestimmt. Die Beurteilung der Graufärbung erfolgt nach ISO 105-Part A 02 (entspricht DIN 54 001). Die Prüfskala reicht von 5 (sehr gut) bis 1 (sehr schlecht).
Verqleichsbeispiel 1 :
100 g Glimmerplättchen mit einer Teilchengröße von 10-50 μm werden in 1 I Wasser suspendiert und unter Rühren auf 75°C erhitzt. Zu der Suspension wird eine wässrige 10%ige Lösung von 3.35 g SnCI4 innerhalb einer Stunde zudosiert, wobei der pH-Wert durch Zugabe von 32%iger Natronlauge auf 1.8 gehalten wird. Nach einer Nachrührzeit von 30 Minuten wird eine wässrige 30%ige Lösung von 237 g TiCI4 innerhalb 12 Stunden zudosiert, wobei der pH-Wert durch Zugabe von 32%iger Natronlauge auf 1.8 gehalten wird. Anschließend wird 30 min nachgerührt und der pH-Wert mit Natronlauge auf 4.0 eingestellt. Das entstandene Zwischenprodukt enthält ca. 2% Zinnoxid und 100% Titandioxid, bezogen auf den Glimmeranteil.
Das Pigment wird durch Filtration vom Überstand abgetrennt gewaschen. Nach Trocknung bei 120°C wird das Pigment 45 min bei 800°C kalziniert und das erhaltene Effektpigment mit blauer Interferenzfarbe durch Siebung (Maschenweite 63 μm) von Grobanteilen befreit.
Die Photoaktivität dieses Pigments wird mit 1 bewertet.
Beispiel 1 : Die Herstellung des Vanadium-haltigen Pigments erfolgt wie in
Vergleichsbeispiel 1 beschrieben, wobei die Natronlauge, welche zum Konstanthalten des pH-Wertes während der Ausbildung der Ti02-Schicht verwandt wird, 64 mg Natriumvanadat * 4 H2O zugegeben wurde. Das Pigment enthält damit eine Dotierung von 0.03% Vanadium(V)-Oxid, bezogen auf das Gesamtgewicht.
Die Photoaktivität dieses Pigments wird mit 3 bewertet.
Beispiel 2: Die Herstellung der Basispigmentsuspension erfolgt wie in
Vergleichsbeispiel 1 beschrieben. Im Anschiuss wird der pH-Wert mit Natronlauge auf 6.5 eingestellt. Innerhalb einer Stunde wird eine Lösung von 3.35 g Zinkchlorid in 60 ml Wasser zugegeben, wobei der pH-Wert mit 5%iger Natronlauge, in der 53 mg Natriumvanadat gelöst wurde, konstant- gehalten wird. Die Aufarbeitung des Pigments erfolgt wie in Vergleichsbeispiel 1 beschrieben. Das Pigment enthält damit rechnerisch 2% Zinkoxid und 0.025%
Vanadiumoxid bezogen auf das Gesamtgewicht.
Die Photoaktivität dieses Pigments wird mit 4 bewertet.
Beispiel 3:
Die Herstellung der Pigmentsuspension erfolgt grundsätzlich wie in Vergleichsbeispiel 1 beschrieben. Im Anschluss an die Belegung wird der pH-Wert der Suspension mit Natronlauge auf 5.0 eingestellt. Innerhalb einer Stunde wird eine Lösung von 9.5 g Aluminiumchlorid * 6 H2O in 100 ml Wasser zugegeben, wobei der pH-Wert mit 5%iger Natronlauge, in der 100 mg Vanadium(V)-oxid gelöst wurde, konstantgehalten wird. Die Aufarbeitung des Pigments erfolgt wie in Vergleichsbeispiel 1 beschrieben. Das Pigment enthält damit rechnerisch 2% Aluminiumoxid und 0.1% Vanadiumoxid bezogen auf das Gesamtgewicht. Die Körperfarbe des Pigments ist gelblich. Die Photoaktivität dieses Pigments wird mit 3-4 bewertet.
Beispiel 4:
Die Herstellung der Pigmentsuspension erfolgt grundsätzlich wie in Vergleichsbeispiel 1 beschrieben. Während der ersten 75% der Belegung wird der pH-Wert mit 32%iger Natronlauge konstant gehalten. In der Natronlauge, die für die restliche Belegung verwendet wird, werden 64 mg Natriumvanadat gelöst. Die Aufarbeitung des Pigments erfolgt wie in Vergleichsbeispiel 1 beschrieben.
Das Pigment enthält damit rechnerisch 0.025% Vanadiumoxid bezogen auf das Gesamtgewicht. Aufgrund der Herstellungsbedingungen erfolgt die Dotierung in Form eines Gradienten und vornehmlich in der äußeren Tiθ2- Schicht.
Die Photoaktivität dieses Pigments wird mit 3-4 bewertet. Beispiel 5:
100 g frisch hergestellte, also noch nicht kalzinierte, mit 4.0% Zinndioxid und 62% Rutil belegte Siliziumdioxid-Plättchen werden in der Mutterlauge im Anschluss an die Belegung mit einer Nachbeschichtung aus Vanadium- und Zirkoniumoxid versehen. Zu der auf 75°C temperierten, mit
Natronlauge auf pH 3.0 eingestellten Suspension (Volumen ca. 1.5 I) wird unter kräftigem Rühren eine wässrige 5%ige Lösung von 5.23 g ZrOCI2 * 8 H20 innerhalb einer Stunde zudosiert, wobei der pH-Wert durch Zugabe von 5%iger Natronlauge konstant gehalten wird. Der Natronlauge wurden vorab 32 mg NH4VO4 zugesetzt. Nach einer Nachrührzeit von 30 Minuten wird der pH-Wert mit Natronlauge auf 4.0 eingestellt und das Effektpigment durch Filtration vom Überstand abgetrennt und gewaschen. Nach Trocknung bei 120°C wird 45 min bei 800°C kalziniert und das Pigment mit grün-goldener Interferenzfarbe durch Siebung (Maschenweite 63 μm) von Grobanteiien befreit.
Die Photoaktivität dieses Pigments wird mit 3-4 bewertet.
Beispiel 6: Die Herstellung des Vanadium-haltigen Pigments erfolgt wie in
Vergleichsbeispiel 1 beschrieben, wobei in der TiCU-Lösung 54 mg
Vanadyl(IV)-Sulfat gelöst werden.
Das Pigment enthält damit eine Dotierung von 0.03% Vanadium (berechnet als V2O5) bezogen auf das Gesamtgewicht. Die Photoaktivität dieses Pigments wird mit 3 bewertet.

Claims

Ansprüche
1. Photostabilisiertes Effektpigment, dadurch gekennzeichnet, dass auf einem Substrat eine oder mehrere kalzinierte und Vanadium enthaltende Oxidschichten, allein oder in Mischung mit Sulfaten,
Boraten oder Phosphaten aufgebracht sind.
2. Photostabilisiertes Effektpigment nach Anspruch 1 , dadurch gekennzeichnet, dass das Substrat ein plättchenförmiger, sphärischer oder nadeiförmiger Träger und/oder ein mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metall nitride, Metalloxynitride oder Mischungen dieser Materialien beschichteter plättchenförmiger, sphärischer oder nadeiförmiger Träger ist.
3. Photostabilisiertes Effektpigment nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Substrat Titanoxid oder ein Titanoxid enthaltendes Substrat auf der Basis eines mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichteten plättchenförmigen, sphärischen oder nadeiförmigen Trägers ist.
4. Photostabilisiertes Effektpigment nach Anspruch 3, dadurch gekennzeichnet, dass die äußere Schicht des mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichteten plättchenförmigen, sphärischen oder nadeiförmigen Trägers Titanoxid enthält.
5. Photostabilisiertes Effektpigment nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die kalzinierte und Vanadium enthaltende Oxidschicht aus Oxiden von AI, Ca, Sr, Zn, Si, Zr, Ce, Ti oder Mischungen hieraus besteht.
6. Photostabilisiertes Effektpigment nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Vanadiumgehalt 0.002 bis 0.2 Gew.-
% beträgt, berechnet als V205 und bezogen auf das Gesamtpigment.
7. Photostabilisiertes Effektpigment nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Vanadiumkonzentration in der Vanadium enthaltenden Oxidschicht in Form eines Gradienten in
Richtung der Oberfläche der Vanadium enthaltenden Oxidschicht hin zu- oder abnimmt.
8. Photostabilisiertes Effektpigment nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zusätzlich auf die kalzinierte Vanadium enthaltende Oxidschicht eine organische Beschichtung aufgebracht ist.
9. Verfahren zur Herstellung eines photostabilisierten Effektpigmentes nach Anspruch 1 , dadurch gekennzeichnet, dass auf ein Substrat eine oder mehrere Vanadium enthaltende Hydroxid-, Oxidhydrat und/oder
Oxidschichten allein oder in Mischung mit Sulfaten, Phosphaten und/oder Boraten aufgebracht werden und anschließend kalziniert wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Substrat ein plättchenförmiger, sphärischer oder nadeiförmiger Träger und/oder ein mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichteter plättchenförmiger, sphärischer oder nadeiförmiger Träger ist.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Aufbringung der Hydroxid-, Oxidhydrat und/oder Oxidschichten nasschemisch und/oder im Sol-Gel-Verfahren erfolgt.
12. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass eine Vanadiumverbindung in die Hydroxid-,
Oxidhydrat und/oder Oxidschicht derart eingebracht wird, dass die Vanadiumkonzentration in der Schicht in Form eines Gradienten in Richtung der Oberfläche der Vanadium enthaltenden Schicht hin zu- oder abnimmt.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Kalzinierung bei Temperaturen von 300 bis 900°C erfolgt.
14. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass zusätzlich auf die kalzinierte Vanadium enthaltende Oxidschicht eine organische Beschichtung aufgebracht wird.
15. Verwendung photostabilisierter Effektpigmente nach Anspruch 1 in Kunststoffen, Lacken, Farben, Druckfarben, kosmetischen
Formulierungen, Papier, keramischen Materialien, Gläsern, Folien, im Sicherheitsdruck, zur Lasermarkierung, im Wärmeschutz oder zur Saatguteinfärbung sowie in Trockenpräparaten und Pigmentpräparationen.
16. Kunststoffe, Lacke, Farben, Druckfarben, kosmetische
Formulierungen, Papier, keramische Materialien, Gläser, Folien, Saatgut, Pigmentpräparationen sowie Trockenpräparate enthaltend eines oder mehrere photostabilisierte Effektpigmente gemäß Anspruch 1.
PCT/EP2004/004418 2003-05-21 2004-04-27 Photostabilisierte effektpigmente WO2004104110A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006529713A JP2007505987A (ja) 2003-05-21 2004-04-27 光安定化効果顔料
EP04729647A EP1633819A1 (de) 2003-05-21 2004-04-27 Photostabilisierte effektpigmente
US10/557,476 US7455726B2 (en) 2003-05-21 2004-04-27 Photostabilised effect pigments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47213803P 2003-05-21 2003-05-21
US60/472,138 2003-05-21

Publications (1)

Publication Number Publication Date
WO2004104110A1 true WO2004104110A1 (de) 2004-12-02

Family

ID=33476927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/004418 WO2004104110A1 (de) 2003-05-21 2004-04-27 Photostabilisierte effektpigmente

Country Status (6)

Country Link
US (1) US7455726B2 (de)
EP (1) EP1633819A1 (de)
JP (1) JP2007505987A (de)
KR (1) KR20060028392A (de)
CN (1) CN100384946C (de)
WO (1) WO2004104110A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842130B2 (en) * 2005-08-22 2010-11-30 Basf Corporation Complex inorganic effect materials
US7976744B2 (en) * 2004-12-15 2011-07-12 Basf Se Process of using microwave deposition of metal oxide onto an organic substrate
WO2011095326A1 (de) * 2010-02-04 2011-08-11 Merck Patent Gmbh Effektpigmente
US8034864B2 (en) * 2004-10-19 2011-10-11 Merck Patent Gmbh Opaque plastics

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068979B2 (ja) * 2006-11-07 2012-11-07 日揮触媒化成株式会社 歯科用充填材、その製造方法および歯科用複合材料
JP2009078955A (ja) * 2007-09-27 2009-04-16 Okuno Chem Ind Co Ltd 無鉛セラミックカラー組成物
CN101168625B (zh) * 2007-11-28 2012-02-15 四川大学 智能控温功能型云母钒珠光颜料及其制备
CN101168624B (zh) * 2007-11-28 2012-02-15 四川大学 多层结构智能控温功能型云母珠光颜料及其制备
DE102008047572A1 (de) * 2008-09-16 2010-04-15 Eckart Gmbh Metalleffektpigmentpräparation in kompaktierter Form, Verfahren zu deren Herstellung und Verwendung derselben
CN103221197A (zh) * 2010-08-02 2013-07-24 裕克施乐股份公司 用于制造染色的纤维复合材料的方法和该纤维复合材料以及由此制造的成型件
CN102029113B (zh) * 2010-11-09 2012-09-26 中国海洋石油总公司 一种味精工业废水处理膜清洗剂的制备方法
DE102012017710A1 (de) * 2012-09-07 2014-03-13 Polysecure Gmbh Werkstück oder Werkstoff mit inertem Markersystem
US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
CN103254664A (zh) * 2013-05-14 2013-08-21 四川大学 一种二氧化钒包覆云母的智能控温型粉体的制备方法
US9881714B2 (en) 2014-06-19 2018-01-30 Saint-Gobain Performance Plastics Corporation Laser-markable insulation material for wire or cable assemblies
US10256009B2 (en) 2014-06-19 2019-04-09 Saint-Gobain Performance Plastics Corporation Laser-markable insulation material for wire or cable assemblies
TR201816042T4 (tr) * 2014-12-19 2018-11-21 Eckart Gmbh Yüksek renk koyuluğuna ve yüksek parlaklığa sahip absorbe edici etki pigmentleri, üretimlerine yönelik yöntem ve kullanımları.
EP3081601A1 (de) * 2015-04-15 2016-10-19 Schlenk Metallic Pigments GmbH Perlglanzpigmente auf der basis von monolithisch aufgebauten substraten
CN111977686A (zh) * 2020-08-31 2020-11-24 攀钢集团重庆钒钛科技有限公司 提高耐光性的钛白粉初品制备方法
WO2022244766A1 (ja) * 2021-05-17 2022-11-24 日本板硝子株式会社 酸化ジルコニウムを含む被膜を有する光揮性顔料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974874A (en) * 1961-06-28 1964-11-11 Du Pont New pigment compositions
US5766335A (en) * 1996-04-25 1998-06-16 Ciba Specialty Chemicals Corporation Colored luster pigments
US5855660A (en) * 1997-04-22 1999-01-05 Ciba Specialty Chemicals Corporation Colored effect pigments and their use
US5958125A (en) * 1996-07-05 1999-09-28 Schmid; Raimund Goniochromatic luster pigments based on transparent, nonmetallic, platelet-shaped substrates
JP3044949B2 (ja) * 1992-09-11 2000-05-22 トピー工業株式会社 装飾用顔料
EP1306412A1 (de) * 2001-10-24 2003-05-02 MERCK PATENT GmbH Farbige Interferenzpigmente

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087828A (en) * 1961-06-28 1963-04-30 Du Pont Nacreous pigment compositions
US3087829A (en) * 1961-06-28 1963-04-30 Du Pont Micaceous pigment composition
FI52351C (fi) * 1973-02-20 1977-08-10 Kemira Oy Menetelmä tekokuitujen himmentämiseen soveltuvan valonkestävän titaani dioksidipigmentin valmistamiseksi
JP2565716B2 (ja) * 1987-09-18 1996-12-18 テイカ株式会社 二酸化チタン被覆酸化鉄顔料
JPH01313571A (ja) * 1988-06-10 1989-12-19 Kansai Paint Co Ltd 水素脆性防止塗料用顔料及びこれを用いた塗料
JP2585128B2 (ja) * 1989-06-02 1997-02-26 テイカ株式会社 有色微粒子無機顔料
US5853955A (en) * 1995-12-11 1998-12-29 Mcdonnell Douglas Corp. Substrates and methods for laser marking same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974874A (en) * 1961-06-28 1964-11-11 Du Pont New pigment compositions
JP3044949B2 (ja) * 1992-09-11 2000-05-22 トピー工業株式会社 装飾用顔料
US5766335A (en) * 1996-04-25 1998-06-16 Ciba Specialty Chemicals Corporation Colored luster pigments
US5958125A (en) * 1996-07-05 1999-09-28 Schmid; Raimund Goniochromatic luster pigments based on transparent, nonmetallic, platelet-shaped substrates
US5855660A (en) * 1997-04-22 1999-01-05 Ciba Specialty Chemicals Corporation Colored effect pigments and their use
EP1306412A1 (de) * 2001-10-24 2003-05-02 MERCK PATENT GmbH Farbige Interferenzpigmente

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200029, Derwent World Patents Index; Class A60, AN 1994-148095, XP002298942 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034864B2 (en) * 2004-10-19 2011-10-11 Merck Patent Gmbh Opaque plastics
US7976744B2 (en) * 2004-12-15 2011-07-12 Basf Se Process of using microwave deposition of metal oxide onto an organic substrate
US7842130B2 (en) * 2005-08-22 2010-11-30 Basf Corporation Complex inorganic effect materials
WO2011095326A1 (de) * 2010-02-04 2011-08-11 Merck Patent Gmbh Effektpigmente
US8647429B2 (en) 2010-02-04 2014-02-11 Merck Patent Gmbh Effect pigments
KR101859238B1 (ko) 2010-02-04 2018-05-17 메르크 파텐트 게엠베하 효과 안료

Also Published As

Publication number Publication date
US20070060668A1 (en) 2007-03-15
CN100384946C (zh) 2008-04-30
KR20060028392A (ko) 2006-03-29
JP2007505987A (ja) 2007-03-15
EP1633819A1 (de) 2006-03-15
CN1791645A (zh) 2006-06-21
US7455726B2 (en) 2008-11-25

Similar Documents

Publication Publication Date Title
WO2004104110A1 (de) Photostabilisierte effektpigmente
EP3283573B1 (de) Perlglanzpigmente auf der basis von monolithisch aufgebauten substraten, verfahren zu deren herstellung sowie die verwendung solcher perlglanzpigmente
EP2531563B1 (de) Effektpigmente
EP0804512B1 (de) Farbige aluminiumpigmente, verfahren zu deren herstellung sowie deren verwendung
EP1572812B1 (de) Silberweisse interferenzpigmente mit hohem glanz auf der basis von transparenten substratplättchen
EP1874874B1 (de) Mit anorganisch/organischen mischschichten beschichtete perlglanzpigmente und verfahren zu deren herstellung
EP1786868B1 (de) Perlglanzpigmente
EP1213330B1 (de) Silberfarbenes Glanzpigment
EP2367889B1 (de) Hochglänzende mehrschichtperlglanzpigmente mit enger grössenverteilung und verfahren zu deren herstellung
EP2904052B1 (de) Wetterstabile perlglanzpigmente, verfahren zu ihrer herstellung und verwendung
EP1683839B1 (de) Effektpigmente mit starkem Farbflop
EP1611209B1 (de) Oberflächenmodifizierte effektpigmente
DE102006027025A1 (de) Silberweiße-Effektpigmente
EP1711562A2 (de) Partikel mit funktionellem multilayeraufbau
EP1672035A2 (de) Effektpigmente auf Basis dünner SiO2-Plättchen
EP1506262B1 (de) Goniochromatische glanzpigmente
EP2356181A1 (de) Hochglänzende mehrschichtperlglanzpigmente mit farbiger interferenzfarbe und enger grössenverteilung und verfahren zu deren herstellung
DE10313978A1 (de) Silberpigment
EP3119840B1 (de) Effektpigmente
DE10251378A1 (de) Fünfschichtpigmente
DE102004052544A1 (de) Interferenzpigmente
EP1847571A2 (de) Pigment comprising a plate-shaped substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004729647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007060668

Country of ref document: US

Ref document number: 1020057022240

Country of ref document: KR

Ref document number: 20048138586

Country of ref document: CN

Ref document number: 2006529713

Country of ref document: JP

Ref document number: 10557476

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2401/KOLNP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004729647

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057022240

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10557476

Country of ref document: US